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Abstract—With the fast development of visual noise-shaping
related applications (visual compression, error resilience, wa-
termarking, encryption, and display), there is an increasingly
significant demand on incorporating perceptual characteristics
into these applications for improved performance. In this paper, a
very important mechanism of the human brain, visual attention,
is introduced for visual sensitivity and visual quality evaluation.
Based upon the analysis, a new numerical measure for visual
attention’s modulatory aftereffects, perceptual quality signifi-
cance map (PQSM), is proposed. To a certain extent, the PQSM
reflects the processing ability of the human brain on local visual
contents statistically. The PQSM is generated with the integration
of local perceptual stimuli from color contrast, texture contrast,
motion, as well as cognitive features (skin color and face in this
study). Experimental results with subjective viewing demonstrate
the performance improvement on two PQSM-modulated visual
sensitivity models and two PQSM-based visual quality metrics.

Index Terms—Just-noticeable difference (JND), noise shaping,
perceptual quality significance map (PQSM), visual attention, vi-
sual quality evaluation, visual sensitivity.

1. INTRODUCTION

ITH THE fast development of visual noise-shaping
related applications (e.g., visual compression, error
resilience, watermarking, encryption, and display), research on
human visual sensitivity analysis and quality evaluation has
drawn a lot of attention from scientists and researchers [1]-[7].
Visual sensitivity refers to the ability of human observers to
detect noise or distortion in the view field. Numerically, visual
sensitivity can be regarded as the inverse of the just-noticeable
difference (JND), which determines the visibility thresholds
in pixels [8], [9] or subbands [5], [10]. Visual quality metrics
(VQMs) are designed to predict perceived image and video
quality by measuring the detectability [4], [5], [11]-[14] or
annoyance of noise/distortion [2], [15]-[17] introduced via
visual processing.
Visual noise shaping is to allocate the inevitable noise or dis-
tortion into some subbands or spatial areas so that the resultant
visual variation is the least noticeable or annoying to the human
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visual system (HVS). With regard to the human visual percep-
tion, the noise or distortion introduced into image/video can be
classified into three categories: 1) imperceivable noise; 2) near-
threshold noise; and 3) suprathreshold distortion. Imperceivable
noise is below JND and, therefore, hard to be perceived by the
HVS. Near-threshold noise is just above the thresholds while
suprathreshold distortion is much stronger than JND. Generally,
suprathreshold distortion appears in the form of structural pat-
terns, such as blockiness, ringing, blurring and jerkiness in de-
coded visual signal [18].

Visual attention is the result of several millions of years of
evolution [19], and the research on visual attention began more
than 100 years ago [20]. It can be defined as a set of strate-
gies to reduce the computational cost of the search processes
inherent in visual perception [21]. It has top-down (or knowl-
edge/task-driven) and bottom-up (or stimulus-driven) mecha-
nisms [22]. In the former mechanism, attention is under the
overt control of the subject and related to cognition processing
in the human brain [23], [24]; it is voluntary, effortful, and has
a slow (sustained) time course [25]. In the latter mechanism, at-
tention is driven by external stimuli and some fast perception
processing of the human brain draws attention to a particular
location; it is automatic and has a transient time course. Gen-
erally, the stimuli involved in bottom-up control include lumi-
nance, color, orientation and motion contrast, while the features
involved in top-down control are pattern, shape, and other cog-
nitive processing related features. Moreover, audition, touching,
and other sensories also affect visual attention [26]. Because the
top-down control has a much longer time course, it may play a
more important role on the shift and distribution of visual at-
tention. Visual attention modulates all levels of visual percep-
tion [27], including visual sensitivity [28] and, therefore, visual
quality evaluation.

The simplified concept of visual attention has been adapted
for video quality evaluation [29], [30]. In [29], under a simple
assumption that the HVS’ focus position is on the center of the
image, a weighted SNR metric is proposed according to the ec-
centricity and contrast sensitivity function (CSF), based on a
fixed gradient model of visual attention. In [30], a bottom-up
visual attention model is proposed to weight the visual quality
metric [11] for accuracy improvement, mainly based on loca-
tion, contrast, color, luminance, and motion, without considera-
tion of a gradient model. There is a need for automatic estima-
tion to include both bottom-up stimuli and top-down features for
visual sensitivity and quality evaluation. Moreover, the motion
suppression effect [32]-[34] has to be considered since motion
affects visual sensitivity and quality assessment significantly in

1057-7149/$20.00 © 2005 IEEE



LU et al.: MODELING VISUAL ATTENTION’S MODULATORY AFTEREFFECTS

video; integration of multiple stimuli and features would allow
the application to a wider scope of visual signal; and a flexible
gradient model is more realistic in the human perception [35],
[36].

In this paper, perceptual quality significance map (PQSM) is
proposed to reflect the modulatory aftereffects of visual atten-
tion, on visual sensitivity and quality evaluation. The PQSM is
automatically estimated with both bottom-up stimuli and top-
down features. A general formulation is proposed for multiple
stimuli/feature integration to capture the basic ideas of visual
attention for practical applications. Color contrast, texture con-
trast, motion, skin color, and face features are extracted and in-
tegrated in the current implementation, under a flexible gradient
model. The PQSM for an image or video can be incorporated in
JND estimators and VQMs enhanced performance.

The rest of this paper is organized as follows. Section II re-
views the related work on biological and psychological mecha-
nisms of visual sensitivity and visual attention, as well as on ex-
isting models for JND estimation, VQMs and visual attention.
The proposed computational model of PQSM generation, two
PQSM-modulated JND models, and two PQSM-based VQMs
are presented in Sections III-V, respectively. The experimental
results are demonstrated in Section VI, in comparison with the
associated subjective test data. The conclusion and future work
are given in Section VIL.

II. RELATED RESEARCH WORK

This section reviews the previous work related to the pro-
posed PQSM models. In Section II-A, biological and psycho-
logical evidence is presented for visual sensitivity, followed by
a review of the existing JND estimators. Section II-B intro-
duces the current VQMs. In Section II-C, characteristics of and
relevant research on visual attention are discussed; the section
also provides the ground of some strategies for the proposed
PQSM estimation algorithm in Section III. In Section II-D, cur-
rent techniques combining visual attention with various visual
processing tasks are introduced.

A. Visual Sensitivity Analysis

1) Biological and Psychological Mechanisms Behind Visual
Sensitivity: In general, visual sensitivity includes amplitude
sensitivity, motion sensitivity [37], and flicker sensitivity [38].
Among them, amplitude sensitivity is the basic. The latter two
are closely linked, and much more complex than amplitude
sensitivity. Amplitude sensitivity has been intensively explored,
and is typically modeled as the output of the biological and
psychological mechanisms of the HVS [7], [39], [40].

