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Abstract. To develop a no-reference video quality model, it is impor-
tant to know how the perceived strengths of artifacts are related to
their physical strengths and to the perceived annoyance. When
more than one artifact is present, it is important to know whether
and how its corresponding perceived strength depends on the pre-
sence of other artifacts and how perceived strengths combine to
determine the overall annoyance. We study the characteristics of dif-
ferent types of artifacts commonly found in compressed videos. We
create artifact signals predominantly perceived as blocky, blurry, ring-
ing, and noisy and combine them in various proportions. Then, we
perform two psychophysical experiments to independently measure
the strength and overall annoyance of these artifact signals when pre-
sented alone or in combination. We analyze the data from these
experiments and propose models for the overall annoyance based
on combinations of the perceptual strengths of the individual artifact
signals. We also test the interactions among different types of artifact
signals. The results provide interesting information that may help the
development of video quality models based on artifact measure-
ments. © 2012 SPIE and IS&T. [DOI: 10.1117/1.JEI.21.4.043013]

1 Introduction
A video impairment is any change in a video signal that, if
sufficiently strong, may reduce the perceived quality. Video
impairments can be introduced during capture, transmission,
storage, and/or display, as well as by any image processing
algorithm (e.g., compression) that may be applied along the
way. Most impairments have more than one perceptual fea-
ture, but it is possible to produce impairments that are rela-
tively pure. We use the term artifacts to refer to the perceptual
features of impairments and artifact signal to refer to the phy-
sical signal that produces the artifact. Examples of artifacts
introduced by digital video systems are blurriness, noisiness,
ringing, and blockiness.1,2

There is an ongoing effort to develop video quality mod-
els that can detect impairments and estimate their annoyance
as perceived by human viewers.3 Most successful video

quality models are full reference. These models estimate
the quality of a video by comparing original and impaired
videos.4–6 Requiring the reference video or even limited
information about it becomes a serious impediment in
many real-time applications. In such cases, it becomes essen-
tial to develop ways of blindly estimating the quality of a
video by using a no-reference (NR) video quality model.

Although human observers can usually assess the quality
of a video without using the reference, creating a model that
can provide the same is a difficult task. One possible
approach is designing algorithms for estimating the strength
of individual artifacts and then combining the artifact
strengths to obtain an overall annoyance model. The assump-
tion here is that, instead of trying to detect and estimate the
strength of an “unknown” impairment that consists of a
combination of artifacts, it is easier to detect individual arti-
fact signals and estimate their strength, because we know
their appearance and the type of process which generates
them.7–10

To design a NR model using this approach, it is important
to find a model that describes how the individual artifact
measurements (signal strengths) can be combined to provide
the overall annoyance or quality. We believe an extensive
study of the most relevant artifacts is still necessary, since
we still do not have a good understanding of how artifacts
depend on the physical properties of the video and how they
combine to produce the overall annoyance. Unfortunately,
little work has been done on studying and characterizing the
individual artifacts,11–14 as Moorthy and Bovik pointed out
recently.15

In this paper, we study the characteristics of four different
types of artifacts commonly found in compressed videos
(blockiness, blurriness, ringing, and noisiness). We are inter-
ested in the relationship between the perceptual strength of
these individual artifact signals and their overall annoyance.
To this end, we created artifact signals that are predominantly
perceived as blocky, blurry, ringing, and noisy and combined
them in various proportions. Then, we performed two psy-
chophysical experiments to independently measure the
strength and the overall annoyance of these artifact signals
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when presented alone or in combination. We analyzed the
data from the experiments and propose models for the overall
annoyance based on combinations of the perceptual
strengths of the individual artifact signals.

This paper is divided as follows. In Sec. 2, we describe the
algorithms used to generate blockiness, blurriness, ringing,
and noisiness artifacts. In Sec. 3, we describe the psychophy-
sical experiment methodology, which includes the type of
equipment used in the test, the tasks, and choice of the test
sequences used in the experiment. In Secs. 4 and 5, we
describe the experiments performed and discuss their results.
Finally, in Sec. 6, we give the conclusions.

2 Generation of Test Sequences
Our goal is to study and characterize artifacts present in digi-
tally compressed or processed videos. More specifically, we
want to find a perceptual model that describes how the phy-
sical characteristics of individual artifacts (e.g., strengths)
determine the overall annoyance or quality of the video.
To achieve this goal, it is necessary to perform a set of psy-
chophysical experiments using a set of test sequences with
several combinations of individual artifacts at different pro-
portions. Unfortunately, it is not easy to find videos with a
good distribution of artifacts at different proportions from
real applications. A compression algorithm, for example, is
known to introduce a specific set of artifacts in a nonuniform
way, according to the video content. Therefore, different
videos at the same bitrate may contain artifacts at different
strengths and proportions. Also, for the same video, a parti-
cular artifact may be perceptually more important at a given
bitrate, while another artifact may be perceptually more
important at another bitrate.16

To obtain a good understanding of the characteristics of
various individual artifacts (and attributes), their mutual
interference, and their interference with the content of the
image material, the ITU-T Recommendation P.930 proposes
an adjustable video reference system that generates synthetic
artifacts that look like “real” artifacts yet are simpler, purer,
and easier to describe.2,13 Synthetic artifacts offer advantages
for experimental research on video quality, because they
make it possible to control the amplitude, distribution,
and mixture of different types of artifacts, making it possible
to study the different types of artifacts. Recommendation
P.930 gives definitions of different types of artifacts and
descriptions of algorithms for generating them synthetically.
According to it, the created synthetic artifacts must be rela-
tively pure and easily adjusted, and they must be combined
to match the appearance of the full range of compression
impairments. Also, the algorithms for generating them
must be well defined in a way that the artifacts can be easily
reproduced. In this work, we add the condition that the syn-
thetic artifacts must produce psychometric and annoyance
functions similar to those of compression artifacts.

In this paper, we use a previously developed system for
generating synthetic artifacts based on the algorithms
described in Recommendation P.930.2,17 With this system,
we can create artifacts synthetically and use linear scaling
to control their signal strength. The method allows us to
combine as many or as few artifacts as needed at several
strengths. This way, we can control both the appearance
and the strength of the artifacts in order to measure the psy-
chophysical characteristics of each type of artifact signal

separately or in combination.13,18 The artifact signals are cre-
ated so that their combination roughly matches “real” arti-
facts in terms of appearance, mean, and variance of their
luminance distributions.19 The implemented set of artifacts
is composed of four artifacts (blurriness, noisiness, blocki-
ness, and ringing) considered the most salient in digital
videos.20 The set is not extensive, and in practice, further var-
iations of each type of artifact may occur. Nevertheless,
restricting the number of artifacts to four is necessary,
because experiments that estimate annoyance and visibility
of artifacts require a large amount of data: a reasonable num-
ber of originals and about six strength levels for each artifact.

In the following sections, we briefly describe the algo-
rithms used for the creation of these four type of artifacts
(blockiness, blurriness, ringing, and noisiness) and the tech-
niques used to combine them in order to create realistic
degradations. More details about these algorithms can be
found in our previous works.13,17,18

2.1 Blockiness
Blockiness is the appearance of the underlying block encod-
ing structure of typical compression schemes often caused by
coarse quantization of the spatial frequency components dur-
ing the encoding process.1,2 The algorithm for generating
blockiness takes into account not only the average of the
block of pixels, but also the average of the surrounding
blocks. The first step of the algorithm is to calculate the aver-
age of each 8 × 8 block of the frame and the average of the
24 × 24 surrounding block (with the current 8 × 8 block as
its center). Next, the difference D between these two
averages is calculated. Then, to each block of the original
frame, we add the corresponding element of the difference
matrix D:

Yði; jÞ ¼ X0ði; jÞ þ n · Dði; jÞ; (1)

where X0 is the original frame, Y is the frame with blocki-
ness, n is a constant number, and i and j denote the spatial
position of the pixel in the frame. The values of Dði; jÞ are
limited to keep the pixels from becoming saturated. Before
adding the blockiness, the average of the frame is adjusted to
keep the artifacts from becoming more visible than intended.
To adjust the average, we calculate the average of the frame
before and after introducing the artifacts. Then, we subtract
both averages and add the difference to all pixels in the
frame. The algorithm for generating synthetic blockiness
can be easily modified to use different block sizes and to
include spatial shifts.

