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In this paper, multidimensional models of image quality are images (photographs or motion pictures) are considered to
discussed. In such models, alternative images, for instance, ob-petter convey the essence of the subject being depicted and
tained through different processing or coding of the same Scene, 5 he91 more to some people than to others. In this paper, we
are represented as points in a multidimensional space. The posi- . o .
tioning is such that the correlation between geometrical proper- Will demonstrate how multidimensional models can capture
ties of the points and the subjective impressions mediated by theboth common aspects and differences between individual
corresponding images is optimized. More specifically, perceived judgements.

dls_S|m|_Iar|t|es betw_een images are mpnotomcall_y relat_ed to inter- In engineering, we adopt a restricted perspective on
point distances, while the strengths of image quality attributes (such . lity, Wi ider the i ti . d
as perceived noise and blur, or image quality) are, for instance, Image quality. Vve consider the Input images as given an

monotonically related to point coordinates along specified direc- are interested in evaluating the effect of alternative image
tions. The goal of multidimensional models is to capture subjec- coding, processing, and/or display systems on the perceived
tive impressions into a single picture that is easy to interpret. We quality of these images. Even within this limited scope, we

apply multidimensional models to two existing data sets to demon- S g . . .
strate that they indeed account very well for experimental data on can still distinguish many different aspects or attributes to

image quality. The program XGms is introduced as a new inter- image quality. The perceived sharpness, COI’]U‘?.SI, color-
active tool for constructing multidimensional models from experi- fulness, naturalness of colors, etc. may all be influenced

mental data. Although XGms is introduced here within the context jn different ways by such technical systems. Alternative
of image-quality modeling, it is also potentially useful in other ap- oy qtems may also introduce different distortions, such as
plications that rely on multidimensional models. . . .. . T
noise, sampling, and quantization artifacts that obviously
_Keywords—mage quality, image-quality models, multidimen- 4o not belong to the scene, but are created by the imaging
sional scaling. system. People often agree very closely in their judgements
about the strengths of these image-quality attributes. The
|. INTRODUCTION importance that they assign to these individual attributes
in reaching their overall judgement on the technical image

People are very used to making judggmepts abqut manyquality may however differ. This fair amount of agreement
aspects of the things they encounter, be it objects, Sltuatlonsbetween people on underlg/ing attributes will be referred to

or other people. Judgements made by different people often theorinciole of h ity of 6 and f

agree remarkably well when being compared explicitly. as theprinciple of homogeneily of percep if ]f"m orms

When judging the quality of images, for instance, people an important motivation for the multidimensional scaling

especially agree on the more perceptual aspects such as tht ?S) approatcr:j ['1]_tf'] toward 'TT]?ge"?“?"tly ”lofe"r:ﬁ t

brightness, contrast, and colorfulness of the images. This is al 1s presented in this paper. his principle states tha
a single multidimensional configuration representing the

tly due to the fact that thei ipheral for hearing,” .7~ . i o
partly due to the fact that their peripheral senses (for hearing stimuli underlies the attribute and quality judgements by

seeing, etc.) are very similar. Atthe same time, this agreement Il subiects. Diff i attribute iud ts of subiect
on perceptual aspects does not prohibit that people can?!! SURJECLS. Dilterences in attribute judgements ot subjects

have very different opinions about more cognitively related can bt?] ac_cpr':]odeﬁzq n MDS I:I>y :.he flact tha';_ the rtw_"nap;:mg
aspects of the same images. One aspect on which peopl(—glom edj_om muttl Ilmlergsmnt?_bs 'tmq ljjs con |g:ura lon 1o
often disagree is the aesthetical quality of images. There e ane-dimensional (1-D) attribute judgements may vary

may be many different, often personal, reasons why somep(?r attribute gnd pgr subject. Con'structmg. the underlying
stimulus configuration from experimental judgements by

subjects or predicting it on the basis of instrumental (i.e.,
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illustrated by an example in Section I, is fundamentally active program, called XGrmisthat can estimate a metric or

different from most existing approaches [5] that attempt nonmetric multidimensional model from data obtained for

to model image quality as a 1-D entity without trying to one or more subjects, using any combination of the three

provide insight into underlying image-quality attributes. above-mentioned experimental paradigms. This program is a
There are both theoretical and practical reasons for beingmodified version of an existing program XGvis [8] that can

interested in creating models for image quality. On the one only handle metric dissimilarity data from a single subject.

hand, models guide the way we reason about a psychologicaFinally, in Section VI, we illustrate MDS modeling on some

concept such as image quality. The way we experiment with existing data sets.

image quality and the data processing that is applied to ex-

perimental data is guided by such models [6]. Often, we col- |I. EXAMPLE OF MULTIDIMENSIONAL MODELING

lect experimental data in order to verify if they are in agree-

Lnent with fet);:Stlmg or emergilng merIs. Oq the o:rlm)er. hand, eling more concrete, we start with an example. More specif-
ecause ofthe largé amount ofimaging equipment being pro_'ically, we describe the multidimensional modeling of exper-
duced nowadays, there is a substantial economical interest iNmental data concerning the quality of images degraded by
being able to predict the effect of variations in the technical noise and blur [9]. All combinations of four levels of blur
parameters of such systems on the resulting quality. ESpe-jy, 5 pinomial kernel and four levels of Gaussian additive

cially in the case of alternative systems with similar func-  hite noise for three different scenes were used in an exper-
tionality, perceived (image) quality is one of the major dis- jment The blur was characterized by the standard deviation
criminating factors between products from the point of view o, of the filter kernel &, values of 0,/2, 2, and 2/2). The
of the user. . o noise was characterized by the standard deviatipof the

An instrumental quality measure is defined here as an al- Gayssian probability density function,( values of 0, 7, 10,
gonthm for pred|ct|ng the stimulus configuration that und(_ar- and 14 for grey values in the range [0,255]). The noise was
lies human judgements. The usefulness of such an algorithmaqded after the images were blurred and the processed im-
obviously depends on how well the resulting stimulus con- ages were quantized to 8 bits/pixel. All pictures contained
figuration correlates with human judgements. Instrumental 512 512 pixels, but only a subregion of 240470 pixels
models can not only make the design of new systems moreyas viewed in the experiments. This restricted region was
efficient, but can also be used to monitor the performance of needed in order to allow simultaneous d|Sp|ay of two im-

existing systems. An advantage of multidimensional models ages. The (cropped) images without noise or blur are shown
over 1-D quality models in such a monitoring application is in Fig. 1.
that multidimensional models can also provide insight into  The images were converted to 50-Hz noninterlace video
which attributes of image quality are failing when the overall and displayed on a CCID-7351B high-resolution monitor.
quality is insufficient. The grey-value-to-luminance characteristic of the monitor
The scientific field that is mostly concerned with mea- was measured and a lookup table was determined such that
suring subjective sensations such as image quality is calledthe relationship between the grey valuand the luminance
psychophysics [7]. In a recent review paper [6], we have de- I, for the combined chain (lookup table, digital-to-analog
scribed in detail some of the major concepts and models un-video convertor, and monitor) became
derlying the psychophysical measurement of image quality N
and its attributes. In the current paper, we are mainly con- I = max |:Lmin7 Lo < g ) } (1)
cerned with discussing how such psychophysical measure-
ments on several different quality attributes can be combined
into one overall model. With giax = 255, Liyjax = 60 Cd/I'T'F, Lyim =02 cd/m2,
In Section I, we summarize some of the concepts and ter- andy = 2.5._This calibrated characteristic was verified by a
minology that are needed when discussing the psychophys-S€cond luminance measurement.
ical measurement and modeling of image quality. We intro- ~ MOst viewing conditions satisfied the ITU-R BT.500 rec-
duce the three major experimental paradigms used in image-°mmendation [10]. The viewing distance was 1.5 m, which
quality evaluation: single-stimulus attribute scaling, double- Was €quivalent to six times the height of the monitor. Be-
stimulus difference (or preference) scaling, and double-stim- IWeen two successive stimuli, a uniform adaptation field was
ulus dissimilarity scaling. We also discuss the important dis- diSPlayed during the time it took subjects to enter their re-

tinction between metric and nonmetric scales. We refer to the SPONS€ by means of a keyboard. The minimum duration of
above-mentioned review paper [6] for a more in-depth dis- this adaptation field was 2 s, while its luminance of 9 cti/m

cussion of these topics. Next, in Section IV, we discuss mul- was approximately equal to the average luminance of the im-
tidimensional modeling of image quality and give a brief his- ages.

torical overview of the application of MDS in image-quality IXGms and XGobi Software: XGms is a modified version, developed
measurement and modeling. In Section V, we discuss in de-by the author, of the existing program XGvis. The XGvis and XGobi pro-
tail how the parameters of a multidimensional model can be grams are available via http://www.research.att.com/~dfs. The XGms pro-

. i . . gram is also available for noncommercial use. E-mail requests can be made
estimated from experimental data. We introduce a new inter- to J.B.0.S.Martens@tue.nl.

In order to make the discussion on multidimensional mod-

gma.x
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Fig. 1. Scenes used in experiments with blur and noise. (a) Wanda. (b) Terrace. (c) Mondrian.

