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Image quality assessment (IQA) has been a topic of intense research over the last several decades. With each year comes an increasing
number of new IQA algorithms, extensions of existing IQA algorithms, and applications of IQA to other disciplines. In this article,
I first provide an up-to-date review of research in IQA, and then I highlight several open challenges in this field. The first half of
this article provides discuss key properties of visual perception, image quality databases, existing full-reference, no-reference, and
reduced-reference IQA algorithms. Yet, despite the remarkable progress that has been made in IQA, many fundamental challenges
remain largely unsolved. The second half of this article highlights some of these challenges. I specifically discuss challenges related
to lack of complete perceptual models for: natural images, compound and suprathreshold distortions, and multiple distortions, and
the interactive effects of these distortions on the images. I also discuss challenges related to IQA of images containing nontraditional,
and I discuss challenges related to the computational efficiency. The goal of this article is not only to help practitioners and
researchers keep abreast of the recent advances in IQA, but to also raise awareness of the key limitations of current IQA knowledge.

1. Introduction

Digital imaging and image-processing technologies have rev-
olutionized the way in which we capture, store, receive, view,
utilize, and share images. Today, we have come to expect the
ability to instantly share photos online, to send and receive
multimedia MMS messages at a moment’s notice, and to
stream live video across the globe instantaneously. Today,
these conveniences are possible because the digital cameras
and photo-editing systems used by photographers and artists,
the compression and transmission systems used by distribu-
tors and network engineers, and the various multimedia and
display technologies enjoyed by consumers all have the ability
to process images in ways that were unthinkable just 20 years
ago.

But despite the innovation and rapid advances in tech-
nology and despite the prevalence of higher-definition and
more immersive content, one thing has remained constant
throughout the digital imaging revolution: the biological
hardware used by consumers—the human visual system.
Although personal preferences can and do change over time
and can and do vary from person to person, the underlying

neural circuitry and biological processing strategies have
changed very little over measurable human history. As a
result, digital processing can alter an image’s appearance in
ways that humans can reliably and consistently judge to be
either detrimental or beneficial to the image’s visual quality.

Because of the prevalence of these alterations, a crucial
requirement for any system that processes images is a means
of assessing the impacts of such alterations on the resulting
visual quality. To meet this need, numerous algorithms for
image quality assessment (IQA) have been researched and
developed over the last several decades. Today, IQA research
has emerged as an active subdiscipline of image processing,
and many of the resulting techniques and algorithms have
begun to benefit a wide variety of applications. Variations of
IQA algorithms have proved useful for applications such as
image and video coding (e.g., [1-3]), digital watermarking
(e.g., [4-8]), unequal error protection (e.g., [9]), denoising
(e.g., [10]), image synthesis (e.g., [11, 12]), and various other
areas (e.g., for predicting intelligibility in sign language video
(13]).

Many of the techniques employed by modern IQA algo-
rithms are founded in the early research on quality evaluation



of optical systems and analog television broadcast and display
systems (e.g., [14-25]). For example, in their 1940 paper titled
“Quality in Television Pictures,” Goldmark and Dyer [16]
stated that

“The factors which chiefly determine the quality of
a television picture are (1) definition, (2) contrast
range, (3) gradation, (4) brilliance, (5) flicker, (6)
geometric distortion, (7) size, (8) color, and (9)
noise.” [16].

Although no objective quality assessment formulae were
presented in [16], many of today’s IQA algorithms do indeed
employ measures of one or more of these factors. Later work
by Winch [17], on the topic of color TV quality, further
pushed toward objective quality assessment by providing
guidelines for how photometric and colorimetric properties
could be used to derive “characteristic data for correlation
with the subjective preferences”; such properties are now
commonly employed in modern IQA algorithms. On the
optics front, in their 1955 paper titled “On the Assessment
of Optical Images,” Fellgett and Linfoot proposed two key
strategies and associated numerical measures of image qual-
ity: “assessment by similarity” and “assessment by information
content” [19]. Indeed, variations of these ideas have been used
by many of today’s IQA algorithms.

It is interesting to note that nearly all of these early
research efforts up through the 1960s mentioned the need to
take into account the characteristics of human vision during
the quality assessment process. Five of the earliest efforts to
explicitly model properties of the human visual system (HVS)
for IQA were published in the early 1970s by Sakrison and
Algazi [22], by Budrikis [23], by Stockham [24], by Mannos
and Sakrison [26], and by Schade [25]. Although no extensive
IQA algorithms were presented in these early papers, many
of the properties which are used in modern HVS-based IQA
algorithms—such as luminance and contrast sensitivity and
visual masking—were also suggested in these papers. At that
time, Budrikis forecasted that

“Full evaluations are as yet impossible but seem
very likely for the foreseeable future, although
probably entailing considerable computational
tasks.” [23].

Today, 40 years later, we still have yet to achieve full evalua-
tions of quality, though remarkable progress has been made—
as I will point out in this paper.

At a glance, the IQA problem for digital images may not
seem as a difficult task as reported in the literature. After all,
digital processing alters an image’s pixel values, and the task of
estimating quality requires merely mapping these numerical
changes to corresponding visual preferences. Of course,
anything that involves the human visual system is rarely
straightforward. Humans do not see images as collections
of pixels, and consequently, the appropriate mapping varies
depending on the image, on the type of processing, on the
numerical and psychological interaction between these two,
and on numerous additional factors. As an example, Figure 1
shows an original image and 11 altered versions of that image,
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each with the same peak signal-to-noise ratio in comparison
to the reference. Clearly, a mapping based only on the energy
of the differences in pixel values cannot capture the wide
range of visual qualities exhibited by these images.

The task of judging quality in Figure 1 is facilitated by the
presence of an original, undistorted reference image. In his
seminal 1975 collection titled “Image Quality: A Comparison
of Photographic and Television Systems,” Schade [25] stated
that

“Image quality is a subjective judgment made by
a mental comparison of an external image with
image impressions stored and remembered more
or less distinctly by the observer. ... Moreover, the
rating of a given image may be greatly influenced
by the availability of a much better image for
comparison purposes.” [25].

Most IQA algorithms operate in this relative-to-a-reference
fashion; these are so-called full-reference algorithms, which
take as input a reference image and a processed (usually
distorted) image and yield as output either a scalar value
denoting the overall visual quality or a spatial map denoting
the local quality of each image region (see Section 3). More
recently, researchers have begun to develop no-reference and
reduced-reference algorithms, which attempt to yield the same
quality estimates either by using only the processed/distorted
image (no-reference IQA; see Section 4.1) or by using the pro-
cessed/distorted image and only partial information about
the reference image (reduced-reference IQA; see Section 4.2).

All three types of IQA algorithms can perform quite well
at predicting quality. Some of today’s best-performing full-
reference algorithms have been shown to generate estimates
of quality that correlate highly with human ratings of quality,
typically yielding Spearman’s and Pearson’s correlation coeffi-
cients in excess of 0.9. Research in no-reference and reduced-
reference IQA is much less mature; however, recent methods
have been shown to yield quality estimates which also corre-
late highly with human ratings of quality, sometimes yielding
correlation coefficients which rival the most competitive full-
reference methods.

The field of image quality assessment is rapidly advancing.
With each year comes an increasing number of papers on
new IQA algorithms, extensions of existing IQA algorithms,
and applications of these IQA techniques to other disciplines.
Here, the objective of this paper is not only to provide an
overview of the strategies used in IQA algorithms, but also—
and more so—to highlight the current challenges in this field.
This paper is meant to complement previous reviews and
chapters on IQA [28-36] (see also [37, 38] for related reviews
on video quality assessment). Here, I first provide a more
recent survey of research in IQA to help practitioners and
researchers keep abreast of the recent advances in IQA. Next,
I discuss several open research challenges which are needed
to further push IQA algorithms toward achieving the “full
evaluations” envisioned by Budrikis.

In the first three sections of this paper, I provide an up-
to-date survey of research in IQA. As in previous reviews,
Section 2 summarizes several important properties of human
visual perception which are used, at least to some extent,
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FIGURE 1: Original and distorted versions of the image child swimming from the CSIQ database [27]. Note the large variation in perceived
quality, despite the fact that all distorted images have the same peak signal-to-noise ratio of 22.5 dB.

directly or indirectly by the vast majority of IQA algorithms.
However, I also discuss with each of these properties some of
the early experiments in vision science that were performed
to uncover the properties; the goal of this discussion is to
provide a context which can help define bounds on the
applicability of each of the properties. This section also pro-
vides an up-to-date survey of the publicly available ground-
truth datasets (image quality databases) that can be used to
quantify the performances of IQA algorithms in predicting
quality. (Note that research on color perception and the
specific effects of color on image quality are not covered
in this paper. Color-perception research has its own long
history, most of which predates research in IQA. The reader is
referred to [39-41] for discussions on the influences of color
on image quality.).

Sections 3 and 4 provide concise surveys of previous and
recent IQA algorithms. Again, the primary objective of these
surveys is to help the reader keep abreast of the latest IQA
techniques. Section 3 surveys full-reference IQA algorithms.
Section 4 surveys no-reference and reduced-reference IQA
algorithms. For a more specific and thorough discussion of

the use of natural-scene statistics for image and video quality
assessptment, I refer you to the recent review by Bovik [36].

One point should become evident after reading previous
reviews and the reviews provided in Sections 2, 3, and 4 of
this paper: remarkable progress has been made since the pio-
neering IQA work of Budrikis, Goldmark, Sakrison, Schade,
Stockham, Winch, and others. Today’s IQA algorithms can
perform extremely well at predicting quality for a variety of
images and distortion types.

Yet, beneath the surface of this seemingly orderly picture,
behind the scenes of this wealth of IQA knowledge that we
have gained lies a more cloudy portrait fueled by a growing
number of counterexamples—images, distortions, and other
alterations—which modern IQA algorithms are ill-equipped
to handle. Under the covers of the numerous successes in IQA
research lies a long list of unanswered questions and unsolved
challenges.

In Section 5, I discuss seven of these challenges. Some of
the challenges are fundamental; some are more application-
specific; most of the challenges have been or are actively being
researched. But all remain largely unsolved.



(1) Section 5.1 discusses the challenges IQA researchers
face when designing a model of human visual pro-
cessing which can cope with natural images. This
section highlights the need for improved models of
primary visual cortex, the need for more ground-
truth data on natural images, and the need for models
which incorporate processing by higher-level visual
areas.

(2) Section 5.2 discusses the challenges researchers
face when designing an algorithm that can cope
with the variety of distortions that IQA algorithms
can encounter. This section discusses the need for
improved visual summation models which can han-
dle the broadband nature of distortions, and the need
for more research on the perception of suprathreshold
distortions.

(3) Section 5.3 discusses the challenges researchers face
when designing an IQA algorithm that can model the
influence of the distortion on the image’s appearance.
This section discusses the differences between distor-
tions which are perceived as additive and distortions
which affect the image’s objects. This section also
highlights the need to consider the adaptive visual
strategies and other higher-level effects that humans
use when judging quality.

(4) Section 5.4 discusses the challenges researchers face
when designing an IQA algorithm that can cope
with images which are simultaneously distorted by
multiple types of distortion. This section reviews
previous work on the effects of multiple distortions
on image quality, and it discusses the potential per-
ceptual interactions between the distortions and their
joint effects on images.

(5) Section 5.5 discusses the challenges researchers face
when designing an IQA algorithm that can deal with
geometric changes to images. This section reviews
existing IQA algorithms which have been designed
to handle basic geometric changes, and it discusses
research efforts on IQA of textures, which can contain
more radical geometric and photometric changes.

(6) Section 5.6 discusses the challenges researchers face
when designing an IQA algorithm that can perform
IQA of enhanced images. This section describes
efforts to model the perceptual effects of enhance-
ment on quality, and it discusses the need for more
thorough image quality databases which contain
enhanced images.

(7) Section 5.7 discusses the challenges surrounding run-
time performance and memory requirements of IQA
algorithms. This section reviews previous efforts to
accelerate existing IQA algorithms, and it discusses
the need for further related performance analyses and
accelerations.

It is important to note that these seven challenges are by
no means an exhaustive list of research topics in IQA that
require further investigation. Rather, I have selected these
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particular challenges to highlight some key limitations of cur-
rent IQA knowledge and to point out areas which can begin
to answer broader questions on IQA. Additional important
open challenges can be garnered from the Proceedings of SPIE
“Image Quality and System Performance” and “Human Vision
and Electronic Imaging, among others.

2. Image Quality Assessment by Humans

A common approach toward designing an IQA algorithm
is to first consider the physical attributes of images that
humans find pleasing or displeasing. By understanding how
these physical changes give rise to perceptual changes, one
can begin to develop an estimate of image quality based
on measures of the physical changes. Numerous studies in
the fields of visual psychophysics and visual neuroscience
have quantified relationships between the physical attributes
of visual stimuli and the corresponding psychological and
neurophysiological responses. The results of these studies
have provided important insights into the goals and functions
of the HVS, and many of these findings have been used in
IQA algorithms. In Section 2.1, I provide a brief review of the
basic properties of the HVS that are commonly taken into
account—either explicitly or implicitly—in the vast majority
of IQA algorithms.

Another approach toward gaining insight into how
humans judge quality is to directly collect quality ratings from
a representative pool of human subjects on a database of
altered images. Several such quality-rating studies have been
conducted, and the results of these studies are commonly
released in the form of the so-called image quality databases.
These databases generally contain the set of reference and
altered images used in the study, along with corresponding
average quality ratings for each altered image. In Section 2.2,
I provide a survey of the various publicly available image
quality databases, including a brief discussion of how the data
are used for quantifying the predictive performances of IQA
algorithms.

2.1. Psychophysical Underpinnings of Image Quality. Research
in visual psychophysics aims to provide a better understand-
ing of the human visual system (HVS) by linking changes in
the physical attributes of a visual stimulus the to correspond-
ing changes in psychological responses (visual perception and
cognition). These studies generally entail carefully designed
experiments on human subjects using highly controlled
visual stimuli and viewing conditions. Many of the most
fundamental properties of visual perception which are used
for IQA have been obtained from the results of such studies;
the most commonly used of these properties are summarized
in this section.

It must be stressed that the primary goal of the vast major-
ity of research in visual psychophysics is to gain knowledge
of how the HVS operates; any relations to image quality are
usually secondary and are usually not extensively discussed
in such studies. Consequently, it is often up to the designer of
an IQA algorithm to decide how the psychophysical findings
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relate to image quality. Nonetheless, due in part to the increas-
ing popularity of IQA algorithms, an increasing number of
psychophysical studies have been devoted specifically toward
image quality (e.g., [42-68]).

2.1.1. Contrast Sensitivity Function. Psychophysical studies
have shown that the minimum contrast needed to detect
a visual target (e.g., distortions) depends on the spatial
frequency of the target [69, 70]. This minimum contrast is
called the contrast detection threshold, and the inverse of
this threshold is called contrast sensitivity. When contrast
sensitivity is plotted as a function of the spatial frequency
of the target, the resulting profile is the contrast sensitivity
function (CSF).

Contrast thresholds for sine waves were first measured
by Schade [71] in an experiment that presented human
observers with achromatic sine-wave gratings of various
spatial frequencies. The key result of Schade’s experiment
was the discovery that contrast sensitivity varies with the
spatial frequency of the grating; the resulting CSF is bandpass,
indicating that we are least sensitive to very-low-frequency
and very-high-frequency targets, with a peak in sensitivity
near 4-6 cycles per degree of visual angle (c/deg).

The reduction in sensitivity at high frequencies has been
attributed to the optics of the eye, to receptor spacing, and to
quantum noise. Reduced sensitivity at low spatial frequencies
is believed to occur, in part, by limited receptive field sizes and
by masking effects imposed by the target's DC component.
However, when contrast sensitivity is measured using Gabor
functions, the CSF tends to be much more low pass [73], and
such low-pass-type CSFs are most commonly utilized in IQA
algorithms. The CSF has also been measured as a function of
the orientation of the sine-wave grating, commonly resulting
in reduced sensitivity to diagonal orientations as compared
to horizontal and vertical orientations (the oblique effect
[74, 75]). Alternative theories of the neural underpinnings
of the CSF have also been proposed based on the statistical
properties of natural scenes [76, 77].

In IQA algorithms, the CSF is commonly taken into
account by prefiltering the images with a 2D spatial filter
designed based on the psychophysical results. One popular
CSF filter, which is shown in Figure 2, was proposed by
Mannos and Sakrison [26] and further adjusted by Daly [72];
its frequency response, H( f,0), is given by

2.6(0.019 + Afy) M)
0.981,

if f 2 fpeak C/deg’
otherwise,

Hum={
(1

where f denotes the radial spatial frequency in c/degand 0 €
[-71, 7] denotes the orientation and where

f

[0.15 cos (40) + 0.85] @)

fo=

accounts for the oblique effect (see [72]). In Figure 2, the
parameter A was set to A = 0.228, resulting in the CSF taking
on its maximum value of 0.981 at f,,,. = 4 c/deg (and forced
to be this value for frequencies below f,.,,) when 6 = 0 or

7/2. A very thorough treatment of the use of the CSF in IQA
has been published by Barten [78].

2.1.2. Visual Masking. Another finding from the visual per-
ception research which is commonly taken into account in
IQA algorithms is the fact that certain regions of an image can
hide distortions better than other regions, a finding that can
be attributed to visual masking [79]. Visual masking is a gen-
eral term that refers to the perceptual phenomenon in which
the presence of masking signal (the mask) reduces a subject’s
ability to detect a given target signal. The task of detection
becomes a masked detection, and contrast thresholds denote
masked detection thresholds. In IQA, it is commonly assumed
that the image serves as the mask and the distortions serve as
the target of detection.

Luminance masking and pattern masking are the two
most common forms of masking employed in IQA algo-
rithms. Detection thresholds tend to increase due to an
increase in the luminance of the background (mask) upon
which the target is placed (luminance masking, [70, 80]), a
process which is believed to be mediated by retinal adaptation
[81]. For masks consisting of spatial patterns, detection
thresholds also tend to increase when the contrast of the mask
is increased [69, 79, 82], a postretinal process believed to be
attributable to cortical processing [81]. Current explanations
of pattern masking can generally be divided into three
paradigms:

(1) noise masking, which attributes the reduction in
sensitivity to the corruptive effects of the mask on
internal decision variables [83];

(2) contrast masking, which attributes reduction in sensi-
tivity to contrast gain control [79] (discussed later);

(3) entropy masking, which attributes reduction in sen-
sitivity to an observer’s unfamiliarity with the mask
[44].

Because a mask’s contrast is readily computable, contrast
masking has been exploited in a variety of IQA and image
processing applications (e.g., [84-88]; see Section 3.1). The
extent to which a mask constitutes visual noise and the
extent to which an observer is unfamiliar with a mask are
phenomena which are more difficult to quantify; accordingly,
noise and entropy masking are less commonly used in IQA
(though, see [89]).