Visual sensitivity results from the anatomy, the limitations
and imperfections of the human eye, such as the optical prop-
erties of the HVS, the photo-electric transmission curve of
photoreceptor, the distribution of photoreceptor on retina, the
response of bipolar cells and ganglion cells in the second
layer of retina, and the noise introduced in signal via vision
path. After entering the human brain, visual signal is mainly
processed in cortex area V1. Electro-physiological experiments
have shown that the response of neurons in V1 exhibits a
band limited properties [41]. The HVS decomposes visual data
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into perceptual channels with spatial/temporal frequencies,
orientations, and colors [42].

Masking between two or among more visual channels usu-
ally results in an increase of the visibility thresholds [43], [44].
The masking in zero frequency channel is called luminance
adaptation, the masking in nonzero frequency channel is called
contrast masking, and the masking within a channel or with
other channel(s) is called intrachannel masking and inter-
channel masking. The common factors considered for visual
visibility thresholds are: 1) spatial and temporal frequencies,
2) luminance, and 3) contrast orientations.

The visual sensitivity is enhanced on precued spatial lo-
cations [45]-[47], due to the aftereffects of visual attention.
The visibility thresholds in the precued areas are lower than
the other nonattentional areas, with the recorded differences
varying from 0 to 9.4 dB because of different experimental
designations. Itti et al. reported that visual attention can elevate
the sensitivity with spatial and temporal frequencies by 30%,
the sensitivity with orientations by 40%, and the sensitivity
peak altitude by 5.2 dB [28].

Another global factor affecting visual sensitivity is motion
suppression [32], [33] caused by the motion of object projection
on retina. It shows the suppression can reach about 0.6 log units,
or 12 dB in maximum. It is believed that motion on retina image
increases the processing cost of visual perception and, therefore,
suppresses the visual sensitivity. Motion suppression happens
in the low attentional areas when the motion is different to that
in high-attentional areas. Since the eye movement follows the
shift of visual attention, motion suppression can be regarded
as another aftereffect of visual attention. It is worth noting that
inaccurate pursuit of eye movement also brings about motion on
retina in saccadic condition, which causes motion suppression.

2) Computational Models for Visual Sensitivity: The ex-
isting computational visual sensitivity or JND models can be
classified into two categories: pixel based [8], [9] and transform
based [5], [10], [48], [49] (extensively investigated especially in
DCT domain). A subband domain JND estimator can be more
precise, because it can really take into account the different
interaction between signals or components in the masking
effects. However, the pixel domain estimation is computation-
ally simpler, and has its advantages in some applications, e.g.,
motion estimation (before subband coefficients are available),
perceptual evaluation for already-decoded images/video.

In Chou and Li’s model [8], the JND of a pixel (z,y) is ob-
tained as

JND :Ina’x{fl(bgmg)/f2(bg)} ey

where bg is the average background luminance, mg is the con-
trast value, which is the maximum output of high-pass filtering
at four directions, and f;(bg, mg)) and fo(bg)) represent con-
trast masking and luminance adaptation, respectively (for 8-bit
image presentation)

fi1(bg,mg)=mg - a(bg)+B(bg 2)
0.5
f2(bg) = T°'<1_(1b?_g7 >+3’ ifhg <1273,
v-(bg—127)+3, if bg>127
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where a(bg) = bg-0.0001+0.115 and 5(bg) = y—bg-0.01. All
the parameters were empirically determined by fitting the model
with subjective test results [8] under certain viewing conditions
(i.e., a monitor with its associated gamma function, viewing
distance, ambiance illumination). The conversion between grey
levels and display luminance has been factored in the valuation
of the parameters in the above equations. The model is only for
luminance components.

Yang et al. [9] extended Chou and Li’s model to account for
multiple channels and the combined effect of contrast masking
and luminance adaptation, and, therefore, the spatial JND
threshold for a pixel can be expressed as

0! =0, + 0. —C., -min (65,0 ©))
where O, represents the luminance adaptation in each zero
frequency channel, ©! represents the intrachannel contrast
masking, C?_ reflects the interchannel masking between zero
frequency channel and contrast channel, and 7 denotes Y, Cb

and Cr in Y — Cb — Cr space. Combined with temporal
masking, the final JND is obtained as

o' =0 0! (5)

where ©! is the recorrection function for temporal masking [50].

Watson et al. proposed an analytic formula for JND thresh-
olds on each DCT frequency component [5] as the product of
a luminance adaptation Ty, a temporal contrast masking func-
tion T,,(w), a spatial contrast masking function T’ (u, v), and
an orientation suppression function 7, (u, v)

T(u,v,w) =Ty - T(w) - Ty(u,v) - To(u,v) (6)

where u, v, and w represent spatial horizontal frequency, spatial
vertical frequency, and temporal frequency, respectively. T, (w)
is the inverse of the magnitude response of a first-order discrete
IR low-pass filter with a sample rate of w, and a time constant
of 7 0

14+i2rrgw
e Tows —1]
Tw(w) = —— . (7
emows — 1
T¢(u,v) is the inverse of a Gaussian function
2 2 2
T¢(u,v) = exp <7ru f—%v (%) > (8)

where p is the display resolution in pixels/degree, and the factor
of p/16 converts from DCT frequencies to cycles/degree; fj
corresponds to the radial frequency at which the threshold is
elevated by a factor of e™. T}, (u, v) is expressed as

¢—1

2°¢
1 dnu?v?
u? 42

To(u,v) = €))

where 7 and ( are parameters. All parameters were decided by
fitting with the subjective test results.

B. Visual Quality Metrics (VQMs)

Visual sensitivity plays an important role in visual quality
gauging. Imperceivable noise has no or relatively insignif-
icant contribution on the change of visual quality. Under
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near-threshold conditions, visual quality is evaluated by mea-
suring the detectability of distortion; under suprathreshold
conditions, visual quality is evaluated by measuring the annoy-
ance of distortion. In the visual communication applications,
imperceivable noise usually results from perceptually lossless
compression; near-threshold noise usually results from lossy
compression at medium or high bit rates; and suprathreshold
distortions exist in low or very low bit-rate compression.
Measuring the annoyance of suprathreshold distortions is very
complex, since it is a highly subjective process that involves
with the high level activities of human brains, such as pattern
matching, object recognition and scene perception. It depends
on both the distortion characteristics and the original visual
contents, and artifacts differing qualitatively in their appearance
may produce different levels of annoyance even though they
have the same sensitivity threshold and the same error energy
[51].

