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Abstract

FOR the provisioning of video streaming services it is essential to provide a required level of

customer satisfaction, given by the perceived video stream quality. It is therefore important to

choose the compression parameters as well as the network settings so that they maximize the end-user

quality. Due to video compression improvements of the newest video coding standard H.264/AVC,

video streaming for low bit and frame rates is possible while preserving its perceptual quality. This

is especially suitable for video applications in 3G wireless networks.

Mobile video streaming is characterized by low resolutions and low bitrates. The commonly used

resolutions are Quarter Common Intermediate Format (QCIF,176x144 pixels) for cell phones,

Common Intermediate Format (CIF, 352x288 pixels) and Standard Interchange Format (SIF or

QVGA, 320x240 pixels) for data-cards and palmtops (PDA). The mandatory codec for Universal

Mobile Telecommunications System (UMTS) streaming applications is H.263 but the 3GPP release 6

already supports a baseline profile of the new H.264/AVC codec. The appropriate encoder settings

for UMTS streaming services differ for various streaming content and streaming application settings

(resolution, frame and bit rate).

In the last years, several objective metrics for perceptual video quality estimation were proposed.

The proposed metrics can be divided into two main groups: human vision model based video metrics

and metrics based on empirical modeling. The complexity of these methods is quite high and they

are mostly based on spatial features, although temporal features better reflect the perceptual quality

especially for low-rate videos. Most of these metrics were designed for broadband broadcasting video

services and do not consider mobile video streaming scenarios.

The goal of the presented research is to estimate video quality of mobile video streaming at the

user-level (perceptual quality of service) for a large set of possible codec settings in 3G network and for

a wide range of video content. Measures were derived that do not need the original (non-compressed)

sequence for the estimation of quality, because such reference-free measures reduce complexity and

at the same time broaden the possibilities of the quality prediction deployment. New reference-free

approaches are presented for quality estimation based on motion characteristics. Moreover, this thesis

provides a detailed comparison of recently proposed models for video quality estimation.
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Kurzfassung

DIE Einführung der dritten Mobilfunkgeneration ermöglichte durch die höheren

Datenübertragungsraten die Anwendung von Multimedia Diensten. Echtzeit-Dienste, wie

zum Beispiel Videostreaming und Videotelephonie, stellen hierbei für Mobilfunksysteme eine beson-

dere Herausforderung dar, wegen der hohen Empfindlichkeit von Videodiensten gegenüber visuellen

Störungen. Der H.264/AVC Videostandard ist durch seine hohe Effizienz besonders geeignet für die

Codierung dieser Dienste. Er bietet eine sehr gute Videoqualität für Übertragungen bei niedrigen

Bildwiederhol- und Bitraten.

Mobile Videostreaming Anwendungen zeichnen sich durch ihre niedrigen Auflösungen und niedrige

Bitraten aus. Gängige Auflösungen sind QCIF (176x144 Pixel) für Mobiltelefone, CIF (352x288 Pixel)

und SIF (320x240 Pixel) für Datenkarten und Palmtops.

Der UMTS Standard schreibt als Minimum H.263 als verpflichtenden Codec für alle Terminals

vor. Viele Terminals für Release 6 unterstützen auch das Basisprofil des neuen H.264 Codecs. Die

entsprechenden Encodereinstellungen für UMTS-Streamingdienste unterscheiden sich abhängig vom

Inhalt und Anwendung (Auflösung, Bildrate, Bitrate).

Die Schätzung der vom Benutzer erfahrenen Videoqualität basierte in den letzten Jahren auf

mehreren objektiven Parametern. Diese Metriken lassen sich in zwei Lager unterteilen. Die einen

Metriken haben empirische Modelle als Grundlage, die anderen basieren auf Modellen für die men-

schliche visuelle Wahrnehmung.