Contrast masking results are commonly reported in the
form of threshold-versus-contrast (TvC) curves, in which
masked detection thresholds are plotted as a function of
the contrast of the mask. Figure 3 depicts TvC curves for
the detection of a sine-wave grating presented against noise
and sine-wave-grating masks (after [79]). Masked detection
thresholds generally increase as the contrast of the mask is
increased and often demonstrate a region of facilitation (i.e.,
a decrease in threshold; “dipper effect”) at lower mask con-
trasts, depending on the dimensional relationships between
the target and the mask (e.g., differences in spatial frequency,
orientation, and phase). Note that learning effects have been
shown to lower the slopes of the TvC curves [87, 90].
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FIGURE 2: Frequency response of a 2D filter used to model the CSE. This particular model is from Mannos and Sakrison [26] with further

adjusting by Daly [72]; see (1).

In IQA, a variety of methods have been used to account
for masking, particularly in full-reference IQA (discussed
later in Section 3). A common approach to explicitly account
for masking is to measure the local luminance and contrast
in the reference image and then attenuate the estimate of
the visibility of the distortions in the distorted image based
on these measures (e.g., using a power-function relationship
between attenuation and contrast). Other IQA algorithms
implicitly incorporate masking either by using local statistical
measures which take into account the local contrast or by
adjusting the simulated neural responses in the context of a
computational neural model of the HVS (see Section 3).

2.1.3. Multichannel Model of the HVS. Schade used sine-
wave gratings in his CSF study based on the notion that any

stimulus can be described as a superposition of sine-waves.
Campbell and Robson [91] extended this idea by measuring
detection thresholds for both sine-wave and square-wave
gratings. Because a square wave is composed of numerous
sine waves, the peak-to-peak contrast of a square wave
will always be lower than the peak-to-peak contrast of its
fundamental sine wave (by a factor of approximately 1.3 in
[91]). The results from Campbell and Robson’s experiment
revealed that the thresholds for the square-wave gratings were
indeed approximately 1.3 times lower than those found for
the sine-wave gratings. They concluded from this finding that
the HVS performs a local spatial-frequency decomposition of
a stimulus in which the frequency components are detected
independently via multiple spatial-frequency channels. This
paradigm is known as the multichannel model of human
vision [82].
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FIGURE 3: Demonstrative threshold-versus-contrast (TvC) curves
for detection of a target consisting of a sine-wave grating in the
presence of noise or sine-wave-grating masks. The horizontal axis
denotes the contrast of the mask; the vertical axis denotes the
contrast of the target (relative to the contrast threshold for detecting
the target in the unmasked condition). Note that learning effects
have been shown to lower the slopes of the TvC curves [90].

Further evidence in support of the multichannel model
has been provided by visual adaptation and summation
experiments [69, 82]. The CSF measured for a subject adapted
to a sine-wave grating of a particular spatial frequency or
orientation shows attenuation only within a narrow band
of frequencies/orientations around the frequency/orientation
of the grating (approximately 1-2 octaves, 15-30 degrees)
[70, 82]. Visual summation experiments have revealed that
a compound target (e.g., a plaid composed of two sine waves)
is detectable only when one of its components reaches its
own detection threshold, a finding which is consistent with a
multichannel model with independent channels [82, 92-97]
(the components of the compound target must be separated
in spatial frequency by at least one octave or in orientation
by at least 30°-45"; see [82]). Similar experiments have
shown channels tuned to other dimensions such as color and
direction of motion [69, 82].

The multichannel model has also been used to explain
the shape of the CSE. Brady and Field [76] and Graham et al.
[77] predicted the shape of the CSF via a model with equally
sensitive spatial-frequency channels; reduction in detection
performance for high spatial frequencies was attributed to
extrinsic noise that dominates the response of channels tuned
to high frequencies, thus resulting in decreased signal-to-
noise ratios for these higher-frequency channels.

2.1.4. Computational Neural Models of V1. The multichannel
model has inspired several related computational neural
models of primary visual cortex (V1). These computational
models have been used both to predict masking results and
for IQA [87, 88, 98-101]. Models of this type first compute
modeled neural responses to the reference image (mask),
then compute modeled neural responses to the distorted
image (mask + target), and then deem the distortions (target)
detectable if the two sets of neural responses sufficiently
differ. Quality can be estimated based on the predicted

masked thresholds and/or the difference in simulated neural
responses.

Figures 4 and 5 show block diagrams of the stages used
in a typical computational neural model of V1 used to predict
masked detection thresholds (Figure 4) or used to estimate
quality (Figure 5). The pixel values of the reference and
distorted images are first converted to either luminance or
lightness values, and then both images are filtered with a 2D
spatial filter designed to mimic the CSFE. Alternatively, the
CSF can be accounted for by scaling the coefficients of the
frequency-based decomposition used to mimic the neural
array. Next, two sets of simulated neural-array responses
(one set for the reference image, one set for the distorted
image) are computed via a filterbank. Further adjustments are
made to account for neural nonlinearities and interactions
(gain control) [99, 102-104]. The adjusted neural responses
are then compared and collapsed across space, frequency,
and orientation. The resulting threshold prediction or quality
estimate is determined based on the comparison, that is,
based on the extent to which the simulated neural responses
to the reference image (mask) differ from the simulated
neural responses to the distorted image (mask + target).

Frequency-Based Decomposition. To simulate an array of
visual neurons in primary visual cortex (V1), and to account
for the multichannel analysis performed by the HVS, the
computational models employ some form of local frequency-
based decomposition. Standard approaches to this decom-
position include a steerable pyramid (e.g., [88]), a Gaussian
pyramid (e.g., [105]), an overcomplete wavelet decomposition
(e.g., [106]), radial filters (e.g., [107]), and cortex filters (e.g.,
(87, 99,108]).

As shown in Figure 6, at a particular scale/orientation
of this local frequency-based decomposition, the resulting
matrix of transform coeflicients represents the initially linear
responses of a simulated array of neurons located at each
spatial position in the image. Although real neurons cannot
yield negative responses, negative coefficients are permitted
and assumed to model the responses of co-located neurons
that are tuned 180° out-of-phase (i.e, with an inhibitory
central region and excitatory flanking regions).

The parameters of the decomposition are often tuned
based on psychophysical and neurophysiological data (e.g.,
five or more radial frequency bands with 1-2 octave band-
widths, 4-12 orientations with 15°-30° bandwidths). In an
IQA setting, the spatial-frequency decomposition is applied
to both the reference image and the distorted image, yielding
two sets of coeflicients. The resulting coefficients are meant to
simulate the initial linear responses of the neurons; they must
be further adjusted to account for the neurons’ nonlinear
response properties.

Gain Control. Numerous studies have shown that the
responses of neurons in V1 are nonlinearly related to the
contrast of the stimulus to which the neurons are exposed (see
[69, 109]). In the low-contrast regime, the neurons exhibit
a threshold-type behavior in which a minimum contrast is
required in order to yield any response. In the high-contrast
regime, the neurons exhibit a saturation-type behavior in
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of a pointwise nonlinearity to the decomposition coefficients and inhibition based on the values of other coefficients [99, 102-104], and (3)
pointwise differences between the adjusted coeflicients and summation of these adjusted coefhicient differences across space, spatial frequency,
and orientation so as to arrive at a single scalar differential response value or a map of differential response values.

which further increases in contrast yield no corresponding
increases in response. Studies have also shown that responses
of V1 neurons can be inhibited by neighboring neurons
in space, frequency, and orientation (the inhibitory pool).
This inhibition from the neighboring neurons is commonly
attributed to a gain control mechanism which is designed
to keep the neuron operating in its linear regime and thus
prevent saturation.

To account for these response properties, neural models
apply a divisive normalization to the coefficients of the local
frequency-based decomposition. Let x(u4, f,,6,) correspond
to the coefficient at location u,, center frequency f;, and

orientation 6,. The (nonlinear) response of a neuron tuned
to these parameters, r(u, f;,0,), is most often simulated via

(w (fo,00) x (ug, fo, 90))P
Y+ Y fores (W (f0) x (u, f, 0))"

where g is a gain factor, w(f,0) represents an optional
weight designed to take into account the CSE b represents
a saturation constant, p provides the pointwise nonlinearity
to the current neuron, g provides the pointwise nonlinearity
to the neurons in the inhibitory pool, and the set S indicates
which other neurons are included in the inhibitory pool. The

r (g f:00) = g~

3)
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Neurons analyzing three
example spatial locations

Simulated V1
neuron’s classical
receptive field

Note: negative coefficients
are assumed to model
responses of colocated
neurons with the following
180° out-of-phase tuning:

Neurons analyzing all spatial
locations (entire image)
[ W WYy
[ L3

Simulated neural responses
at the three locations
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FIGURE 6: Demonstration of how spatial filtering (local frequency-based decomposition at a particular scale and orientation) mimics the
initially linear responses of an array of similarly tuned neurons tiled across space. Note that actual V1 neurons cannot yield a negative response;
however, negative values are still computed during the filtering and are assumed to model the responses of another array of neurons with a
180° of-out-phase tuning (i.e., with an inhibitory central region and excitatory flanking regions).

parameters b, p, g, and S are commonly adjusted to fit the
experimental masking data. For example, model parameters
have been optimized for detection thresholds measured using
simple sinusoidal gratings [101], for filtered white noise [100],
and for TvC curves of target Gabor patterns with sinusoidal
masks [88, 99]. Typically, p and q are in the range 2 < g <
P < 4, and the inhibitory pool consists of neural responses in
the same spatial-frequency band ( f,), at orientations within
+45° of 0, and within a local spatial neighborhood (e.g., 8-
connected neighbors).

Equation (3) is applied to each coeflicient of the decom-
position of the reference image and to each coefficient of the
decomposition of the distorted image. This operation results
in two sets of simulated neural responses: (1) a set of neural
responses to the reference image {r,.¢(u, f,0)} and (2) a set of
neural responses to the distorted image {ry (1, f,0)}.

Summation of Responses. The final stage used in most V1
models entails comparing the two sets of simulated neural
responses {r..;(u, f,0)} and {ry,(u, f,0)}. When used as a
masking model (Figure 4), to generate a map indicating the
local visibility of the target, the responses at each location
are compared and pooled across frequency and orientation
as follows.

Distortions are visible at location u
1/B
4
Yes, Z'rref (u’ f’ 6) ~ Tdst (u’ f’ e)lﬁ 2T, ( )
1.0

No, otherwise,

where T is a predefined threshold which is typically held
constant across images and where the summation exponent f3
is either chosen to match published results from summation
studies or adjusted to fit published masking data. In an IQA
setting (Figure 5), the comparison with T is often replaced
with a sigmoid or logistic nonlinearity that maps the 8-norm
to an estimate of quality.

Numerous variations of (4) have been proposed in
the literature; often the models are tuned to fit specific
psychophysical data. The summation can also be applied
across a local spatial neighborhood around u to determine
a regional rather than a pointwise visibility. However, it is
important to emphasize that the neural model is designed to
mimic an array of visual neurons. This neurophysiological
underpinning limits the choice of model parameters and
operations to those which are biologically plausible.

In Section 3.1, I review several IQA algorithms which have
employed variants of this V1-based model. It is also important
to note that the vast majority of masking data have been
obtained using simplistic, highly controlled targets (e.g., sine
waves or Gabor patches) presented against unnatural masks
(e.g., sine waves, Gabor patches, and noise). Consequently,
most computational V1 models employ parameters which
have been selected for such targets and masks. As I discuss
later in Section 5.1, images can impose unique perceptual
effects which cannot be fully captured by current V1 models.

2.2. Image Quality Databases. Another approach toward
gaining insight into how humans judge quality is to directly
collect quality ratings from a representative pool of human
subjects on a database of altered images. Such ratings can also
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be used to evaluate and refine IQA algorithms. Iimage quality
databases provide this crucial ground-truth information.
These databases typically contain a set of reference and altered
images and average ratings of quality for each distorted
image. The averages are generally taken across subjects,
typically after z-score normalization and other adjustments
(e.g., outlier tests) to attempt to account for individual
biases; see [110]. The resulting averages are almost always
reported in the form of mean opinion scores (MOS values)
or differential mean opinion scores (DMOS values). For
databases containing distorted images, a larger MOS (smaller
DMOS) denotes greater quality, whereas a smaller MOS
(larger DMOS) denotes lesser quality. Some databases further
provide the standard deviations of the ratings across subjects.

Here, 1 first briefly summarize the existing publicly
available image quality databases, and then I discuss tech-
niques which are used to evaluate the performances of IQA
algorithms on the databases.

2.2.1. List of Image Quality Databases. There are over 20 pub-
licly available image quality databases, the details of which
are described below and summarized in Table 1 (ordered by
year of release). Many of these databases are listed as part
of the extensive list of multimedia databases provided by
the QUALINET consortium (European Network on Quality
of Experience in Multimedia Systems and Services) [118].
Both Sheikh et al. [119] and Lin and Kuo [35] have provided
analyses of the performances of various IQA algorithms on
some of these databases. In addition, in [120], Winkler has
provided quantitative comparisons of various aspects (source
content, test conditions, and subjective ratings) of some of
these databases. Note that 3D image quality databases are not
listed here; see [118].

(i) IRCCyN/IVC Image Quality Database (IVC). The
IRCCyN/IVC database [121, 122], developed at
the Institut de Recherche en Communications
et Cybernétique de Nantes (JRCCyN), France,
contains 10 reference images and 185 distorted
images in 24-bpp color BMP format at an image
resolution of 512 x 512 pixels. There are five types
of distortions in this database: JPEG compression
(50 distorted images), JPEG compression of only
the luminance component (25 distorted images),
JPEG2000 compression (50 distorted images), locally
adaptive-resolution coding (40 distorted images),
and Gaussian blurring (20 distorted images). Each
type of distortion was generated at five different
amounts of distortion. The ratings were collected
from 15 subjects.

(ii) LIVE Image Quality Database. The LIVE database
[119, 123, 124], developed at the University of Texas
at Austin, USA, contains 29 reference images and
779 distorted images in 24-bpp color BMP for-
mat at different image resolutions ranging from
634 x 438 to 768 x 512 pixels. There are five distortion
types in this database: JPEG compression (169 dis-
torted images), JPEG2000 compression (175 distorted
images), additive Gaussian white noise (145 distorted
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images), Gaussian blurring (145 distorted images),
and JPEG2000 with bit errors via a simulated Rayleigh
fading channel (145 distorted images). Each type of
distortion was generated at 5-6 different amounts
of distortion. The ratings were collected from 29
subjects.

(iil) A57 Image Quality Database. The A57 database [125],

developed at Cornell University, USA, contains three
reference images and 54 distorted images in 8-bpp
grayscale BMP format at a resolution of 512 x 512
pixels. The database contains six types of distortion:
uniform quantization of the LH subbands of a 5-level
discrete wavelet transform (DWT), additive Gaussian
white noise, JPEG compression; JPEG2000 compres-
sion, custom JPEG2000 compression via the Dynamic
Contrast-Based Quantization algorithm [126], and
Gaussian blurring. Each type of distortion has three
different amounts yielding nine distorted images for
each distortion type. The ratings were collected from
seven subjects.

(iv) Tampere Image Quality (TID2008) Database. The

Tampere database [127, 128], developed at the Tam-
pere University of Technology, Finland, contains 1700
distorted images generated from 25 reference images.
The reference images were obtained from the Kodak
Lossless True Color Image Suite. All of the images
are stored in 24-bpp BMP format at a resolution of
384 x 512 pixels. There are 17 distortion types in the
database (e.g., different types of noise, blur, denoising,
JPEG and JPEG2000 compression, transmission of
JPEG, JPEG2000 images with errors, local distortions,
luminance, and contrast changes). Each type of dis-
tortion was generated at four different amounts. The
ratings were obtained from 838 subjects.

(v) Toyama Image Quality (MICT) Database. The MICT

database [129], developed at the University of Toyama,
Japan, contains 14 reference images and 168 distorted
images in 24-bpp color BMP format at a resolution
of 768 x 512 pixels. There are two types of distortion
in this database: JPEG compression (84 distorted
images) and JPEG2000 compression (84 distorted
images). Both types of distortion were generated at
seven different amounts. The ratings were obtained
from 16 subjects.

(vi) IRCCyN/IVC Scores on the MICT Database. Addi-

tional subjective ratings of the quality for the images
from the MICT database were obtained at the Institut
de Recherche en Communications et Cybernétique
de Nantes (IRCCyN). The IRCCyN ratings were col-
lected by using a different testing protocol, a different
type of display, and different populations of subjects
[130, 131]. The ratings were collected from 27 subjects.

(vii) The Real Blur Image Database (RBID). The RBID

[111], developed at the Universidade Federal do Rio de
Janeiro, Brazil, contains 585 blurred images in 24-bpp
BMP format at resolutions ranging from 1280 x 960
to 2272 x 1704 pixels. The images in this database are
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TaBLE 1: Twenty-two publicly available image quality databases.

Type Year No.ofimages No. of reference No. of distorted No. of dist. types Resolution Format No. of subjects

IRCCyN/IVC ~ Color 2005 195 10 185 5 512 x 512 BMP 15
LIVE Color 2006 808 29 779 5 768 X 512 BMP 29
A57 Gray 2007 57 3 54 6 512 x 512 BMP 7
TID Color 2008 1725 25 1700 17 384 x 512 BMP 838
MICT Color 2008 196 14 168 2 768 x 512 BMP 16
IRCCyN/MICT Color 2008 196 14 168 768 x 512 BMP 27
RBID Color 2008 585 585 See [111] BMP 20
WID/Enrico ~ Gray 2007 105 5 100 10 512 x 512 BMP 16
WID/BA Gray 2009 130 10 120 2 512 x 512 PGM 17
WID/EFSB Gray 2009 215 5 210 6 512 x 512 BMP 7
WID/MW Gray 2009 132 12 120 2 512 x 512 BMP 14
WIQ Gray 2009 87 7 80 1 512 x 512 BMP 30
VAIQ Color 2009 42 42 See [112] See [112] See [112] BMP 15
CSIQ Color 2010 896 30 866 6 512 x 512 PNG 35
TUD1 Color 2010 24 8 16 1 See [113] BMP 12
TUD2 Color 2010 55 11 44 1 See [113] BMP 20
IRCCyN/DIBR Color 2011 96 3 96 3 1024 x 768  See [114] 43
JPEGXR Color 2011 70 10 60 1 1280 x 1600 BMP See [115]
HTI Color 2011 72 12 60 1 512 x 768  See [116] 18
IBBI Color 2011 72 12 60 1 321 x 481  See [116] 18
VCL@FER Color 2011 575 23 552 4 See [117]  See [117] 118
DRIQ Color 2012 104 26 78 enhanced 3 enhancements 512 x 512 PNG 9

categorized into five different blur classes: unblurred
(204 images), out of focus (142 images), simple
motion (57 images), complex motion (63 images),
and others (119 images). The ratings were collected
from 20 subjects.

(viii) IRCCyN/IVC Watermarking Databases. Four sep-

arate watermarking databases were developed by
the Institut de Recherche en Communications et
Cybernétique de Nantes (IRCCyN), France. The
images were created by embedding watermarks with
different algorithms: Enrico, Broken Arrows (BA),
Fourier Subband (FSB), and Meerwald (MW).