Some VQMs measure the detectability of distortion [4], [5],
[11]-[14]. Among these VQMs, Teo et al. [11] and Winkler [4]
used steerable pyramid transform to separate input video into
several channels, and the contrast gain control has been realized
by an excitatory nonlinearity function. JNDs can be directly
used to facilitate the distortion evaluation, like in Watson’s
metric [5] in DCT domain and Lubin’s metric [12] in spatial
domain. In [14], perceptual errors are evaluated in flat, edge
and texture regions, respectively, before integration by Fuzzy
integral. Le Callet er al. [13] proposed another color image
quality metric; based on their psychophysical experimental
results, the visual representations of errors distributed over
color, spatial, and frequency dimensions between two images
are computed and then evaluated via error pooling.

Some other VQMs measure the strength of structural dis-
tortions. In [2] and [15]-[17], prior knowledge of coding
(structural) artifacts specific for decoded images/video is used
in VQMs. Blockiness, ringing, and blurring are oft-occurring
coding artifacts [18]. Karunasekera’s model [2] estimates
blockiness artifacts via horizontal and vertical high-pass filters
and masked edge errors via a nonlinear transform. A no-ref-
erence blocking artifact measurement algorithm proposed
by Wu [15] uses a weighted mean square difference along
block boundaries as the blockiness measure. In the structural
similarity index (SSIM) proposed by Wang et al. [16], visual
distortion is evaluated with luminance, contrast, and structural
changes, as well as motion in video. Ong et al. [17] detected and
combined three major disturbing artifacts (namely, damaged
edge, blockiness, and ringing) to give final quality scores for
low bit-rate visual communication.

C. Visual Attention Models

Biological research has proved that allocating attention to
a spatial location in the visual field is associated with an in-
crease in cortical response at that location [52], and this means
more HVS computational resource is allocated to high atten-
tional areas than low attentional areas. The formation of visual
attention is a very complex process concerning all aspects of vi-
sual processing in the human brain, such as processing of visual
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contents [19], stimuli and feature integration [53], [54], feature
binding [55], and object perception.

Moreover, visual attention has capacity limit [56], in spite
of some arguments in this topic [57]. Perceptual processing of
multiple items or large attentional areas are not independent and
the visual sensitivity enhancement can be reduced in such cases,
due to the limited computational resource of the human brain.

The shape of high attentional area can be arbitrary [58], and
the gradient of visual attention is flexible [35], [36]. Two special
cases are the attentional gradient model [59] and the zoom-lens
model [60]. In the vicinity of a highly attentional object, such as
a human head, the gradient of attention is quite steep [61], and
sometimes the distribution can be discrete—as in the zoom lens
model.

Other properties of visual attention are listed as follows.

e The HVS is not blind out of attention, although some
research shows that some big and flashy changes could
be ignored in peripheral vision [62], [63] (due to the fact
that the limited capacity of the human brain, especially
short-term visual memory [64], [65], may be so engaged
with the current visual objects that no resource can be
reallocated to process new changes).

e Visual attention enhances not only the visual sensitivity,
but also observers’ performance in a wide variety of other
visual tasks, e.g., the integration of multiple stimuli [53],
[54].

* Visual attention can be either object based or area based
[66].

e The integration of multiple stimuli on visual attention is
nonlinear additivity [67].

*  Most importantly, it is stimulus contrast rather than abso-
lute stimulus strength that guides the bottom-up attention
[67]-[69].

Since Broadbent [71] first proposed the filter theory of se-
lective attention, a number of computational models on visual
attention have been developed [72]-[75] based on Treisman’s
stimulus integration theory [76]. All these models adapt a two-
stage framework: The first stage preattentively processes all in-
coming visual information equally and in a parallel fashion; the
second stage filters and combines the extracted information to
form a salience map. The final attentional position is selected
by a embedded decision module.

D. Combining Visual Attention With Visual Processing

The concept of visual attention has been adopted in visual
processing in somewhat simplified forms [29], [77]-[83]. In
[77] and [78], region of interest (ROI) can be regarded as a dis-
crete visual attentional map. The maximum shift [79] method
and the generalized bitplane-by-bitplane shift method [84] were
proposed to enhance the ROI coding quality. In [80], Reddy pro-
posed a level of details control algorithm in virtual environment
to remove extraneous details which the user cannot perceive
and, thus, to optimize the computational resource assignment
on rendering and display with little or no perceptual artifacts.
Wang et al. [81] gave a foveation scalable video coding algo-
rithm for image compression with preselected fixation points.
A similar technique based on a fixed gradient model of visual
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frame i i-1 0

Fig. 1. General hierarchical PQSM [h: hierarchical maps for an image (from
the full-resolution map to the roughest map)].

attention was used by Lee er al. [29], [82], [83] to reduce spatial
resolution of image nonuniformly, and the resolution reduced
image can be then used for optimal rate control in video com-
pression [82], image quality assessment [29], and video com-
munication [83]; the eye fixation positions are either predefined
or found by an eye tracker.

Some other techniques with embedded visual attention esti-
mation were proposed in [30], [85]-[87]. As mentioned in the
Introduction, Osberger et al. [30] combined his bottom-up vi-
sual attention model with Teo’s VQM [11] for accuracy im-
provement by adding weights to attentional areas. In the mul-
tiple resolution rendering technique proposed by Cater et al.
[85], a task map built by a bottom-up visual attentional model
modulates the spatiotemporal CSF to guide a progressive anima-
tion system taking full advantage of image-based rendering. In
Dhavale ef al.’s paper [86], Itti’s attention model [74] is com-
bined with a foveation filter to keep more details in video at
predicted eye fixation positions. Yang et al. [87] used a visual
sensitivity map modulated by skin color based attention for rate
control in videophone compression applications.

III. PERCEPTUAL QUALITY SIGNIFICANCE
MAP (PQSM) ESTIMATION

As we have already known, more computational resource of
the human brain is allocated to high attentional areas than low
attentional areas, and this is the reason of visual attention’s mod-
ulation on visual sensitivity in different areas. We propose a
new numerical expression, PQSM, to represent the combined
effect of the modulation of visual attention and the extra com-
putational cost imposed by motion suppression, on visual sensi-
tivity and visual perception. The PQSM is designed to reflect the
statistical allocation of the human brain’s processing resource
on local visual contents. We do not attempt to implement a full
visual attention model but rather aim at a practical solution in-
spired by the relevant physiological and psychological evidence.
The concept was first proposed in [88], and improved in [89]. As
pointed out in Section II-A 1, conceptually, the influence of mo-
tion suppression can be regarded as an aftereffect of visual atten-
tion. However, for the convenience in computation, the PQSM
for an image can be determined as the product of the influence
of motion suppression and the visual attention measure derived
from the other stimuli/features, since motion suppression is a
global factor (Section III-C). The hierarchical PQSM can be ex-
tended to the temporal axis for video, as illustrated in Fig. 1.