©

Five subjects, aged between 25 and 39 years and with Multidimensional model (image Wanda)
normal or corrected-to-normal visual acuity between 1.5 and 8 ) ' ’ ) )
2 measured on a Landolt chradt a distance of 5 m partic- Quality

ipated in a double-stimulus dissimilarity experiment. Each
subject was presented b x 16/2 = 120 different image
pairs in random order and was asked to score the dissimi-
larity between the images in a pair using an integer number
in the range from 0 to 10.

The same five subjects, plus two additional ones, also took
part in three single-stimulus scaling experiments with the
same images. In three separate experiments, subjects rated
perceived noisiness, blur, and quality. The 16 stimuli were x
presented four times, in random order, to each of the subjects
(resulting in16 x 4 x 3 = 192 attribute scores per subject).
Again, integer scores between 0 and 10 were used by the sub-
jects to express their judgements.

The XGms program that we will introduce in detail in
Section V was used to derive multidimensional models from
these data. The most concise picture representing the model . . 1 . 1
output for one scene (i.e., Wanda) is shown in Fig. 2. The 16 -3 2 - 0 1 2 8
procgssed images of this Sce_ne are rgpresenteq by the_crossqﬁg. 2. Example of a multidimensional model for a scene
The image in the upper left is the original, the image in the degraded by noise and blur. Crosses indicate the 16 processed
lower left contains no noise (only blur), the image in the images, while the arrows indicate the directions in which perceived
upper right contains no blur (only noise), while the image PM\" Noise and quality increase.
in the lower right contains the maximum amount of blur and . .
noise. The horizontal and vertical axes are not labeled since The fact that the 16 Images are not arrgnged n arec-
they do not have any physical meaning. This isaconsequencéangle’ as might be expectecbriori from the independent

ofthe fact that Fig. 2 can be arbitrarily translated, rotated, and processing of blur and NOISE, mdu;ates that thert_a aré some In-
scaled without influencing its interpretation. teractions between perceived noise and perceived blur. The

directions that correspond to perceived blur and perceived
. . _ noise are indicated by two of the arrows. The interpretation

2visual acuities of 1 or 2 on a Landolt chart imply that a subject can detect fth . is is. for i h h h | .
the opening in a C-ring when this opening is 1 arcmin or 0.5 arcmin of visual 0 the n0|se. axis 1s, f)r mStance_’ t a_t t_ € pl’t ogonal projec-
angle wide, respectively. tions of two image points onto this axis indicate (on average),

1}
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which, of the two images, is perceived to be more noisy. As
expected, images with the same noise standard deviation are
perceived to be (approximately) equally noisy. There is no
such one-to-one relationship between the standard deviation
of the filter kernel and perceived blur, however. More specif-
ically, we can derive from the model in Fig. 2 that perceived
blur increases with noise for an unblurred image, while it de-
creases with noise for the most heavily blurred image. The
direction corresponding to overall quality is indicated by the
third axis. Obviously, since both perceived noise and per-
ceived blur contribute to overall quality, this direction of the
quality vector is in between the directions of the attribute
vectors for noise and blur. Blur is relatively more important
than noise, since the angle between the blur and the quality
direction is smaller than the angle between the noise and
the quality direction. The model depicted in Fig. 2 assumes
that the attribute directions are the same for all subjects. The
output of an alternative model, which allows for a different
attribute vector per subject, would look similar to Fig. 2, but
would contain one vector per attribute and per subject.

A scatter diagram showing the relationship between the
distancesi;; between stimulus points in Fig. 2 and scored
dissimilarities D;; for one subject is shown in Fig. 3. In
Fig. 3(a), the dissimilarity data is assumed to be metric, i.e.,
d;; is compared againd®;;. In Fig. 3(b), the dissimilarity
data is nonmetric, i.ed;; is compared against transformed
dissimilaritiesT’(D;;). In the example, the transformation is
assumed to be of the forffi( D) « D? and the power, is
determined as part of the model optimization (in the specific
example,q = 0.68). The linear regression coefficients be-
tween experimental dissimilarity data and interstimulus dis-
tances areR = 0.982 and R = 0.987 for the metric and
nonmetric case, respectively.

Il. PSYCHOPHYSICALMEASUREMENT OFIMAGE-QUALITY
ATTRIBUTES

In many past experiments, subjects have been asked to
judge stimuli, such as images, on subjective attributes. The
stimuli are for instance different versions of the same image,

dissimilarity

transformed dissimilarity

10

10

Metric data

0.5 1 15 2 2.5 3
interstimuius distance

@

Non-metric data

3.5

05 1 15 2 25 3
interstimulus distance

(b)

Ol_)tamed by coding the original image at different bit r_ates Fig. 3. (a) Original dissimilarity scores and (b) transformed
with one or more codecs. They have to be evaluated with re-dissimilarity scores as a function of interstimulus distances.
spect to overall image quality or one of its attributes (e.g.,

perceived noise or blur) [11]. When conducting such an ex- In single-stimulus scalinghe test images are presented
periment, one implicitly assumes that subjects are able to dis—One by one to the observer. A fixed reference image may
criminate or rate stimuli on the given attribute in a reliable be shown together with the test image, either simultaneously
and consistent way. The existence of such a discriminating;, space or sequentially in time. The task of the subject is
process [12], [13] is usually postulated and assumed t0 be any, rate the test images. In the ITU-R BT.500 recommenda-
inherent part of the perceptual and/or cognitive abilities of 4on for the subjective assessment of quality or impairment
the subject. Repeated intersubject and/or across-subject eX[10], a graphical scale is proposed as a continuous rating
periments with the same stimuli should give consistent re- geyice. The scale is divided into five equal-sized nonover-
sults if this assumption is true. lapping intervals that are denoted by quality or impairment
Setting up a psychophysical experiment involves decisions categories. The quality categories are “excellent,” “good,”
on how the stimuli are to be presented to the observer and“fair,” “poor,” and “bad,” while the impairment categories

what the valid observer responses are. Different such exper-are “very annoying,” “annoying,” “slightly annoying,” “per-
imental paradigms have been proposed, some of which haveceptible, but not annoying,” and “imperceptible.” The re-
been standardized [10]. We give a brief overview of some of sponses of the subjects are mapped into numbers (between
the most frequently used experimental procedures. zero and 100, for instance) that correspond to the coordinates
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of the marks made on the continuous scale. In the experi-for some monotonic response functiéh[18]. This model
ments performed at our laboratory, we have almost exclu- has a geometric interpretation in one dimension. The images
sively used an alternative technique, callednerical cate- a are represented by their coordinat€a) in one dimension
gory scaling[11], to rate stimuli. In this case, subjects use and the differences between stimulus coordinates are mono-
integer scores from a limited range, say, from zero to ten. tonically related to the subject responses. The responses only
The limited range is adopted because it has been shown thabelong to ametric scaldf the functionF' can be assumed to
subjects cannot handle large number ranges in a linear waybe linear.

[14], [15]. Using adjectives to denote categories, as in the  Substitutingu*(a) = « - u(a) + S andF*(s) = F(s/)

case of the ITU-R recommendation, potentially also intro- in the above equation confirms that the scafe) is only
duces a bias in the use of these categories [16] and is avoidedletermined up to an arbitrary linear transformation, since

in numerical category scaling.

In double-stimulus scalingairwise combinations of test R(a,b) = Flu(a) — u(b)] = F* [u*(a) =" (0)]  (3)
images are shown to the observer. The task of the subject ival q . h b
is to scale either the dissimilarity between both stimuli in are two equiva ent escrlptl_ons. The num eu(:.a) are,
dissimilarity scalingor the difference in attribute strength hence, said to belong t.o almtgryal scale Ar.] interval
for both stimuli indifference scalingThe latter method is scale that has a well defined origin, such as in the case of

. . . difference scaling, where zero corresponds to no perceived
also calledoreference scalingf the attribute to be scored is . . 9, . P P
quality difference, is called aatio scale

In dissimilarity scaling, the subjects’ task is to indicate tha(ljnbf\: l)omusr%ncggtsrtizugg?f aarxlodbe;(f;gun;emmeg:]c dgzr';?n"’;i;l
how dissimilar or different they perceive wo images to be and statistical techni uesp[19]ysuch asre re)slsion rincipal
[17]. Any aspect that contributes to the dissimilarity can be q ' g P P

taken into account. The order of presentation of the stimuliin component analysis, analysis of variance (ANOVA), etc., as-

. . - . sume metric data. However, techniques for analysing non-
the pair should be irrelevant. Continuous scaling or numer- q ysing

ical category scaling can be used to express the response to g’netrlc data are increasingly available [6], [20}-[22]. The pro-

stimulus pair. Dissimilarity scores are by definition positive gram XGms, which IS introduced in this paper, co_mblnes Sev-
or zero eral of these techniques and makes them easily accessible

In difference scaling, subjects can for instance respond tothrough a graphical user interface (GUI).
a stimulus combination by means of a numerical category
from —5 to +5 or using a mark on a continuous interval that
is symmetric around the origin. If the first (or leftmost) stim- When subjects are requested to evaluate image quality in
ulus has the largest attribute strength, then a negative score psychophysical experiment, they are often able to analyze
is given, while a positive score corresponds to the secondand justify their judgements (especially if they are somewhat
(or rightmost) stimulus having the largest attribute strength. experienced in making image-quality judgements). They can
Hence, the order of the stimuli does matter in this case. Thefor instance report different kinds of distortions in coded im-
absolute value of the response is monotonically related to ages [23] and are aware of the fact that their overall quality
the strength of the attribute difference. The zero category (or judgement is determined by the relative weight that they at-
origin) can be used in case both stimuli are judged to have tribute to these individual impairments. They are also able to
equal attribute strength. report the sensation strengths for individual impairments in a