(a) IRCCyN/IVC Watermarking—Enrico Database.
This database [132] contains five reference
images and 100 distorted images generated from
10 watermarking algorithms with two embed-
ding strengths. All of the images are in 8-bpp
grayscale BMP format at a resolution of 512 x
512 pixels. The ratings were obtained from 16
subjects.

(b) IRCCyN/IVC Watermarking—Broken Arrows
Database. 'This database [133] contains 10
reference images and 120 distorted images
with six different embedding strengths and
either with or without CSF weighting. All of
the images are in 8-bpp grayscale PPM/PGM
format at a resolution of 512 x 512 pixels. The
ratings were obtained from 17 subjects.

(c) IRCCyN/IVC Watermarking—Fourier Subband
Database. This database [134] contains five ref-
erence images and 210 distorted images con-
taining watermarks in six frequency subbands
at seven embedding strengths for each subband.
All of the images are in 8-bpp grayscale BMP
format at a resolution of 512 x 512 pixels. The
ratings were obtained from 7 subjects.

(d) IRCCyN/IVC Watermarking—Meerwald Data-
base. This database [135] contains 12 reference
images and 120 distorted images generated from
five embedding strengths either in the DWT
domain or in the dual-tree complex wavelet
transform domain. All of the images are in 8-
bpp grayscale BMP format at a resolution of
512 x512 pixels. The ratings were obtained from
14 subjects.

(ix) Wireless Imaging Quality (WIQ) Database. The WIQ

database [136, 137] was developed at the Radio
Communication Group at the Blekinge Institute of
Technology, Sweden. This database contains seven
reference images and 80 images distorted via loss of
JPEG data over a simulated wireless channel. The
images are stored in 8-bpp BMP format at a resolution
of 512 x 512 pixels. The ratings were obtained in two
separate experiments from 30 subjects.

(x) The Visual Attention Image Quality (VAIQ) Database.

The VAIQ database [112, 138], developed at the
University of Western Sydney, Australia, contains
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ground-truth visual gaze patterns of 42 reference
images taken from the LIVE, IVC, and MICT image
databases. Although this database is not strictly an
image quality database, the visual gaze patterns can be
useful for examining the effects of visual attention on
quality. The visual gaze patterns were obtained from
15 subjects.

(xi) Categorical ~Subjective Image Quality (CSIQ)
Database. The CSIQ database [27, 139], developed
at Oklahoma State University, USA, contains 30
reference images and 866 distorted images in 24-bpp
PNG format at a resolution of 512 x 512 pixels.
There are six distortion types in this database: JPEG
compression (150 distorted images), JPEG2000
compression (150 distorted images), additive
Gaussian white noise (150 distorted images), additive
Gaussian pink noise (150 distorted images), Gaussian
blurring (150 distorted images), and global contrast
decrements (116 distorted images). Each type of
distortion was generated at 4-5 different amounts.
The ratings were obtained from 35 subjects.

(xii) TU Delft Perceived Ringing (TUDI and TUD2)
Datasets. The TUDI1 and TUD2 databases were devel-
oped at the Delft University of Technology, The
Netherlands. The subjective ratings were collected
from two experiments: (1) a ringing region exper-
iment (TUDI1) and (2) a ringing annoyance exper-
iment (TUD2). In the ringing region experiment,
16 JPEG-compressed images were generated from
eight reference images with two levels of compression.
The results were collected from 12 subjects and are
presented in the form of subjective ringing region
maps. In the ringing annoyance experiment; 44 JPEG-
compressed images were generated from 11 reference
images with four different levels of compression. The
ratings were obtained from 20 subjects.

(xiii) IRCCyN/IVC DIBR Image Quality Database. The
DIBR database [114], developed by the Institut de
Recherche en Communications et Cybernétique de
Nantes (IRCCyN), France, contains 96 still images
extracted from three different multiview-plus-depth
sequences. All sequences have the same resolution of
1024 x 768 pixels but were captured with a variable
number of cameras (16, 12, and 9) at different camera
spacings (6.5 cm, 3.5 cm, and 5.0 cm). Each sequence
was processed by seven depth-image-based rendering
algorithms to generate four new viewpoints of each
sequence. The ratings were obtained from 43 subjects.

(xiv) MMSPG JPEG XR Image Compression Database. The
MMSPG JPEG XR image compression database [115],
developed at the Swiss Federal Institute of Technology
(EPFL), Switzerland, contains 60 compressed images
generated from 10 reference images using JPEG XR
compression. The images are stored in 24-bpp color
BMP format at a resolution of 1280 x 1600 pixels. Six
coding bitrates ranging from 0.25 to 1.50 bpp were
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used to generate the distorted images. The ratings
were obtained from 16 subjects.

(xv) HTI and IBBI Databases. The HTT and IBBI Databases
[116], jointly developed at TU Delft and IRCCyN, are
designed to test the performances of the blurriness
metrics. The highly textured images (HTI) database
contains 12 reference images containing highly tex-
tured content and 60 blurred versions of the images;
the images are stored at a resolution of 512x768 pixels.
The intentionally blurred background images (IBBI)
database contains 12 reference images and 60 blurred
versions in which the background was intentionally
blurred; the images are stored at a resolution of
321 x 481 pixels. In both databases, the blurring was
performed via Gaussian filtering with five different
levels of blur, and the ratings were obtained from 18
subjects.

(xvi) VCL@FER Image Quality Database. The VCL@FER
database [117], developed at the University of Zagreb,
Croatia, contains 23 reference images and 552 dis-
torted images. There are four types of distortion
in this database (148 distorted images for each
type): additive Gaussian white noise, Gaussian blur-
ring, JPEG compression, and JPEG2000 compression.
Each distortion type was generated at six different
amounts of distortion. The ratings were obtained
from 118 subjects.

(xvii) Digitally Retouched Image Quality (DRIQ) Database.
The DRIQ image quality database [140] is a full-
reference enhanced-image database developed at
Oklahoma State University, USA. This database con-
tains 26 reference images and 78 enhanced images
obtained via manual digital retouching. The images
are stored in 24-bpp color PNG format. The ratings
were obtained from 9 subjects. (Some images from
DRIQ and additional details of the database are
provided in Section 5.6.)

2.2.2. Quantifying the Predictive Performance. The image
quality databases described in the previous section serve as
crucial ground-truth information for evaluating IQA algo-
rithms. Specifically, to quantify how well an IQA algorithm
can predict the MOS or DMOS values from a particular
database, it is customary to evaluate the algorithm in terms
of three performance criteria recommended by the Video
Quality Experts Group (VQEG) [141]: (1) prediction accuracy,
(2) prediction monotonicity, and (3) prediction consistency.

The prediction accuracy can be quantified either by
measuring how well an algorithm’s predictions correlate with
the MOS/DMOS values or by measuring the average error
between the algorithm’s predictions and the MOS/DMOS
values. The Pearson correlation coefficient (CC) and the root-
mean-squared error (RMSE), both recommended in [141], are
most commonly used for quantifying correlation and average
error, respectively.

Before computing CC or RMSE, it is customary to apply
a nonlinear transformation to the predicted scores so as to
bring the predictions on the same scale as the MOS/DMOS
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values and to attempt to obtain a linear relationship between
the predictions and opinion scores. Let y; denote the DMOS
or MOS value for the ith image, let x; denote the correspond-
ing predicted score from an IQA algorithm, and let f(x;)
denote the corresponding transformed predicted score. In
[141], three suggestions for the transform f(x) are provided:

)
1+ exp ((x - 73) /74)

fx)=

+ 75,

f(x)= T1X3 + 12x2 + T3X + Ty
f@x)=g"(y), where g(y)=1y’+1,)" +13y+1,.

©)

The parameters 1, 7,, 75,74, and 75 are chosen to minimize
the MSE between the set of DMOS/MOS values {y;} (e.g.,
all DMOS/MOS values in a particular database) and the
corresponding set of transformed predicted values { f(x;)}.
The minimization is conducted under the constraint that
f(x) must be a monotonic function of x over the range of
predicted values.

It is important to note that because there is inherent
variability across subjects and across different trials of the
same subject, if the scores for a particular image demonstrate
a large variability across subjects/trials, then the mean score
(i.e., the MOS or DMOS) is not necessarily a good indication
of what should be predicted. Instead, some leeway, deter-
mined based on the variability, should be given around the
MOS/DMOS values. Some databases provide the standard
deviation associated with each MOS/DMOS value, 0, , which
provides a measure of the variability across subjects/trials
for the ith image. These standard deviations can be taken
into account during the fitting procedure to determine the
parameters T;, T,, T3,Ty, and 7s.

The prediction monotonicity specifies how well an algo-
rithm predicts the rank-ordering of the opinion scores.
Various rank-order correlation coefficients can be used to
quantify the monotonicity (e.g., Spearman’s p, Kendall’s 7,
Kendall's 7;,, Goodman and Kruskal’s y, and Somer’s D;
see [142]). The Spearman rank-order correlation coefficient
(Spearman’s p, SROCC) is recommended in [141] and is thus
most commonly used.

However, it should be noted that the standard formula
for computing SROCC must be adjusted for ties in the ranks
[142], an adjustment which is rarely used in the IQA literature.
The difficulty in accounting for ties stems from the fact that
in order to determine ties, the variability (e.g., o, ) associated
with each score must be known. As I mentioned, not all
databases provide such information, and thus ties are rarely
taken into account.

The prediction consistency specifies how consistent is
an IQA algorithm’s quality predictions across the range of
content provided in a database—for example, for different
images, different distortion types (or other alteration types),
and different amounts of each distortion/alteration type. Two
measures of prediction consistency are the outlier ratio [141]
and the outlier distance [139], both of which require the
aforementioned standard deviations.

13

The most commonly used measure of prediction consis-
tency, which is recommended in [141], is the outlier ratio. The

outlier ratio, R, is defined as

=3 o (6)

where Ng. is the number of predictions outside two stan-
dard deviations, 20, , and Ny, is the total number of scores.
The range of 20, was chosen in [141] because it contains 95%
of all the subjective quality scores for a given image.

In addition to knowing if a predicted score is an outlier,
it is also informative to know how far outside the error bars
(+20,,) the outlier falls. To quantify this, we proposed in
[139] a new measure, termed the outlier distance. The outlier
distance, d, ., is the distance from an outlier to the closest
error bar; it is defined as

Y min]f (5) - s 20, ]

i€Xplse (7)

| (o) = [y =20, ]I}

where Xg,. is the set of all predicted scores outside 20, .
Note that because d,,; is dependent on the dynamic range of
the MOS/DMOS values, it cannot be used to compare across
databases.

d =

out

3. Full-Reference Image Quality
Assessment Algorithms

The vast majority of IQA algorithms are so-called full-
reference algorithms, which take as input both a distorted
image and a reference image and yield as output an estimate
of the quality of the distorted image relative to the reference.
The simplest approach to full-reference (FR) IQA is to
measure local pixelwise differences and then to collapse
these local measurements into a scalar which represents the
overall quality difference, for example, the mean-squared
error (MSE) or peak signal-to-noise ratio (PSNR), often
measured in different domains, for example, [143]. More
complete FRIQA algorithms have employed a wide variety of
approaches ranging from estimating quality based on models
of the HVS (see Section 3.1), to estimating quality based
on image structure (see Section 3.2), to estimating quality
by using various statistical and information-theoretic-based
approaches (see Section 3.3) and many other techniques (see
Section 3.4). Here, I provide a brief survey of these FR IQA
algorithms.

3.1. Methods Based on HVS Models. Given a distorted image,
a human can readily rate the quality of the image relative
to the original image and relative to other distorted images.
Accordingly, numerous IQA methods have been developed
which employ computational models of the HVS [26, 30, 87,
88, 98, 100, 101, 105-107, 125, 130, 139, 144-157].

Most HVS-based IQA algorithms employ a variant of the
V1 model described previously in Section 2.1. The images are
typically processed through a set of spatial filters to obtain
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oriented, spatial-frequency decompositions of the images
designed to mimic the initially linear responses of neurons
in V1. The CSF is taken into account either by adjusting the
simulated linear neural responses based on the passbands of
the filters or by using a prefiltering stage with a 2D CSF-
based filter (see (1)). Masking is commonly taken into account
by further adjusting the simulated neural responses via a
divisive normalization (see (3)). Finally, the quality of the
distorted image is estimated based on the extent to which
the adjusted responses to the reference image differ from
the adjusted responses to the distorted image. Typically, this
final stage is performed by computing pointwise absolute
differences between the original and distorted responses, and
then collapsing these differences via an L, norm (see, e.g.,
(87, 88,99]).

Many HVS-based methods were originally designed to
operate as predictors of visible image differences; that is, they
have been designed to determine if changes are visible and
accordingly operate best when the distorted images contain
artifacts near the threshold of detection. Researchers have
previously argued that the underlying V1 models need to
be extended to take into account higher-level properties of
human vision [85, 126, 156]. Unfortunately, although our
current understanding of near-threshold vision for controlled
stimuli is relatively mature from a modeling perspective,
much less is known about how the HVS operates when
the distortions are more complex and in the suprathreshold
regime (which may invoke areas of visual cortex beyond V1).
Nonetheless, recent HVS-based methods have begun to use
improved models and/or models of mid- and higher-level
vision [107,125, 139, 151, 157, 158], and many of these methods
have been shown to perform extremely well as general IQA
algorithms.

For example, in [107], Damera-Venkata et al. augmented
traditional models of contrast sensitivity and luminance and
contrast masking with models of suprathreshold contrast
perception. In [125], Chandler and Hemami presented a
visual signal-to-noise ratio (VSNR), in which a wavelet-
based model of low-level vision is combined with a model
of how the HVS adaptively prefers different spatial frequen-
cies depending on the amount of degradation. In [157],
Laparra et al. presented an IQA algorithm which employs
an improved divisive-normalization-based masking model.
In [159], Cheng et al. supplemented a wavelet-based HVS
model with measures of directional structural distortion and
structural similarity [123]. Alternative image transforms have
also been used to integrate properties of the HVS into IQA
algorithms [160, 161].

In [139], Larson and Chandler presented an IQA algo-
rithm, MAD (most apparent distortion), which explicitly
models the adaptive nature of the HVS. MAD was one
of the first algorithms to demonstrate that quality can be
predicted by modeling two strategies employed by the HVS
and by adapting these strategies based on the amount of
distortion. For high-quality images, in which the distortion
is less noticeable, the image is most apparent, and thus
the HVS attempts to look past the image and look for
the distortion—a detection-based strategy. For low-quality
images, the distortion is most apparent, and thus the HVS
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attempts to look past the distortion and look for the image’s
subject matter—an appearance-based strategy. In MAD, local
luminance and contrast masking are used to model the
detection-based strategy for high-quality images, whereas
changes in the local statistics of log-Gabor coefficients are
used to model the appearance-based strategy for low-quality
images.

Another recent trend in HVS-based IQA algorithms has
aimed at incorporating aspects of visual attention and regions
of interest (ROIs) during quality assessment (see, e.g., [60-
62, 65, 162-164] for related psychophysical studies). Wang
and Bovik [165] developed a model for adjusting contrast
sensitivity based on foveation. Osberger et al. [152] developed
a vision-based metric by using the CSF and masking, into
which they incorporated a visual importance map by select-
ing effective ROIs based on higher-level visual properties
such as size, shape, foreground/background, and the presence
of people.

Le Callet et al. [155] presented an IQA algorithm which
operates based on ten 1 x 1-degree areas containing the
maximum perceived distortion, the implicit ROI assumes
that the eye is drawn to regions of maximum error, and
quality is estimated by spatially pooling the estimates of max-
imum perceived distortion. In [158], Carnec et al. combined
low-level HVS properties with a measure of the structural
information obtained via a stick-growing algorithm and
estimates of visual fixation points. In [166], Moorthy and
Bovik incorporated both visual-fixation-based weighting and
quality-based weighting into an IQA algorithm.

In [167], Tong et al. employed saliency maps for IQA
based on the observation that salient regions contribute more
to the perceived image quality. Salient region information
generated by the model of Itti and Koch [168] and a face
detection model were used to generate weights in [167]
to improve the performances of previous IQA algorithms.
Similarly, in [169], Guo et al. assumed that humans often pay
more attention to the image regions with important content.
The authors incorporated saliency-based visual attention
and visual-importance-based visual attention into the SSIM
algorithm [123].

In [170], Wu et al. incorporated an “internal genera-
tive mechanism” (IGM) into the existing IQA algorithms.
Their IGM advocates that the HVS actively predicts sensory
information and tries to avoid the residual uncertainty for
image perception and understanding. In [170], the images are
decomposed into two parts: the predicted portion, consisting
of the predicted visual content, and the disorderly portion,
consisting of the residual content. SSIM [123] is employed
to measure distortions in the predicted portion, PSNR is
employed to measure distortions in the disorderly portion,
and then the two results are adaptively combined to yield the
overall quality prediction.

3.2. Methods Based on Image Structure. A recent thrust in
image quality assessment has focused on measuring changes
in an image’s structure as a proxy for measuring image quality.
The central assumption in this approach is that the HVS has
evolved to extract structure from the natural environment.
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Consequently, a higher-quality image is one whose structure
closely matches that of the original image, whereas a lower-
quality image exhibits less structural similarity to the original.
Although a precise definition of “image structure” remains
an open question, methods of this type have been shown to
correlate quite highly with subjective ratings of quality.

The effects of distortion on image structure and the
corresponding effects on image quality have been mentioned
in the optics and engineering literature since the 1970s in the
context of television pictures (e.g., [25, 171]). Eskicioglu and
Fisher [172] were among the first to apply explicit measures
of “structural content” and “correlation quality” (based on
correlation and normalized cross-correlation) to IQA. In
[173], Franti presented a block-based IQA algorithm which
included separate measures for structural errors (based on
edge detection), quantization errors, and contrast errors.
In [174], Wang and Bovik presented the universal image
quality index (UQI), which employed cross-correlation and
measures of luminance and contrast differences to estimate
quality.

The use of cross-correlation-based measures of structural
similarity was made popular by Wang et al. who proposed the
Structural Similarity Index (SSIM) [123]. SSIM is an extended
version of UQI in which the correlation, luminance, and
contrast measures were modified by adding small constants
to the numerator and the denominator of each measure. In
[175], Wang et al. presented a multiscale version of SSIM
in which the correlation, luminance, and contrast measures
are also applied to filtered and downsampled versions of
the images (MS-SSIM). In [176], Sampat et al. presented a
complex version of SSIM which adds robustness to small
affine transformations of the distorted image.

Over the last eight years, numerous variations of SSIM
and other IQA algorithms which estimate quality based on
structural similarity and/or structural degradation have been
proposed.

3.2.1. SSIM-Based Methods. Various IQA algorithms have
been developed which directly employ SSIM or MS-SSIM as
a part of the IQA process.

(i) In [177], Yang et al. presented a modified version of
MS-SSIM that operates by using the 9/7 DWT filters.