The proposed three modules to generate a PQSM are il-
lustrated in the left-hand side portion of Fig. 2: 1) the visual
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attention module to extract and integrate multiple stimuli/fea-
tures to form a visual attentional map; 2) the post-processing
module to smooth and implement a flexible gradient model
for the modified visual attentional map; and 3) the motion
suppression module to include motion influence for the final
PQSM. Fig. 3 shows the next level of details for the PQSM
generation. Only those well-established findings on visual at-
tention presented in Section II will be modeled in the proposed
algorithm.

A. Visual Attention Module

The proposed visual attention model is driven by both
bottom-up, space-based stimuli (color, texture, and motion) and
top-down, object-based features (skin color and face). Selection
of the stimuli/features is based on a balance of computational
efficiency and output accuracy.

1) Derivation of Stimuli and Features:

. Color contrast: Color contrast is one of the basic
stimuli that draws attention, and a bigger color differ-
ence from the background color usually attracts higher
attention. A three-step approach has been developed
for deriving and scaling a color contrast stimulus in an
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RGB color image. 1) The dynamic k-means algorithm
clusters the 8 x 8 image regions with a predefined
variation. If the size of the biggest cluster is more than
a threshold (e.g., a half of the image), the background
color (R.,G,, B.) is calculated as the mean in the
cluster; otherwise, color contrast is not a stimulus in
the image, because only pixels with color sufficiently
distinguished from the background attract attention
(if no obvious reference cluster exists, no pixel would
stand out due to its color). 2) The distance between a
color value and the background color is calculated by

dis=+/(R—R.)>+ (G -G.)?+ (B—-DB.)2 (10

The distance histogram is constructed: His =
{nnis—a}, and np;s_q is the number of pixels in
the image with dis = d. 3) A scale is calculated by

Z MNhis—d

le— 4 11
seate D Mhis—d * d (b
d
The color contrast stimulus is scaled as
s. = scale x dis. (12)

Finally, s, is truncated so that s. € [0, s™**], where
s08% = (.5 is used in this paper. Obviously, the bigger
color variation from the dominant color a pixel is, the
bigger contribution it has toward the PQSM. If more
pixels in an image have bigger color variation, the im-
pact of a certain color variation will not be as signifi-
cant as the situation otherwise.

Texture contrast: The average gradient is obtained with
horizontal and vertical Sobel operators in a region (of
size 3 X 3 in this paper). The texture stimulus s, is
derived and scaled with a similar three-step method as
in the formation of color contrast stimulus.

Motion: Motion is one of the major stimuli on visual
attention [90], [91]. Motion detected from video can
be divided into relative motion and absolute motion.
The former is the object motion against the background
or other objects in the scene, while the latter is the
motion against the frame of viewing (the combination
of camera motion and object motion in the real-word
coordinates!). Relative motion is a stimulus on visual
attention.

Black’s multiple layer dense flow estimation algo-
rithm [92] is adopted to estimate the absolute motion
V4, and the relative motion v,. is estimated via Zhang’s
estimation algorithm [93]. The scaled relative motion
vl. is obtained with the similar scaling procedures as
Steps 1)-3) in the estimation of color contrast stim-
ulus; Step 1) for clustering is not needed because the
relative motion of background is always zero.

It is not easy to evaluate the effect of v, and v, to-
ward visual significance in general. Based upon the ob-
servation on most digital images in practical use, here
we give a simple heuristic set of rules. 1) Usually, the

ITf the camera follows exactly the object, the absolute motion is zero.
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TABLE 1
MOTION ATTENTIONAL LEVEL BY RELATIVE MOTION AND ABSOLUTE MOTION

relative motion || absolute motion | motion attentional level
low low low
low high low
high low high
high high moderate

attentional level of an object is low when relative mo-
tion is low (as shown in the upper two rows of Table I).
1) The attentional level of an object is relatively sig-
nificant when relative motion is high. However, since
the camera’s motion often indicates the most impor-
tant object/region in the visual field, the attentional
contribution of a motion stimulus for an object with
both high absolute motion and high relative motion is
merely moderate (because the object is usually not of
the primary interest); the highest attentional contribu-
tion occurs with low absolute motion and high rela-
tive motion. These two circumstances are represented
as the two lower rows in Table 1.

The motion stimulus generated by relative motion
should be adjusted by absolute motion (i.e., motion

mapping)

Sm = V.. * Gadj (U1, Vq) (13)
where g¢.q;() is an adjusting function defined by
Table II, based on the concept of Table I and the ex-
perimental results with the standard video sequences
commonly in use.

. Skin color: We include some useful cognitive features
to achieve a more effective extraction for practical
usage. Human body and warm color [74] are always
cognitive-related features on visual attention. A sta-
tistical model is adopted to detect regions with skin
color on Cb — C'r domain. The skin color stimulus is
denoted as s;.

. Face: As another cognitive feature, face is a more sig-
nificant stimulus on visual attention. Rowley’s face de-
tection algorithm [94] is used to locate faces in image.
The result of skin color detection is used to recorrect
the face detection result because Rowley’s algorithm is
merely based on gray-scale image. The face stimulus
is denoted as sy.

2) Integration: Although it has been proven that bottom-up
controlled attention and fop-down controlled attention are pro-
cessed in different areas in the brain [36], [95], their integra-
tion is mostly processed in the prefrontal cortex [95]. Noth-
durft’s nonlinear additivity model [67] is adapted to integrate
the stimuli and features together. In his model, the combined
saliency effect of stimuli s; and s» can be expressed as

S12 = 81 + 89 — 874 (14)

where

5)

$1o = min(cya - $1,¢21 + $2)
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where s7, represents the adjustment for the combined effect,
c12 and co1 represent the cross-dimensional coupling factors be-
tween s; and sy, and ¢35 and co; fall in the range of [0, 1].