In all the above cases, the subject responses can be exsimilar way as they can report their overal quality sensations.
pressed as real or integer numbers. These numbers corre- Inorder to simultaneously model the results from different
spond to sensations, such as image quality, that are not di-experiments with the same stimuli, a multidimensional geo-
rectly observable. Equal differences between the numbersmetrical model is proposed. In such a model, images are rep-
can not be assumedl priori to correspond to equal differ-  resented by points in a multidimensional space. All observa-
ences in sensations. In this sense, psychophysical measurdions, obtained using one or several of the above-mentioned
ments differ fundamentally from many physical measure- experimental paradigms, are related to geometrical proper-
ments [7]. Such numbered responses for which only the orderties of these points, such as distances between points and co-
and not the magnitude, is significant are said to belong to anordinates of point projections onto selected axes. This multi-
ordinal or nonmetric scale dimensional model can be viewed as an extension to the 1-D

It is usually assumed that there is an unknown monotoni- geometrical model described above for modeling judgements
cally increasing or decreasing nonlinear function that relates on a single attribute.
the internal sensation strengths to the subject responses [18]. Based on the above considerations, we divide the task of
More specifically, let us denote the attribute strengths of the image-quality modeling into:

IV. MULTIDIMENSIONAL MODELING OF IMAGE QUALITY

imagess used in the experiment by numbexr:). In differ- 1) establishing the stimulus configuration (i.e., the dis-
ence scaling, for instance, the respofige, b) to two images criminating process) that underlies all attribute judge-
a andb is assumed to be a function of the difference in the ments by different subjects;
numbersu(a) andu(b), i.e., 2) determining how this stimulus configuration relates to
the judgements for different attributes and/or individ-
Ra,b) = Flu(a) — u(b)] 2 uals.
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In case of an instrumental measure, the stimulus configu- been proposed [31], the available implementatidaes not
ration is supplied by the measure and the remaining taskseem to function properly for the most general case.
(2) is to determine if this configuration does indeed agree Existing MDS programs are mostly offline programs. This
with the subject responses. The XGms program that we will implies that the user must enter his/her parameter choices,
introduce below supports both options, i.e., derivation of a such as the dimension of the space or the selection between
stimulus configuration from experimental data and compar- metric or nonmetric analysis and that the results are returned
ison of a given stimulus configuration against experimental in a file to be examined after the program has finished. This
data. makes it very difficult and cumbersome to appreciate the im-
A number of algorithms, usually referred to as MDS pro- pact of alternative model choices. Also, since MDS programs
grams [2], [3], [24], have been developed within the field of 5re nonlinear optimization programs, the reported solution
mathematical psychology to derive stimulus configurations may correspond to a local optimum instead of a global one.
from experimental data. Most of these algorithms model dis- The interactive MDS program XGvis [8] has been devel-
similarity data. The stimuli are positioned in space according oped to help remedy such problems. The program XGuvis al-
to metric or nonmetric models. In nonmetric models, the dis- |gws to interactively control the main parameters in the MDS
tances between stimulus positions are only monotonically re- models and exchanges the calculated stimulus configuration
lated to the judged dissimilarities, i.e., only the rank order of \ith a second program, called XGobi [32]. This latter pro-
the experimental data is important [25]-{27]. Metric models, gram is an interactive dynamic data visualization tool for the
in contrast, maintain a linear relationship between the ex- x Window environment. By combining the functionality of
perimental dissimilarities and the distances between stim-poth programs, the user is not only able to dynamically alter
ulus positions. The Euclidean distance is the metric most fre- he parameters of the MDS model within XGvis, but to also
quently used, although more general Minkowski metrics and yjiew and manipulate the stimulus configuration in XGobi.
weighted distances have also been used. Inthe latter case, thepis interactivity for instance allows the user to assist the op-
multidimensional psychological space in which the stimuli - timjzation algorithm in avoiding suboptimum solutions that
are positioned is not identical for all subjects (i.e., does not correspond to local minima. The XGvis program, however,
conform strictly to the principle of homogeneity of percep- only implements a metric model for the dissimilarity data
tion); the spaces for individual subjects are linked by linear of 5 single subject and, hence, has too limited functionality
(affine) transformations [3]. An example of a freely avail- to pe very useful for modeling image quality. In order to
able MDS program for modeling dissimilarity data that im-  gyercome these limitations, XGvis has been extended to in-
plements most of the above metric and nonmetric options is cjyde the joint analysis of data from single-stimulus scaling,
ALSCAL.3 double-stimulus difference scaling, and dissimilarity scaling

MDS has been used by Marmolin and Nyberg [28] for multiple subjects. XGms supports both metric and non-
and Goodman and Pearson [29] to study image quality. metric modeling of (parts of) the data.

Dissimilarity judgements for pairs of impaired images were
used in both studies. The dimensions of the multidimen- v xXGms
sional spaces, thus, established were labeled based on an
examination of the positions of the impaired images. This
labeling was however not verified by separate (independent)
experiments. Escalante-Ramirez al. [30] studied the

perceptual quality of noise-reduced computer tomography
images using MDS techniques. In addition to the space

obtained using d|SS|m|Iar|.ty .data, they also obtalined a space) can be controlled by the user at runtime, so that their
second space through a principal component analysis of thegtte t on the stimulus configuration and on the relationship

scaling data for the main attributes: noise, blur, and visibility panveen experimental data and model predictions can be
of structures. They, hence, assumed the scaling data to b"explored. Next, we show how optimized monotonic trans-
metric in this case. Both stimulus configurations found formations can be used to replace the input data, which may
in this study were very similar and could be related by & pe nonmetric, by transformed data that is approximately
linear transformation. The attribute data could also be used metric. Fina”y, in order to give a better impression of how
to identify the attribute directions in the multidimensional a user can influence the construction of multidimensional
space that was obtained from dissimilarity data. A similar models, the user interface to the program XGms is also
study was undertaken by Kayargadde and Martens [9] to described shortly.

model images degraded by noise and blur. A problem en-

countered in both studies is that no program is available for A. Optimization Criterium

finding a single stimulus configuration based on all available 1) Dissimilarity Data: The experimental dissimilarity

In this section, we describe the class of multidimensional
models that is implemented in the interactive program
XGms. We first describe the optimization criterium or stress
function that is used in the program to estimate the model
parameters from the experimental data. Many parameters of
the multidimensional model (such as the dimensiaf the

experimental data. Although a program for the joint analysis data are denoted bipy, ; ; for subjectk = 1,..., K, and
of direct ratings, pairwise preferences and dissimilarities has stimulus pair ¢, j) with ¢, = 1,...,N. The goal is to
3http://forrest.psych.unc.edu/research/ALSCAL.html 4hittp://www. psych.mcgill.ca/faculty/ramsay/ramsay.html
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construct a stimulus configurationy, . . ., x such that the
experimentally observed dissimilarities are monotonically
related to the interstimulus distances

n

2.

m=1

1/1
dij = ||x; — xj”z = [ |Tim — xjnl|l] (4)
where the distance is computed according to a Minkowski
metric with powerl. The default valué¢ = 2 corresponds to

a Euclidean distance metficMore precisely, we pursue a
linear relationship between transformed dissimilarity scores
TDy; ; = Tux( Dy, ;) and interstimulus distances;, i.e.,
1Dy, ; =~ dy - d;;, wheredy, is a regression factor. In order
to preserve the physical meaning of dissimilarity zero, we re-
quire that the applied transformations sati&fy (0) = 0. An
important implicition of the pursued relationship is that the
transformed dissimilariti€$ Dy, ; ; are assumed to be metric

of all possible stimulus combinations for subjégctso that
missing data can be handled (a missing dissimilarity is in-
dicated by/N A). We can also select to exclude the largest
dissimilarities (maybe because they are judged to be inaccu-
rate) by settind/,(%) to a value smaller than the maximum
transformed dissimilarity valué{,(%) for subjectk, where
k=1,..., Ky The number of observatiom¥,(k) for sub-
jectk is, therefore, usually substantially smaller thanNve
possible stimulus combinations.

Once the stimulus positions;, for¢ = 1,..., N, are
known, minimization of individual terms in the above expres-

sion, i.e.,
>

(¢,5)Cla(k)

. r
min

| TDyij — di - 1% — %1,

(8)

can be used to determine the regression faetprdor k =

metric distancesgl;;. We, hence, assume that there exists a
monotonic transformatiofdy;. that maps the nonmetric ob-
served dissimilaritied), ; ; into metric transformed dissimi-
larities?'Dy, ; ;. Note that this assumed transformation is the

the normalized transformed dissimilarities

1

TDk7i7j. (9)

inverse of a response function that relates internal sensationlf all subjects behave similarly, then the normalized trans-
strengths (on a metric scale) to external responses [as in (2)]formed dissimilarities for identical stimulus pairs, {)

While the stimulus configuration is assumed to be shared
by all subjects (according to the principle of homogeneity
of perception), the transformatior; and the regression
factorsd;, may be subject dependent. For the time being,
we assume that the transformatidfig on the experimental
data Dy ; ; are known. If the input data can be assumed
to be metric, no transformations need to be applied, i.e.,
TDy,i; = Du,,y, for all subjectsk 1,...,Ky and
all stimulus combinationsi(j). This is the default choice
of the program XGms at initialization. If the input data is
nonmetric, then transformatiofig;. that map the observed
dissimilaritiesDy, ; ; to transformed dissimilaritie® Dy ; ;

that have ratio properties can be derived from the data, as will

be discussed later.
The stress [27] for the dissimilarity data is a relative

should have similar values across subjects, i.e., be approx-
imately equal to the interstimulus distangg. We will see

in the next section how these normalized scores can be used
to test the hypothesis that the MDS model can describe the
average subject behavior when judging dissimilarity.