(ii) In [178], Ji et al. presented a modified version of
SSIM using a discrete Haar wavelet transform (HWS-
SIM). A multiresolution version of HWSSIM was
also defined in [178] by weighting/combining four
HWSSIM values evaluated at four Haar wavelet levels
with the CSE.

(iii) In [179], Cao et al. presented an IQA method which
estimates quality based on the influence of both
global and local distortions. The global distortion is
measured via a rectified mean absolute difference;
the local distortion is measured via SSIM. These two
measures are combined using a weighting strategy to
yield a final image quality estimate.

(iv) In [180], Shi et al. presented an IQA method for
color images based on structural and color similarity
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indices. SSIM is applied to the luminance and the
hue component of the image to yield two similarity
indices which are combined into an overall structural
similarity index.

(v) In [181], Rao and Reddy presented an IQA method
in which the SSIM indices of local image regions
are adjusted by perceptual weights defined from the
regions’ contrasts. A measure of the image’s overall
perceptual SSIM index (PSSIM,) is calculated as the
average of these weighted indices.

(vi) In [182], Zhang et al. employed image features from
the coeflicients of the 1st-order and 2nd-order Riesz
transform. These two feature maps are masked by
the image’s edge locations before applying SSIM to
compute the structural similarity.

(vii) As mentioned in Section 3.1, in [169], Guo et al.
presented an IQA algorithm which incorporates
the saliency-based the visual attention and visual-
importance-based visual attention into SSIM.

(viii) As also mentioned in Section 3.1, Wu et al. [170]
employ SSIM [123] to measure distortions in the
predicted portion of their internal-generative-
mechanism-based IQA model.

(ix) In [183], Chebbi et al. estimate quality of blurred
images based on a combination of a perceptual blur
measure and SSIM; the perceptual blur measure is
derived from edge maps obtained via a Haar DWT.

(x) In [184], Fei et al. estimate the quality based on
SSIM and visual masking. The contrast comparison
in SSIM is augmented by measures of masking, and
the structural comparison is modified by using the
image’s structure tensor.

3.2.2. Gradient-Based Methods. Another way to measure
changes in structure is to compute changes in local image
gradients. Several methods have been developed which take
this approach.

(i) In [185], Kim and Park presented an IQA algorithm
based on the Harris response. The authors observed
that when an image is degraded or distorted, the
image’s gradient information is changed, causing
the Harris response to change. Thus, in [185], the
changes in the Harris response of the image, which is
computed from the gradient information matrix and
its eigenvalues, are used to measure image quality.

(ii) In [186], Zhu and Wang presented an IQA algorithm
based on a three-stage multiscale visual gradient
similarity (VGS) index. First, global contrast registra-
tion is applied for each scale. Second, the similarity
of gradient directions and gradient magnitudes are
combined to yield comparison maps. Finally, quality
is estimated via intrascale and interscale pooling of
the maps. Some parameters of VGS are trained on
existing image quality databases to optimize perfor-
mance.
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(iii) In [187], Chen et al. argued that the structural infor-
mation can be computed from the distribution of
gradient magnitudes and edge directions. Accord-
ingly, edge-direction-histogram (EDH) descriptors
are extracted, and then quality is estimated based on
the structural similarity between EDH descriptors of
the reference and the distorted images.

(iv) In [188], Liu et al. compared gradient similar-
ity between the reference and distorted images
to evaluate quality. Their method first computes
both luminance-based and contrast-based structural
changes. Then, these changes are weighted by esti-
mates of visibility thresholds. Finally, the weighted
changes are adaptively integrated to yield the image’s
overall quality estimate.

3.2.3. Methods Based on Other Measures of Structure. Various
alternative measures of structural similarity/- degradation
have also been employed in several IQA algorithms.

(i) In [189], Zhai et al. presented an IQA algorithm which
operates based on the notion of a “multiscale edge
presentation” Their method measures structure via
correspondences in wavelet magnitudes across spatial
scales.

(ii) In [190], Zhang and Mou combined PSNR with a
measure of structure based on differences in wavelet
modulus maxima corresponding to low- and high-
frequency bands.

(iii) In [191], Jin et al. presented a DCT-based IQA algo-
rithm that considers contrast and brightness degra-
dations as well as block-based structural similarity.

(iv) In [192], Chou and Hsu proposed an IQA algo-
rithm which uses moment-preserving quantization
for extracting geometric structural information. SSIM
values of luminance and contrast are combined with a
similarity measure of geometric structure to yield the
final quality estimate.

(v) In [193], Zhang et al. proposed a feature-based simi-
larity measure for IQA which operates based on phase
congruency as the primary feature and the image
gradient magnitude as a secondary feature. The phase
congruency is also used as a weighting function to
derive an overall image quality score from the local
quality map obtained from the two features.

(vi) In [194], Narwaria et al. designed an IQA algorithm
based on the phase and magnitude of the discrete
Fourier transform. The algorithm compares the phase
and magnitude of the Fourier coeflicients of the refer-
ence and distorted images to compute image quality.
Nonuniform binning of the frequency components
and linear regression are employed to integrate the
effects of the changes in phase and magnitude.

3.3. Methods Based on Image Statistics and/or Machine Learn-
ing. Other measures of image quality have been proposed
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which operate based primarily on statistical/information-
theoretic measures, often supplemented by machine learn-
ing techniques. The methods have also demonstrated great
success at predicting quality. See [36] for a recent thorough
discussion of the use of natural-scene statistics for IQA.

In [195], Sheikh and Bovik presented the VIF (visual
information fidelity) algorithm, which estimates image qual-
ity based on natural-scene statistics. VIF operates under the
premise that the HVS has evolved based on the statistical
properties of the natural environment. Accordingly, the
quality of the distorted image can be quantified based on the
amount of information the distorted image provides about
the reference image. VIF models images as realizations of a
mixture of marginal Gaussian densities of wavelet subbands,
and quality is then determined based on the mutual infor-
mation between the subband coefficients of the reference and
distorted images.

In [196], Shnayderman et al. measured image qual-
ity based on a singular value decomposition (SVD). The
Euclidean distance is measured between the singular values
of an original image block and the singular values of the
corresponding distorted image block; the collection of block-
wise distances constitutes a local distortion map. An overall
scalar value of image quality is computed as the average
absolute difference between each blocks distance and the
median distance over all blocks.

Other SVD-based IQA algorithms have also been pro-
posed. In [197], Mansouri et al. presented an IQA algorithm
(RSVD) which estimates quality by factoring the image’s
SVD matrix into a matrix which captures luminance changes
and two matrices which capture structural changes. In [198],
Narwaria and Lin presented an IQA algorithm which uses
SVD-based visual features and feature pooling via machine
learning. In [199], Saha et al. presented an IQA algorithm
in which approximate descriptions of the reference and
distorted images are obtained at different scales by using an
SVD filter; quality is estimated by computing the similarity
between two pyramidal structures.

More direct machine-learning-based techniques have
also been applied to IQA. In [7], Liu and Yang applied
supervised learning to derive a measure of image quality
based on decision fusion. A training step is used to determine
an optimal linear combination of four IQA methods: PSNR,
SSIM, VIE and VSNR. Training is performed via canonical
correlation analysis and images/subjective ratings from the
LIVE [124] and A57 [125] image databases.

In [200], Peng and Li argued that IQA algorithms which
operate based on individual features cannot accurately pre-
dict quality across different distortion types. To overcome
this limitation, the authors proposed a two-stage scheme.
First, the image distortion type is predicted by support-vector
classifiers. Second, decision-level fusion of three existing
algorithms (SSIM, VSNR, and VIF) is performed based on the
k-nearest-neighbor regression where the acquired distortion-
type knowledge is employed. More recent related work by
Peng and Li can be found in [201].

In [202], Charrier et al. presented the Machine Learning-
Based Image Quality Measure (MLIQM) which employs
a learned classification process. The MLIQM method first
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constructs a feature vector consisting of various measured
image attributes. Then, a classification process is performed
to assign the distorted image into a quality class. Finally,
support-vector regression is performed based on the quality
class to yield the estimate of quality.

Other statistical models of images have also been used
for IQA. In [203], Wang and Li argued that the optimal per-
ceptual weights for pooling the output of an IQA algorithm
across space should be proportional to the local information
content, which is estimated in [203] by using statistical mod-
els of natural scenes. In [204], Chang and Wang presented an
IQA algorithm that relates image quality with the correlation
between the sparse codes formed from the reference and
distorted images. In [205], Pinto and Hemami provided an
upper bound for the performances of IQA algorithms in the
low-quality regime by using a family of IQA techniques based
on VIE

3.4. Methods Based on Other Techniques. In addition to
the methods mentioned in the previous sections, numerous
other techniques have been employed in IQA algorithms.
For example, IQA algorithms have been developed to assess
quality based on different color spaces [206], based on image
segmentation and/or region-based analysis [207-209] and
based on the use of additional features [210-217].

In [207], Xu and Hauske presented an IQA algorithm
which operates based on error segmentation. The errors are
divided into three types: those that affect objects’ edges, those
that affect other edges, and those that are most visible in
smooth regions (e.g., blocking and noise). The segmented
errors are used to compute distortion factors, which are
combined into an overall estimate of quality via multiple
linear regression.

In [210], Bianco et al. presented different computational
strategies to improve the robustness and accuracy of SSIM
and the S-CIELAB spatial-color model.

In [211], Okarma proposed an IQA algorithm which
employs a combination of three previous methods: MS-SSIM
[175], VIF [195], and RSVD [197].

In [212], Lahouhou et al. conducted an empirical study
of several quality indicators (including PSNR, SSIM, and
wavelet-based quality measures) and proposed a regularized
regression model for combining the indicators to predict
quality.

In [213], Xue and Mou proposed an IQA algorithm based
on a ratio of non shift edges. First, the distorted image is
filtered by a Laplacian of Gaussian, and then edge points are
detected from the filtered image. Next, a binary “non-shift
edge” map is computed to represent the strong edge structure
present in the distorted image. Finally, quality is estimated
based on the map.

In [214], Li et al. demonstrated that adaptively combining
two quality measurements could improve quality predictions.
The authors proposed an IQA algorithm that separately eval-
uates detail losses and additive impairments. The detail loss
refers to the loss of useful visual information which affects
the content visibility, and the additive impairment represents
the redundant visual information which distracts attention

17

from the useful content. Two quality measures corresponding
to detail losses and additive impairments are computed, and
then the outputs of the two quality measures are adaptively
combined to yield the overall quality prediction.

In [215], Attar et al. presented the edge-based image
quality assessment (EBIQA) algorithm. EBIQA employs four
edge features computed from the reference and distorted
images: edge orientation, average length of edges, primitive
length of edges, and number of edge pixels.

In [216], Ponomarenko et al. presented an IQA algorithm
which employs a parameter map that denotes the image’s
local self-similarity. Quality is estimated based on the mean-
squared difference between the parameter maps for the
reference and distorted images.

In [217], Solh and AlRegib developed an IQA method
for multicamera systems by identifying and quantifying
two types of visual distortions: photometric distortions and
geometric distortions. Such distortions can be quantified by
using three different indices: a luminance and contrast index,
a spatial motion index, and an edge-based structure index.
These indices are combined into one multicamera image
quality measure (MIQM).

4. No-Reference and Reduced-Reference Image
Quality Assessment

Although FR IQA provides a useful and effective way to eval-
uate quality differences, in many applications the reference
image is not available. Although humans can often effortlessly
judge the quality of a distorted image in the absence of a
reference image, this task has proven to be quite challenging
from a computational perspective. No-reference (NR) and
reduced-reference (RR) IQA algorithms attempt to perform
IQA with either no information (NR IQA) or only limited
information (RR IQA) about the reference image. Here, I
briefly survey existing NR and RR IQA algorithms.

4.1. No-Reference IQA. The vast majority of NR IQA algo-
rithms attempt to detect specific types of distortion such as
blurring, blocking, ringing, or various forms of noise. For
example, algorithms for sharpness/blurriness estimation have
been shown to perform well for NR IQA of blurred images.
NR IQA algorithms have also been designed specifically for
JPEG or JPEG2000 compression artifacts. Some NR algo-
rithms have employed combinations of these aforementioned
measures and/or other measures. Other NR IQA algorithms
have taken a more distortion-agnostic approach.

4.1.1. Methods for Blurriness/Sharpness. Numerous algo-
rithms have been developed to estimate the perceived sharp-
ness or blurriness of images. Although the majority of these
algorithms were not designed specifically for NR IQA, they
have shown success at IQA for blurred images. Modern
methods of sharpness/blurriness estimation generally fall
into one of four categories: (1) those which operate via
edge-appearance models, (2) those which operate in the
spatial domain without any assumptions regarding edges, (3)
those which operate by using transform-based methods, and
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(4) hybrid techniques which employ two or more of these
methods.

A common technique of sharpness/blurriness estimation
involves the use of edge-appearance models. Methods of this
type operate under the assumption that the appearance of
edges is affected by blur, and accordingly these methods esti-
mate sharpness/blurriness by extracting various properties of
the image edges. For example, Marziliano et al. [218] estimate
blurriness based on average edge widths. Ong et al. [219]
estimate blurriness based on edge widths in both the edge
direction and its gradient direction. Dijk et al. [220] model
the widths and amplitudes of lines and edges as Gaussian
profiles and then estimate sharpness based on the amplitudes
corresponding to the narrowest profiles. Chung et al. [221]
estimate sharpness based on a combination of the standard
deviation and weighted mean of the edge gradient magnitude
profile. Wu et al. [222] estimate blurriness based on the image
estimated point spread function. Zhong et al. [223] estimate
sharpness based on both edges and information from a
saliency map. Ferzli and Karam [224] estimate sharpness
based on an HVS-based model which predicts thresholds for
just noticeable blur (JNB) the JNB for each edge block is used
to estimate the block perceived blur distortions, and the final
sharpness estimate is based on a probabilistic combination of
these distortions. A related JNB-based method can be found
in [225].

Other sharpness/blurriness estimators work in the spa-
tial domain but do not attempt to locate edges. Wee and
Paramesran [226] estimate sharpness based on the dominant
eigenvalues of the covariance matrix of the image pixels. Zhu
and Milanfar [227] estimate sharpness based on the SVD of
the local image-gradient matrix. Roffet et al. [228] generate
a blurred version of the input image and then estimate
blurriness based on the variation between neighboring pixels
in the input versus blurred images. Tsomko and Kim [229]
estimate blurriness by using the variance of the prediction
residue, which is computed as the difference between adjacent
pixels. Debing et al. [230] measure blurring artifacts from
H.264/AVC compression by averaging local blur values cal-
culated at the boundaries of macroblocks.

A number of sharpness/blurriness estimators have also
been developed based on transform-domain techniques.
Marichal et al. [231] estimate sharpness based on the his-
togram of nonzero DCT coefficients among all 8 x 8 blocks
of the transformed image. Caviedes and Gurbuz [232] esti-
mate sharpness based on the kurtosis of DCT coefficients
corresponding to edge profiles. Zhang et al. [233] estimate
sharpness based on the peakedness of the image’s energy
spectrum. Shaked an Tastl [234] estimate sharpness based
on the ratio of high-pass to low-pass frequency energy of
the spatial derivative of each line/column. Kristan et al. [235]
estimate sharpness based on the uniformity of the image
spectrum. Hassen et al. [236] estimate sharpness based on
the local phase coherence in the complex wavelet domain. Vu
and Chandler [237] estimate sharpness based on a weighted
average of the log energies of the image’s DWT subbands.

Hybrid approaches have also been developed which
employ a combination of edge-/pixel-based and transform-
based methods. Hybrid approaches have generally proven
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to perform better than edge-only-based or transform-only-
based methods, though at the expense of added computa-
tional complexity. Chen and Bovik [238] estimate blurriness
based on the image gradient histogram and a wavelet-based
edge map. Vu and Chandler [239] estimate sharpness based
on a combination of spectral and spatial measures. The spec-
tral measure uses the slope of the local magnitude spectrum,
and the spatial measure uses the local total variation of pixel
values; these two measures are then combined to generate an
image sharpness map, which can be collapsed into a scalar
indicating overall perceived sharpness.

4.1.2. Methods for JPEG Compression Artifacts. Numerous
NR IQA algorithms have also been developed specifically
for JPEG images. The general approach involves measuring
the edge strength at block boundaries and then using this
measure to estimate the visibility of the blocking, often
based on masking. Quality is then determined based on this
estimate of perceived blockiness.

In [240], Wang et al. presented an NR measure of
blockiness which models blocky images as a nonblocky image
corrupted by a pure blocky signal. Quality is estimated
based on the energy of the blocky signal. In [241], Wang
et al. propose a more efficient method that estimates image
blockiness based on the average difference across block
boundaries and the activity of the image signal.

In [242], Bovik and Liu presented an NR measure of
blockiness which operates in the DCT domain. Blocking arti-
facts are first located via detection of 2D step functions, and
then an HVS-based measurement of blocking impairment is
employed.

In [243], Meesters and Martens presented an NR measure
of blockiness which operates by detecting low-amplitude step
edges and by estimating various edge parameters using a
Hermite transform.

In [244], Pan et al. presented an NR measure of blockiness
in images/video coded via the block discrete cosine trans-
form. Quality is estimated based on directional information
measured for edges. The authors demonstrate that their
method does not require the exact location of the block
boundary and is thus invariant to displacements, rotations,
and scalings of the images.

In [245], Perra et al. exploited properties of the Sobel
operator to generate an NR blockiness index based on two
measures: one which quantifies the luminance variation
of block boundary pixels and one which quantifies the
luminance variation of the remaining pixels. Similarly, in
[246], Zhang et al. presented a NR blockiness measure which
calculates the image’s luminance gradient matrix by using
the Sobel operator. This matrix is used with HVS-based
adjustments (luminance adaptation and texture masking) to
estimate the severity of blocking artifacts and the annoyance
of large flatness in low-rate images.

Park et al. [247] presented an NR measure for blocking
artifacts by modeling abrupt changes between adjacent blocks
in both the pixel domain and the DCT domain. Similarly, in
[248], Chen et al. presented an NR measure of JPEG image
quality by using selective gradient and plainness measures
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followed by a boundary selection process that distinguishes
the blocking boundaries from the true edge boundaries.

In [249], Suresh et al. presented a machine-learning-
based NR approach for JPEG images. Their algorithm oper-
ates by estimating the functional relationship between several
visual features (such as edge amplitude, edge length, back-
ground activity, and background luminance) and subjective
scores. The problem of quality assessment is then transformed
into a classification problem and solved via machine learning.

In [250], Suthaharan presented an NR technique for
quantifying blocking artifacts via two units. The first unit
measures the visibility of distortions as a combination of
blocking artifacts and undistorted image edges. The second
unit uses patterns of the least significant bits to identify image
regions that are affected by JPEG compression. Both units are
combined to form a normalized visually significant blocking
artifact measure.