2.2 Blurriness
Blurriness is characterized by the loss of spatial details and a
reduction in sharpness.1,2 Recommendation P.930 suggests
the generation of blurriness with the use of a simple lowpass
filter.2 To control the amount of blurriness, we can use dif-
ferent sizes of filters with different cutoff frequencies. Using
a big range of filters dramatically increases the “types”
of blurriness. Since we want to study four types of artifacts,
it is not possible to also study different types of each artifact
due to the limit on the number of videos that can be shown
in a single experiment. For this reason, in this work, we
used only a simple 5 × 5 moving average filter to generate
blurriness.
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2.3 Noisiness
Noisiness or noise is defined as random pixel intensity fluc-
tuations that are not part of the original video image.1 The
algorithm used here for creating noisiness is similar to the
one proposed in Recommendation P.930 and consists of
replacing the luminance value of pixels at random locations
with a constrained random value (Gaussian distribution, zero
mean, and variance equal to one).2 We change the range of
luminance values used by the recommendation to the range
[10,120] to avoid making the artifact more visible than
intended. The ratio of impaired to nonimpaired number of
pixels in the frame is set to 0.1. The bigger this ratio is,
the higher the level of noisiness presented in the video frame.

2.4 Ringing
Ringing occurs when the quantization of individual coeffi-
cients of a given transform (discrete cosine transform, wave-
let, Fourier, etc.) results in high-frequency irregularities of
the reconstructed block.1 Recommendation P.930 suggests
generating the ringing artifact by using a filter with ripples
in the passband amplitude response.2 The problem with this
approach is that, besides generating ringing, it also intro-
duces blurriness and possibly noisiness. Our algorithm for
generating ringing consists of a pair of delay-complementary
filters related through

HðzÞ þ GðzÞ ¼ ρ · z−n0 ; (2)

where HðzÞ and GðzÞ are the transfer functions of N-tap
highpass and lowpass FIR filters, respectively.11 For ρ ¼ 1
and n0 ¼ 0, the output of our system in the z-domain is
given by

YðzÞ ¼ ½HðzÞ þ GðzÞ& · X0ðzÞ: (3)

Thus, except for a shift, Y is equal to X0ðzÞ, given that the
initial conditions of both filters are exactly the same. If we
make the initial conditions different, a decaying noise is
introduced in the first N∕2 samples. Since ringing is visible
only around edges, the algorithm is applied only to the pixels
of the video corresponding to edges in both the horizontal
and vertical directions. The resulting effect is very similar
to the ringing artifact found in compressed images, but with-
out any blurriness or noisiness.

2.5 Combination of Individual Artifacts
Although the majority of psychophysical studies vary the
defect strength by changing the bitrate and/or the codec
implementation,21–23 some studies have controlled the defect
strength by changing its amplitude linearly.18,24 Libert,
Fenimore, and Roitman24 compared the two methods and
concluded that linear scaling can validly approximate the
changes produced by varying the MPEG-2 bitrate goal. We
used linear scaling to control the signal strength of our arti-
facts, because it allowed us to combine as many or as few
artifacts as needed at several strengths.

Besides the scaling method, we use spatial and temporal
binary masks to restrict artifacts to an isolated region (defect
zone) of the video clip for a short time interval.18 The
degraded videos with a combination of artifact signals can be
generated separately and added later to the defect zones. In
this work, the defect zones correspond to central rectangular

strips (horizontal or vertical) taking approximately one third
of the frame. They are one second long and do not occur
during the first and last seconds of the video. The use of
defect zones allows us to test the interaction between the con-
tent and the artifacts.

The algorithm for generating test sequences consists of
the following steps. First, we generate videos with one
type of artifact signal at a relatively high level of annoyance.
This distorted video can be expressed mathematically as a
sum of the original sequence X0 and the artifact signal El:

Xlði; j; kÞ ¼ X0ði; j; kÞ þ Elði; j; kÞ; (4)

where the index l refers to the type of artifact signal being
introduced, k is the frame number, and i and j are the spatial
coordinates. Therefore, the artifact signal is the difference of
the video degraded with that particular artifact from the
original:

Elði; j; kÞ ¼ Xlði; j; kÞ − X0ði; j; kÞ: (5)

The settings for obtaining the maximum level of annoyance
for each artifact were obtained at a previous experiment,
where we matched the strength of artifact signals to percep-
tual strengths of real digital video artifacts.25

The test sequences (Y) are generated by combining the
original video linearly with the artifact signals in different
proportions. To create a test sequence Y with up to L arti-
facts, we used the following expression:

Yði; j; kÞ ¼ X0ði; j; kÞ þ
XL

l¼1

rl · Elði; j; kÞ; (6)

where X0ði; j; kÞ is the original video, and rl (0 ≤ rl ≤ 1)
is the relative strength parameter corresponding to the l-th
artifact signal. In general,

P
lrl ¼ 1, but, in some cases,

we allowed
P

lrl ≥ 1, making the artifact signal strength
stronger.

For notation simplification, we use the coefficients a, b, c,
and d (instead of r1, r2, r3, and r4) in our experiments to refer
to the relative strengths of blockiness, blurriness, noisiness,
and ringing artifact signals, respectively. To generate a
sequence with combinations of blockiness, blurriness, noisi-
ness, and ringing artifact signals, we use

Yði; j; kÞ ¼ X0ði; j; kÞ þ a · Ebkði; j; kÞþ

b · Ebrði; j; kÞ þ c · Ensði; j; kÞ þ d · Ergði; j; kÞ;
(7)

where Ebk, Ebr, Ens, and Erg are the blockiness, blurriness,
noisiness, and ringing artifact signals, respectively.

Next, we examine the appearance and some characteris-
tics of the artifacts generated using this technique. In Figs. 1
and 2, we show examples of the synthetic artifacts (by them-
selves) in the 50th frame of the videos “Calendar” and
“Hockey,” respectively. The images correspond with a
zoomed area of the frames. The image in the first row cor-
responds with the original frame, while the second, third, and
fourth rows correspond with frames with blockiness, blurri-
ness, noisiness, and ringing artifacts with strength values of
0.33, 0.66, and 0.66, respectively. Below each image, we
indicate the average (μY) and standard deviation (σY) of the
intensity values of the frames, along with the total squared
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error (TSE) in relation to the original frame. As expected, the
TSE values increase with the strength value but are depen-
dent on the type of artifact. Blurriness is the artifact with the
highest TSE values, followed by noisiness, blockiness, and
ringing. Concerning the average intensity, when we compare
the μY values with the μY values obtained for the original
frame, we notice that the differences are bigger for noisiness
and ringing.

It is important to point out that, in the experiments, the
artifacts are added only to a defect zone. This is implemented
using a binary mask Mði; j; kÞ that has values equal to 1 for
pixels inside the defect zone and 0 for pixels outside it. The
final test sequences are given as

Ỹði; j; kÞ ¼
!
Yði; j; kÞ; if Mði; j; kÞ ¼ 1
X0ði; j; kÞ; if Mði; j; kÞ ¼ 0

: (8)

After the artifact signals are added, the borders of the defect
zones are faded to avoid increasing their visibility. More
details on the methodology used for generating the artifacts
and combining them can be found in a previous work.17

3 Psychophysical Experiment
In this section, we describe the physical conditions of the
psychophysical experiment and the experimental methodol-
ogy used.

3.1 Apparatus and Physical Conditions
The apparatus used in the experiments consists of a compu-
ter, a broadcast video monitor, a computer monitor, a key-
board, and a mouse. The test video sequences are stored in
the hard disk of an NEC server (PC computer) and are dis-
played using a subset of the PC cards normally provided with
the Tektronix PQA-200 picture quality analyzer. A generator
card is used to store the video locally and stream it out in a
serial digital (SDI) component format. The analog output is
displayed on a 14-inch Sony PVM-1343 monitor. A special-
purpose program in Visual C++ is used to run the experiment
and record the subject’s data. After each test sequence is
shown to the subject, this program displays a series of ques-
tions on the computer monitor and records the subject’s
responses in a data file. This configuration ensures that no
further impairments are added to the videos while they
are being displayed.