Since the transformed dissimilarities are assumed to be-
long to a ratio scale, i.e., are only determined up to an ar-
bitrary linear scale factor, the stress function should be in-
variant under a linear scaliigDy, ; ; — 6x - 1Dy ; ;, which
can indeed be accomplished by the model parameter change
di — 6y - di.. Note that the normalized transformed dissim-
ilarities are invariant under such a transformation.

The scaling of the regression paramedgrby é; could
also be replaced by a uniform dilation of the stimulus con-
figuration, i.e.x; — & - x;. In order to avoid such undeter-

measure that expresses how much the model predictiongnined model behavior, a condition is imposed on the stim-

dy - ||x; — x;|, differ from the (transformed) observations

TDkﬂ‘J', i.e.,
1 - P . TDE $,%,7
Sd(xl,...,xz\f)z{?dz:f:‘i 2ty | k|

ml/r
Y e T Drigl" }

(5)
with
TDEkﬂ"j = TDk7i7j — dk - ||Xz — Xj”l. (6)
Note that the sums can be taken over a subset
TDkﬂ"j < Ud(k‘), e } (7)

5The use of a Minkowski norm with # 2 implies that coordinate dif-
ferences in horizontal and vertical directions are treated differently from co-
ordinate differences in oblique directions. Such Minkowski norms should,
therefore, be handled with care. Amongst others, the optimum stimulus con-
figuration will often depend critically on the initial configuration and con-
vergence problems may occur, especiallyifer 2 [20], [33].
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ulus configuration in order to uniquely determine its scale
factor. Similarly, a translation of the stimulus configuration
has no influence on the interstimulus distances either, so that
an additional condition is imposed to uniquely determine this
translation. In summary, the stress is invariant under linear
translations and uniform dilation of the stimulus coordinates
X; = [im;m = 1,...,n], i.e., mappings of the form

(10)

Lim — d- Tim + €m

fori = 1,...,Nandm = 1,...,n. A priori conditions

on the stimulus configuration are therefore required in order
to guarantee a unique stimulus configuration. The transla-
tion vectore = [e,,;m = 1,...,n] is determined by re-
quiring that the configuration is centered at the origin, i.e.,
SN Zim = 0, form = 1,...,n. The dilation factor is
derived from the condition th&€ " , "™ _ 22 is constant
(inour case, equal t& -n). Stimulus configurations that sat-
isfy these conditions are called normalized. Because of this
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normalization of the stimulus configuration, the number of subjectk, wherek = 1,..., K,. The number of observed
degrees of freedom (DOFs) in this configuration is equal to preferences for subjeétis denoted by, (k).
XGms allows to choose between two possible prediction
Fo=(N-1)-n—1. (11) models. The user can (interactively) switch between both
models in order to decide which model best describes the
If the distance metric is Euclidean, i.e.,lif= 2, then data.
an arbitrary orthogonal transformation (rotation or mirroring ~ According to thevector-producior inner-productmodel,
around the origin) of the stimulus configuration has no effect the prediction is equal to the vector product
on the interstimulus distances either. This further reduces the

DOF in the stimulus configuration to [Pr, %] — [Pr. X;] =(Pr. % — %)
nin—1 = Z Prm - (-Ti'rn - -Tj'rn) (16)
Fx|l=2 I(N — 1) -n—1-— % m=1
_ <N _n+ 1) -1, (12) between the difference vecta; — x;, pointing from stim-
ulusj to stimulusé, and the preference vectpy.. The cor-

responding geometrical interpretation is as follows. The dif-
In the default setting of the XGms program, no measures ference between the orthogonal projections (or coordinates)
are taken to uniquely select the orientation of the stimulus of the stimulus positions; andx; onto a 1-D axis, with di-
Configuration. This ImpIIeS that the orientation of the output rection Specified by the vectqsy, determines the average
stimulus Configuration will depend on the initial stimulus preference between both stimuli for subjéctlf the same
configuration. The default settings of the XGms program stimuli are scored very differently by different subjects, then
can, however, be modified such that an orthogonal trans-this should be reflected in preference vectpgswith dis-
formation is selected that alligns the stimulus configuration tinct orientations. Such different orientations are obviously
along its principal axes [20]. only possible in case the dimensiarof the space exceeds

2) Preference Data:The stress term for the double-stim-  gne [34].

ulus preference (or, more generally, attribute difference) data A consequence of the ratio property of the transformed
can be defined in a similar way as preferences is that only the directions of the preference vec-

torsp,. are uniquely determined; their amplitudgs: || may

1 X Y ier o I TPE ;1" Y be scaled arbitrarily. We can, hence, fip.|| = 1 and con-
Sp(X1, .y XN) =14 LI e S clude that the vector-product model contaimDOFs for
Kp = Zaper,m T il each preferencg, i.e.,n — 1 DOFs for the direction of the
(13) vectorp, and one DOF for the correlation factor; .

The alternativeédeal-pointor unfolding model
whereT' P, ; ; = T,.(Pr, ;) denotes the transformed pref-

erence rating by subje&t withk = 1,..., K,,, for stimulus [Px, %] = [Pr: %]
pair ¢, ), with ¢, = 1,..., N and = —log(|[x; — pxll;) +log (IIx; — p&ll,) (17)
TPEy;; =TP.;; —m- ([P, %] — [Prrx;])  (14) is based on the ratio of the distances of the stimulus positions

x; andx; from the “ideal point”p [3], [31]. This ideal point

is the corresponding prediction error. It is again assumed thatc@Not coincide with a stimulus point sincpf x;] must

the mappingZ,,. is monotonically increasing and satisfies remain finited If the same stimuli are scored very differently

T,1(0) = 0. The transformed preferend@p, ; ;, which is by different subjects, then this should be reflected by ideal
pr - XA

assumed to belong to a ratio scale, is compared against a preP0iNtSpx at some distance apart. Unlike the vector-product
diction[pr., x;]— [px, X;], which is derived from the stimulus model, the ideal-point model can also model different subject

positionsx; andx; and thepreference vectopy, for subject behaviors in case the space is 1-D. The model containg
k. Again, a subset model parameters for each preferehcee.,n DOFs for the

position of the ideal poinp; and one DOF for the correlation

C N factormy,.
L(k) =@ D)t Z 7, Pri; £ NA, - .
p(F) =G F G Py # The predictions from both models can be related in case of
[T Fieij| < Up(k), .-} (15) a Euclidean metric with= 2. More specifically, if| px |2 >

_ . o —|I%sll2, |Ix;1]2, then the first-order Taylor series expansion
of all possible stimulus combinations can be selected. While

dissimilarities are always positive numbers, preferences can log (|[x; — prll,) ~ — log (|[pxll,) + 1 (pr, %)

be both negative or positive, depending on whetherithe SAlIXi — Pkll2) = g Pk |2 —||Pk||§ Pr,X;
stimulus is preferred over thgth stimulus or vice versa. (18)
T??]remre' tf;e uppder “m?[f’(k) Works,on theI?bSﬁlute k\]/alue 6This can be avoided in XGms by using a slightly modified prediction
of the (trans_ ormed) preferences. It is smaller than the max- formula withlog(||x: — p||) replaced bylog(ro + |[x: — pa||:), where
imum amplitudeM,,(k) of the transformed preferences of r, is a small offset, such as, = 10-.
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can be used to derive the following approximation: The vector-product model compares the transformed at-
tribute scored’ Ay, ; ; with the linear prediction
X; — Pk 1
—10g<|| ”2> ~ (P, X — X;). (29)

lIx; — Pl Ipxll2 ek + fr - [ar, x| =cr + fr - (ar, xq)
Hence, if the ideal-poinp;. is far removed from the stim- =i+ fr+ Y Ak Time (23)
ulus positions, then only the direction of the vectsr is m=1

relevant for the predictions and the ideal-point model be-
comes equivalent to a vector-product model. In practice, this
will imply that estimation of the amplitudgp||» becomes

ill conditioned in case of the ideal-point model and that a
vector-product model, with one less DOF, should be pre-

The average strength of attributdor stimulusé, hence, in-
creases linearly with the coordinate of the stimulus projec-
tion on a 1-D axis with direction indicated by the attribute
vectoray. The offset valuey,, the scale factor;,, and the
direction of the attribute vectar, comprise a total of. + 1

ferred. . : .
Very often, the available preference data may be divided tpha};acrr;;;ers. We again adopt the conventionffhal| = 1 in
into groups. For example, the indexXes- 1, ..., K, /2 may ! '