In [251], Chen and Bloom presented an NR DFT-based
measure of blockiness. Given an image, the absolute dif-
ference between horizontally adjacent pixels is calculated,
normalized, and averaged along each column. Then, a 1D
DFT is employed to derive separate measures of horizontal
and vertical blockiness. The overall blockiness is estimated
based on a combination of these two directional measures.

4.1.3. Methods for JPEG2000 Compression Artifacts. Several
NR IQA algorithms for JPEG2000 images have also been
developed. The general approach involves measuring the
amount of blurring or edge-spread by using edge-detection
techniques. Other methods have also been developed based
on natural-scene statistics.

In [252], Ong et al. presented a NR algorithm for
JPEG2000 blurring which operates via four steps: (1) com-
puting a gradient direction for each pixel; (2) edge detection
by using a Canny edge detector; (3) measuring the edge-
spread, that is, the extent of the slope of each edge along
and perpendicular to the gradient; and (4) estimating quality
based on the results from the previous steps.

In [253], Li et al. presented a principal-components-
analysis-based NR method for JPEG2000 images. First, by
viewing all edge points in JPEG2000 images as distorted
or undistorted, local features are extracted at each of the
detected edge points to indicate blurring and ringing. A
model is then employed to map these local features to local
distortion estimates through the probabilities of the edge
points being distorted or undistorted. Quality is estimated
based on the local distortion estimates. A similar method can
also be seen in [254].

In [255, 256], Sazzad et al. presented an approach which
uses pixel distortion and edge information for NR IQA
of JPEG2000 images. Their technique operates under the
assumption that human visual perception is very sensitive to
edge information in images. Visual artifacts manifest as pixel
distortions around these edges, and thus quality is estimated
by measuring these pixel distortions.

Other algorithms for NR IQA of JPEG2000 images have
used measures of the changes in the statistic regularities
of DWT/DCT coeflicients to estimate quality. For example,

19

Sheikh et al. [257] reported that when JPEG2000 images
are decomposed through a wavelet transform, the subband
probabilities can indicate the loss of visual quality. Quality is
estimated in [257] by first computing features based on these
probabilities from all wavelet subbands and then applying a
nonlinear combination of the features.

Zhou et al. [258] presented an NR algorithm to evaluate
JPEG2000 images which employs three steps: (1) dividing
the image into blocks, among which textured blocks are
employed for quality prediction based on nature-scene statis-
tics; (2) measuring positional similarity via projections of
wavelet coefficients between adjacent scales of the same
orientation; and (3) using a general regression neural network
to estimate quality based on the features from the previous
two steps.

Zhang et al. [259] utilized kurtosis in the DCT domain
for NR IQA of JPEG2000 images. Three NR quality measures
are proposed: (1) frequency-based 1D kurtosis, (2) basis-
function-based 1D kurtosis, and (3) 2D kurtosis. The pro-
posed measures were argued to be advantageous in terms
of their parameter-free operation and their computational
efficiency (they do not require edge/feature extraction).

4.1.4. Methods for Other/Multiple Artifacts. Researchers have
also proposed NR methods for other distortion types/com-
binations, most commonly noise, blurring, blocking, and/or
ringing.

In [260], Li presented an NR IQA method which com-
bines NR measures for three different image distortion types
(blur, noise, and block/ringing artifacts). Blur is characterized
by a 2D parameterized edge model [261]. Impulse noise is
measured by the percentage of noisy pixels, and Gaussian
noise is estimated as the energy of noise after the application
of a denoising algorithm [262]. Blocking is measured by the
likelihood of detecting artificial horizontal or vertical edges,
and ringing is measured by a ratio indicating the deviation
of the spectrum of noise removed by an anisotropic diffusion
filter.

In [263], Corner et al. [263] present an NR noise esti-
mation technique based on data masking. Their method
calculates a histogram of the local standard deviations over
blocks after filtering and edge suppression using a gradient
mask. Based on experimental data, they reported that the
histogram median value supplied the most accurate final
noise estimate.

In [56], Stsstrunk and Winkler presented an NR method
for color images degraded by compression or transmission
loss. The authors conducted a psychophysical experiment to
obtain quality ratings, and they compared their proposed
method with the ratings. Three measures for blockiness,
blurriness, and colorfulness are proposed and shown to
successfully predict the subjective ratings.

In [264, 265], Gabarda and Cristobal presented an
entropy-based NR IQA algorithm. Their method is based
on a multiresolution analysis of images for which they
conclude that the entropy per pixel is strictly decreasing with
respect to decreasing resolution. Quality is estimated based
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on anisotropy measures obtained via directional entropy
estimates.

In [266], Branddo and Queluz presented an NR algorithm
for estimating quantization artifacts due to lossy encoding
such as JPEG or MPEG. Their method is based on the
statistics of DCT coefficients whose distribution can be
modeled by a Laplacian probability density function. The
resulting coefficient distributions are used to estimate local
errors, and these local error estimates are then used to
estimate quality.

In [267], Cohen and Yitzhaky presented an NR method to
identify and quantify the impact of noise and blur on quality.
Their method operates by measuring common statistics of
images obtained from their power spectra. The authors
reported that manipulations of the distorted image’s spec-
trum enhance the appearance of the distortion. Accordingly,
their resulting method estimates the visual impact of the
distortion based on deviations from the expected power
spectrum.

4.1.5. Non-Distortion-Specific Methods. Researchers have also
developed more general-purpose NR IQA algorithms which
do not attempt to detect specific types of distortions. Meth-
ods of this type typically reformulate the IQA problem
into a classification and regression problem in which the
regressors/classifiers are trained using specific features. The
relevant features are either discovered via machine learning
or specified by using natural-scene statistics.

In [268], Tong et al. presented a learning-based NR
algorithm which attempts to directly estimate quality via
machine learning. First, some training examples are prepared
for both high-quality and low-quality classes. Next, a binary
classifier is built on the training set. Finally, the quality
estimate of an unlabeled example is denoted by the extent to
which it belongs to these two classes.

In [269], Tang et al. presented the LBIQ algorithm,
another learning-based NR IQA method. LBIQ measures
various low-level quality features derived from natural-scene
and texture statistics. LBIQ estimates quality via a regression-
based combination of the features.

In [270], Li et al. presented an NR algorithm which
operates based on a general regression neural network
(GRNN). Various features such as the mean value of a
phase congruency map, the entropy of the phase congruency
map, and the entropy and gradient of the distorted image
are extracted. Quality is estimated by approximating the
functional relationship between these features and subjective
scores using a GRNN.

In [271, 272], Ye and Doermann presented the CBIQ-
I and CBIQ-II algorithms which operate based on visual
codebooks. The codebooks consist of Gabor-based features
extracted from local image patches. The codebooks form a
feature space, which is quantized, and then used to yield an
estimate of quality via either example-based regression or
support-vector regression.

Another popular approach to NR IQA is to use natural-
scene statistics. The main idea in this approach is that natural
images demonstrate certain statistical regularities that can be
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affected in the presence of distortion. Thus, quality can be
estimated by extracting features which indicate the extent to
which these statistics deviate in the distorted image. See [36]
for a more thorough discussion of the use of natural-scene
statistics for NR IQA.

Methods of this type usually contain two stages: (1)
distortion identification and (2) distortion-specific quality
assessment. Both stages require training: the classifier used to
measure the probability that each distortion type exists in the
distorted image requires training, and the regression model
for each distortion type used to map the measured features to
an associated quality score must also be trained.

In [273], Moorthy and Bovik presented the BIQI algo-
rithm which estimates quality based on statistical features
extracted using the 9/7 DWT. The subband coefficients
obtained are modeled by a generalized Gaussian distribution,
from which two parameters are estimated and used as fea-
tures. The resulting 18-dimensional feature vectors (3 scales
x 3 orientations x 2 parameters) are used to characterize the
distortion and estimate quality via the aforementioned two-
stage classification/regression framework.

In [274], Moorthy and Bovik presented the DIIVINE
algorithm, which improves upon BIQI by using a steerable
pyramid transform with two scales and six orientations.
The features extracted in DIIVINE are based on statistical
properties of the subband coeflicients. A total of 88 features
are extracted and used to estimate quality via the same two-
stage classification/regression framework.

In [275, 276], Saad et al. presented the BLIINDS-I and
BLIINDS-II algorithms which estimate quality based on DCT
statistics. BLIINDS-I operates on 17 x 17 image patches
and extracts DCT-based contrast and DCT-based structural
features. DCT-based contrast is defined as the average of the
ratio of the non-DC DCT coeflicient magnitudes in the local
patch normalized by the DC coefficient of that patch. The
DCT-based structure is defined based on the kurtosis and
anisotropy of each DCT patch. BLIINDS-II improves upon
BLIINDS-I by employing a generalized statistical model of
local DCT coefficients; the model parameters are used as
features, which are combined to form the quality estimate.

In [277], Mittal et al. presented the BRISQUE algorithm, a
fast NR IQA algorithm which employs statistics measured in
the spatial domain. BRISQUE operates on two image scales;
for each scale, 18 statistical features are extracted. The 36
features are used to perform distortion identification and
quality assessment via the aforementioned two-stage classi-
fication/regression framework. Related work on the use of
BRISQUE features and discriminatory latent characteristics
for NR IQA can be found in [278].

4.2. Reduced-Reference IQA. Reduced-reference (RR) IQA
methods provide a solution for cases in which the reference
image is not fully accessible. Methods of this type generally
operate by extracting a minimal set of parameters from the
reference image, parameters which are later used with the
distorted image to estimate quality.

An important question in RR research is how to deter-
mine effective parameters for the IQA task. In [279], Wang
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and Simoncelli argued that the appropriate RR features
should (1) provide an efficient summary of the reference
images, (2) be sensitive to a variety of image distortions, and
(3) be relevant to visual perception of image quality.

In [280], Maalouf et al. presented an RR algorithm
based on the grouplet transform. Given a reference image
and its distorted version, the grouplet transform is applied
to both images in order to extract information regarding
textures and gradients of the images. This information is
then used with CSF filtering and thresholding to obtain
sensitivity coefficients. Quality is estimated by comparing
the sensitivity coefficients of the distorted image with the
sensitivity coeficients of the reference image.

In [281], Guanawan and Ghanbari presented an RR algo-
rithm which operates based on a local harmonic analysis for
images degraded with blocking or blurring. Local harmonic
amplitude information is computed from an edge-detected
image, and this information is then used with the distorted
image to estimate quality.

In [282], Rehman and Wang present an RR version of
SSIM [123]. Instead of directly constructing an RR algorithm
to predict subjective quality, this method extracts statistical
features from a multiscale, multiorientation divisive nor-
malization transform. The authors construct a distortion
measure by following the philosophy analogous to that in
the construction of SSIM. Based on the linear relationship
between RR SSIM and FR SSIM given a fixed distortion type,
a regression-by-discretization method is used to estimate
quality. Related work can also be seen in [283].

In [284], Chono et al. presented an RR algorithm using
distributed source coding for remotely monitoring image
quality. In this scheme, an image server extracts a feature
vector from the reference image and then transmits its
Slepian-Wolf syndrome by using a low-density parity-check
code. At the decoder, the feature vector and the received
(distorted) image are used to estimate quality.

Other types of RR IQA methods operate based on
natural-scene statistics. For example, in [279], Wang and
Simoncelli presented an RR IQA method which operates
based on a wavelet-domain statistical model of images. Qual-
ity is estimated based on the Kullback-Leibler divergence
between the marginal probability distribution of wavelet
coefficients of the reference and distorted images. Similar
work can also be found in [285].

In [286], Xue and Mou presented an RR algorithm
based on the steerable pyramid. At each pyramid scale, a
strongest component map (SCM) is constructed by assem-
bling coefficients with maximum amplitudes among different
orientations. Several statistics of the SCM serve as the RR
features, which are used with the distorted image to estimate
quality.

In [287], Avanaki et al. presented an RR algorithm which
operates by using watermarking to embed RR features into
an image; these features can be extracted and used for IQA in
the event that the image is distorted. The RR features used in
[287] consist of approximation coefficients of a parameterized
DWT of the image. At the receiver, the embedded features are
extracted and compared to the corresponding features of the
distorted image to estimate quality.

21

In [288], Li and Wang presented an RR algorithm based
on a divisive normalization image representation. By using
a Gaussian-scale mixture-based statistical model of wavelet
coeflicients, a divisive normalization transform (DNT) is
applied to the images. Quality is estimated by comparing
a set of RR statistical features extracted from DNT-domain
representations of the reference and distorted images.

In [289], Ma et al. presented an RR algorithm based on
DCT coeflicient statistics. First, the DCT coefficients of image
blocks are grouped into several representative subbands.
Next, a generalized Gaussian distribution is employed to
model the distribution of coeflicients within each subband.
Quality is then estimated based on the distance between
distributions of the reference and distorted images. Similar
work can also be seen in [290].

In [291], Soundarararajan and Bovik presented a frame-
work for RR IQA based on information-theoretic measures
of differences between the reference and distorted images by
using the entropies of wavelet coefficients. This algorithm
differs from other approaches in terms of the amount of data
needed for the entropy-difference calculations and in terms
of the scalability in the amount of information that is needed
from the reference image.

5. Seven Challenges in Image
Quality Assessment

The previous sections of this paper have focused on review-
ing the current knowledge and accomplishments in IQA
research. In this section, the focus now shifts toward unsolved
aspects of IQA. Here, I specifically discuss seven open chal-
lenges, all of which are critical for furthering IQA research
and facilitating deployment and integration of IQA into
existing and forthcoming applications.

It is important to stress again that these seven challenges
do not represent an exhaustive list of important research
topics in IQA. Other notable areas such as IQA of stereo-
scopic images, IQA of computer graphics, and video quality
assessment are not discussed. The seven challenges described
in this section were chosen to highlight some key limitations
of current IQA knowledge and to point out areas which can
begin to answer broader questions on IQA.

5.1. Challenge 1: HVS Models and Natural Images. As dis-
cussed in Section 2, knowledge of how the HVS analyzes
visual input has played a pivotal role in IQA research.
However, it must be stressed that our current understanding
of the HVS, and thus the computational HVS modeling
used in IQA, is far from complete. The vast majority of
computational models do not model beyond primary visual
cortex (V1), and many researchers have argued that even
current V1 models are still incomplete. And, how visual
stimuli are analyzed in V1 is only one contributor to visual
perception, not to mention image quality.

A key difficulty in developing a more complete computa-
tional HVS model is the fact that visual neurons often respond
quite differently to naturally occurring stimuli than they do
to simple, controlled stimuli. Because neural responses are
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highly nonlinear, it has proved difficult to predict neural
responses to natural images based on responses to more
simple stimuli. The same difficulty carries over to visual per-
ception; psychophysical data collected using natural scenes
can be difficult to predict based on data collected using more
simple, controlled stimuli.

5.1.1. The Need for Improved V1 Models. While the charac-
terization of V1 based on its responses to simple stimuli has
proved useful, other researchers have suggested that in order
to fully understand the response properties of visual cortex,
one must first understand the signal that is to be encoded,
that is, natural scenes. (As defined by Field [292], natural
scenes refer to images from the natural environment which
are devoid of man-made objects. However, the exclusion
of man-made objects has since been relaxed in the visual
psychology literature due, in part, to the presence of such
objects in several popular natural-scene databases [293, 294].
In the image-processing literature, the term natural images
is more commonly used and defined to be photographic
images containing any naturally occurring subject matter
that may occur during normal photopic or scotopic vision.)
Field [292, 295, 296] postulated that cortical neurons are
tuned to encode natural scenes in an efficient manner, and
thus this special class of input has the potential to reveal
properties of visual cortex beyond those invoked by using
simple stimuli. Indeed, several studies have shown that
neural networks trained with natural scenes under various
sparse-coding objectives yield bases which possess striking
similarities to simple and complex cortical cells [297, 298].
Other studies, focused on modeling the statistics of natural
scenes, have revealed properties such as 1/f amplitude
spectra [292, 299] (where f denotes spatial frequency) and
the importance of phase [300, 301] and edge cooccurrences
[109] in perception. More recently, natural images have been
used in psychophysical studies [55, 302-305], revealing both
supportive and confounding evidence for previous theories
of VL.

In a recent, controversial essay, Olshausen and Field
argued that as much as 85% of V1 has yet to be explained
[306]. Much of what is known about the response properties
of V1 neurons has come from neurophysiological studies
employing single-cell recordings. During such recordings,
many VI neurons are not tested due to the fact that they
yield weak extracellular action potentials, they yield low firing
rates, or they are otherwise visually unresponsive. Olshausen
and Field estimated that only 40% of V1 neurons have actually
been tested. They further reported that, of these V1 neurons
that have been tested, current computational models can
explain only 30-40% of the response variance when the
neurons are presented with natural images.

The lack of knowledge about how V1 operates when
presented with naturally occurring stimuli is even more
troubling for IQA because there is always an image present
(usually a natural image), and thus our models must nec-
essarily be equipped to handle such stimuli. In terms of
visual masking, computational models have been not been
extensively tested on thresholds measured using natural
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images as masks. Instead, as mentioned in Section 2.1, many
of the models employed in IQA algorithms use parameters
which have been optimized to fit thresholds measured for
traditional targets placed upon unnatural masks (e.g., sine
waves, Gabor patterns, or noise).

As an example of how natural images can affect masking
results, Figure 7 shows relative detection thresholds mea-
sured for wavelet distortions presented against various image
patches [64]. In this plot, the image patches, which are shown
along the horizontal axis, have been ordered by eye based on
the ability to learn and recognize changes to the content—
from simplistic edges to complex textures (from left to right).
All images were matched in RMS contrast (values of 0.32 and
0.64 were tested). The data points denote relative threshold
elevation given by CT/CT4,., where CT denotes the contrast
threshold for detecting the distortion and CTq,. denotes
the average contrast threshold for detecting the distortion
in images from the edge category. The dashed lines denote
average relative threshold elevations for each of the three
image types.

Notice from Figure 7 that the thresholds generally
increase as the images become more visually complex and
thus become harder to learn and recognize, despite the fact
that all images have the same RMS contrast. In [64], we
reported that a computational model of masking (described
in Section 2.1) performed well in predicting only the thresh-
olds for the texture patches; these models generally failed for
patches in the edges’ and structures’ categories. In fact, even
after optimizing and extending the parameters of the model
based on the actual thresholds measured for the edges and
structures, the predictions remained quite subpar.

5.1.2. Ground-Truth Data for Natural Images. For IQA, one
of the primary limitations when designing a computational
neural model that can handle natural images is the lack of
ground-truth data. For masking, which is crucial for IQA
in the high-quality regime, there exists no database of local
contrast detection thresholds for natural images (though, see
[49, 58] for related studies). For lower quality images, there
exists no database of ground-truth quality maps denoting
local quality ratings for natural images. These types of local
ground-truth data would be especially useful for training and
testing purposes since they can provide insights into whether
the local processing is correctly modeled or whether further
adjustments are warranted.