Die Komplexität dieser Methoden ist besonders hoch und sie sind sehr abhängig von räumlichen

Merkmalen. Es hat sich jedoch gezeigt, dass bei der Verwendung mobiler Terminals zeitliche Merk-

male die vom Benutzer wahrgenommene Qualität wesentlich besser widerspiegeln. Die meisten dieser

Metriken wurden vor dem Hintergrund von Breitband - Videodiensten entworfen und passen daher

nicht zu den niedrigen Datenraten einer mobilen Anwendung.

Ziel der vorgestellten Forschung war es einen guten Schätzer für die Videoqualität mobiler Dienste

zu finden. Das Modell basiert auf der auf Benutzerebene wahrgenommenen Qualität und kann eine

große Anzahl von heute gebräuchlichen Codeceinstellungen in einem 3G Netz abdecken. Weiters ist

die vorgeschlagene Metrik referenzfrei, das heißt die Bewertung der Qualität kann ohne die Kennt-

nis der Originalsequenz erfolgen. Dadurch wird die Komplexität deutlich reduziert und gleichzeitig

die möglichen Anwendungsgebiete, in denen diese Metrik zum Einsatz kommen kann, erweitert. Ab-

schliessend stellt diese Arbeit einen umfangreichen Vergleich des verfügbaren und neuen Modells für

verschiedene Szenarien dar.
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2 CHAPTER 1. INTRODUCTION

1.1 Motivation

MOBILE multimedia streaming applications are becoming more and more popular although the

perceptual video quality is limited for such low bit rates, frame rates and resolutions. There-

fore, it is essential to provide a required level of customer satisfaction, given by the perceived video

stream quality for video streaming services. It is important to choose the compression parameters as

well as the network settings so that they maximize the end-user quality. Due to video compression

improvements of the newest video coding standard H.264/AVC [1], video streaming for low bit and

frame rates is possible while preserving its perceptual quality. This is especially suitable for video

applications in mobile wireless networks (3G, WLAN ...).

Video streaming is a one-way quasi real-time data transport, where the content is consumed

(viewed/heared/read) while it is being delivered. To compensate jitter (variance of the end-to-end

delay) at the receiver, a portion of the received data is buffered in a play-out buffer. In the case of

video streaming, the video content is rendered on the screen with the signalized frame rate, making

the inter-packet arrival time variations invisible for the user. Therefore, the end-user quality for video

streaming does not depend on the absolute end-to-end delay (as long as it is kept in the order of sec-

onds). Thus, video streaming is usually referred to as a quasi real-time service. Moreover, mobile video

streaming is characterized by low resolutions and low bitrates. The Universal Mobile Telecommuni-

cations System (UMTS) release 4 (implemented by the first UMTS network elements and terminals)

provides a maximum data rate of 1920 kbit/s shared by all users in a cell, release 5 (emerging) offers

up to 14.4Mbit/s in downlink (DL) direction for High Speed Downlink Packet Access (HSDPA). The

availability of such data rates initiated the launch of new services, out of which the real-time services

are the most challenging from the provider point of view. The commonly used resolutions are QCIF

for cell phones, CIF and SIF for data-cards and palmtops (PDA). The mandatory codec for UMTS

streaming applications is H.263 but the 3GPP release 6 [2] already supports a baseline profile of the

new H.264/AVC codec [3]. The appropriate encoder settings for UMTS streaming services differ for

various streaming content and streaming application settings (resolution, frame and bit rate) as is

demonstrated in [4], [5], [6], [7], [8].

Conventional subjective quality measurement methods [9] involve presenting a test subject with one

or more video clips. The subject is asked to evaluate the quality of the test clips, e.g. by recording

the perceived degradation of the clip compared with a reference video clip. A typical test requirement

is to determine the optimum choice from a set of alternative versions of a video clip, e.g. versions

of the same clip encoded with different codecs, alternative strengths of a post-processing filter and

alternative trade-offs between encoder settings for a given bit rate. In this type of scenario, each of

the alternative versions of a video clip must be viewed and graded separately by the test subjects, so

that the time taken to carry out a complete test increases linearly with N , the number of alternatives

to be tested. In some cases (e.g. choosing a preferred trade-off between frame-rate and image quality),

there is a large number of possible outcomes and the test designer is faced with the choice between

running a very large number of tests in order to obtain a fine-grained result or limiting the number

of tests at the expense of discretizing the result [13]. Moreover, the subjective testing is extremely

man-power and time consuming.
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In the last years, several objective metrics for perceptual video quality estimation were proposed.