Fig. 1 Zoom of the 50th frame of the video “Calendar” with blockiness, blurriness, noisiness, and ringing artifacts at different strengths ða; b; c; dÞ.
For each sample, the average (μY ) and standard deviation (σY ) of the luminance component of the frame is given, along with the total squared error
(TSE) in relation to the original frame.
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The experiments were performed in a reserved room in
the Department of Psychology of University of California
Santa Barbara (UCSB). The lights of the room were dimmed,
so that no light was reflected on the monitor. The measured
luminance of the monitor when no signal was presented was
approximately 25 cd∕m2, while the measured luminance for
the maximum output of the monitor was 225 cd∕m2. The
estimated γ of the Sony monitor was approximately 1.4
for the luminance and 1.6 for each of the independent colors
(R, G, B).

Our subjects were drawn from a pool of students in an
introductory psychology course. They were considered
naïve of most kinds of digital video defects and the asso-
ciated terminology. No vision test was performed on the sub-
jects, but they were asked to wear glasses or contact lenses if
they need them to watch TV. To guarantee robust results, at
least 22 subjects were used in each experiment.26 The experi-
ments were run with one subject at a time. The subject was
seated straight ahead of the monitor, centered at or slightly
below eye height for most subjects, with the keyboard and
mouse in easy reach. The computer monitor was located to
one side of the subject. The distance between the subject’s

eyes and the video monitor was of four video monitor screen
heights. The video monitor is 20 cm tall, resulting in a view-
ing distance of 80 cm. Four screen heights is a conservative
estimate of the viewing distance, according to Recommenda-
tion BT.500.23

The duration of an experiment trial was limited to no more
than 40 min to reduce fatigue effects on the human sub-
jects.23 Since only 100 to 125 sequences can be shown dur-
ing a 40-min test session, and the experiments required that
several defect strengths were tested, the total number of ori-
ginals used for each experiment was kept low. A total of five
videos of assumed high quality were used in this work:
“Bus,” “Calendar,” “Cheerleader,” “Football,” and “Hockey.”
These videos were all five seconds long and were in ITU-R
BT.601 format (formerly CCIR-601), i.e., the videos are
60 Hz (NTSC), 4∶2∶0 YCrCb format, 486 lines by 720 col-
umns. Representative frames of these videos used are shown
in Fig. 3.

This set of videos consisted of common broadcasting
scenes, with varied content that included scenes with slow
and fast motion; textures, edges, and uniform areas; people
and objects; and high and low contrast. Since the visibility

Fig. 2 Zoom of the 50th frame of the video “Hockey”with blockiness, blurriness, noisiness, and ringing artifacts at different strengths ða; b; c; dÞ. For
each sample, the average (μY ) and standard deviation (σY ) of the luminance component of the frame is given, along with the total squared error
(TSE) in relation to the original frame.
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and annoyance of each type of artifact are content dependent,
the choice of the scenes ensured that each of the different
types of artifacts is visible in at least two videos. For exam-
ple, ringing is only visible when the scene contains edges,
borders, or text in a uniform background. To test ringing,
we included the sequences “Calendar” and “Bus.” Similarly,
blockiness and noisiness are more visible in uniform areas,
which are present in “Hockey” and “Calendar.” Blurriness,
on the other hand, is more visible in sequences with lots of
details, like “Cheerleader,” “Football,” and “Bus.”

3.2 Methodology
A experimental (test) session was broken into the following
five stages:

1. oral instructions
2. training
3. practice trials
4. experimental trials, and
5. interview.

Prior to each experiment, a script was elaborated to help
the experimenter perform the experiment. The script con-
tained details of what the experimenter should do at each
step of the experiment. More importantly, the script con-
tained oral instructions to be given to the subject to make
sure she/he understood the task to be performed. Before giv-
ing the oral instructions, the experimenter needed to make
sure the subject was properly seated at the adequate distance.
The tasks to be performed in the experimental trials were
then explained to the subject, who was told to disregard the
content of the videos and judge only the impairments.

In every experiment, the subject was asked to perform a
task which consists of entering a judgment about an impair-
ment seen in the video. To complete this task, the subject
needed to have an idea of how the different types of artifacts
looked and how videos with no impairments (originals) com-
pared with videos with strong impairments. With this goal,

we included a training session in the experimental session
that consisted of two parts. In the first part, we showed a
set of groups of videos, each with a different artifact type.
Before each group was displayed, the subject was told the
name of the type of artifact and given a brief description
of its appearance. The second part of the training consisted
of displaying the original videos, followed by examples of
videos with the strongest impairments found in the experi-
ment. The subjects were instructed to watch these videos
carefully and assign a maximum value of 100 to the worst
or strongest impairments in this subset.

The initial judgments of a test subject are generally erra-
tic. It takes time for a subject to get used to the task of
judging/detecting impairments. The ITU recommendation
suggests throwing away the first 5 to 10 trials.23 In our meth-
odology, instead of discarding the first trials, we included
practice trials. Before beginning this stage, subjects were
told that this was a practice stage, and that no data would be
recorded. Besides eliminating erratic answers, the practice
trials had other benefits. It exposed the subjects to sequences
with a good range of impairments and gave the subjects a
chance to try out the data entry procedure. They also allowed
subjects to gain confidence in their judgments. In this work,
we used 12 practice trials, because of the complexity of the
tasks being performed.

The subjective data for each experiment was gathered dur-
ing the experimental trials. This stage was performed with
the complete set of test sequences presented in random order.
For each experiment, several random-ordered lists of the test
sequence were generated. The lists were used sequentially
and repeated as necessary. The videos were played twice, and
subjects were not allowed to go back and watch them again.
Subjects were instructed to search each video for impair-
ments and to perform a specific task. After each video was
played, a pop-up window appeared on the computer monitor
with a question about the video. Although all subjects
watched and judged the same test sequences, half of the sub-
jects performed detection and annoyance tasks, while the
other half performed a strength task.

Fig. 3 Sample frame of original videos “Bus,” “Calendar,” “Cheerleaders,” “Football,” and “Hockey.”
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The detection task consisted of detecting a spatially and
temporally localized impairment in a five-second video
sequence. In the experimental trials, after each test sequence
was played, the question “Did you see a defect or an impair-
ment?” appeared in the computer monitor. The subject was
supposed to choose a “yes” or “no” answer. The annoyance
task consisted of giving a numerical judgment of how
annoying/bad the detected impairment was. The most annoy-
ing videos in the training stage were to be assigned a value of
100. After each test sequence was played, the subject was
instructed to enter a positive numerical value indicating
how annoying the impairment was. Any defect as annoying
as the worst impairments in the training stage were to be
given a value of 100. Those that were half as annoying were
to be given 50, those 10 percent as annoying 10, and so forth.
Although the subjects were asked to enter annoyance values
in the range of 0 to 100, they were told that values higher
than 100 could be assigned if they thought the impairment
was worse than the most annoying impairments in the train-
ing stage.

The annoyance task was always performed together with
the detection task. The dialog box initially assumed that a
defect had been seen. If a defect had not been seen, the sub-
ject hit “No” or used the mouse for choosing “No” for “no
defect.” If a defect had been seen, the subject simply started
typing in the annoyance value. After entering that data, the
subject hit “return” to play the next video. The program did
not move on unless either “No” or a valid annoyance value
was entered. Annoyance values less than zero were not
accepted, but the program did not impose any upper limit
on the annoyance values. Nonnumbers were also rejected.
While the subject was entering data, the computer started
to load the next video sequence. After the value had been
accepted and the video had completed loading, the next
video was shown.

The strength task consisted of asking the subjects for an
estimate of how strong or visible a set of artifacts were in the
detected impairment. As mentioned earlier, this type of task
required teaching the subjects how each artifact looked. In
the training stage, subjects were shown a set of sequences
illustrating the set of artifacts being measured. In the trials,
after the video was played, subjects were asked to enter a
number from 0 to 10 corresponding to the strength of that
artifact or feature. If no impairments were seen, subjects
were instructed not to enter any number and just click
“Next” to go on to the next trial.

After the trials were complete, the test subjects were
asked a few questions before they left. These questions gath-
ered interesting information that could not be gathered dur-
ing the experiment. They represented the subject’s general
impression of the set of test sequences and could not be asso-
ciated with specific sequences. However, they were useful in
guiding the design of future experiments.