Of course, the main difficulty in creating local masking
and quality-rating data is the enormous time commitment
required for the experiments. Nonetheless, even coarse maps
would be a useful first step. For masking, we have begun
to address this issue by measuring local masking maps for
detection of vertically oriented 3.8 c/deg log-Gabor distor-
tions in images from the CSIQ database [27]. Figure 8 shows
preliminary results for 10 of the images.

In Figure 8, the first row shows the original images
(masks), the second row shows maps of local detection
thresholds in which brighter values denote greater thresholds
(greater masking); these maps were averaged across subjects
and trials. The third row shows the predicted masking maps
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FIGURE 7: Relative threshold elevations for each of the 14 masks used in [64]. All masks were matched in RMS contrast (values of 0.32 and
0.64 were tested). The data points denote relative threshold elevations averaged over all subjects; error bars denote standard deviations of the
means over subjects. The dashed lines denote average relative threshold elevations for each of the three image types. The images depicted on
the horizontal axis have been ordered by eye to represent a general transition from simplistic edge to complex texture (from left to right).
Indeed, notice that the data generally demonstrate a corresponding left-to-right increase in relative threshold elevation.
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FIGURE 8: Local masked detection thresholds and corresponding predicted thresholds for 10 images from the CSIQ database. See text for

details.

obtained from the computational V1 model of masking used
in [64], which is based on the standard model described in
Section 2.1. For comparison, the fourth and fifth rows show
the predicted masking maps obtained from MS-SSIM [175]
and the detection-based stage of MAD [139]. Because neither
of these IQA algorithms was designed to predict thresholds,
we selected a fixed index for each algorithm corresponding
to an at-threshold amount of distortion (an MS-SSIM index
of 0.995, a MAD index of 15). Then, for each patch of the
image, we successively added log-Gabor distortions until

the algorithm yielded that at-threshold index for the patch.
Finally, the resulting masking map was computed as the RMS
contrast of the distortion in each of these distorted patches.
Opverall, the neural masking model yields the best pre-
dictions of the masking maps with an average Pearson
correlation coefficient (CC) between the actual and predicted
thresholds of 0.70. The best prediction from this model is on
image cactus for which the CC is 0.95. However, there are
many notable failure cases, particularly on more structured
images. The worst prediction from this model is on image
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couple for which the CC is 0.42. Both MS-SSIM and MAD
perform considerably worse. MS-SSIM vyields an average CC
of 0.44, with the best and worst predictions on, respectively,
images foxy (CC = 0.67) and native American (CC = 0.13).
MAD vyields an average CC of 0.64, with the best and worst
predictions on, respectively, images bridge (CC = 0.86) and
shroom (CC = 0.28).

Of course, MS-SSIM was never designed to estimate
masking, and the masking model employed in MAD is a sim-
plistic, spatial-domain-only local contrast measure. However,
the performance of the neural masking model highlights the
need for further research in this area.

5.1.3. Models of Areas Beyond V1. One possible explanation
for the failure cases of V1 models in predicting masking in
natural images is the fact that such masking is attributable to
visual processing in areas beyond V1 [81, 307]. For example,
by comparing EEG recordings obtained during unmasked
versus masked detection, Fahrenfort et al. concluded that
“masking derives its effectiveness, at least partly, from disrupt-
ing reentrant processing, thereby interfering with the neural
mechanisms of figure-ground segmentation and visual aware-
ness itself” [307]. Thus, even if a complete model of V1 for
natural images was available, there still remains the question
of how masking and image quality are influenced by visual
processing in areas beyond V1.

Unfortunately, much less is known about the mechanisms
and objectives of visual processing beyond V1 and the
influences such processing might have on V1 itself. It is
important to note that approximately half of V1's innervations
come in the form of corticocortical feedback from higher
levels [307]. Lee et al. [308] have proposed that the higher
levels work in conjunction with V1 to perform complex tasks
such as pattern analysis and object recognition. Rao and
Ballard [309] have suggested that the higher levels function
as predictive coders whose feedback connections to V1 carry
the prediction and whose feedforward connections from V1
convey the prediction’s error.

One generally accepted belief is that higher levels serve
to efficiently encode the joint activity of V1 neurons [310-
312]. Based on single-cell recordings in V2, Willmore et al.
argued that V2 neurons integrate the outputs of V1 neurons
across spatial frequency to enhance the representation of
edges [313]. Related earlier work in visual psychophysics pos-
tulated similar theories that an image’s features are integrated
temporally across scale-space in a coarse-to-fine (global-to-
local) fashion [314-317]. In terms of IQA, any distortions
which disrupt this integration of neural responses/features
could potentially lead to severe degradations in quality.

As an example, the global precedence theory of Navon
[314] and the related scale-space integration theory of Hayes
[317] both advocate that an images edges are visually
processed by combining information across spatial scales,
beginning with the coarsest scale and ending with the finest
available scale. Under this theory, eliminating or distorting
content at an intermediate spatial scale should disrupt the
HVS’s ability to integrate coarse and fine information into a
single percept. Instead, the result would be two percepts: a
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blurred version of the object and a separate, erroneous high-
frequency pattern. This disruption of visual integration and
its effects on image quality can be readily demonstrated, as
shown in Figure 9. In this figure, the original image is shown
on the left, and the distorted image is shown on the right. The
distorted image was generated via notch filtering (discrete-
space radial frequencies of 77/8 to 7/4 have been eliminated
for all orientations). Because this filtering disrupts the HVS’s
ability to integrate information at different scales, the high-
frequency content is perceived almost as additive noise on top
of a second percept of a blurry image in the background.
The demonstration in Figure 9 highlights the need for
further research on the role of higher-level visual processing
on image quality. Although the mechanisms and func-
tional objectives of these higher-level areas remain largely
unknown, it is still possible to incorporate general principles
of object perception and cognition derived from experiments
or heuristics. For example, in the VSNR algorithm [125]
(described previously in Section 3), we developed a basic
model of global precedence specifically for IQA; although this
model was based more on empirical observations rather than
psychophysical data, it has proved quite effective for certain
distortion types. Nonetheless, further research in this area,
both in vision science and in IQA, is needed to help move
IQA beyond its current capabilities to a level that can begin to
capitalize on the properties of higher-level visual processing.

5.2. Challenge 2: Compound and Suprathreshold Distortions.
Another challenge which designers face when incorporating
psychophysical findings into IQA algorithms is the fact that
distortions can be both compound and suprathreshold. The
term compound is used to describe a visual target that
stimulates more than one channel in the HVS’s multichannel
analysis. Suprathreshold refers to clearly visible targets that
are at a contrast beyond the threshold of detection. In IQA,
many of the distortions that are encountered meet both of
these criteria.

5.2.1. Simple Targets versus Compound Distortions. In image
processing applications, a wide variety of distortions are
possible, and an IQA algorithm should ideally be able to
handle such distortions. However, in visual psychophysics,
the visual targets are generally much more simplistic, often
consisting of sine-wave gratings, Gabor functions, or other
highly controlled spatial patterns that are localized in space,
frequency, and/or orientation. Highly controlled and local-
ized targets are preferable in such experiments because they
can be designed to stimulate only one channel of the HVS’s
multichannel analysis. However, this difference between
simple targets and actual distortions poses a difficulty to
designers who wish to incorporate psychophysical findings
into an IQA algorithm.

In visual psychophysics, distortions would be considered
compound targets that consist of multiple simple targets
(e.g., multiple sine waves, Gabor functions, or wavelets).
Due to the nonlinear behavior of the HVS, it is difficult
to apply knowledge about the visibility of simple targets to
predict how the HVS will respond to compound distortions.
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FIGURE 9: Demonstration of the visual effects of disrupting the HVS’s ability to integrate features across scale space. The original image is
shown on (a), and the distorted version is shown on (b). The distorted image was generated by notch-filtering discrete-space radial frequencies
of 7/8 to m/4. This filtering disrupts the HVS’s ability to integrate information at different scales, and thus the high-frequency content is

perceived as additive noise on top of a blurry image in the background.

Visual summation studies begin to address this issue by
measuring thresholds for detecting compound targets and
comparing them with thresholds measured for the individual
components of the compound (the individual simple targets).

Traditionally, summation has been tested by using a
visual detection paradigm, in which the detection threshold
measured for a compound target (e.g., a plaid composed
of two sine waves) is compared with detection thresholds
measured separately for its individual components (the sine
waves). Detection of the compound should be an easier
task because the HVS has a greater of chance of detecting
the target now that it contains two instead of just one
component. Further, assuming that the components within
the compound are detected by separate HVS channels, any
changes in detection thresholds for compound versus simple
targets would point toward interchannel cooperation, that is,
summation of channel responses.

As mentioned in Section 2.1, summation is typically
modeled via a Minkowski sum in which the amount of
summation is controlled by the summation exponent f3 (see
(4)). A value of 8 = 1 denotes complete summation, whereas
a value of f = oo denotes no summation. The majority of
psychophysical studies have generally found f to be in the
range 3 = 3-5; that is, the compound target is only slightly
more detectable than either of its components given that the
components are analyzed by separate HVS channels.

However, as mentioned in Section 5.1, the presence of
an image in the background can significantly change neural
responses and psychophysical results, and visual summation
is no exception. In [55], we measured detection thresholds for
simple and compound distortions generated via quantization
of individual DWT subbands (yielding simple distortions)
and pairs of DWT subbands (yielding compound distor-
tions). When the distortions were presented against a gray
background (i.e., unmasked detection, as used in previous
studies), we found results which were very consistent with

previous studies: 3 = 3-5. However, when the distortions
were presented against either of the two natural images tested
in [55], much greater summation was found: 3 = 1.3-1.6. One
possible explanation for our finding is the presence of intra-
channel summation, wherein a single HVS channel is used
to detect both components of the compound target. Intra-
channel summation may result from the spatial correlations
that exist between the distortions and the images and/or from
oft-frequency looking [83, 318].

It is also important to note that summation studies
have tested compound targets consisting of relatively few
components. However, in IQA, the distortions can be broad-
band in terms of radial frequency, orientation, and other
dimensions. It remains unclear how summation is affected
when such distortions serve as the targets. Furthermore, the
distortions encountered in IQA may contain components
which constructively interact to form salient visual patterns
that might further affect summation. For example, if false
contours or borders are formed, visual processing could be
mediated by areas beyond V1 which attempt to integrate
such contours [319], thus giving rise to different summation
rules. Clearly, further research is needed in order to develop
improved models of summation in the presence of natural
images.

5.2.2. Perceived Contrast of Suprathreshold Distortions. Much
of our current understanding of visual perception has
resulted from research in visual detection in which the task
is to gauge whether the distortions are visible. However,
many applications generate images containing suprathreshold
distortions whose contrasts are well beyond the threshold of
detection. Thus, another challenge which IQA designers face
is how to adjust existing models to handle suprathreshold
distortions.
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One key finding from studies employing suprathreshold
stimuli is the fact that the perceived (or “apparent”) contrast
of a suprathreshold target depends much less on the target’s
spatial frequency than what is predicted by the CSF; that
is, visual sensitivity at suprathreshold contrasts is relatively
frequency independent. This finding, termed contrast con-
stancy [320], was first reported by Georgeson and Sullivan
[320] who attributed the effect to an intrachannel gain control
mechanism that compensates for the CSF at suprathreshold
contrasts.

In a similar study, Brady and Field [76] found contrast
constancy using both Gabor patches and broadband noise
patterns. Their data were successfully predicted via a model
with equally sensitive octave-bandwidth spatial-frequency
channels, which was reported to yield a constant response to
the spatial scales of natural scenes. Brady and Field’s study
and a later study by Graham et al. [77] were the first to
provide a theoretical account of why white noise is perceived
as containing mostly high-frequency content despite the fact
that the CSF peaks near 4-6 c/deg.

For IQA, not only can the distortions be suprathresh-
old, but the distortions are necessarily presented against
an image. Thus, the perceived contrast of the distortions
can be influenced by the image. In [54], we investigated
whether contrast constancy is also observed in the presence
of natural images by repeating Brady and Field’s experiment
using suprathreshold octave-bandwidth wavelet distortions
presented against either a solid gray background or one of
three natural images. In the experiment, subjects were asked
to adjust the contrasts of 1.15, 2.3, 4.6, and 9.2 c/deg wavelet
distortions such that they appeared to have the same contrast
as 18.4 c/deg distortions, the latter of which was fixed in
contrast at various suprathreshold values. Figure 10 shows the
results of the experiment.

In Figure 10, the horizontal axis of each graph corre-
sponds to the center spatial frequency of the wavelet distor-
tions. The vertical axis of each graph denotes the physical
RMS contrast of the distortions increasing in the downward
direction. The topmost curve in each graph (square symbols)
corresponds to average detection threshold values from a
previous experiment [53]; this curve can be interpreted as
a CSF for wavelet distortions. The lower four curves in
each graph indicate how perceived contrast changes for
increasingly suprathreshold distortions.

Notice in Figure 10 that the lower curves in each graph
(the perceived contrast curves) are much flatter than the
top curve (the CSF curve). These data indicate that, at
increasingly suprathreshold contrasts, the perceived contrast
becomes increasingly invariant with frequency; that is, con-
trast constancy is observed. The curves obtained when using
the image backgrounds demonstrate a slight reduction in the
perceived contrast for lower-frequency distortions, but the
contrasts still demonstrate a significantly lesser dependence
on spatial frequency than the top (CSF) curve.

However, although contrast constancy can be used to
estimate the perceived contrast of the distortion, contrast
constancy has found little use in IQA. To demonstrate why,
Figure 11 depicts images to which horizontally oriented
1.15-18.4 c/deg wavelet distortions have been added (these
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distortions were not generated via quantization and are thus
spatially uncorrelated with the image). The RMS contrasts of
the distortions in these images have been allocated in two
different ways: For the image on the left, the contrasts have
been proportioned according to the CSF (specified by the top
curve in Figure 10); for the image on the right, the contrasts
have been proportioned as specified by the middle curve
(solid circles) of Figure 10 for the image lena. The distortions
in both of these images exhibit a total RMS contrast of
approximately 0.18.

Whereas the results of the contrast-matching experi-
ments suggest that when distortions are suprathreshold,
physical contrast is a better indicator of perceived contrast
than predictions based on the CSE Figure 11 clearly demon-
strates that image quality is much better preserved when the
contrasts of the distortions are proportioned according to the
ratios specified by the CSE. One possible explanation for this
effect is due to the total perceived contrast of the compound
suprathreshold distortions. Specifically, by examining just
the distortions in Figure 12, it is clear that the perceived
contrast of the distortions when using contrast-matching-
based proportions is much greater than the perceived con-
trast of the distortions when using CSF-based proportions.
Thus, there appears to be an unexpected visual summation
effect: although the perceived contrasts of the individual
bandlimited distortions are relatively constant, when these
distortions are combined and viewed together, they appear
to visually interact in a way that affects the total perceived
contrast.

Unfortunately, whereas visual summation at near-
threshold contrasts has been extensively studied, visual
summation of perceived contrast has received much less
attention (see [321]). For IQA, visual summation of perceived
contrast would further need to be tested in the presence of
various images. Clearly, there is a need for more research in
this area. Such research could prove particularly useful for
IQA of images containing distortions which are perceived
to be overlaid on top of the image as opposed to distortions
which interact with the image’s subject matter. In the
following section, I delineate between these two types of
distortions.

5.3. Challenge 3: Effects of Distortions on Image Appearance.
Although the perceived contrast of the distortions can be
used to estimate quality, the inherent assumption in this
approach is that the viewer is looking for the distortion in the
presence of the image. When the distortions are severe and
spatially correlated with the image, viewers tend base quality
judgments on the interaction between the distortions and
the image’s objects. Properly determining and modeling the
perceptual effects of this interaction is yet another challenge
in IQA research.

5.3.1. Capture and Transparency in IQA. For IQA, an impor-
tant consideration is whether the distorted image is perceived
as a single distorted image or whether it is perceived as
distortions with an image in the background. In the visual
psychophysics literature, these two scenarios would fall under
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FIGURE 10: Contrast-matching results from [54] for octave-bandwidth wavelet distortions presented against a solid gray background and

three images. See text for details.

the aegis of capture and transparency [322], which describe
whether a target + background are perceived as one combined
stimulus (captured) or whether they are perceived as two
separate stimuli (transparent).

One of the earliest studies pointing to the need to
distinguish between capture and transparency in IQA was
performed by Goodman and Pearson [171] who used a mul-
tidimensional scaling (MDS) experiment. For image quality,
an MDS experiment can be used to determine the number
of, type of, and interactions between the perceptual attributes
that underlie quality ratings. Goodman and Pearson used
MDS to specifically investigate the quality of TV pictures
impaired both by additive-type distortions (e.g., noise, echo)
and by coding- and transmission-type distortions (DPCM
quantization artifacts and blurring). Based on their MDS
analysis, they reported that one of the multiple perceptual
dimensions “appears to be separating those impairments which
cause the integrity of the objects in the picture to be destroyed
from overlay types of impairment.”

To demonstrate the effects of capture and transparency
on image quality, Figure 13 shows two distorted versions
of lena. The image on the left is repeated from Figure 1;
this image contains additive wavelet distortions which are
spatially uncorrelated with the image. The image on the
right was generated via actual quantization of the wavelet
subbands, thus resulting in distortions which are spatially
correlated with the image (distortions which interact with the
image’s objects). For both images, the contrasts of the per-
subband distortions have been proportioned as specified by
the middle curve (solid circles) of Figure 10 for the image lena.
The distortions in both images are at a total RMS contrast of
approximately 0.18. Figure 14 shows the distortions in these
images presented against a solid gray background.

In the experiment in [54], subjects were instructed
to match the contrasts of the wavelet distortions, a task
which involves examining the distortions. However, when
the distortions are severe and spatially correlated with the
image, judging the quality of the image involves attending
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FIGURE 11: Images containing horizontally oriented wavelet distortions generated by adding random values to the LH subbands of a five-level
DWT of the image lena. In the image on the left, the contrasts of the distortions have been proportioned according to ratios derived from
the CSF. In the image on the right, the contrasts of the distortions have been proportioned according to the middle trend (filled circles) of
Figure 10 for the image lena which specifies relatively constant contrasts across spatial frequency. Both images contain distortions at a total
RMS contrast of approximately 0.18. These images were created assuming sRGB display characteristics and are meant to be viewed from

approximately four picture heights.

to and looking at (capturing) the image. Indeed, the images
in Figures 13 and 14 suggest that it is not just the perceived
contrast of the distortions that determines the image’s quality;
notice from Figure 14 that the overall perceived contrasts of
just the distortions are quite similar for both images. Rather,
quality is also determined by visual interaction between the
distortions and the image’s subject matter. Nachmias [323]
reported a similar observation in context of masked detection
of sine-wave gratings. Namely, when a target is presented
against a suprathreshold and spatially coherent mask, it is
often easier to detect the target by examining its effect on the
phenomenal appearance of the mask.

Thus, in addition to considering the perceived contrast
of the distortions, for IQA, it is also important to take into
account the effects these distortions impose on the appear-
ance of the image. In particular, it would seem necessary
to distinguish between the additive or “overlay” types of
distortion and those which visually interact with the image’s
subject matter.