The alternative to this vector-product model is the ideal-
point (or unfolding) modelideal-point modelunfolding model
in which the transformed attribute scores for stimulse
related to the distandgx; — ag||; of the stimulus at position
x; from an “ideal” image at position, i.e.,

refer to K,/2 different subjects rating preference (differ-
ences in image quality), while indexés= K,/2+1,...,
K, may refer to the same subjects rating another attribute dif-
ference (such as the difference in amount of perceived blur).
In such a case, it often makes sense to look for a common
rediction model for all subjects within a group. This corre-
Eponds to estimating a singJ;Ie prediction ?/eqbgr: p for cr+fio-[aw xi] = c+ i {on — log ([lxi — axlll)} (24)
all indexesk in a group. In case of a single group wik),
subjects, this reduces the number of parameters figmto
K, +n—1 for the vector-product model and frofi, (n+1)

where the offset

N
to K, + n for the ideal-point model. XGms allows to define ap = 1 Zlog(HXi —ay,) (25)
such groups and can also export ttegmalized transformed N i1

preferences

isincluded to obtain that the attribute predictions are centered
TP, = iTPk,i,j (20) around Fhe origin. The offset valug, the scale faCFOfky and_
w my the positiona;, are then + 2 parameters of the ideal-point

that allow for an easy comparison of experimental data acrossmodel.

subjects within a group. Indeed, for stimulus pair;j, the Again, a subset

repeated judgementS P}, , across subjects in a group o

should aggregate around the “group” predictipnx;] — Lo(k) ={(i.) | Arsy # NA,

[p.x;]. [T Ai,; — Ba(k)| < Ua(k), ... } (26)

3) Attribute Data: The stress term for the single-stimulus

attribute scaling data is defined as off all possible attribute scores can be used in the stress func-
tion. The transformed attribute values for subjebielong to

So (X1, ,XN) the interval fn, (k), M, (k)], for k = 1,..., K,. The upper

K, . 1/ limit U, (k) and the base valuB, (k) can be used to indi-
_ )1 2 ety () [ TAEk 5] j (21) cate that only the transformed attribute scores in the range
Ko 2= 3 G peraoy T Ak, — TAk.| [Bo(k) — Ud(k), Bo(k) 4+ U,(k)] contribute to the stress.
The number of observed attribute scores for subjastde-
whereT' A denotes the average transformed attribute score noted by, (k).
for subjectk, Ay ; ; is the attribute rating given by subject The zero point for dissimilarity data and preference
k for stimulus: on thejth repetition § = 1,..., K, ¢ = data has a physical meaning (i.e., no dissimilarity or pref-
1,...,N,andj =1,...,L,), and erence) and is, hence, uniquely determined. We could,
therefore, assume that the transformed dissimilarities
TAE; ; =TAp;; — (e + s [an,xi])  (22) TDy,; ; and preferenced' P ; ; belonged to ratio scales,
provided of course that the applied transformations satisfied

is the corresponding prediction error. The transformed at- 7:(0) = 7,.(0) = 0. Attribute data usually do not have
tribute score’ A ; ; = Tor(Ax,i,;) are compared against  such a natural origin, so that the transformed attribute scores
their predictions §;,x;]. These predictions for subjeét T A, ; ; are assumed to belong to an interval scale, i.e., they

are derived from the stimulus positioss and theattribute are only determined up to an arbitrary linear transformation.
vectora,. The same two prediction models as in the case of The stress is invariant under such a linear transformation
preference data are available for modeling attribute data in7°Ay ; ; — 6 - T Ay ; + ¢ Of the transformed attribute
XGms. data, since such a transformation can be absorbed in the
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regression parameters by mapping — 6 - ¢ + ¢ and
Tk = o - fr

whereb € [m, M] is the origin of the power function and
P(z) = P(x;q,x:), is also limited to this same range. The

As in the case of preference data, the attribute data maylinear relationship
be subdivided into groups. This corresponds to estimating a

single prediction vectos,, = a for all indexesk in a group.
In case of a single group witK, subjects, this reduces the
number of parameters frofd, (n+1) to 2K, +n— 1 for the
vector-product model and fro, (n+2) to 2K, +n for the
ideal-point model. Th@ormalized transformed attributes

1
RN ﬁ

across subjects and repetitiong in a group are expected
to aggregate around the “group” predictian %;] for stim-
ulus:.

TA;: (TAkyiyj — Ck) (27)

B. Interactively Controlled Power-Like Transformations

The monotonically increasing transformations from
Diijr Prigo @nd Ay j 10 TDy i j, Ty 5, andT Ay ;

T(z;1l,24,0) =x (33)
is used as the default transformation by the program XGms.
It corresponds to assuming that the input data is metric.

In case of dissimilarity and preference data, we choose
m = —M, whereM is the maximum (absolute) score and
b = 0, since the zero value is the natural origin for the trans-
formation. The resulting simplified transformation

M - P(x;q,1¢)

T(‘/E;(th): P(qut)

(34)

satisfiesI'(z; ¢, ;) = 0andT(M; ¢, x;) = M and contains
two parameters, i.eqg,andz,. In XGms, the threshold value
x; = t - M is specified byt as a fraction of\/.

In the case of attribute data, there is no natural origin for

are fixed in the above discussion. These transformationsthe transformation, so that the bias also a parameter. The

can, however, be modified interactively in XGms. In order
to limit the possible variations, the available nonlinear
transformations are based on a power-like function
. x| +x)? — 22

P asg.ar) = sign(a) - SLEZL 220 (g
that can be characterized by two parameteasdx,. This
function varies from zero for valuds| < xz, well below
the threshold to a power function with exponerior values
|| > x; well above the threshold. Note that the often-used
power-law relationship [20]

||

P(z;q,0) = sign(z) - —— (29)
is included as a special case. The above definition needs t
be modified to a logarithmic relationship

P (2;0,2;) = sign(x) - [log (|z| + z¢) — logz:]  (30)
in casey = 0. The continuity in this transition from a power
law to a logarithmic relationship is most easily observed by
verifying that the derivative to the funcion is

1

Pw; g, x0) = (o] + 20" (31

in all cases. Note that this derivative is strictly positive, so
that P(z; q, z;) is indeed monotonically increasing.

transformed bias value is denoted By= T'(b; q, z¢,b). In
this case, the threshol = ¢ - (M — m) is specified byt as
a fraction of the overall range.

C. Nonmetric MDS Through Optimized Transformations

The multidimensional model described above is es-
sentially metric, since the nonlinear transformations on
the experimental data are assumed to be knawpriori.
Rather than fitting the model to the experimentally observed
dissimilaritiesD,, ; ;, preferences?, ; ; and attribute scores
Ay, ;. the fit is made to the transformed valu€®, ; ;,
TPh,;;, and TA;; ; that are assumed to have ratio or
interval properties. In nonmetric modeling, the monotonic
transformations on the data are not specifiguiori, but are
determined as part of the optimization process. The XGms
gerogram allows for such nonmetric optimizations under
user control. The user can select to replace some or all of
the experimental data by optimally transformed data in the
above minimization of the stress.

The stress functions are composed of expressions of the
form

Sy [ T(0:) — 6
S T (o))"

whereT(o;) denotes the transformed observatipor case

1 andg; is the corresponding prediction according to the stim-
ulus configuration and regression parameters in the current
model. These predictioris are, for instance, linearly related

"
T

(35)

The nonlinear transformations that are used in the XGms g the distances between the stimulus positions in case of dis-
program are designed such that they preserve the range ofjmilarity and to the coordinates or coordinate differences of

the input data. It is easily verified that, if the input dat#s
within the range #f, A1], that

T (x;q,2¢,b)
(M —m)-Ple—b)— M- P(m—b)+m-P(M—b)
P(M —b)— P(m —b)

(32)
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the stimulus positions along known attribute or preference
directions.

In nonmetric MDS [3], [26], the monotonic transformation
T that minimizesS for known predictions; is selected as
the transformation for the experimental data. In XGms, the
monotonic transformations are such that they preserve the
extreme values. The extreme values are equal to zero and the
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maximum (absolute) value in case of dissimilarity and pref- Derlvaiive function

erence data and equal to the minimum and maximum value
in case of attribute data. In the case of preference data, the
optimum transformation is also restricted to be asymmetric
with respect to the origin, i.eZ7’(—o) = —T(0). Amongst
others, this implies thaf(0) =

1) Optimum Power-Like Transformationthe first pos-
sibility is to assume that the optimum transformation can be
closely approximated by (32). A nonlinear optimization over
the parameterg and¢ (andb in case of attribute scores) can
then be performed in XGms. The parameters are restricted
to the range; € [—6,6] andt € [0.02,4] in order to avoid
runaway arguments in the optimizatiotn case of attribute
scores, the origih for the transformation is limited to the
range [n, M] of scores that occur. The number of DOFs in
an optimized power-like transformation is, henég = 2 or

25 T T T T Y T T T

T(0)

F, = 3, depending on whether the transformed data is ratio 0 . 1 L L 2 —
(dissimilarity and preference data) or interval (attribute data), o 2 8 4 s 0
respectively. @

Although this optimization over a restricted set of
power-like transformations often gives reasonable results, it 9 T r v T r ' T T
may be interesting to compare the obtained optimum power-
like transformation with the optimum transformation out sf
of all possible monotonic transformations. For example, in
case of attributes, knowledge of the optimum monotonic
transformation often helps to select an appropriate bias
parameteb for the power-like transformations (it is usually

advantageous to put this bidsat the attribute score for s} .
which this optimum transformation is most asymmetric). O
Therefore, XGms also allows for an optimization across all “r i

possible monotonic transformations.
2) Optimum Monotonic (Kruskal) Transformation

algorithm for determining the optimum monotonic trans- Al -

formation in nonmetric MDS was originally developed by

Kruskal [3], [26]. We use an alternative and more flexible 1} T

method based on spline interpolation introduced by Ramsay . . .