In this paper, (14) is extended to N stimuli/features

N N
Sn=>_si= > f(cip-sp,cpi-si) (16)

where p = argmax(s;), i = 1,---,N; f(-,-) is an appro-
priate nonlinear fuﬁction, and, in this paper, f(-,-) = min(-,-)
is chosen; only the coupling with the main stimulus/feature is
considered. A bigger value for ¢y, (¢, = 0.75 in the current
implementation) is adopted because of the high correlation be-
tween the face and skin color. On the other hand, it is believed
that color and luminance contrasts attract independent attention
[70], so we have ¢, = 0. We have ¢y, = ¢n,s = 0.5, and
the other coupling factors are set to 0.25. Obviously, more re-
search is needed in determining the optimum parameters.
Equation (16) satisfies

Si—1 <85 < Sic1+ s (17)
where S;_; represents the combined effect of + — 1 visual
stimuli. We can see that (14) is equivalent to (16) when NV = 2.

B. Post-Processing Module

For efficiency, the post-processing module is performed on
block representation

Sn(z',y")
(1"73/’)6%,,‘;,

L

(18)

vamy (a, b) =

where (a, b) is index of block representation, R,, ; is a collection
of pixels in block (a,b), L is the size of R, and Sy (z’,y") are
visual attention values in block (a,b). In this paper, the block
size is set to 8 x 8 and L = 64.

A flexible kernel is used to mimic the flexible gradients with
visual attention [35], [36] and is defined as

, , 1, ifp<o
kerg(a —a',b—b") =<  (-0)? (19)

e 2, ifp>co

where p = /(a —a’)2 + (b— V)2 and 0 = vamy(a,b) + 1.
The normalized kernel is obtained by

kerg(a —a’,b — V')
ki —ad,b—-b)= : .
ex(a—d, ) > kerg(a —a’,b—b')

a’b’

(20)

Obviously, the proposed kernel fits the flexible gradients of vi-
sual attention: When the value of vamn; (a, b) is high, the result
of the kernel is steep, and vice verse.

The enhanced visual attentional map is derived as

vama(a,b) = max (vamq(a’,b’) - ker(a —a',b—b")). (21)
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TABLE II
ADJUSTING FUNCTION ¢aq;j(v)., va) (0/™3* IS THE MAXIMUM VALUE OF SCALED RELATIVE MOTION)
vq € [0.0,1.0) | [1.0,2.0) | [2.0,3.0) | [3.0,4.0) | [4.0,5.0) | [5.0,00)
vl € [0.0, Lv[™e® 1.0 1.0 1.0 1.0 1.0 1.0
[Lyjmes  Zyyimaz) 1.0 1.0 0.9 0.9 0.8 0.8
[2ypmaz Syrmasy 1.0 0.9 0.8 0.7 0.6 0.5
TABLE III
SUPPRESSION ON VISUAL ATTENTION BY ABSOLUTE MOTION
visual attentional level (vams) || absolute motion (v,) | motion suppression
low low weak
low high strong
high low weak
high high moderate
TABLE 1V
ABSOLUTE MOTION SUPPRESSION FUNCTION fs(Vvams, v, )
vg € [0.0,3.0] | [3.0,4.0) | [4.0,5.0) | [5.0,6.0) | [6.0,7.0) | [7.0,8.0) | [8.0,00)
vamg € [0,1/3) - vam§*** 1.0 0.9 0.8 0.7 0.7 0.6 0.6
[1/3,2/3) - vam3™*® 1.0 1.0 1.0 0.9 0.8 0.8 0.7
[2/3,1.0) - vam3** 1.0 1.0 1.0 1.0 1.0 0.9 0.8
To address the visual attention’s capability limit issue men- f.:f;;f(), 70
tioned in Section II-C, the visual attentional map is further mod- Munas - =0
ified as _ »
1 0, 140
vamg(a,b),  if > vams(a,b) < VA M 0. £240
a,b
vams(a,b) = vama(a.b)sVA e o ooy A
> vams(a,b) 7 % 2(a,b) 0 Prnin = 0.4 Praz = 3.0

a,b (22)
where VA = 1.0 x N, x Ny is a predefined constant to reflect
the visual attentional capacity of the human brain. NV, x Nj, are
the horizontal and vertical block size of video.

C. Motion Suppression Module

Motion suppression is caused by object motion on the retina,
which can be measured by absolute motion v, if the eye’s move-
ment on the visual field is smooth and slow. The relationship
between visual attention and motion suppression is outlined in
Table III, so the motion suppression effect can be determined
as the product of vams and the influence of motion suppression

Jins()

pgsm = vamg - fis (vams, v,) (23)
where 0 < fi,5() < 1is a function defined in Table IV, which is
an implementation of Table III. Table IV is set for v, < 8 pixels,
in line with the response speed of actual video acquisition de-
vices (if v, > 8 pixels, the image is prone to blurring error). Ta-
bles II and III are defined for video in PAL (720 x 576, 50 Hz)
format. As for NSTC (720 x 486, 60 Hz) video, v, is adjusted
by multiplying by a factor of 6/5. In general, the motion mea-
sures in (23) should be degrees per second. With fixed viewing
distance and display framerate, pixels per frame is equivalent to
degrees per second.

Fig. 4. Modulation functions for PQSM-modulated JND Model 1 and 2.

IV. PQSM-MODULATED VISUAL SENSITIVITY MODELS

Fig. 2 shows how the PQSM modulates a visual sensitivity
model. Yang’s JND model [9] and Watson’s JND model [5] will
be demonstrated with PQSM modulation, and the resultant mod-
ulated models are hereinafter referred to as PQSM-modulated
JND Model 1 and PQSM-modulated IND Model 2, respectively.

PQSM-modulated JND Model 1 can be expressed as

Pi _ P, P Pi - Pi P,
0 =0"+ 0" — CL -min (02°,0)
i i P,i
@P,z — @P,z .ob
s t

(24)
(25)

where O @i @F @Pi @Pi and CIIZ’i denote the mod-
ulated versions of the variables defined in (4) and (5), and

0" =0; - fI(pgsm) (26)
0r" =0. - fF (pqsm) 27)
Ot =t - fI (pasmy (28)
0, =0 - f(pgsm) (29)

where f'(), fP(), fPi(), and f7() are the corresponding
modulation functions, as exemplified in Fig. 4. In general, with
a higher PQSM measure, f/"(), f2(), and () take lower
values, and f£:*() takes a higher value.
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TABLE V
VALUES OF PARAMETER ¢,, IN MODULATION FUNCTIONS
functions | ¢«
0 020
ji%) 0.14
fgfo 0.14
£i) 1012
Pi)y | 012
FON) | 012
20 |12

For PQSM-modulated JND Model 2, (6) can be rewritten
with the (a, b)th DCT block of ith channel as

T (u,0,w,0,b) = Ty " (a,b) - T4 (w, a, )
-T;)’i <u7 v, a, b) : Tl; <u7 ’U) (30)

where the modulatory aftereffect on contrast orientation is ig-
nored, and

Ty (a,b) =Ty - £ (a,b)) 31)

TP (w,a,b) and T;”i(u, v,a,b) can be yielded by substituting

’w?i(a? b) = wi : fqiL(a b)

féj’i(a,b) :fé ’ fﬁ’i(a,b)

for w, and fj in (7) and (8). fﬁ’i(), fE(), and f;;‘() are the
corresponding modulation functions, as exemplified in Fig. 4.
For fL(), f IZ"Z (), and f3¢(), the modulation functions also can

be expressed as

(32)
(33)

Mﬁtnax7 p 2 Prnax
o) = { L+ (p—=1) X ¢sy Pmin <P < Prmax  (34)
M:mn7 p S Pmin

and for fg’i(), FRi(), f24(), and f(), they can be expressed
as

fP’*(p): 1_(]7—1)><¢*¢ Pmin<p<Pmax (35)
M;nax : p S Pmin

where ¢, is a factor to control the slope for each modulation
function.