We used standard methods to analyze the annoyance
judgments provided by the test subjects.27 These methods
were designed to ensure that a single annoyance scale
was applied to all artifact signal combinations. The mean
observer score (MOS) was our subjective measure and
was calculated by averaging the scores over all observers
for each video. The data gathered from subjects in the first
group provided one MOS value for each test sequence—the
mean annoyance values (MAVs). The data gathered from

subjects in the second group provided one MOS value for
each artifact and each test sequence—the mean strength
values (MSVs). For simplification, the MSVs for blockiness,
blurriness, noisiness, and ringing are represented by Sbk, Sbr,
Sns, and Srg, respectively.

4 Experiment I: Combinations of Blocky, Blurry,
and Noisy Artifacts

In Experiment I, 23 subjects performed detection and annoy-
ance tasks, while 30 subjects performed only strength tasks.
During the instructions stage, subjects of both groups were
told that the test videos might contain up to three different
types of artifacts: blockiness, blurriness, and noisiness. The
30 combinations of a, b, and c values used to generate the
test sequences are shown in column 2 of Table 1 [Eq. (7) with
d ¼ 0] . We did not use all possible combinations of the three
artifact signals, because that would have made the experi-
ment too long. Four original video sequences were used
in this experiment: “Bus,” “Cheerleader,” “Football,” and
“Hockey.” A total of 120 test videos were used (4 originals
times 30 combinations times 1 defect region).

To give an idea of what a, b, and c values correspond with
in terms of error, in Fig. 4, we show graphs of the TSE values
of the videos with these combinations of artifacts. In
Fig. 4(a), we show the TSE values for combinations 2 to 4,
which correspond to videos with only blockiness
(b ¼ c ¼ 0) at three different strengths. In Fig. 4(b), we
show the TSE values for combinations 5 to 7, which corre-
spond to videos with only blurriness (a ¼ c ¼ 0) at three
different strengths. In Fig. 4(c), we show the TSE values
for combinations 8 to 10, which correspond to videos
with only noisiness (a ¼ b ¼ 0) at three different strengths.
Finally, in Fig. 4(d), the TSE values for combinations 11 to
30 are shown. Notice that for the videos containing only one
type of artifact, blurriness is the artifact with highest TSE,
followed by noisiness and blockiness. Because of this, the
videos with more than one type of artifact that have the high-
est TSE are the ones with the highest values of b [combina-
tions 25 and 26 in Fig. 4(d)].

4.1 Results
The average gathered values for the mean strength values
(Sbk, Sbr, and Sns) and mean annoyance values (MAV)
over all videos are shown in columns 3 to 6 of Table 1. In
Fig. 5(a) to 5(d), we show the graphs of TSE versus Sbk, Sbr,
Sns, and MAV, respectively. From the graphs in Fig. 5(a) to
5(c), we can notice that videos with high TSEs can have a
small MSV (Sbk, Sbr or Sns) if the corresponding artifact is
not present in the video. For example, Sbk is small for com-
binations that do not contain blockiness. As a result, the
graphs have a high concentration of points at the bottom
region, forming a horizontal line of points. For the MAV
graph, we can notice that there is a big spread in points, indi-
cating that TSE is a poor annoyance predictor. This is in
agreement with findings that TSE and other similar fidelity
metrics are not good quality estimators.28

To have a closer look at the MSVs given by subjects, bar
plots of Sbk, Sbr, and Sns corresponding to some samples of
the combinations in Table 1 are depicted in Figs. 6 to 8, along
with the confidence intervals of the measurements. Combi-
nation 1, shown in Fig. 6(a), corresponds with the original
videos (a ¼ 0, b ¼ 0, and c ¼ 0). It is interesting to notice
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that, for some videos, the values of Sbk, Sbr, and Sns corre-
sponding to the originals are not zero, indicating that subjects
reported that these videos contained some type of artifact sig-
nals and annoyance levels different from zero. In the video
“Hockey,” for example, subjects reported some blurriness.
This is not very surprising, considering that this original
does not look as sharp as the other originals.

The test combinations 2 to 4, 5 to 7, and 8 to 10 (see
Table 1 and Fig. 6) correspond to videos with only blocky,
blurry, or noisy artifact signals, respectively. For these com-
binations, the highest MSV was obtained for the correspond-
ing pure artifact signals, while the other two types of artifacts
received zero or much smaller values, which indicates that
subjects correctly identified the artifact introduced in the
video. The MSVs were highest for videos that contained
blurriness, followed by noisiness and blockiness, which is
the same order obtained for TSE values [see Figs. 4(a) to
4(c)]. It is interesting to notice that, for the video “Cheerlea-
der,” subjects gave smaller MSVs for blockiness and noisi-
ness. This is probably due to the high spatial activity of this
video, which makes it harder to detect these artifacts in the
backround (busy audience) or in the foreground (moving
cheerleaders). Although other scenes like “Bus,” “Football,”
and “Calendar” are also very busy, they do have uniform
areas that facilitate their detection.

The test combinations 11 to 13, 14 to 16, and 17 to 19
correspond to videos with two types of artifact signals:
blocky-blurry, blocky-noisy, or blurry-noisy (see Fig. 7).
For these combinations, the artifact signal corresponding
with the highest weight in the combination received the high-
est MSV. Nevertheless, an increase in the artifact signal
strength did not always result in a proportional increase
of the corresponding MSV (Sbk, Sbr, or Sns). For example,
for the blocky-blurry artifact signals, an increase in the
weight of the blurry artifact signal caused an increase in
the perceived strength of not only blurriness, but also blocki-
ness (as can be seen when comparing combinations 11 and
12 in Fig. 7). This was especially true for the sequences
“Bus” and “Football,” which are sequences with the highest
visibility of blockiness [see Fig. 4(b)]. Therefore, if blocki-
ness is visible, its strength seems to be accentuated by an
increase in blurriness. On the other hand, increasing the
weight of blockiness did not have the same effect on the per-
ceived strength of blurriness (see combinations 11 and 13 in
Fig. 7). In the case of blocky-noisy and blurry-noisy artifact
signals, the presence of noisiness decreased the perceived
strength of the other two artifacts, especially for higher
weights of noisiness (see combinations 15, 16, and 18 in
Fig. 7). The reason for this is probably that noisiness is easily
detectable in higher strengths and uniform areas. Therefore,
when present, it causes the subject to disregard less promi-
nent artifacts.

The test combinations 20 to 30 (see samples in Fig. 8)
correspond to videos with the three types of artifact signals.
Also, for these combinations, the artifact signals correspond-
ing to the greatest weights received higher MSVs. Again, the
noisy artifact signals seemed to decrease the perceived
strength of the two other artifacts (compare combinations
20 and 23), while blurry artifact signals seemed to increase
them (compare combinations 20 and 22). Thus, there seem to
be interactions between the three artifact signals when deter-
mining the perceived strengths of the artifacts.

Table 1 Experiment I: artifact signal strength combinations and aver-
age of mean strength values (Sbk , Sbr , and Sns) and mean annoy-
ance values (MAV) over all test sequences.