[35]. % 1 2z s 4 s & 7 8 o
Suppose that the observatiofts;i = 1,...,7} contain o

J < I distinct values. Without loss of generality, we can (b)

assume that the data are sorted such that the.fikgtser- Fig. 4. (a) Piecewise-linear derivative functid (o) that is

vations{o;; 7 = 1,...,J} are all distinct and in increasing strictly positive. (b) Corresponding monotonically increasing

functionT' (o) that is piecewise quadratic with a continuous

order. Such sorting has no effect on the value of the stress. A derivative.

monotonically increasing transformation function

o increasing transformation on the data. The numtié(s; )

T(o) =T(0o1) + / T (x)dx (36) have to be rescaled at each iteration step to guarantee that
o1 the transformatiorf” preserves the data rangg [o/], i.e.,

can be obtained by integrating a positive-valued derivative the normalization conditions

function T”(0). We take a derivative functiofl”’ (o) that o4

linearly interpolates betwees positive valuesI”(o;), for T(os) = T(01) = / T'(z)dr =05 — 01 (37)

7=1,...,J. The corresponding integrated function will be o1

piecewise quadratic with a continuous derivative, as shown ang 7°(o,) = o, are imposed. Since only thé — 2 in-

in the example of Fig. 4. A nonlinear opt|m|zat|on of the termedlate values are modified from to 7(o;), for j =

stress in (35) as a function &F'(o;), for j = 1,...,.J, ,J—1, we obtain that the number of DOFs in the above

can, hence, be to used to find the optimum monotomcally Kruskal optimizatioris F, = J — 2.

“Nonlinear optimizations for bounded parameters are performed using the 3) Optlmum Spl!ne TranSfprmatlonThe Kruskal ap—_
DMNFB routine from the Netlib library at http://www.netlib.org. proach can be easily generalized to spline transformations
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in which case the derivativeE'(6;) are only specified for Nonmetric models add a third stage to each iteration step

a limited number of knot points;, for j = 1,...,5 + 2 in the minimization of the stress criterium. In this third stage,
(with s + 2 < J). The first and last knot point are chosen the monotonic transformations that minimize the stress for
equal to the minimum and maximum value, i.€., = o; the current stimulus configuration and regression parameters

ando,4 2 = oy, respectively, and the number of internal are updated.

knot points iss. All required derivative§” (o) are obtained

by linear interpolation of the values at the knot points, E. Graphical User Interface to XGms
while the monotonic transformatidfi(o) is again obtained

by integrating the normalized derivative function. XGms
allows forspline optimizatiorwith 0 < s < J — 2 equally
spaced internal knot points. Especially whénis large,
such a spline optimization of a reduced order is a practical
alternative to the general Kruskal optimization. The number
of DOFs in the optimized monotonic transformation is
F, = s+ 1in case of a spline optimization withinternal
knot points. One DOF is added by the integration, but two
DOFs are consumed by the normalization conditions that
guarantee that the range of the data is preserved.

The GUI to XGms is depicted in Fig. 5 for an experimental
data set containing both dissimilarity data and attribute data.
This interface was derived from the GUI of the XGuvis pro-
gram [8].

The panel at the top contains the major action buttons. The
user can either specify an initial stimulus configuration at
startup or can load a new stimulus configuration (using “Load
CONPF") at any time during the XGms session. He/she can
also switch to a random initial stimulus configuration using
the “Scramble CONF” button and can return at any time to
the last specified initial configuration using “Init CONF.”
The current stimulus configuration can be kept fixed and
o ~used for regression analysis against the experimental data. A

The XGms program minimizes an overall stress function gjng|e jteration step in the regression can be triggered with the
of the form “Step REG” button, while multiple iterations can be started
and stopped with the “Run REG” button. Alternatively, the

D. Optimization of the Stress Function

r r ry /7 . . . L
St [ |waSa| +|wpSp|" +|weSal / current stimulus configuration can be used as the initial
ress(Xy,...,Xy)= = - = ) L . . .
|wa|” +|wp| +|wa| configuration in an MDS analysis. Starting and stopping of
(38) the iterations in such an MDS analysis is controlled by the

“Step MDS” and “Run MDS" buttons.

Either the original data (Di and Ai), power-transformed
data (Dt and At), or spline-transformed data (Ds and As)
can be used in the regression or MDS analysis. Dissimilari-
ties and/or attribute scores from individual subjects can be
selected for transformation or the scores from all subjects
can be transformed simultaneously (Di-current, Dt-current,

as a function of the stimulus positioss, . ..,xu, the re-
gression parameter, (for dissimilarity), m andpy. (for
preference), and., fx, anday (for attribute scaling). In case
of nonmetric MDS, the monotonic transformaticfig, sz,
andT,; must also be optimized per subject. The weights are

initialized t0wq = w, = w,, but can be used to vary the . oy rrent versus Di-all, Dt-all, or Ds-all). Inthe example,
relative contribution of the dissimilarity, preference, and at- ¢ original data are used for the attributes, while the dissim-
tribute data to the overall stress. ilarity data are transformed using a power-like function. In
Allrequired optimizations are performed iterativélfthe order to allow processing by other data analysis or visual-
stimulus configuration needs to be optimized (as in MDS), jzation programs, most intermediate data in the XGms pro-
then one iteration step involves three stages. If the stimulusgram can also be output to ASCII files using the options in
configuration is fixed (as in regression analysis), then one the “file” menu. Amongst others, the normalized transformed
iteration step involves only two stages. scoreSTD’,;:iyj, TP;?,i,j' and/orTA’,;:iy, and their model pre-
In the first stage, which is only performed in case of MDS, dictions||x; — x;l|:, [Px, X:] — [Px,X;], and[ax, x;] can all
the stimulus positions are optimized, assuming fixed values be exported in this way.
for the regression parameters and the monotonic transforma- The bottom left panel allows to control the parameters of
tions. The stimulus configuration is normalized after each the multidimensional model, such as:
optimization step, i.e., its translation and dilation factor are 1) the dimensiom of the stimulus space;

determined bya priori conditions (see above). 2) the power- used in the stress function;

In the second stage, the regression parameters are opti- 3) the Minkowski powei of the distance metric;
mized for a fixed stimulus configuration and known mono- 4) the number of iteration steps in one call to the opti-
tonic transformations on the data. This latter optimization mization routines;
involves only individual terms in the stress function and is, 5) the weightswy, w, and/orw, on the different stress
therefore, fairly simple and efficient. In case= 2, it re- terms;
duces to solving a set of (simultaneous) linear equations. If ) the prediction model used (either vector product or
r # 2, then a (slower) nonlinear optimization is required. ideal point);

7) the parameterg and¢ (andb in case of attributes)
8Nonlinear optimizations in XGms are performed using the iterative rou- that co_ntr(_)l _the nonlinear power-like transformations
tine DMNF from the Netlib library. on the individual subsets of the data;
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8) the numbes of internal knot points in a spline trans-  ping subsets by means of brushiigin case “use brush
formation? groups” is selected, then only those dissimilarities and pref-

If data for several subjects and/or attributes are available, erences for which both stimuli belong to the same subgroup
then the “current” selection for the dissimilarity or attribute are used in the regression and/or MDS analysis. Similarly,
allows to view the settings and model fits for the current XGobi also allows to select a subset of the stimulus points.
subset of the data. The user can, for instance, select whichin case “use identified stimuli” is selected, then only those
parameters of the power-like transformation are fixed to a data that involve the identified stimuli are used in the anal-
user-specified value and which can be optimized by XGms. ysis. Both options can also be active at the same time.
In the case of preference and attribute data, a choice can The graph at the top in the bottom right panel of Fig. 5
be made between a vector-product model and an unfoldingshows how the stress has varied as a function of time during
model. Attributes and preferences can also be grouped so thathe XGms session. In addition, scatterplots of transformed
they share a common prediction vector. It is, moreover, pos- experimental data versus predicted model data and barplots
sible to (temporarily) exclude the subset of the data currently representing the histograms of the transformed experimental
being viewed from the stress criterium. Another way of se- data are shown for the “current” dissimilarity and attribute.
lecting a subset of the available data is through the “use brushThe small panels depict the overall transformations from the
groups” and “use identified points” options [8]. The XGobi input data to the transformed data. The linfi{g k), U, (&),
program that is used to visualize the stimulus configuration or [B, (k) — U, (k), B.(k) + U, (k)] used to define a subset

(see below) allows to partition the stimuli into nonoverlap-
10Brushing means that the attributes (such as color, shape, etc.) of the
9Kruskal transformation is considered as a special case of spline transfor- stimulus points can be changed. Stimulus points with the same attributes
mation, indicated by, or s, equal to max. are assumed to belong to the same brush group.
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Fig. 6. XGobi GUI.