With higher PQSM measure, the turning point of temporal
and spatial contrast masking curves (w* and f(f’ ") are pushed
to higher frequencies, and the luminance adaptation tolerances
are reduced. Itti’s experimental results mentioned in Sec-
tion II-A.1 have been used in determining the actual maximum
and minimum values of each modulation function. The ¢,
value of each modulation function are obtained by tuning the
combined effect to fit Itti’s experimental results, as shown in
Table V.

V. PQSM-BASED VIDEO QUALITY METRICS (VQMS)

It is expected that the PQSMs modulation on visual sensi-
tivity models enhances the performance of different VQMs. To
demonstrate this, two VQMs are used in this paper: VQM A is a
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PQSM modulated MSE metric, and VQM B is the PQSM mod-
ulated Wang’s SSIM [16]. Only luminance component has been
used for the sake of efficiency, since luminance plays a much
more important role in human visual perception than chromi-
nance components.

Let I, I, and ©F denote the original video sequence, the
degraded video sequence, and the JND profile estimated by
PQSM-modulated JND Model 1, respectively. The perceptual
distortion of VQM A can be expressed as

Eq= z:quH%yJ%—ﬂ%%ULGPWwJ» (36)

(z,y,t)
where

—1, ifa>b

ifa <b. 37

f A(a7 b) = { g ,
In (36), any distortion below the detectability threshold
OF (x,y,t) is excluded from accumulation for the visual dis-
tortion score. Equations (36) and (37) are enhanced formulation
to Chou and Li’s peak signal-to-perceptual noise ratio (PSPNR)
[8], since an above-threshold error is scaled by the threshold.
Because SSIM values are block-based [16], the perceptual
distortion of VQM B can be expressed for (r, ¢)th block as

max
(z',y")eRma

En= Y fo ($50M(rq.0). (', y', )

(1’7q7t)

—ﬂfdhﬂD79504J%p%mdnmﬂ) (38)
where

(39)

_Ja-(d=p)", ifb>c
fB(G,,b,C,d) - {07 lbeC

where ™7 represents the (7, q)th block, ©F and pqsm, de-
note the block-based © and pqsm. 7 = 1.2 and 3 = 0.4 are
the constants to map PQSM values into an appropriate range
nonlinearly. With the choice of fg(a, b, ¢,d), VQM B accounts
for the effect of both PQSM and ©F (r, ¢, t): If the maximum
block-based error is below ©F (7, ¢, t), it is not accumulated for
FEB; otherwise, the PQSM values are nonlinearly and monoto-
nously scaled as the weighting for visual annoyance measure-
ment.

VI. EXPERIMENTAL RESULTS
A. POSM Estimation

The intermediate and final PQSM estimation results on the
30th frame of Suzie, Autumn leaves and Foreman video test se-
quences are shown in Figs. 5-7, respectively. In Fig. 5, all de-
tected stimuli and features have contributed in forming the final
PQSM indicating the attentional levels in the image, largely in
line with the human perception. The shapes of the face and the
eyes are somewhat arbitrarily set, since Rowley’s algorithm [94]
only indicates the upper right and bottom left corners of a face,
and the centers of eyes. This simple representation of face and
eyes is not accurate, but sufficient for the application. Fig. 6
shows the results for a natural scene, where the detected stimuli
and features except for human faces contribute to the final result.
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Fig. 5. Example 1 on PQSM estimation: (a) 30th frame of video sequence “Suzie”; (b) absolute motion map; (c) relative motion contrast stimulus; (d) face-eye
stimulus; (e) skin color stimulus; (f) color contrast stimulus; (g) texture stimulus; (h) integrated visual attentional map; (i) block-based attentional map after
post-processing; and (j) the final PQSM with motion suppression.

(2) | ' ‘ 0

Fig. 6. Example 2 on PQSM estimation: (a) 30th frame of video sequence “Autumn leaves”; (b) absolute motion map; (c) relative motion contrast stimulus;
(d) face-eye stimulus; (e) skin color stimulus; (f) color contrast stimulus; (g) texture stimulus; (h) integrated visual attentional map; (i) block-based attentional map
after post-processing; and (j) the final PQSM with motion suppression.

_ (e)
(h) (i) 0)] |

Fig. 7. Example 3 on PQSM estimation: (a) 30th frame of video sequence “Foreman”; (b) absolute motion map; (c) relative motion contrast stimulus; (d) face-eye
stimulus; (e) skin color stimulus; (f) color contrast stimulus; (g) texture stimulus; (h) integrated visual attentional map; (i) block-based attentional map after
post-processing; and (j) the final PQSM with motion suppression.

Itis worth noting that some false skin color has been detected but  motion contrast still lead to reasonable alignment with the HVS
does not bring about significant impact toward the final PQSM. observation. Inclusion of mutlistimuli/features helps to increase
In Fig. 7, face detection is a failure (face detection is currently the application scopes and algorithm robustness. In general, rel-
still a challenging task because of the variability in scale, loca-  ative motion, face and skin color are the more important factors
tion, orientation, and pose [97]), but the skin color and relative to the resultant PQSM.
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(b)

Fig. 8.
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Embedding noise into the 30th frame of video “Foreman”: (a) JND map generated by the proposed PQSM-modulated JND Model 1; (b) JND map

generated by Yang’s model; (c) noise-injected image based on PQSM-modulated JND Model 1 with PSNR = 32.27 dB; (d) noise-injected image based on
Yang’s JND model with PSNR = 32.84 dB; (e) noise-injected image based on PQSM-modulated JIND Model 1 with PSNR = 24.61 dB; and (f) noise-injected

image based on Yang’s JND model with PSNR = 25.18 dB.