Comb. !a;b;c" Sbk Sbr Sns MAV

1 (0, 0, 0) 0.05 0.22 0.05 8.16

2 (0.33, 0, 0) 1.02 0.21 0.05 5.36

3 (0.67, 0, 0) 4.06 0.40 0.08 16.61

4 (1, 0, 0) 6.51 0.33 0.09 32.93

5 (0, 0.33, 0) 0.04 1.95 0.07 9.26

6 (0, 0.67, 0) 0.09 6.59 0.02 37.53

7 (0, 1, 0) 0.15 8.6 0.12 74.76

8 (0, 0, 0.33) 0.04 0.20 3.05 15.85

9 (0, 0, 0.67) 0.04 0.26 5.37 26.51

10 (0, 0, 1) 0.07 0.16 7.26 45.12

11 (0.33, 0.33, 0) 2.10 1.65 0.02 12.69

12 (0.33, 0.67, 0) 3.88 5.51 0.11 43.87

13 (0.67, 0.33, 0) 5.07 0.84 0.06 28.03

14 (0.33, 0, 0.33) 0.25 0.19 2.92 14.82

15 (0.33, 0, 0.67) 0.02 0.10 5.18 32.7

16 (0.67, 0, 0.33) 3.44 0.30 3.75 26.41

17 (0, 0.33, 0.33) 0.10 1.94 3.76 24.46

18 (0, 0.33, 0.67) 0.07 1.33 5.86 37.71

19 (0, 0.67, 0.33) 0.24 6.22 4.25 51.38

20 (0.33, 0.33, 0.33) 0.6 0.98 3.82 21.595

21 (0.67, 0.33, 0.33) 4.78 1.02 3.53 35.94

22 (0.33, 0.67, 0.33) 1.78 4.75 4.16 53.88

23 (0.33, 0.33, 0.67) 0.14 0.91 5.60 38.37

24 (1, 0.67, 0.33) 7.71 2.49 3.08 72.11

25 (0.67, 1, 0.33) 7.02 4.49 4.03 85.17

26 (0.33, 1, 0.67) 1.97 6.70 6.05 81.64

27 (1, 0.33, 0.67) 5.76 0.92 5.43 58.52

28 (0.67, 0.33, 1) 1.63 0.55 7.30 55.01

29 (0.33, 0.67, 1) 0.17 4.31 7.10 72.63

30 (0.67, 0.67, 0.67) 5.12 2.23 5.66 68.47
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Fig. 4 Experiment I: total squared errors (TSE) for combinations: (a) 2 to 4 (only blockiness), (b) 5 to 7 (only blurriness), (c) 8 to 10 (only noisiness),
and (d) 11 to 30.
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Fig. 5 Experiment I: total squared errors (TSE) versus (a) Sbk , (b) Sbr , (c) Sns , and (d) MAV.
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Fig. 6 Experiment I: MSV bar plots for combinations (a) 1, (b) 4, (c) 7, and (d) 10.

Fig. 7 Experiment I: MSV bar plots for combinations (a) 11, (b) 12, (c) 13, (d) 15, (e) 16, and (f) 18.

Fig. 8 Experiment I: MSV bar plots for combinations (a) 20, (b) 22, and (c) 23.
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4.2 Model Predictions
Our principal interest in measuring the artifacts’ strength is to
investigate the relationship between the artifact perceptual
strengths (Sbk, Sbr, and Sns) and the overall annoyance
(MAV). The first question that needs to be answered is
whether MAV can be predicted by a single artifact MSV.
In Fig. 9, we show graphs of each individual MSV versus
MAV. From these plots, it is hard to believe that MAV
can be predicted from a single MSV corresponding to per-
ceptual strength measurements of only one type of artifact.
The points in the top part of these graphs correspond to com-
bination indices greater than 18 that correspond to combina-
tions of at least two artifacts and, therefore, have higher
MAVs. For combinations that did not contain the artifact
being estimated, the corresponding MSV value was small,
which occurred in a concentration of points in the graphs
within values between 0 and 1. Since annoyance cannot

be modeled as a function of a single artifact, there is a chance
that the annoyance model is a multidimensional function that
depends on the strengths of the most “important” or relevant
artifacts.

Given that a single measurement cannot predict annoy-
ance, we tested a set of combination or multidimensional
models by performing a nonlinear least-squares data fitting
to the MAVand the MSVs (Sbk, Sbr, and Sns) using the model
equation. The first model we tested was the Minkowski
metric, which is given by

PAM ¼ ðSpbk þ Spbr þ SpnsÞ1∕p; (9)

where PAM is the predicted annoyance, and p is the Min-
kowski power. For this fit, we found a Minkowski power
equal to p ¼ 0.376255 and Pearson and Spearman correla-
tion coefficients equal to 0.7867718 and 0.8015848, respec-
tively. This is the same combination rule used by Huib de
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Fig. 9 Experiment I: MSV versus MAV: (a) Sbk , (b) Sbr , (c) Sns .

Table 2 Experiment I: fitting parameters for weighted Minkowski metric.

Group p α β γ Rσ PCC SCC

Bus 1.0617 3.6812 7.1707 6.2468 8.997 0.939083 0.955718

Cheer 1.2087 8.9370 11.9469 6.2184 7.439 0.965283 0.964957

Football 1.0699 5.3116 7.3802 5.2427 7.854 0.943737 0.968294

Hockey 1.3025 8.7545 12.3897 12.6920 7.407 0.960720 0.965624

All 1.1726 6.3868 9.6265 7.9377 8.462 0.943426 0.958771
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Ridder in a previous work that predicted annoyance caused
by blockiness, blurriness, and ringing.12 However, our results
are different from the values of p ¼ 1.67 and 2.37 reported
by De Ridder for his annoyance model. Nevertheless, De
Ridder’s model is for still images, and it is tested on a smaller
data set (two images: “Child” and “Girls”).

To try to find a better model, we modified the Minkowski
metric to include weights for each individual artifact’s
strength. This way, different contributions of each artifact
can be estimated, as given by

PAWM ¼ ðα · Spbk þ β · Spbr þ γ · SpnsÞ1∕p; (10)

where PAWM is the predicted annoyance, and α, β, and γ are
the weights for Sbk, Sbr, and Sns, respectively. In Table 2, we
present the coefficients (p, α, β, and γ), residual standard
deviation (Rσ), Pearson correlation coefficients (PCC), and
Spearman correlation coefficients (SCC) obtained for the
fits of this model to the data group corresponding to each
original (“Bus,” “Cheer,” “Football,” and “Hockey”) and
to the data group containing all videos (“All”).

The P-values (t-test, two-tailed, P < 0.05) corresponding
to coefficients α, β, and γ are consistent for all tested
models. For the set containing all video sequences (“All”),
the fit using the weighted Minkowski metric returned a
Minkowski exponent p ¼ 1.1726 and weight coefficients
α ¼ 6.3868, β ¼ 9.6265, and γ ¼ 7.9377, corresponding
to blockiness, blurriness, and noisiness, respectively. This
fit is better than for the original Minkowski metric, with
PCC ¼ 0.943426 and SCC ¼ 0.958771. Also, there is little
systematic error in the predictions (see Rσ in column 6 of
Table 2).

From Table 2, it can be noticed that the values found for p
are all between 1.06 and 1.3. To investigate the effect of hav-
ing a fixed value of p, we fit the data using Eq. (10) with p
constant and within the interval [0.25, 1.50]. In Table 3, we
present the results obtained for the linear case (p ¼ 1). For
the set containing all video sequences, the fit returned coef-
ficients α ¼ 4.0746, β ¼ 6.3879, and γ ¼ 5.3164. The PCC
and SCC of this fit are equal to 0.935995 and 0.948798,
respectively.

A model comparison test indicates that there is no signif-
icant statistical difference between the weighted Minkowski
and the models with p ¼ 1.0, 1.13, or 1.25. This means that
the results using a nonlinear model or a simpler linear model
are (statistically) the same. In Figs. 10 and 11, we plotted the
observed MAV versus PAWM (computed across all videos)
for the Minkowski metric (p ¼ 1.1726) and the linear

model (p ¼ 1). To differentiate both models, from now on
we will refer to the linear model as PALIN.

From Tables 2 and 3, we can see that both models give
more weight to blurriness, followed by noisiness and blocki-
ness. As our results show, blurriness is the artifact with the
highest individual values of MSV (and TSE), and it is the
artifact with the most weight in the models tested. Although
blurriness has a high impact on MAV, the weights of noisi-
ness and blockiness are also high, indicating that they are
also very significant in determining MAV.

Since we are also interested in understanding if the per-
ceptual strengths interact with one another, we also tested a
linear model with interactions, as given by

PALINT ¼ α · Sbk þ β · Sbr þ γ · Sns þ ρ1 · SbkSbr

þ ρ2 · SbkSns þ ρ3 · SbrSns þ τ · SbkSbrSns: (11)

The results of this fitting can be found in Table 4. Column
2 of the table shows the estimated coefficients for the model,
and column 5 shows the corresponding P-values (t-test, two-
tailed, P < 0.05). The last line of the table shows fitting cor-
relation coefficients for the complete model. Notice that the
correlation coefficients of this model are slightly higher than
for the linear model with no interactions, but a model test
comparison showed that the differences are not statistically
significant. It can be observed that the coefficients for the
main factors (α, β, and γ) are statistically significant, but
the first- and second-order interactions are not statistically
significant. It is important to point out that this model
uses the perceived strength of the artifact and not the actual
artifact signal strength. Therefore, it cannot be used to
explain the results obtained in the bar plots in Figs. 6 to
8, which were based on the artifact signal strength. In the
next section, we present Experiment II, which uses a factorial
design to allow for a better interaction test of artifact signals.