of the “current” data can be changed by clicking at the de- images were as follows: 1) double-stimulus dissimilarity
sired position in the histogram of the transformed data. The scaling by five subjects and 2) single-stimulus attribute
data in the scatterplots can also be output to the visualizationscaling of perceived noisiness, blur, and quality by seven
program XGobi in order to examine them more closely. subjects. The 16 images of a scene corresponded to all
As mentioned before, the stimulus configuration is ex- possible combinations of four levels of blur and four levels
changed between the MDS program XGms and the visual-0f Gaussian additive white noise. We used XGms with
ization program XGobi. The GUI to the XGobi program is an inner-product prediction model for the attribute scores
shown in Fig. 6. The two-dimensional (2-D) stimulus config- to find separate 2-D stimulus configurations for each of
uration in the example is displayed as a point plot and the userthe scenes. The subjects were assumed to form a homo-
can view and/or alter this configuration. In Fig. 6, two brush 9eneous group, so that a single attribute vector was used
groups with eight stimuli each have been created using opent® describe the mapping from stimulus configuration to
and filled circles, respectively, while eight of the 16 available attribute strengths for all subjects. A nonmetric analysis
stimuli have been identified. The preference and attribute Showed that the dissimilarity and attribute scores were
vectors (or ideal points) can also be visualized in XGobi. @PProximately metric, so that no monotonic transformation
Higher dimensional stimulus configurations can be viewed Was performed on the data in the following analysis (i.e.,

dynamically by moving a 2-D projection plane through the £ Dk.i.s o ?’”F} and 'y, . Arig) lThedrefsuu'ti”g d
stimulus space [32]. 2-D model for the image Wanda was already illustrate

in Fig. 2. The corresponding 2-D models for the images
Terrace and Mondrian are shown in Fig. 7. We now discuss
in somewhat more detail how we can determine if these
In this section, we apply multidimensional modeling to models do indeed provide an adequate description of the
two experimental data sets. experimentally obtained attribute and dissimilarity data.
Since a Minkowski power ofr = 2 was used in the
minimization of the stress function, ANOVA can be used to
The first data set that we consider concerns imagesanalyze the goodness of fit between the multidimensional
degraded by noise and blur [9]. The experimental setup usedmodel predictions and the experimental data. Briefly stated,
for collecting these data was described in Section Il. The ANOVA attributes the variance in observed data to several
measurements performed per scene with the 16 different(potential) causes and determines the statistical evidence

VI. IMAGE QUALITY DATA

A. Images With Blur and Noise
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i it Muiltidi i | del (i ti
for these causes. In our case, the data is split into model ultidimensional model (image terrace)

predictions and prediction errors. The hypothesis to be
tested is that the prediction errors can be attributed solely
to noise, so that the model is adequate and need not be
improved further. The results of ANOVA analyses in our
example are summarized in Table 1. We briefly discuss how
these results were obtained and refer to the excellent book
by Draper and Smith [19] for a more in-depth discussion on
linear regression and ANOVA.

The observed attribute scorés, ; ; for different subjects o}
k cannot be compared directly. XGms can, however, export
normalized transformed attribute scorési; ; ; that can x
be used to compare responses across subjects that belong.1 |
to a homogeneous group (i.e., that are assumed to share a
common attribute vector). The most frequently used statistic
for testing the goodness of fit of a model to (repeated)
measurements is thimear correlation coefficientz, which
is defined! as

w

Quality

)
T

-3 | | 1 1 L
R2_1_ SS(residue) -3 -2 -1 0 1 2 a
B SS(total)
.2
PP A‘TAZZ.—@ 3
=1- k=1 £ (@5) €0 (K) Vg (39)

-
ka *
2 ki1 2o j)eL. () ‘ TAL 4 ‘

The stimulus predictions; = [a, x;] are derived from the
stimulus configuratiorxy , ..., x5 and attribute vecton of 1}
the multidimensional model. This attribute vector is assumed
to be shared by alt, subjects in a group. The number of

DOFs in the sum of squares SS (residue) is ol
ka

DOF (residue) = » Ny(k)—2 -k, —n, (40) At
k=1

since two DOFs are used per subject for obtaining the re- =2}
gression coefficients;, and f; that are involved in defining

the normalized attribute scores ang DOF are needed to
specify the attribute vectasi. In the current example, an -3
inner-product model was used in two dimensions, so that )
ne = n — 1 = 1 (in case of an ideal-point model, = n).

If transformations are applied to the original attribute scores Fi9- 7. 2-D stimulus configurations from the blur/inoise
experiment for scenes (a) “Terrace” and (b) “Mondrian.” Directions

(i.e., if TAk,f,,j # Ak,vﬁ,j)v then the number of DOFs in these for perceived quality, blur, and noise are indicated by the vectors.
transformations should also be subtracted from the above
DOF (residue). _ ~ based on all available data. We expect that this approxima-
Note that no DOF are counted for the stimulus configu- tjon has only limited consequences for the conclusions drawn
ration itself, which is formally only allowed if the attribute  from the following analyzes. If necessary, DOF (residue) can
data being tested are not used in determining this stimuluspe further reduced to reflect the number of DOF in the stim-
configuration. This is not strictly true in the current example s configuration.
in which the configuration is derived from the experimental | inear correlation coefficients indicate the percentage of
data using MDS. However, the regression analysis addressegariance in the data that can be described by a linear predic-
only a subset of the available experimental data and the 0b-tion model, but do not allow to judge whether such a model
tained stimulus configurations with and without the data in ¢an potentially be improved. This requires that the variance
this subset included are usually very similar. The statistics i, the prediction error is compared against the inherent vari-
in Table 1 were, therefore, derived for a fixed configuration, ance that is in the experimental data. We expect a smaller
UThis definition of the linear correlation coefficiedi relies on the fact qorrel'ation between the actual _data_and the model predic-
that the normalized scores are centered on the origin. tions in case the responses to identical stimuli on repeated
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;,; are derived from mini-

mizing a stress function with exponent= 2, as is the case

Table 1 If the normalized score¥' Af
MDS Model Statistics for Dissimilarityp) and Attributes Blur

(B), Noise (V), and Overall Quality@) in Case of Images

With Blur and Noise in the current example, then the following relationships
Scene Attribute R, R Lack of fit measure N N N N
Wanda D 0983 0979 F(119,476)= 1.163 < 1.258 o 5. A 42
B 0.878 0874 F(14,419)=0.902 < 1.715 Zﬁz - Z pi and Z P pi= Zﬁz (46)
N 0942 0941 F(14,419)=0.495 < 1.715 i=1 i=1 i=1 i=1
Q 0920 0911 F(14,419) = 3.210 > 1.715 (*)
Terrace D 0580 0976 F§119,47§i) =0.937 < 1%28 hold, so that there are only — 2 independent values;.
B 0893 0890 F(14,419)=0.878<1. - . e
N 0.957 0.955 F(14,419) = 1.958 > 1.715 (¥) If the mulu@mensmnal model flts the dqta, then the
Q 0939 0932 F(14,419) = 3.022 > 1.715 (¥) standard deviation of the regression errors in case of the
Mondrian =D 0979 0.972 ?8}19;1‘1‘;‘)3)_=111323<<117?28(*) model predictors; should not exceed the standard deviation
N 0.953 0951 F(14,419) = 1.260 < 1.715 of the regression errors in case of the best predicthrs
Q 0908 0902 F(14,419)=1700<1715 Unbiased estimates for these standard deviations are the
Cases where the statistics indicate that the model fit is not com- mean squares (MS), i.e.,
pletely adequate are marked by (*).
SS(lack of fit)
i i i MS(lack of fit) =————
trials vary more. This accuracy of the experimental data can (la ) DOF (lack of fit)

be estimated if the stimuli have been scored more than once
. o . SS(pure error)
(either within or across subjects). In such case, the best pos- MS(pure error) = — (47)
. : . . DOF (pure error)
sible predicto¥? for stimulusi is the average score

1 where DOF denotes the number of degrees of freedom
fi=— TA}, (41)
M; z,; EJ: ’ n; =DOF(lack of fit) = N — 2

: L L ne =DOF (pure error)
whereM; is the number of repetitions for stimulasUsing

ka
these average scores, SS (residue) can be split into :Z No(k) = [2- kg + 10+ (N —2)] (48)
k=1

SS(residue) = SS(pure error) + SS(lack of fit) (42)
in the respective SS. The ratio

where

MS(lack of fit)

F= (49)

SS(pure error) = Z Z (TA;, ;- /Ji)Q (43) Ms(pure exror)
k=L (i,5)€1, (k) is, hence, a good statistic for testing the goodness of fit of

the multidimensional model. In case of equal standard devi-
accumulates the variances on successive trials around the avations, we expect’ = 1. A large value ofF’, on the other
erage scorg; and hand, indicates that the prediction error for the model is sig-
nificantly larger than the prediction error for the best pre-
dictor and, hence, thdt is substantially smaller tha,,. A
better model than the multidimensional model under test can
be pursued in such cases. A lack of fit ,however, does not pro-
hibit that a large part of the variance in the attribute data may
be explained by the available model, i.e., that bethnd R,
are well above 0.9, for instance, so that the model may still
be a very useful (but not perfect) description of the data.