B. POSM-Modulated JND Models

To evaluate the performance of proposed PQSM-modulated
JND Models 1 and 2 against their original models, noise is in-
jected into video according to the JND models. For a pixel-based
JND model (i.e., the original Yang’s model [9] or PQSM-modu-
lated JND Model 1), a noise-injected image frame can obtained
as

I'(z,y,t) = I'(2,y,t) + €0 - O)(z,y, 1)

-sgn (random(z, y,t))  (40)

where 92 is ©° for Yang’s model, or ©P for PQSM-modulated
JND Model 1; eg < 1 for perceptually lossless noise (if the
visibility threshold is correctly determined), and e > 1 for
perceptually lossy noise; random() gives a random number, and
is used here just to control the sign of the associated term in (40)
so that no artificial pattern is added in the spatial space and along
the temporal axis.

Such a noise injection scheme can be used to examine the per-
formance of ©(z,y,t) against ©(z,y,t). A more accurate
JND model should derive a noise injected image (or video) with
better visual quality under the same level of noise (controlled by
€o), because it is capable of shaping more noise onto the less
perceptually significant regions in the image. PSNR is used here
just to denote the injected noise level under different test condi-
tions. With the same PSNR, the JND model relating to a better
subjective visual quality score is a better model. Alternatively,
with the same perceptual visual quality score, the JND model
relating to a lower PSNR is the better model.

For a DCT-based JND profile T} (u, v, w), the injected noise
is obtained as

d'(u,v,w) = ep - T (u, v, w) - sgn (random (u, v, w)) (41)

where T is T'(u,v,w) for the original Watson’s model [5],
or TPi(u,v,w) for PQSM-modulated JND Model 2; e and
random() have similar meanings as in (40).

Therefore, the degraded video sequence is

I'(z,y,t) =DCT™! (bCT (Ii(w,y,t)) + di(u,v,w)) 42)

where DCT() and DCT™*() denote DCT transform and inverse
DCT transform, respectively.

To compare Yang’s JND model and the proposed PQSM-
modulated JND Model 1, the noise injected images are used
for four test sequences: Suzie, Autumn leaves, Foreman, and
Harp. An example of the generated JND profiles and noise in-
jected images are shown in Fig. 8. Fig. 8(a) shows the generated
IND profile by PQSM-modulated IND model 1 while Fig. 8(b)
shows the generated JND profile by Yang’s JND model, with
the upper, lower left, and lower right parts being the Y, Cb, and
C'r components, respectively; Fig. 8(c) and (e) are the noise-in-
jected images by PQSM-modulated JND Model 1 with different
PSNR levels; Fig. 8(d) and (f) are the noise-injected images by
Yang’s Model, with similar or slightly higher PSNRs in compar-
ison with Fig. 8(c) and (e). Fig. 9 gives a close-up view in the
most sensitive region (i.e., with highest PQSM values) of Fig. 8
for better visualization, and, as can be seen, PQSM-modulated
JND Model 1 yields better visual quality in the noise-injected
images.

PQSM-modulated JND Model 2 is compared with Watson’s
JND model in the similar manner. Fig. 10 shows a close-up view
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Fig. 9. Details of the most sensitive (with the highest PQSM values) region of
Fig. 7: (a) original image; (b) noise-injected image based on PQSM-modulated
IJND Model 1 with PSNR = 32.27 dB; (c) noise-injected image based
on Yang’s JND model with PSNR = 32.84 dB; (d) noise-injected image
based on PQSM-modulated JND Model 1 with PSNR = 24.61 dB; and
(e) noise-injected image based on Yang’s JND model with PSNR = 25.18 dB.

in the most sensitive region of the 30th frame of Suzie sequence
under two PSNR conditions. As expected, PQSM-modulated
JND Model 2 yields better visual quality in the noise-injected
images.

To confirm the above-mentioned visual quality observation,
formal subjective viewing tests have been conducted for the
noise-injected sequences based on the two pairs of JND models
(namely, Yang’s JND model and PQSM-modulated JND Model
1, Watson’s JND model and PQSM-modulated JND Model
2), with the noise conditions listed in the upper portions of
Tables VI and VII. Each display and scoring session for a pair
of noise-injected sequences generated by a pair of JND models
is organized as: Video Sequence I, two seconds of grey screen,
Video Sequence II, two seconds of grey screen, Video Sequence
I, two seconds of grey screen, Video Sequence II, two seconds
of grey screen, scoring. Both the display order of the sequences
in a session, the order of noise-injection conditions, and the
order of th four test sequences were randomized for subjects.
The preference opinion scores (POSs) are given by subjects
to indicate the quality comparison: 1) Q; > Qyy, the visual
quality of Sequence [ is better than Sequence I1;2) Q1 = Qgy,
viewer can not decide which sequence has better quality; and
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(a)
(®)
(d)

(©

Fig. 10. Details of most sensitive (with the highest PQSM values)
region of sequence “Suzie”: (a) original image; (b) noise-injected image
based on PQSM-modulated JND Model 2 with PSNR = 31.26 dB; (c)
noise-injected image based on Watson’s JND model with PSNR = 31.37 dB;
(d) noise-injected image based on PQSM-modulated JND Model 2 with
PSNR = 27.53 dB; and (e) noise-injected image based on Watson’s JND
model with PSNR = 27.59 dB.

3) Qr < Qrr, the visual quality of Sequence I/ is better than
Sequence I.

Eight subjects (four of them are with average image pro-
cessing knowledge and the rest are naive) were involved in
the experiments. Their eyesight is either normal or has been
corrected to be normal with spectacles. The subjective visual
quality assessment was performed in a typical laboratory
environment with normal fluorescent ceiling light, using a
21" EIZO T965 professional color monitor with resolution of
1600 x 1200, screen refresh rate at 85 Hz. The luminance,
Gamma curve and Saturation setup are using the “Movie”
display mode. The viewing distance is approximately four
times of the image height.