5 Experiment II: Combinations of Blocky, Blurry,
Noisy, and Ringy Artifacts

In Experiment II, the subjects were also divided into two
independent groups. The first group was composed of 23
subjects who performed detection and annoyance tasks.
The second group was composed of 30 subjects who per-
formed strength tasks. As in the previous experiment, the
main goal was to study the importance of the strengths of
individual artifacts and to determine overall annoyance.
The first difference between Experiments I and II is that
the sequences in Experiment II contained combinations of

Table 3 Experiment I: fitting parameters for linear metric (weighted Minkowski with p ¼ 1).

Group α β γ Rσ PCC SCC

Bus 3.1483 6.1581 5.4292 8.859 0.937577 0.951713

Cheer 5.1980 7.2208 3.7750 7.609 0.959483 0.949160

Football 4.4809 6.2704 4.4885 7.754 0.94183 0.965624

Hockey 3.6646 6.2264 6.2284 8.079 0.941885 0.945155

All 4.0746 6.3879 5.3164 8.655 0.935991 0.948798
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four artifacts (blocky, blurry, noisy, and ringing), instead of
the three (blocky, blurry, and noisy) used in Experiment I.

The second difference is that the set of combinations used
in Experiment II includes a full factorial design29 (combina-
tions 1 to 16) of the four artifact signals, which enables us to
identify major factors and interaction terms affecting the
annoyance scores. In such a design, the levels (or strengths)
of the variables are chosen in such a way that they span the
complete factor space. Often, only a lower level and an upper
level are chosen. In our case, we have four variables that cor-
respond to the strengths of blocky, blurry, ringy, and noisy
artifact signals (a, b, c, and d).

The 24 combinations of the parameters a, b, c and d used
to generate the test sequences are shown in Table 5. As can
be seen in combinations 1 to 16, only two values are possible
for each artifact signal strength: 0 or 1 for ringing and blocki-
ness, and 0 or 0.67 for blurriness and noisiness. (Ringing and
blockiness are given higher upper values because these two
artifacts received lower annoyance values in the previous
experiments.) Combinations 17 to 24 were added as samples

of typical compression proportions. Five original video
sequences were used in this experiment: “Bus,” “Calendar,”
“Cheerleader,” “Football,” and “Hockey.” A total of 120 test
videos were used in this experiment (5 originals times 24
combinations times 1 defect zone).

To give an idea of what the strength values a, b, c, and d
corresponded with in terms of error, we show graphs of the
TSE of the videos with these combinations of artifacts in
Fig. 12. The x-axis of these graphs corresponds with the
combination number (according to Table 5) and the y-axis
corresponds to the TSE. The graph has five curves, each cor-
responding to an original video. Notice that the combinations
with the highest TSE values are the ones with the biggest
values of a, b, and c (e.g., combination 17). The videos
with only ringing (a ¼ b ¼ c ¼ 0, combinations 22 to 24)
have very small TSE values.

5.1 Results
The values for the average MAVand MSV for all videos are
also shown in Table 5. We show the graphs of TSE versus
Sbk, Sbr, Sns, Srg, and MAV in Figs. 13(a) to 13(d) and 14.
From these graphs, we can notice again that videos with high
values of TSE can have a small Sbk, Sbr, Sns or Srg if the
corresponding artifact is not present in the video. Although
the MAV plot still shows a large spread of points, the rela-
tionship between TSE and MAV seems to have a higher cor-
relation than what was obtained in Experiment I. This might
be due to the fact that fewer variations in artifact strengths
exist in Experiment II (Table 2).

To have a closer look at the MSVs given by the subjects,
in Figs. 15 to 17, we show the bar plots for Sbk, Sbr, Sns, and
Srg corresponding to some sample combinations. Combina-
tion number 1 (see Table 5) corresponds to the original
videos. Again, the values for the average of MAVs and
MSVs corresponding to the originals are not zero, indicating
that some subjects reported that these videos contained some
type of artifact and annoyance levels different from zero.

For the test combinations 2, 3, 5, and 9 (shown in Fig. 15),
corresponding with videos with only one type of synthetic
artifact signal (blockiness, blurriness, noisiness, or ringing),
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Fig. 10 Experiment I: observed MAV versus predicted MAV (PAWM)
using the weightedMinkowski model for the data set containing all test
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Fig. 11 Experiment I: observed MAV versus predicted MAV (PALIN)
using the linear model for the data set containing all test videos.

Table 4 Experiment I: fitting parameters for the linear model with
interactions.

Coef. Estimate Std. error t value Pr(>jt j)

α 4.43538 0.49607 8.941 8.57e−15a

β 6.78535 0.38986 17.404 <2e−16a

γ 5.67310 0.30372 18.679 <2e−16a

α∶β −0.29465 0.24545 −1.200 0.2325

α∶γ −0.25081 0.17376 −1.443 0.1517

β∶γ −0.24920 0.12924 −1.928 0.0564

α∶β∶γ 0.13339 0.07021 1.900 0.0600

Corr. coef. PRCC ¼ 0.940565 SRCC ¼ 0.955316

aStatistically significant at (P < 0.05).
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the highest MSVs were obtained for the corresponding pure
artifact, while the other three types of artifact signals
received small values. MAVs are the highest for videos
that contain noisy artifact signals (see the last column of
Table 5). Again, given its high spatial and temporal activity,
“Cheerleader” was the video for which subjects reported the
lowest level of ringing and blockiness. Surprisingly, subjects
were able to detect a considerable amount of ringing in this
video, thanks to the relatively large uniform white areas (see
cheerleaders in the foreground). Notice also that “Calendar”

was the video for which subjects reported the highest levels
of ringing and blockiness. This is due to the fact that this
video has a good amount of borders and lines in a uniform
background.

In Fig. 16, we show MSV bar plots corresponding with
sample combinations containing two artifacts. Notice that
for combinations 10 and 13, which contain ringing plus noi-
siness and blockiness, respectively, the strength corre-
sponding to ringing is very small, although the physical
signal strength of ringing is as high as that of the other arti-
fact signal. On the other hand, for combination 11, which
contains ringing plus blurriness, the strength corresponding
to ringing is larger, especially for sequences “Bus” and
“Calendar.” This is in agreement with the common knowl-
edge that, for images with weak levels of degradation, ring-
ing and blurring are two of the most relevant artifacts.30 For
combinations containing blockiness plus one more artifact,
the strength for blockiness was higher when blurriness was
present (combination 7) and much lower for noisiness
(combination 6), while ringing (combination 13) did not
seem to have a significant impact (compare it with combi-
nation 5 in Fig. 15). Overall, blurriness increased the per-
ceived strength of both blockiness (see combinations 5 and
7) and ringing (see combinations 9 and 11). Noisiness, on
the other hand, decreased the perceived strength of blocki-
ness and ringing.

In Fig. 17, we show MSV bar plots corresponding to
sample combinations containing three artifacts. Notice
that, for the combinations that contain ringing plus two
other artifacts (combinations 12, 14, and 15), the strength
corresponding to ringing was again very low when com-
pared with the other two artifacts. When noisiness was
combined with ringing and blockiness (combination 14),
the other two artifacts received very low strength scores,
while noisiness received higher scores. On the other
hand, when we combined noisiness, blockiness, and blurri-
ness (combination 8), the strength score values were more
comparable, with noisiness receiving the highest scores,
followed by blockiness and blurriness.

Notice that, when the four artifact signals were present
(combination 16), noisiness was perceived as the strongest
artifact, followed by blockiness and blurriness. Given that
noisiness seems to be a dominating artifact, it is worth taking
a look at combination 15, which does not include noisiness.
In this case, blockiness showed a significantly higher value
than blurriness. These results seem to suggest that an inter-
action among artifacts is happening.

Table 5 Experiment II: Artifact signal strength combinations and
average of mean strength values (Sbk , Sbr , Sns , and Srg ) and
mean annoyance values (MAV) over all test sequences.