5.3.2. The Role of Visual Strategy in IQA. The effects of capture
and transparency in IQA begin to address the broader issue

of the adaptive nature of the HVS. Namely, the visual strategy
that the HVS uses when judging image quality can change
depending on both the amount of distortion and whether the
distortion affects the phenomenal appearance of the image’s
objects. Numerous studies have shown the HVS to be a highly
adaptive system, with adaptation occurring at multiple levels
ranging from single neurons [69] to the entire cognitive
processes [324]. It seems logical to assume that the visual
strategy adapts based on many other factors related to the
interaction between the distortion and the image.

In [139], we asked whether IQA could be improved by
modeling this adaptive nature of the HVS via two separate
computational models. For images containing near-threshold
distortion (high-quality images), we assumed that trans-
parency was in effect, and thus the HVS employs a detection-
based strategy in an attempt to look for the distortions.
For images containing suprathreshold distortion (low-quality
images), we assumed that capture was in effect, and thus the
HVS employs an appearance-based strategy in an attempt to
recognize the image’s content.

Figures 15 and 16 demonstrate the need to explicitly
model these two separate strategies. As shown in Figure 15,
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FIGURE 12: Distortions from Figure 11 presented against a solid gray background.

which contains high-quality images, when the distortions
are not readily visible, our visual system seems to employ a
detection-based strategy in an attempt to locate any visible
differences. However, for the low-quality images shown in
Figure 16, which contain suprathreshold distortions, the
distortions dominate the overall appearance of each image,
and thus visual detection is less applicable. Instead, for these
latter images, quality is determined based primarily on our
ability to recognize image content. We demonstrated in [139]
that by using separate computational models for these two
fundamentally different strategies and by estimating quality
based on an adaptive combination of these modeled outputs,
significant improvements in IQA could be achieved.

In [67], Rouse et al. performed a more specific study
designed to investigate the role of recognition in determining
image quality and image utility (usefulness). For high-quality
images, Rouse et al. reported that the perceived utility scores
do not correlate with the perceived quality scores. How-
ever, for low-quality images, a linear relationship between
perceived utility and perceived quality was reported. These
results and the later work in [205] suggest that the ability to
recognize and utilize an image’s content can play a crucial role
in determining quality.

5.3.3. Higher-Level Effects of Distortion on Image Appearance.
Although the efforts in [67, 139, 205] and the related work in

[201] begin to address the issue of adaptive visual strategies,
more generally IQA research could benefit from a better
understanding of the interaction between the distortions and
images. As an example, consider the two images shown in
Figure 17, one of which has been compressed with JPEG and
the other with JPEG2000, both at the same low bit-rate. Both
images contain compression distortions which are clearly
visible, since, at this low rate, there is no chance of hiding
the distortions in the traditional sense. However, most people
clearly prefer the JPEG2000 image over the JPEG image.

One explanation for the lower quality of the JPEG image
is due to JPEG’s blocking artifacts. However, there are several
other, higher-level aspects which come into play: (1) the
facial expressions are better preserved in the JPEG2000 image
because the wavelet basis functions better capture the curva-
ture of the eyes; (2) the objects in the image—water, skin, and
hair—happen to be physically smooth in the real world, so
JPEG2000’s blurring is acceptable for these objects; (3) the
object boundaries are less degraded in the JPEG2000 image,
and therefore it is easier to recognize the image’s subject
matter. None of these higher-level perceptual aspects are
considered in the current coding and IQA algorithms; they
just happen to work in JPEG2000’s favor for this particular
image. An improved IQA algorithm which explicitly models
higher-level perception can potentially lead to better quality
estimates and thereby benefit compression and other image-
processing applications.
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FIGURE 13: Images containing horizontally oriented wavelet distortions generated by adding random values to (a) or via actual quantization of
(b) the LH subbands of a five-level DWT of the image lena. In both images, the contrasts of the distortions have been proportioned according
to the contrast-matching proportions as described in Section 5.2. Both images contain distortions at a total RMS contrast of approximately
0.18. These images were created assuming sSRGB display characteristics and are meant to be viewed from approximately four picture heights.

5.4. Challenge 4: Multiple Types of Distortions. Although IQA
algorithms have been tested on images containing individual
types of distortion, some applications can give rise to images
which simultaneously contain multiple types of distortions.
This scenario adds yet another level of difficulty for IQA. An
IQA algorithm must not only consider the joint effects of
these distortions on the image, but also consider the effects
of these distortions on each other.

Consider, for example, a traditional model in signal
processing in which the output signal y is given by y =
T(x) + n, where T'(x) is a transformation of the input signal
x (e.g., blurring or JPEG2000 coding-decoding) and # is
additive noise. Here, the output image y may contain at
least two distinct types of distortions: T'(x) — x, which most
often represents distortions that are spatially correlated with
the image (e.g., blurring, ringing artifacts), and », which is
most often modeled as noise that is spatially uncorrelated
with the image. Below, I describe several studies which have
investigated the joint effects of these distortions on image
quality.

5.4.1. Joint Effects of Blur and Noise. Much of the early work
in investigating the effects of multiple types of distortions on

image quality involved the use of multidimensional scaling
(MDS) experiments. As described in Section 5.3, Goodman
and Pearson [171] used MDS to investigate the joint effects
additive-type distortions (e.g., noise, echo) and coding- and
transmission-type distortions (DPCM quantization artifacts
and blurring). They reported that four perceptual dimensions
were used by subjects to rate quality: “(1)overall picture
clarity, (2) a distinction between overlay impairment and object
impairment, (3) the amount of purely spatial or stationary
overlay patterning, and (4) the amount of spatiotemporal or
moving overlay patterning.” [171].

In [325], Linde employed MDS to investigate the interac-
tive effects of blur and noise. The images used in [325] were
blurred in varying amounts, and then varying amounts of
noise were added to these blurred images. Linde reported two
key findings. First, when a fixed amount of noise was added
to images subjected to varying amounts of blur, the perceived
strength of the noise increased for the increasing amount of
blur; that is, the noise is more pronounced when it is added
to a more blurry image than when the noise is added to a less
blurry image. This result would seem attributable, at least in
part, to masking; that is, blurring an image reduces its ability
to mask noise. Second, for a fixed amount of blur, the addition
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FIGURE 14: Distortions from Figure 13 presented against a solid gray background.

(a) Original image

(b) JPEG-2000 compression DMOS = 17.7

(c) White noise DMOS = 23.5

FIGURE 15: When judging the quality of a distorted image containing near-threshold distortions, one tends to rely primarily on visual detection
(often using point-by-point comparisons with the original image) in an attempt to locate any visible differences. (a) Closeup of original image
bikes; (b) closeup of image bikes distorted via JPEG-2000 compression; (c) close-up of image bikes distorted by additive Gaussian white noise.
DMOS values indicate differential mean opinion scores from the LIVE image database [124]. Figure from [139].

of increasing amounts of noise gave rise to images which
appeared progressively less blurry. This latter result might
be attributable to cross-masking whereby the noise serves to
mask the blurring.

In a similar study, Kayargadde and Martens [326]
employed MDS to investigate not just the potential inter-
actions between blur and noise, but also their effects on

the overall image quality. As in [325], Kayargadde and
Martens reported that when a fixed amount of noise was
added to images subjected to varying amounts of blur, the
perceived strength of the noise was greater for the more
blurry images. Similarly, they found that for highly blurred
images, increasing the amount of noise served to make
the images appear sharper. However, in contrast to [325],



32

ISRN Signal Processing

(a) Gaussian blurring DMOS = 59.0

(c) White noise DMOS = 74.6

(d) JPEG-2000 compression DMOS = 82.7

FIGURE 16: When judging the quality of a distorted image containing clearly visible (suprathreshold) distortions, one tends to rely much
less on visual detection and much more on overall image appearance in an attempt to recognize image content in the presence of the
dominating distortions. (a) Closeup of image bikes distorted via Gaussian blurring; ((b) and (d)) close-up of image bikes distorted via JPEG-
2000 compression; (c) close-up of image bikes distorted by additive Gaussian white noise. DMOS values indicate differential mean opinion

scores from the LIVE image database [124]. Figure from [139].

Kayargadde and Martens reported that for small amounts
of blur, the opposite trend was reported. For mildly blurred
images, increasing the amount of noise served to make the
images appear less sharp. And, for intermediate amounts
of blur, the addition of noise had no effect on perceived
sharpness. In terms of the effects of the blur and noise on
image quality, Kayargadde and Martens reported that quality
decreased for the increasing amount of blur and noise. For
all of the images tested in [326], blur had a greater impact on
quality than noise.

5.4.2. Joint Effects of Wavelet Distortions and Noise. As men-
tioned in Section 5.3, some distortions are perceived as
more additive or “overlay” type distortions, whereas other
distortions are more indirectly perceived based on how they
affect the image’s objects. In [59], we investigated how quality
is affected when images were simultaneously subjected to
both types of distortions. We specifically considered the case

in which ey, . = T(x)—x represents distortion of the image’s
structure induced via disruption of the global precedence
effect via quantization of wavelet subbands [54] and in which
€noise = M represents spatially uncorrelated additive white
noise.

Figure 18 shows distorted versions of one of the images
tested in [59]. Images in the top row contain only e, ;.; three
contrasts of e, ;.. are shown increasing from left to right
(six contrasts were actually tested). Images in the leftmost
column contain only eg,,.; three contrasts of e, are
shown increasing from top to bottom (six contrasts were
actually tested). The remaining images contain combinations
of ey and e, ;¢ in the contrasts specified by their row and
column headings. These combinations of distortions were
tested on three natural images and—as a control condition—
a solid gray image in which the distortions were generated
from the image horse but were presented against a solid gray
background (see Figure 19). For each of the distorted images,
subjects were asked to rate the degradation in quality relative
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FIGURE 18: Images tested in [59] containing various combinations of structural distortion and additive white noise. The structural distortion
was generated via quantization of wavelet subbands with per-subband distortions selected to disrupt global precedence as described in

Section 5.1 (cf. Figure 9).

to the corresponding original image (resulting in DMOS
values).

Figure 20 depicts the results for each of the four images.
In each graph, the horizontal axis denotes the total RMS
contrast of the combined distortions and the vertical axis
denotes DMOS. The data represented by the black circles in

Figure 20 correspond to the condition in which the images
contained only structural distortion; that is, C, ;.. 0
and Cy,.¢ € [0.1,0.3], where C ;.. and C,,, denote the
contrasts of e, ;.. and e, ..> respectively. The white circles in
Figure 20 correspond to the condition in which the images

contained only additive white noise; that is, Cgc 0
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FIGURE 19: Images tested in [59] containing just the distortions from Figure 18 presented against a solid gray background.

and C,.e € [0.1,0.3]. The other symbols represent the
conditions in which the images contained both e, and
€noise-

Notice from the trends in Figure 20 corresponding to the
condition in which the images contained just e, (black
circles) or just e, (white circles) that when an image
contains just one type of distortion, increasing the contrast of
the distortions also serves to increase the perceived distortion
(decrease quality). Moreover, for the range of contrasts tested,
egruct gave rise to much greater perceived distortion than
€,0ise> for the three natural images, the perceived distortion
induced by e, was on average 4-5 times greater than the
perceived distortion induced by e, ;... These data provide
further evidence that spatially correlated distortions which
disrupt visual processing of the images objects increase
perceived distortion to a much greater extent than spatially
uncorrelated additive white noise.

However, whereas RMS contrast and perceived distortion
were monotonically related for images containing just ey,
or just e, .., such a trend does not hold when both e,
and e, ;. were present. Rather, as reported in [325, 326],
the trends in Figure 20 reveal that adding low-contrast e ;..
to an image which already contains low- to mid-contrast
eruct actually serves to decrease perceived distortion; that

is, adding small amounts of noise to a structurally distorted
image serves to increase quality.

5.4.3. Modeling the Joint Effects of Multiple Distortions for
IQA. One possible explanation for the interactive effects of
the distortions observed in the above-mentioned studies is
the cross-masking. Specifically, the noise might mask the
structural distortion (or the blur/echo), and thus DMOS is
decreased (quality increased) by adding e, ;.. to an image
which also contains ey, .. (see Figure 21). However, such
cross-masking should also be present for the solid gray image
tested in [59], yet the DMOS values for this image were largely
unaffected by adding e, ;.. on top of e, ;- Another possible
explanation is that the addition of noise serves to synthesize
textures which were destroyed by e, (see Figure 22). This
could explain why the greatest improvement in quality in [59]
was observed for image horse, a significant portion of which
is textured.

The results of the above-mentioned studies point toward
an important implication for IQA: when multiple types
of distortions are added to an image, the distortions can
perceptually interact with each other, and with the image, in
ways that may not be easily predicted based on their physical
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FIGURE 20: Subjective ratings of perceived distortion for images containing both structural distortion and additive white noise. In each graph,
the horizontal axis denotes the total RMS contrast of the combined distortions and the vertical axis denotes perceived distortion relative to
the corresponding original image; error bars denote standard errors of the means. Black circles: results for C,,, € [0.1,0.3] and C_;,. = 0.

White circles: results for C,,., = 0 and C,;,. € [0.1,0.3]. Gray squares: results for C, ., = 0.1 and C, ;.. € [0.1,0.3]. White squares: results
for Cypyer = 0.15and C, ;. € [0.1,0.3]. Black triangles: results for Cg,,., = 0.2 and C, ;.. € [0.1,0.3]. Gray triangles: results for C, ., = 0.25
and C, ;.. € [0.1,0.3]. White triangles: results for C,.., = 0.3 and C,;. € [0.1,0.3]. Note that, for the image baby, the contrasts are halved.

Figure from [59].

a minimal impact on visual quality. However, even slight
geometric changes can give rise to massive pointwise changes
in pixel intensities, and consequently, many IQA algorithms
predict these geometrically modified images to be of much
lower quality than indicated by the actual subjective ratings.
As an example, Figure 23 depicts five versions of an image
which have been distorted via either geometric changes (spa-
tial shift, rotation) or photometric changes (additive Gaussian
white noise, change in brightness, change in contrast). All of

combinations. IQA algorithms could certainly benefit from
further research on these effects.

5.5. Challenge 5: Geometric Changes. One well-known short-
coming of the vast majority of IQA algorithms is their
inability to handle geometric distortions such as translation,
scaling, rotation, shearing, or changes in viewpoint. Such
geometric changes, if they are not too drastic, usually have
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FIGURE 21: Closeups of two of the distorted images tested in [59]
demonstrating the ability of white noise to mask the structural
distortion.

FIGURE 22: Close-ups of two of the distorted images tested in [59]
demonstrating the ability of white noise to simulate the appearance
of texture that was destroyed by the structural distortion.

the images have approximately the same MSE relative to the
original. Clearly, the geometric changes have a lesser impact
on quality compared to the photometric changes, and the
addition of white noise appears to have the greatest impact
on quality.

Of course, one way to address geometric changes would
be to employ a front-end stage which attempts to undo the
geometric changes (e.g., via image registration). However,
such an approach will not work in general, particularly when
the type of geometric change is unknown, when multiple

ISRN Signal Processing

geometric changes are imposed, and when geometric changes
are compounded with more traditional distortions such as
noise or JPEG compression artifacts.

As IQA moves into more mainstream applications, the
need to handle geometric changes has become increasingly
apparent. One prime example is the comparison of pho-
tographs of the same scene taken with different cameras
at slightly different viewpoints. Another example is when
applying IQA on a frame-by-frame basis to assess the qual-
ity of video. If the frames of the distorted video become
temporally unsynchronized with the frames of the reference
video (e.g., delayed by a few frames), then the difference
between the reference and distorted frames will typically
manifest in the form of geometric changes due to movement
of the subject matter and/or panning, zooming, and other
viewpoint changes imposed by the camera.

5.5.1. Perception and IQA of Geometric Changes. One theory
of why geometric changes have minimal impact on visual
quality is that geometric changes are quite prevalent during
normal vision, and thus the human visual system has adapted
to become relatively insensitive to such changes. This theory
was proposed in [327] by Kingdom et al. based on the results
of a psychophysical experiment in which discrimination
thresholds were measured for images containing various
geometric distortions (affine transforms) and for images con-
taining photometric distortions (luminance changes, contrast
changes, and various forms of noise). Kingdom et al. found
that subjects were 11-14x more sensitive to noise than they
were to geometric distortions and were 2-3x more sensitive
to brightness/contrast changes than they were to geometric
distortions. Based on these findings, Kingdom et al. suggested
that “observers are least sensitive to those transformations most
commonly experienced in the natural world.” [327].

Some work in visual perception and IQA has specifically
focused on addressing geometric distortion. For example, in
[328], Chow et al. compared the detectability of local warping
distortions in computer-generated scenes on monitors versus
head-mounted displays. In [329], Rovamo et al. measured
thresholds for detecting geometric distortion in faces as a
function of retinal eccentricity. For IQA of watermarked
images, Setyawan et al. [330] investigated the impact of
particular forms of geometric distortion on the perceived
quality of watermarked images. Setyawan et al. also presented
in [330] an FR IQA algorithm which uses local estimates of
affine transformations to estimate quality.

In [331], Wang and Simoncelli presented an FR IQA algo-
rithm which can handle minor translations, rotations, and
scalings. Their algorithm, CW-SSIM, is an extension of SSIM
[123] which uses complex wavelets to achieve its invariance to
these geometric changes. Quality is assessed via SSIM-type
measures applied separately to the magnitudes and phases
of the coefficients. Invariance to translation is afforded by
the fact that translation in the spatial domain manifests
in the coeflicients as concerted shifts in phase. Wang and
Simoncelli demonstrated the utility of CW-SSIM both for
IQA of geometrically distorted images and for character
recognition. In [176], CW-SSIM was also shown to perform
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FIGURE 23: An original image and five versions of the image distorted via either geometric changes (spatial shift, rotation) or photometric
changes (additive Gaussian white noise, change in brightness, change in contrast). All five distorted images have approximately the same MSE

0f 1500 relative to the original.

well on more general similarity tasks such as comparing
segmentations and quantifying similarities between 3D facial
surfaces.

In [332], D’Angelo et al. presented an FR IQA algorithm
which uses an HVS model and displacement fields for QA
of geometrically distorted images. Their technique applies
a single-level, multiorientation Gabor decomposition with
both even- and odd-symmetric filters to the reference and
distorted images. The even- and odd-symmetric responses
are combined via an L,-norm to mimic the responses of com-
plex cellsin V1. These latter responses are then combined with
local gradient information obtained from a displacement
field, and the collection of modified responses are collapsed
across orientation and space to arrive at a scalar estimate
of quality. D’Angelo et al. demonstrated that, on a database
of geometrically distorted images, their technique can yield
quality predictions that correlate well with subjective ratings;
Spearman’s and Pearson’s correlation coeflicients of approxi-
mately 0.8 were reported.