It has been shown that the ratto satisfies anf'(n s, n. )
SS(pure error) distribution under the hypothesis thhe standard deviations
~ SS(total) of the underlying (Gaussian) distributions are eq[i)]. If

X 2 this is the case, then the probability that a value greater than

. 2 ey E(i,j)ela(k) ‘ TAz,f,,j — B (45) F,, occurs is equal to

2
ke *
S Ceienoo | TA |

k. X )
SS(lack of fit) = 3 (Bi-8) @
k=1 (i,5)€l, (k)

isthe SS of the differences between the average s@persl
the predictions‘?i according to the multidimensional model.
The maximum value?, that can be obtained for the linear
correlation coefficient is

2 _
R:=1-

I, (Ze, nr
P(F > F,lnp,n.) = % = (50)
since SS (residue) cannot become smaller than SS (pure 272

error). with x = n./(n. + ns - F,), where we have introduced the

120bviously, an even better fit to the data can be obtained by using pre- notation

dictors of the form3,, ; that depend in a more general way on the subject -
k and stimulus. Such a predictor is, however, not in agreement with the _ a—1lpq1 _ \b—1
assumption that the subjects form a homogeneous group. L, (a, b) - /0 # (1 Z) dz (51)
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Fig. 8. Experimental quality scores versus MDS model predictions in the experiment with blur and
noise for scenes (a) “Wanda,” (b) “Terrace,” and (c) “Mondrian.” Estimated standard deviations

of the experimental scores, obtained by regarding judgements within and across subjects as
repeated measurements, are also indicated.

for the incomplete beta function ad®(a, b) = I,(a,b) for dependent variables. A single attribute vector with one DOF

the complete beta function. This result can be used to set upwas used to derive attribute strengths from stimulus coordi-

a quantitativelf” testfor the goodness of fit. If the observed nates for all subjects, so that the total number of regression

ratio F' is larger thar¥,,, where most oftem = 0.05, then it parameters i®OF (regression) = 1+ 7 -2 = 15. The op-

is considered very unlikely that both standard deviations aretimal predictor hadDOF(lack of fit) = 16 — 2 = 14 pa-

equal and hence that all the variance in the data is accountedameters, so thddOF (pure error) = 433 — 14 = 419. The

for by the model. goodness of fit can, hence, be tested based on the distribution
In case of our example data set, the number of DOFs in F(14,419). More specifically, witha = 0.05, an observed

the prediction errors i®OF(residue) = 448 — 15 = 433, ratio /' = MS(lack of fit)/MS(pure error) > I, = 1.715

since 16 stimuli where judged four times by seven subjects is interpreted as a lack of fit.

(448 = 16 - 4 - 7). The attribute scores were linearly corre- The statistics in Table 1 indicate that the MDS models

lated with the stimulus coordinatas in a 2-D space as in-  describe most of the variance in the experimental data
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Fig. 9. 1-D stimulus configurations from JPEG experiment are shown along the ordinates for scenes
(a) “Boats,” (b) “Child,” (c) “Girls,” and (d) “Lighthouse.” Abscissas show the JPEG quality (

parameter that is derived from the quantizer step size; the original image is plotted afvalu®0.
The regression analysis that is presented above for

(R > 0.87 in all cases). The linear correlation coefficient

R is largest for perceived noise and smallest for perceived single-stimulus attribute data must be modified slightly in

blur. Since this trend is also observed in the pure-error case of double-stimulus data, such as dissimilarity data.
The correlation coefficien®? for dissimilarity data is de-

correlationst,,, this only reflects the fact that blur is harder
SS(residue)

‘2

(52)

to judge consistently than quality, while noise is most easy fined by
to judge. The largest deviations from linear regression are
observed for overall quality. This can for instance be verified y
in Fig. 8, where the normalized quality scores for all stimuli =1~ SS(total)
are plotted against the stimulus coordinates along the quality
direction. The lack of fit seems to be mainly caused by the Yok DG ye k) ‘ TD; ;5 — dij
fact that the last point, which corresponds to the original =1- . 2
Y Ypenm | TPha |
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whered;; = ||x; — x,|, is the distance between the points
representing stimulus and 5. The number of DOF in the
residue error is

ka
DOF (total) = Y Na(k) — kq (53)
k=1

in casek, subjects are assumed to form a homogeneous
group (and no transformations are applied on the dis-
similarity data, i.e.,.7Dy;,; = Dx; ;). The maximum
correlation coefficienf?,, satisfies

SS(pure error)
SS(total)

k *
B Ekdzl E(i,j)eld(k) ‘ TDk,i,j - 6ij

2
k *
Ekdzl E(i,j)c[d(k) ‘ TDk,i,j

2 _
R, =1-

2

(54)

and corresponds to the best possible dissimilarity predictors

kq
1 * *
bij = bji = 4Mi,g’ M ; (TDk,i,j + TDk,j,i) (55)
fori,j =1,...,N, whereM;; and;; denote the respec-

tive number of times that stimulus pairs {) and (j, <) are

repeated (across subjects). Note that the optimal predictor is

assumed to satist§;; = 6;; andé; = 0, so that it is speci-
fied by N - (N — 1)/2 values. The lack-of-fit measure

kq
SS(lack of fit) =Y Y (dij — &;)°

k=1 (i) Cla ()

(56)

Table 2

MDS Model Statistics for Dissimilarityp) and Attributes
Blockiness B8) and Overall Quality @) in Case of
JPEG-Coded Images

R
0.941
0.886
0.889
0.956
0.949
0.956
0.956
0.931
0.941
0.929

Scene Attribute

Boats

Lack of fit measure
F(14,126) = 1.014 < 1.771
F(14,126) = 0.522 < 1.771
F(14,126) = 0.318 < 1.771
F(14,126) = 4.059 > 1.771 (*
)
)

Ry
0.948
0.893
0.893
0.970
0.961
0.966
0.970
0.939
0.959
0.945

Child
F(14,126) = 2.839 > 1.771 (*
F(14,126) = 2.749 > 1.771 (*
F(14,126) = 4.054 > 1771 (*
F(14,126) = 1.149 < 1.771
F(14,126) = 3.968 > 1.771 (*)
F(14,126) = 2.538 > L.771 (*)
0.946 0.940 F(14,126) = 0.981 < 1.771
0.956 0.947 F(14,126) = 1.689 < 1.771

Cases where the statistics indicate that the model fit is not com-
pletely adequate are marked by (*).

)
)
)
Girls )

Lighthouse

OWOOWoOomoOomO

perceived blockiness and quality by the same ten subjects.
We used XGms with an inner-product model for preference
to derive the 1-D stimulus configurations in Fig. 9. An
inner-product model in one dimension automaticallly im-
plies that the subjects are considered to form a homogeneous
group. Nonmetric analysis again confirmed only a marginal
improvement over metric analysis, so that the reported
analysis is again based on metric data (& ; j = Dx.i
andTijm» = Pk,i,j)-

Table 2 should be interpreted in a similar way as Table 1.
The normalized scores of different subjects for the same
stimulus combination i(j) and attribute (dissimilarity,
blockiness or quality) were treated as repetitions, so that the
statistics in Table 2 indicate how the derived 1-D stimulus
configurations can describe the average subject responses.

The results of the ANOVA analyses for dissimilariti),
blockiness B) and quality (2) indicate that large correlation
coefficients are found (i.eR > 0.88), so that the majority

sums the squared differences between the optimal dissimi-Of the variance in the date can be described by a 1-D model.

larity predictions and the interstimulus distances according
to the multidimensional model. In case of a stress function
with exponentr = 2, the best predictors satisfy the condi-
tion

2 diyby= )

(4,5)Cla (#,4)Cla

(57)

so thatDOF (lack of fit) = N - (N —1)/2 — 1. For our ex-
ample data, we obtain thBXOF (total) = 5-120—5 = 595,
DOF(lack of fit) = 119 andDOF(pure error) = 476, SO
that anZ'(119, 476) test with 5% confidence valug o5 =
1.258 is used to test the goodness of fit of the multidimen-
sional model to the experimental dissimilarity data.

B. JPEG-Coded Images

However, significant deviations from linear regression are
especially observed for the scenes “Child” and “Girls.” This

can for instance be verified in Fig. 10, where the normalized
quality scores for all stimulus pairs are plotted against the
differences in the stimulus coordinates. Fig. 10 illustrates
that the deviation from the regression line is larger than the
standard deviation of the experimental error for some of the
data points. A more complex (for instance, higher dimen-
sional) model will be needed to describe these remaining
deviations.

VII. SUMMARY

In this paper, we have shown how experimental data on
image quality and its attributes can be integrated using mul-
tidimensional models. The interactive program XGms for es-
timating multidimensional models from data has been intro-

The second data set that we analyze concerns JPEG-codeduced as an interesting extension to available programs. It

images [17]. The images were obtained by applying six has been shown that the models implemented in XGms can
different quality levels in the JPEG-baseline encoding [36] indeed provide adequate descriptions for two available ex-
of four different scenes. The measurements performed perperimental data sets.

scene were as follows: double-stimulus dissimilarity scaling  The experimental data are treated as continuous variables
by ten subjects and double-stimulus difference scaling of in the data analyses presented in this paper. In case subjects
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Fig. 10. Experimental quality scores versus MDS model predictions in the JPEG experiment
for scenes (a) “Boats,” (b) “Child,” (c) “Girls,” and (d) “Lighthouse.” The estimated standard
deviations of the experimental scores, obtained by regarding judgements across subjects as
repeated measurements, are also indicated.
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