!a;b;c;d" Sbk Sbr Sns Srg MAV

1 (0, 0, 0, 0) 0.042 0.32 0.03 0.74 0.38

2 (0, 0, 0.67, 0) 0.20 0.23 5.9 0.17 35.84

3 (0, 0.67, 0, 0) 0.33 5.93 0.05 0.31 29.05

4 (0, 0.67, 0.67, 0) 0.252 4.99 6.41 0.31 62.53

5 (1, 0, 0, 0) 4.29 0.47 0.06 0.28 17.86

6 (1, 0, 0.67, 0) 1.49 0.58 5.97 0.23 43.76

7 (1, 0.67, 0, 0) 6.663 2.491 0.04 0.19 48.61

8 (1, 0.67, 0.67, 0) 4.52 2.82 6.29 0.26 67.84

9 (0, 0, 0, 1) 0.13 0.47 0.09 2.57 3.42

10 (0, 0, 0.67, 1) 0.19 0.39 6.25 0.36 38.98

11 (0, 0.67, 0, 1) 0.21 6.11 0.50 3.18 36.43

12 (0, 0.67, 0.67, 1) 0.171 4.63 6.55 0.67 64.97

13 (1, 0, 0, 1) 4.77 0.62 0.12 1.18 18.11

14 (1, 0, 0.67, 1) 1.51 0.64 6.23 0.23 45.90

15 (1, 0.67, 0, 1) 6.51 2.82 0.27 0.76 56.78

16 (1, 0.67, 0.67, 1) 4.23 2.79 6.24 0.40 70.4

17 (1, 1, 0.33, 1) 6.25 4.29 5.44 0.57 81.83

18 (1, 0.67, 0, 1) 6.61 2.92 0.17 0.97 54.14

19 (0.67, 0.67, 0, 0.67) 5.12 4.05 0.08 0.45 42.93

20 (0, 0, 0, 0.33) 0.1 0.43 0.05 0.79 0.85

21 (0, 0, 0, 0.67) 0.08 0.37 0.16 1.46 1.38

22 (0, 0, 0.1, 0) 0.03 0.33 0.25 0.59 1.66

23 (0, 0, 0.25, 0) 0.18 0.39 3.02 0.16 12.02

24 (0, 0, 0.8, 0) 0.17 0.26 6.36 0.21 41.28
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Fig. 12 Experiment II: total squared error (TSE) of all test videos.
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5.2 Model Predictions
Again, to investigate the relationship between the artifacts’
perceptual strengths (Sbk, Sbr, Sns, and Srg) and the overall
MAV, we show graphs of the individual MSVs versus MAV
in Fig. 18. These graphs clearly show that MAV cannot be
predicted from a single MSV corresponding to perceptual
strength measurements of only one type of artifact. As can
be seen in all graphs in Fig. 18, for combinations that did not
contain a particular artifact, the corresponding MSV value
was low, which occurred in a concentration of points in the
graphs with values between 0 and 1. The graph for Srg
[Fig. 18(d)] is interesting because it shows the low impor-
tance of the ringing artifact in predicting MAV. Most of
the points in the graph are concentrated in the left part of

the graph, with only a few points having an Srg value greater
than 2.

Given that a single measurement cannot predict annoy-
ance, we tested a set of models by performing a nonlinear
least-squares data fitting to the MAV and the MSVs of the
individual artifacts (Sbk, Sbr, Sns, and Srg) using the model
equation. Again, we tested the Minkowski metric for the four
artifacts, which is given by

PAM ¼ ðSpbk þ Spbr þ Spns þ SpringÞ1∕p: (12)

For this fit, we found p ¼ 0.41978 with Pearson and
Spearman correlation coefficients equal to 0.886039 and
0.9054315, respectively.

Next, we tested the weighted Minkowski metric, which is
given by

PAWM ¼ ðα · Spbk þ β · Spbr þ γ · Spns þ ζ · SpringÞ1∕p; (13)

where PAWM is the predicted value for MAV, and α, β, γ, and
ζ are the weighted coefficients for the perceptual strengths
for blockiness, blurriness, noisiness, and ringing, respec-
tively. In Table 6, we present the coefficients (p, α, β, γ,
and ζ), Rσ , PCC, and SCC obtained for the fits of this
model to the data corresponding to each original (“Bus,”
“Calendar,” “Cheer,” “Football,” and “Hockey”) and to the
data containing all videos (“All”).

The P-values (t-test, two-tailed, P < 0.05) corresponding
with the coefficients α, β, and γ are consistent for all tested
models. However, the values obtained for the ζ coefficients
are all very low (0 ≥ ζ ≤ 1.536), implying that ringing is the

0e+00 2e+07 4e+07 6e+07
0

2

4

6

8

10

Total Squared Error (TSE)

M
S

V
bl

oc
k

Exp.I: MSVblock vs. TSE

0e+00 2e+07 4e+07 6e+07
0

2

4

6

8

10

Total Squared Error (TSE)

M
S

V
bl

ur

Exp.I: MSVblur vs. TSE

0e+00 2e+07 4e+07 6e+07
0

2

4

6

8

10

Total Squared Error (TSE)

M
S

V
no

is
e

Exp.I: MSVnoise vs. TSE

0e+00 2e+07 4e+07 6e+07
0

2

4

6

8

10

Total Squared Error (TSE)

M
S

V
rin

g

Exp.I: MSVring vs. TSE

Fig. 13 Experiment II: total squared errors (TSE) versus (a) Sbk , (b) Sbr , (c) Sns , and (d) Srg .
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Fig. 14 Experiment II: total squared errors (TSE) versus MAV.
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artifact with the lowest weight. For the set containing all
video sequences, the Minkowski exponent (p) is equal to
1.0284, and α, β, γ, and ζ are equal to 5.4831, 5.0731,
6.0758, and 0.836, respectively. This fit is better than for
the original Minkowski metric, with PCC ¼ 0.943426 and
SCC ¼ 0.958771. Also, there is little systematic error in
the predictions (see Rσ in column 6 of Table 6).

From Table 6, we notice that the values of the Minkowski
power (p) are all between 0.96 and 1.12. Based on these
results, we varied the value of p in the range from 0.8 to
1.4 and repeated the fitting procedure for each of these
values. Again, we notice that, for all p values in this interval,

the coefficients for ringing (ζ) are very small (0 ≤ ζ ≤ 1.68).
Table 7 summarizes the results for p ¼ 1.00 (linear case).
Again, the fits are reasonably good for all groups.

Notice that the correlation coefficients of the linear and
weighted Minkowski models are very close. A model com-
parison test was done to compare the performance of the
more generic model (Minkowski metric with p free) against
the models with constant p.29 The results indicate that there
is no significant statistical difference between the Minkowski
and the models with 1.00 ≤ p ≤ 1.25. For models with p
values outside this range, a difference was found, and the
Minkowski metric performed better. These results are similar

Fig. 15 Experiment II: MSV bar plots for combinations (a) 2, (b) 3, (c) 5, and (d) 9.

Fig. 16 Experiment II: MSV bar plots for combinations (a) 4, (b) 6, (c) 7, (d) 10, (e) 11, and (f) 13.
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to the results found in Experiment I, where we concluded that
both the linear model and the Minkowski metric had the
same performance. In Figs. 19 and 20, we have plotted
the MAV versus predicted annoyance using the Minkowski
metric (PAWM) and the linear model (PALIN), respectively.
The correlation coefficients for these fits are around 0.963.

We also tested a linear model with interactions, which for
a set of four artifacts is given by

PALINT ¼ α · Sbk þ β · Sbr þ γ · Sns þ ζ · Srg þ ρ1 · SbkSbr

þ ρ2 · SbkSns þ ρ3 · SbrSns þ ρ4 · SbkSrg þ ρ5 · SbrSrg

þ ρ6 · SnsSrg þ τ1 · SbkSbrSns þ τ2 · SbkSbrSrg

þ τ3 · SbkSnsSrg þ τ4 · SbrSnsSrg þ χ · SbrSbrSnsSrg:

(14)

Fig. 17 Experiment II: MSV bar plots for combinations (a) 8, (b) 12, (c) 14, (d) 15, (e) 16, and (f) 17.
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Fig. 18 Experiment II: MSV versus MAV: (a) Sbk , (b) Sbr , (c) Sns , and (d) Srg .
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The results of this fitting can be found in Table 8. Column 2
of this table shows the estimated coefficients for the model,
while column 5 shows the corresponding P-values (t-test,
two-tailed, P < 0.05). It can be observed that the coefficients
for all main factors are statistically significant, except for
ringing (ζ). This result was already expected, since, for all
previous models, the ringing coefficients were low. Almost

none of the interaction coefficients are statistically signifi-
cant, except for τ2, which is a third-order interaction
among the perceptual strengths of blockiness, blurriness,
and ringing.