Table VI is the viewing results between Yang’s JND model
and PQSM-modulated JND Model 1, and Table VII is the
results between Watson’s JND model and PQSM-modulated
JND Model 2. In Table VI, Qvang > @Qprqsmi indicates that
the quality of the sequence with Yang’s JND Model is better,
Qvang = Qprqsm1 indicates that two sequences has the same
quality, and Qvang < @pqsmi indicates that the quality of
the sequence with PQSM-modulated JND Model 1 is better.
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TABLE VI
POSs OF THE NOISE-INJECTED IMAGES GENERATED BY YANG’S JND MODEL AND PQSM-MODULATED JND MODEL 1

| "Foreman’ | "Harp’ | ’Autumn leaves’ | ’Suzie’
PSNRyang 32.84dB | 25.18dB | 32.93dB | 25.38dB | 32.11dB | 27.71dB | 32.84dB | 25.18dB
PSNRpgsm1 32.27dB | 24.61dB | 32.90dB | 25.06dB | 32.11dB | 27.64dB | 32.27dB | 24.61dB
Qyang > QPQsM1 0 0 0 1 0 0 0 0
Qyang = QPosm1 0 0 2 1 4 2 0 1
Qvang < QPsm1 8 8 6 6 4 6 8 7
TABLE VII

POSs OF THE NOISE-INJECTED IMAGES GENERATED BY WATSON’S JND MODEL AND PQSM-MODULATED JND MODEL 2

i "Foreman’ ] "Harp’ [ ’Autumn leaves” | *Suzie’
PSNRwatson 30.48dB | 27.56dB | 33.59dB | 27.56dB | 32.66dB | 27.54dB | 31.37dB | 27.59dB
PSNRpgsm2 30.20dB | 27.50dB | 33.43dB | 27.40dB | 32.45dB | 27.40dB | 31.26dB | 27.53dB
QWatscm > QPQSM2 0 0 1 2 1 1 0 0
QWateon = QPQSM? 0 1 2 3 3 1 1 2
QWatson < QPQSM2 8 7 5 3 4 6 7 6
TABLE VIII
PERFORMANCE COMPARISON FOR VQM A AND VQM B WITH VQEG PHASE-I DATA SET
PSNR VQM A SSIM VQM B
Ml l M2 l M3 M1 I ]\42 I ]\/.[3 M1 | M2 | Afg ]\41 | M2 | ]\/[3
50Hz || 0.786 | 0.810 | 0.728 | 0.820 | 0.812 | 0.567 - - - 0.889 | 0.859 | 0.539
60Hz || 0.760 | 0.711 | 0.583 | 0.795 | 0.762 | 0.628 - - - 0.914 | 0.897 | 0.556
All 0.779 | 0.786 | 0.678 | 0.812 | 0.805 | 0.603 | 0.849 | 0.812 | 0.578 | 0.895 | 0.871 | 0.541

Similar notations are used in Table VII. Subjective viewing
results confirm that accounting for the modulatory aftereffects
of visual attention and motion suppression enhances the per-
formance of JND models.

C. PQSM-Based VQOMs

In Section V, VQM A and VQM B have been formulated after
the consideration of the modulatory aftereffects of visual atten-
tion and motion suppression. In this section, their performance
is compared against their original forms before such modula-
tory aftereffects are included, that is, the PSNR (equivalent to
MSE) measure and the SSIM measure [16]. The performance
has been evaluated, using the most extensive publicly-accessible
database for visual quality assessment, VQEG Phase-I test set
[98], which includes 20 SDTV test sequences, their 320 decoded
sequences and the associated subjective rating results [differ-
ence mean opinion scores (DMOSs)].

In [98], a three-parameter logistic function is used to estimate
the predicted DMOS,, from VQR (video quality rating) and the
output of a VQM

DMOS, = h 43)

1 +exp(—b2x% (VQR — b3))

where b1, b2, and b3 are parameters derived from fitting VQR to
DMOS. Three methods are adopted in VQEG [98] to evaluate
the prediction accuracy of VQMs.
*  Method 1 (M ): Pearson linear correlation coefficient be-
tween DMOS,, and DMOS.
*  Method 2 (M3): Spearman rank order correlation coeffi-
cient between DMOS,, and DMOS.

*  Method 3 (M3): Outlier ratio of outlier sequences to the
total number of testing sequences.
The higher M7 and M5 are and the lower M3 is, the better match
with DMOS a VQM achieves. In the ideal match, M; and M-
have the value of 1 and M3 is 0.

The experimental results are listed in Table VIII, comparing
VQM A with the PSNR measure and VQM B with the SSIM
measure. The three major test groups of the VQEG Phase-I data
have been used: 1) the 50-Hz set with 180 decoded sequences
in PAL format; 2) the 60-Hz set with 180 decoded sequences in
NSTC format; and 3) all 320 decoded sequences. The PSNR re-
sults are obtained from [98], while the SSIM results are obtained
from [16]. As can be seen, VQM A outperforms the PSNR in all
three test groups and all three evaluation methods (M; to M3).
For the comparison between VQM B and the SSIM, although
the SSIM results of the 50- and 60-Hz data sets are unavailable,
we can still see that the accuracy of VQM B is improved over
the SSIM assessment for all 320 decoded sequences. As for the
comparison between VQM A and VQM B, the performance
of VQM B is better than that of VQM A, because VQM B ac-
counts for structural errors and visual annoyance in decoded im-
ages.

VII. CONCLUSION AND FUTURE WORK

This paper first gives a comprehensive review on the existing
research effort related to the studies of visual attention, compu-
tational models of visual sensitivity, and perceptual quality/dis-
tortion metrics. We then demonstrate that accounting for visual
attention’s modulatory aftereffects improves the visual sensi-
tivity and the quality/distortion evaluation. In this paper, we
build the model according to the basic ideas of visual attention
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that are just sufficient to the problems being tackled and also
include important cognitive features for more effective applica-
tions in practice.

A numerical measure of visual attention’s modulatory after-
effects in an image or video, PQSM, is proposed. The devised
PQSM estimation algorithm detects motion, color contrast and
texture contrast as bottom-up stimuli, and also skin color and
face top-down features, in this paper. Two PQSM-modulated vi-
sual sensitivity (JND) models and two PQSM-modulated VQMs
are also presented for evaluating the proposed PQSM. Extensive
experimental results with subjective viewing confirm the im-
provement on both JND determination and visual quality gauge.

The proposed PQSM basically provides local perceptual
cues of significance toward visual quality. How picture quality
is gauged shapes the design, implementation and optimization
of most visual processing tasks. Therefore, apart from the
demonstrated applications in JND determination and visual
quality gauge, the proposed PQSM can facilitate perceptu-
ally-optimized image/video compression, watermarking, error
resilience and many other processes.

As for the possible further work, more features/stimuli may
be included, especially semantic features and auditory stimuli
(auditory stimuli play an important role on spatial attention
selection [99]). Temporal effect of visual attention is another
direction for improvement [96]. It is believed that bottom-up
stimuli are dominative on visual attention during a short period
(100~800 ms) when scene appears/changes, and afterwards,
top-down features will possibly dominate. On the other hand,
after a period (several seconds to a few minutes, depending on
the type of stimulus), a stimulus’ attentional level decreases
with the time of its appearance in the visual field.
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