5.5.2. More Radical Geometric Changes. Beyond basic affine
transformations, it is also possible to generate images with
more radial geometric changes and combinations of geo-
metric and photometric changes. One particular area which
researchers have begun to explore is IQA of textures. Given
two samples of textures, humans can readily determine
whether the two samples were taken from the same source
texture (the same material). Or, given a database of actual
and synthesized textures, humans can assign consistent
quality ratings to each synthesized version relative to its
corresponding original. From a computational standpoint,
however, this task is extremely challenging. A major factor

which complicates IQA of textures is the fact that point-by-
point comparisons, a common approach used to some extent
by most IQA algorithms, cannot be used to compare the
visual similarity of two textures.

Although a great deal of human vision research has
been conducted to investigate the perceptual and neural
mechanisms which underlie the visual appearance of texture
(see [333] for a review), further research is needed on how
to actually apply these findings to IQA of textures. In [334],
Bénard et al. investigated the effects of fractalization on the
visual quality of synthesized textures; they reported that the
average cooccurrence error between gray-level cooccurrence
matrices measured for the original and fractalized textures
can perform well in predicting the subjective ratings. In
[335], Zujovic et al. addressed IQA of textures by designing
a structural similarity index for texture retrieval. In [336],
Zujovic et al. also demonstrated the utility of their index for
texture-synthesis-based image compression.

Also on the topic of IQA for synthesized textures, in
[337] we presented a preliminary database of original and
synthesized textures and associated DMOS values. Forty-
two textures from the Brodatz database [338] served as
originals, and various texture-synthesis algorithms were used
to generate the synthesized versions. Figure 24 shows some
of the original and synthesized textures used in [337]. An
examination of the quality ratings values revealed that the
most detrimental artifacts were, (1) lack of structural details,
(2) misalignment of the texture patterns, (3) blurring intro-
duced in the texture patterns, and (4) tiling of the same
pattern. In [337], we also demonstrated that a weighted
geometric combination of KLD and parameters from Por-
tilla and Simoncelli’s parametric texture-synthesis algorithm
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FIGURE 24: Examples of some of the original and synthesized textures (from six texture-synthesis algorithms) for which quality ratings were

collected in [337].

[339] showed promise in predicting the ratings. However,
there were many notable failure cases, particularly on textures
containing more structured objects (e.g., flowers, stones).

With the emergence of applications which can potentially
give rise to images containing such radical changes in geo-
metric properties (e.g., texture-synthesis coding and object-
based coding), there is clearly a need for further research in
this area, both in terms of visual perception and in terms of
associated IQA algorithms and databases.

5.6. Challenge 6: Enhanced Images and Aesthetic Quality.
Today, the photo-editing software used in digital photogra-
phy has replaced the role of the darkroom used in traditional
photography. Through digital enhancement or “retouching,’
it is possible for an altered image to surpass the visual
quality of the original image. For video, enhancements such
as motion sharpening and anti-judder processing found in
newer displays are known to make profound differences in
quality.

Yet, the vast majority of IQA algorithms have been
designed for distorted images, often operating under the
assumption that a high-quality image is one which is most
visually similar to the original (reference) image. However,
for enhanced images, the notion of similarity is less applicable

and a different QA tactic is needed. IQA of enhanced images
remains an open research challenge.

5.6.1. Image Enhancement and Other Applications. Image
enhancement is one of the most fundamental operations
in image processing and digital photography. Enhance-
ment/retouching is a required step that every professional
photographer performs after capturing photos. Although
there is no standard rule to follow when editing a scene, most
photographers implement several steps such as (1) cropping
the images for recomposition; (2) removing obstructions or
unwanted objects; (3) applying noise-reduction techniques,
if needed; (4) adjusting brightness and contrast; (5) white-
balancing and color-correction; (6) sharpening, usually as
the final step. These and other forms of processing (e.g.,
demosaicing, superresolution, computational photography)
yield images that are dissimilar, but are most often of superior
visual quality compared to the original images.

As mentioned previously, the vast majority of IQA
methods have been designed for distorted images. IQA of
enhanced images is challenging due to the fact that the
changes can often be subtle and can affect the artistic impres-
sion of the image. Nonetheless, it is still possible to perform
QA of enhanced images based on changes in low-level
attributes. The work of Fairchild and Johnson [340] begins
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to address this issue by using contrast- and color-appearance
models. In addition, VIF [195] can yield a value larger than
unity (denoting quality greater than the original) when the
“distorted” image contains linear contrast enhancement.

Beside image enhancement, other image-processing
applications can give rise to images of greater visual quality
than the unprocessed images. For example, in denoising
and/or artifact reduction, the primary objective is to yield
an image of superior visual quality to the input (distorted)
image. The performances of such algorithms are quantified by
comparing the denoised/artifact-reduced image to the origi-
nal, pristine image, where the comparison is made via PSNR
or some FR IQA algorithm. However, such a comparison is
not always valid because the denoised/artifact-reduced image
often undergoes processing such as sharpening, contrast-
stretching, and inpainting. Again, our current IQA algo-
rithms have not been designed to handle such changes. A
similar argument applies to dithering algorithms; see [107].
These and related applications could certainly benefit from
IQA algorithms designed for such changes; proper IQA could
not only be used to quantify performance, but they could also
provide criteria for parameter optimization.

5.6.2. A Database for IQA of Enhanced Images. One of the
main roadblocks in IQA of enhanced images is the lack of a
database containing enhanced images and associated quality
ratings. To address this issue, in [341], we presented such
a database, the DRIQ (digitally retouched image quality)
database. DRIQ contains 26 reference images of size 512 x 512
pixels obtained from the Kodak and CSIQ databases. Each
of these 26 images was manually retouched to generate three
enhanced versions spanning varying amounts of quality.
The enhancements were made by editing either contrast,
sharpness, brightness, color saturation, or combinations of
these properties, both globally and locally. In total, the
database contains 104 images (26 original images and 26 x
3 = 78 enhanced versions of these originals).

Obtaining reliable ratings of quality for enhanced images
is more difficult than that for degraded images due to the
fact that the changes are often subtle. Based on several
pilot experiments, we employed a three-step procedure: (1)
intraimage ranking via a pairwise-comparison procedure,
then (2) Intraimage rating constrained by the ranks via a
multiple-stimulus continuous quality evaluation (MSCQE)
procedure, and then (3) across-image ratings constrained by
the within-image ratings, again viaan MSCQE paradigm. See
[341] for further details of the experiments. Figure 25 shows
some examples of the enhanced images and associated DMOS
values; the entire database and ratings are available online
[140].

Figure 26 shows the absolute best- and worst-rated
images in the database along with their corresponding orig-
inal reference images. The original image flower appears low
in contrast, sharpness, and colorfulness. Its enhanced version,
which received the highest rating, was enhanced in contrast,
sharpened, and locally color-corrected (for the stamen of
the flower and the leaves). However, the image redwood in
the second row has little room for enhancement, and thus
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this image was enhanced only in terms of contrast; other
enhanced versions of this image received similarly low DMOS
values.

One very consistent finding which we observed when
viewing an original image and its enhanced version is that the
enhanced image makes the original image appear degraded
(as long as the enhanced image is not overenhanced such
that it appears artificial). Given this fact, in [341], we asked
whether it is possible to perform IQA of enhanced images
by operating existing distortion-based FR IQA methods in
reverse and then reinterpreting the results. Specifically, given
a reference image and its enhanced version, the reference
image can be thought of as a distorted version of the enhanced
image. Thus, existing FR IQA algorithms may be able to
perform IQA of enhanced images by specifying the enhanced
image as the reference image and by specifying the original
image as the distorted image.

In [341], we showed that this reverse-mode-based
approach, when supplemented with global measures of
sharpness, contrast, and saturation, can yield quality esti-
mates which correlate decently with the DMOS values (Pear-
son’s CC of approximately 0.85). These preliminary findings
suggest that a future IQA algorithm designed specifically for
enhanced images may benefit from a strategy that involves
both enhanced-feature measurements and statistical compar-
isons of local frequency coeflicients.

Although the DRIQ database represents an important
first step, it is also important to note that a correlation of
approximately 0.85 still leaves much room for improvement.
Furthermore, none of the images in DRIQ contain both
distortions and enhancement, none of the images contain
overenhancement (which will certainly result in lower quality
ratings), and none of the images were enhanced via more
sophisticated recomposition, superresolution, or computa-
tional photography techniques.

5.6.3. Image Enhancement and Aesthetic Quality. At the 2008
SPIE Human Vision and Electronic Imaging Conference,
Scott Daly provided very insightful perspectives on IQA
of enhanced images in his talk “On the Role of Artistic
Intent of Image Quality” In his presentation, Daly clearly
demonstrated how many standard enhancement techniques,
which would normally improve image quality, can severely
degrade aesthetic quality. Daly’s main argument was based on
the fact that artists and photographers often produce images
which capture and convey specific visual impressions, images
which make specific visual statements. Because traditional
forms of enhancement can destroy the artist’s intentions, even
an IQA algorithm that can handle normal enhancement still
has a long way to go in order to be successful in predicting
the aesthetic quality.

Developing an IQA algorithm which can handle
enhanced images, while considering the effects on artistic
intent and aesthetic quality, certainly remains an unsolved
research challenge.

5.7. Challenge 7: Runtime Performance. Although a great deal
of research on IQA has focused on improving prediction
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FIGURE 25: Examples of original and enhanced images from the DRIQ database [140, 341]. The DMOS values denote differences in perceived
quality relative to each corresponding original and relative to all other enhanced images; larger DMOS denotes greater perceived quality.

accuracy, much less research has addressed algorithmic and
microarchitectural efficiency. As IQA algorithms move from
the research environment into more mainstream applica-
tions, issues surrounding efficiency—such as execution speed
and memory bandwidth requirements—begin to emerge as
equally important performance criteria. Many IQA algo-
rithms which excel in terms of prediction accuracy fall short
in terms of efficiency, often requiring relatively large memory
footprints and runtimes on the order of seconds for even
modest-sized images (e.g., <1 MPixels). As these algorithms
are adapted to process frames of video (e.g., [342, 343]) or
are used during optimization procedures (e.g., during RD
optimization in a coding context), efficiency becomes of even
greater importance.

From a signal-processing viewpoint, it would seem that
the bulk of computation and runtime are likely to occur
in two key stages employed by many IQA algorithms: (1)
local frequency-based decompositions of the input image(s)
and (2) local statistical computations on the coefficients.
The first of these two stages can potentially require a con-
siderable amount of computation and memory bandwidth,
particularly when a large number of frequency bands are
analyzed and when the decomposition must be applied
to each image as a whole. The latter of these two stages
would seem to require more computation, particularly when
multiple statistical computations are required for each local

region of coefficients. For example, in VIF [195], wavelet
subband covariances can be computed via a block-based
or overlapping block-based approach. In MAD [139], vari-
ances, skewness, and kurtoses of log-Gabor coefficients are
also computed for overlapping blocks in each subband. As
described in Section 3, many other HVS-based IQA methods
have been designed to mimic the cortical processing in the
HVS in which the local responses of neurons in V1 (modeled
as coefficients) are computed and compared. Yet, unlike
the HVS, most modern computing machines lack dedicated
hardware for such computation.

5.7.1. Acceleration of Image Transforms and Local Statistics.
Due to their extensive use in image compression and com-
puter vision, a considerable amount of research has focused
on accelerating two-dimensional image transforms which
provide local frequency-based decompositions. For example,
the discrete cosine transform (DCT) has been accelerated at
the algorithm level by using variations of the same techniques
used in the FFT (e.g., [344]) and by exploiting various
other algebraic and structural properties of the transform,
for example, via recursion [345], lifting [346], matrix fac-
torization [347], cyclic convolution [348], and many other
techniques (see [349] for a review). Numerous techniques
for the hardware-based acceleration of the DCT have also
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(c)

(d)

FIGURE 26: First row: the original image flower on the left and its enhanced version which received the absolute best subjective rating (DMOS
=1). Second row: the original image redwood on the left and its enhanced version which received the absolute worst subjective rating (DMOS

=0.17).

been proposed using general-purpose GPU (GPGPU) and
FPGA implementations (e.g., [350-353]). Algorithm- and
hardware-based acceleration has also been researched for the
discrete wavelet transform (e.g., [354-356]) and the Gabor
transform (e.g., [357-360]).

Techniques for accelerating the computation of local
statistics in images have also been researched, though to
a much lesser extent than the transforms. One technique,
called integral images, which was originally developed in
the context of computer graphics [361], has emerged as a
popular approach for computing block-based sums of any
two-dimensional matrix of values (e.g., a matrix of pixels or
coefficients). The integral image, also known as the summed
area table, requires first computing a table which has the same
dimensions as the input matrix and in which each value in
the table represents the sum of all matrix values above and to
the left of the current position. Thereafter, the sum of values
within any block of the matrix can be rapidly computed via
addition/subtraction of three values in the table. A similar
technique can be used to compute higher-order moments

such as the variance, skewness, and kurtosis (see, e.g., [362,
363]).

5.7.2. Acceleration of Specific IQA Algorithms. Other re-
searchers have investigated techniques for accelerating spe-
cific IQA algorithms. For example, in [364], Gordon et
al. investigated the acceleration of PSNR by using GPGPU
implementations in both CUDA and OpenGL. Via a per-
formance analysis, they specifically investigated how the
application and system performance is affected by utilizing
GPGPU acceleration of PSNR in a model-based coding
application (the primary bottleneck in model-based coding
stems from the optimization procedure used to determine
the model parameters from the input image). Gordon et al.
concluded that because CUDA uses the CPU’s store units to
copy data between the graphics card and system memory and
because data exchanged between GPU APIs travel through
the main processor, a non-GPGPU implementation of the
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PSNR computation runs faster than the same implementation
using GPGPU programming methods.

In [365], Chen and Bovik presented the Fast SSIM and
Fast MS-SSIM algorithms, which are accelerated versions
of SSIM and MS-SSIM, respectively. Three modifications
were used for Fast SSIM: (1) the luminance component
of each block was computed by using an integral image,
(2) the contrast and structure components of each block
were computed based on 2 x 2 Roberts gradient operators,
(3) the Gaussian-weighting window used in the contrast
and structure components was replaced with an integer
approximation. For Fast MS-SSIM, a further algorithm-
level modification of skipping the contrast and structure
computations at the finest scale was proposed. By using
these modifications, Fast SSIM and Fast MS-SSIM were
shown to be, respectively, 2.7x and 10x faster than their
original counterparts on 768 x 432 frames from videos
of the LIVE Video Quality database. Although algorithm-
level modifications were used, the authors demonstrated
that these modifications had negligible impact on predictive
performance; testing on the LIVE Image Quality and Video
Quality databases revealed effectively no impact on SROCC,
CC, and RMSE. By further implementing the calculations of
the contrast and structure components via Intel SSE2 (SIMD)
instructions, speedups of approximately 5x for Fast SSIM and
14x for Fast MS-SSIM were reported. In addition, speedups
of approximately 17x for Fast SSIM and 50x for Fast MS-
SSIM were reported by further employing parallelization via
a multithreaded implementation.

In [366], Okarma and Mazurek presented GPGPU tech-
niques for accelerating SSIM, MS-SSIM, and CVQM (a
video quality assessment algorithm developed previously by
Okarma, which uses SSIM, MS-SSIM, and VIF to estimate
quality). To accelerate the computation of both SSIM and MS-
SSIM, the authors described a CUDA-based implementation
in which separate GPU threads were used to compute SSIM
or MS-SSIM on strategically sized fragments of the image.
To overcome CUDAs memory-bandwidth limitations, the
computed quality estimates for the fragments were stored
in GPU registers and transferred only once to the system
memory. Okarma and Mazurek reported that their GPGPU-
based implementations resulted in 150x and 35x speedups of
SSIM and MS-SSIM, respectively.

In [363], Phan et al. presented the results of a performance
analysis and techniques for accelerating the MAD algorithm
[139]. Although MAD is among the best in predictive perfor-
mance, it is currently the one of the slowest IQA algorithms,
requiring over 55 seconds for a 512 x 512 image when
tested on several modern computers (Intel Core 2 and Xeon
CPUs; see [363]). A performance analysis revealed that the
main bottleneck in MAD stemmed from its appearance-
based stage, which accounted for 98% of the total runtime.
Within this appearance-based stage, the computation of the
local statistical differences accounted for most of the runtime,
and computation of the log-Gabor decomposition accounted
for the bulk of the remainder. Phan et al. proposed four
techniques of acceleration: (1) using integral images for the
local statistical computations, (2) using procedure expansion
and strength reduction, (3) using a GPGPU implementation
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of the log-Gabor decomposition, and (4) precomputation
and caching of the log-Gabor filters. The first two of these
modifications resulted in an approximately 17x speedup over
the original MAD implementation. The latter two resulted
in an approximately 47x speedup over the original MAD
implementation.

5.7.3. The Need for Broader Performance Analyses. Although
the aforementioned studies have successfully yielded more
efficient versions of their respective algorithms, several larger
questions remain unanswered. To what extent are the bottle-
necks in IQA algorithms attributable to the decomposition
and statistical computation stages versus more algorithm-
specific auxiliary computations? To what extent are the
bottlenecks attributable to computational complexity versus
limitations in memory bandwidth? Are there generic imple-
mentation techniques or microarchitectural modifications
that can be used to accelerate all or at least several IQA
algorithms?

The answers to these questions cannot only provide
important insights for furthering IQA research, but they can
also facilitate deployment and integration of IQA algorithms
into existing and forthcoming applications and platforms.
Further research in this area can help guide, (1) the design
of new IQA algorithms, which are likely to draw on multiple
approaches used in several existing IQA algorithms, (2)
efficient implementations of multiple IQA algorithms on a
given hardware platform, (3) efficient integration of multiple
IQA algorithms in specific applications, and (4) the selection
and/or design of specific hardware which can efficiently
execute multiple IQA algorithms.

6. Conclusion

In this paper, I have discussed the current state of the art
in IQA research, summarized the IQA-related knowledge
that has been gained from studies in visual psychophysics,
and surveyed the progress that has been made through HVS
modeling, non-HVS-based approaches, and other statistical
modeling approaches. One main conclusion which can be
drawn from this paper is that today’s IQA algorithms can
perform remarkably well at predicting human judgments of
quality.

However, it should also be evident that the IQA problem
is far from being solved; we have yet to reach the summit
of this investigative ascent. Rather, it may seem that our
current accomplishments have shown that we can design
IQA algorithms to handle images generated by the more
traditional applications—compression, watermarking, trans-
mission errors, and camera/display processing—and other
applications which have served as catalysts for IQA research.
But, further research is needed to improve IQA based on the
current challenges and to prepare IQA for future challenges.

Here, I have identified seven open challenges in IQA.
The objective of this discussion was not only to highlight the
limitations in our current knowledge of image quality, but
to also emphasize the fact that there is substantial room for
alternative theories and techniques beyond those surveyed
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here. Budrikis’ original 1972 statement that “full evaluations
are as yet impossible” [23] still holds true today. However,
IQA research continues to grow at an astounding rate, and
these efforts will undoubtedly lead to improved evaluation
techniques and further advancements in our understanding
of image quality.
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