The last line of Table 8 shows fitting correlation coeffi-
cients for the complete model. Notice that the correlation
coefficients of this model are slightly bigger than those

Table 6 Experiment II: best fitting parameters for weighted Minkowski metric.

Group p α β γ ζ Rσ PCC SCC

Bus 0.8492 3.4245 3.3176 3.77 0.431 5.79 0.98112 0.98087

Calendar 1.1008 7.7850 6.2920 7.5247 1.652 8.95 0.96720 0.93565

Cheer 0.9670 4.1888 4.6616 4.9129 0.000 4.79 0.98482 0.98239

Foot 1.1212 5.0192 8.4764 6.2140 0.000 6.84 0.96284 0.92609

Hockey 1.0814 5.9317 4.1923 7.9600 0.000 5.54 0.98179 0.97652

All 1.0284 5.4831 5.0731 6.0758 0.836 7.40 0.96360 0.96340

Table 7 Experiment II: best fitting parameters for linear model (weighted Minkowski with p ¼ 1).

Group α β γ ζ Rσ PCC SCC

Bus 5.0110 4.9003 5.4313 0.000 5.856 0.97994 0.98000

Calendar 6.0049 4.9767 5.7768 1.536 8.876 0.96501 0.93652

Cheer 4.5872 5.0253 5.3031 0.000 4.574 0.98516 0.98239

Football 3.7382 6.3760 4.6809 0.000 6.8 0.96037 0.93739

Hockey 4.8373 3.6491 6.5309 0.000 5.312 0.98057 0.97565

All 5.0970 4.7461 5.6693 0.859 7.38 0.96307 0.96307
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Fig. 19 Experiment II: observed MAV versus predicted MAV using
the weighted Minkowski metric (PAWM) for the data set containing
all test videos.
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Fig. 20 Experiment II: observed MAV versus predicted MAV using
the linear model (PALIN) for the data set containing all test videos.
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for the linear model with no interactions. However, a com-
parison model test showed that the differences are not statis-
tically significant. Again, this model uses the perceived
strength of the artifact and not the actual artifact signal
strength. Therefore, it is not surprising that these results con-
tradict the results shown in the bar plots.

To investigate the effects of the actual artifact signal
strength (a, b, c, and d) and the “group” (original video:
“Bus,” “Calendar,” “Cheerleader,” “Football,” or “Hockey”)
on the MAV, we performed an analysis of variance (ANOVA)
test on a subset of data consisting of combinations 1 to 16
(factorial design). Table 9 shows the ANOVA results for the
main effects and interactions among terms. The results show
that all artifact signals have a significant effect on MAV
(P < 0.05). Ringing is slightly significant in a 95% test
and not significant in a 99% test. Therefore, the ANOVA
test shows that the addition of a ringing signal does have
a (small) significant effect on the perceived MAV, but the
corresponding ringing perceptual strenth (Srg) does not.
This might indicate that, when other artifacts are present,
ringing is not being perceived as ringing (see, for example,
the bar plots in Fig. 17).

The content of the video (variable “group”) showed a high
impact on how the artifacts were perceived. Given how each
artifact signal affects the video, this is expected. For

example, blockiness is more visible in uniform areas than
in high-texture areas. Ringing, on the other hand, is more
visible when there are edges and lines over a uniform back-
ground. The results also showed an interaction between the
group and c (noisy), the group and b (blurry), a (blocky) and
c (noisy), and b (blurry) and c (noisy). Noisiness was the
artifact signal with the highest level of interaction with
other artifacts (blockiness and blurriness). The ringing sig-
nal, on the other hand, did not seem to interfere with the per-
ception of any of the other artifacts. This might be due to
intrinsic characteristics of this artifact, which is perceived
as relevant only when other artifacts are not present. In sum-
mary, the results of the ANOVA test show that all artifact
signals are significant for predicting annoyance, and that
these artifacts interact with one another to produce the over-
all annoyance.

6 Summary and Conclusions
We presented the description, statistical analysis, and conclu-
sions of two psychophysical experiments. The goals of these
experiments were to study the appearance, visibility, and
annoyance of four artifacts (blockiness, blurriness, ringing,
and noisiness) commonly found in digital videos and to

Table 8 Experiment II: fitting parameters for the linear metric with
interactions.

Coef. Estimate Std. error t value Pr(>jt j)

α 5.29296 0.72134 7.338 4.78e−11a

β 3.81409 0.51089 7.466 2.54e−11a

γ 5.60526 0.39524 14.182 <2e−16a

ζ −0.06948 0.85135 −0.082 0.9351

ρ1 −0.05560 0.32958 −0.169 0.8664

ρ2 0.01172 0.37439 0.031 0.9751

ρ3 0.15509 0.16878 0.919 0.3603

ρ4 −1.33643 0.79504 −1.681 0.0957

ρ5 0.27184 0.26506 1.026 0.3074

ρ6 0.27565 1.07856 0.256 0.7988

τ1 −0.06000 0.12051 −0.498 0.6196

τ2 0.85707 0.34166 2.509 0.0137a

τ3 0.40734 0.68791 0.592 0.5550

τ4 0.09792 0.28363 0.345 0.7306

χ −0.14757 0.17396 −0.848 0.3982

Corr. coef. PRCC ¼ 0.96972 SRCC ¼ 0.96278

aStatistically significant at (P < 0.05).

Table 9 Experiment II: ANOVA table for factorial design (combina-
tions 1–16).

Source Sum sq. d.f. Mean sq. F Prob > F

c 15066 1 15066 393.47 0.0000a

b 16871.6 1 16871.6 440.62 0.0000a

a 2978.6 1 2978.6 77.79 0.0000a

d 264.8 1 264.8 6.92 0.0114a

Group 2504.5 4 626.1 16.35 0.0000a

c ' b 277.9 1 277.9 7.26 0.0096a

c ' a 675.8 1 675.8 17.65 0.0001a

c ' d 22.9 1 22.9 0.6 0.4429

c ' group 722.8 4 180.7 4.72 0.0027a

b ' a 4.2 1 4.2 0.11 0.7434

b ' d 44.9 1 44.9 1.17 0.2842

b ' group 885.9 4 221.5 5.78 0.0007a

a ' d 2.6 1 2.6 0.07 0.7973

a ' group 1109.9 4 277.5 7.25 0.0001a

d ' group 271.9 4 68 1.78 0.1489

Error 1876.2 49 38.3

Total 43580.5 79

aStatistically significant at (P < 0.05).
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understand how these artifacts combine and interact to pro-
duce overall annoyance. The results showed that, when the
artifact signals were presented alone at a high strength, sub-
jects were able to identify them correctly. At low strengths,
on the other hand, other artifacts were reported. Annoyance
increased with both the number of artifacts and
their strength. The noisy artifact signals seemed to decrease
the perceived strength of the other artifacts, while blurry arti-
fact signals seemed to increase them.

Annoyance models were created by combining the arti-
fact perceptual strengths (MSV) using a Minkowski
model, a weighted Minkowski model, a linear model, and
a linear model with interactions. A comparison between the
Minkowski metric and the linear model showed that there is
no statistical difference between these two models. Perform-
ing an ANOVA test, we found that, besides the group (con-
tent), all types of artifact signal strengths had a significant
effect on MAV. The ANOVA test also indicated that there
are interactions among some of the artifact signal strengths
and the group.

The results presented in this paper provide information
that can be used in the design of video quality models
and, more specifically, on the design of NR models.7–10 In
particular, the results show that annoyance can be modeled
as a multidimensional function of the individual artifact sig-
nal measurements. This implies that the NR quality model
based on artifact measurements is indeed a valid approach,
and it needs to include a minimal set of the most relevant
artifacts. Also, although annoyance cannot be predicted
using only one individual artifact signal measurement, it
is not necessary to use all possible artifacts. It suffices to
use the most significant (statistically) ones. For example,
in Experiment II, the ringing signal was proven to have
only a small effect on the prediction of MAV. Also, its impor-
tance seemed to decrease with the introduction of other arti-
facts. Therefore, a quality model can be designed in a way
that the strength of ringing signal is estimated only when no
other artifacts are present. Finally, the results show that there
are interactions among artifact signals. Therefore, while
designing quality models, it is important to take this into con-
sideration to avoid underestimating or overestimating qual-
ity. To our knowledge, there are no quality models that take
into account the interactions among artifact signals.
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