The proposed metrics can be divided into two main groups: human vision model based video metrics

[14], [15], [16], [17] and metrics based on empirical modeling [18], [19], [20], [21]. The complexity of

these methods is quite high and they are mostly based on spatial features, although temporal features

better reflect perceptual quality especially for low-rate videos. Most of these metrics were designed

for broadband broadcasting video services and do not consider mobile video streaming scenarios.

The goal of this thesis is to estimate the video quality of mobile video streaming at the user-level

(perceptual quality of service) for a large set of possible codec settings in 3G networks and for a large

set of content types. The focus is given at measures that do not need the original (non-compressed)

sequence for the estimation of quality, because such reference-free measures reduce the complexity and

at the same time broaden the possibilities of the quality prediction deployment. Moreover, the objec-

tive measures of video quality should be simple enough to be calculated in real-time at the receiver

side.

This thesis addresses the design of reference free video quality metrics in mobile environments. The

whole chain of metric design regards the definition of mobile streaming scenarios, a subjective test

methodology, the selection and statistical evaluation of objective parameters and the estimator design.

The proposed video quality metrics are applicable for quality monitoring in mobile networks.

1.2 Video streaming in UMTS network

STREAMING refers to the ability of an application to play synchronized media streams like audio

and video streams in a continuous way while those streams are being transmitted to the client

over a packet data network. The streaming applications are usually on-demand and offer a live

information delivery service (e.g. music, cartoons, panorama and news on-demand). Streaming over

fixed Internet Protocol (IP) networks is already one of the most significant applications today. For

the third generation (3G) systems, the 3G Packet-Switched Streaming service (PSS) [38] fills the gap

between 3G Multimedia Messaging Service (MMS) and conversational services. PSS enables mobile

streaming applications, in which the protocol and terminal complexity is lower than for conversational

services, in contrast to a streaming terminal that requires media input devices, media encoders [2],

and more complex protocols.

The usual way of transport of video streaming over IP packet networks assumes an Real-Time Protocol

(RTP) together with Real-Time Control Protocol (RTCP) feedback on the application/session layer

and a User Datagram Protocol (UDP) on the transport layer [35], [36]. In contrast to the Transmission

Control Protocol (TCP), UDP does not provide any Automatic Repeat reQuest (ARQ) mechanism

to perform retransmissions. It only provides a checksum to detect possible errors. The checksum is

typically calculated over a rather large packet to avoid a rate increase due to packet headers.

In contrast to that, interactive and background services having a non-real-time nature (e.g. web

browsing, file transfer, e-mail) can make use of retransmission mechanisms, e.g. provided by TCP —

packetloss is compensated by delay.

Simple streaming services include a basic set of streaming control protocols, transport protocols, media

codecs and a scene description protocol. In this simple case it is already possible to provide multimedia
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streaming services. A mobile user obtains a Universal Resource Identifier (URI) to specific content

that is suitable to the terminal. This URI may come from a World Wide Web (WWW) browser,

Wireless Application Protocol (WAP) browser, or is set manually. It specifies a streaming server

and the address of the content on that server. An application that establishes the multimedia session

obtains the data from a Session Description Protocol (SDP) file. The SDP file contains the description

of the session (session name, author ...), the type of media to be presented, and the bit rate of the

media. Moreover, the SDP file may be delivered in a number of ways. Usually, it is provided in a link

inside the Hyper-Text Mark-up Language (HTML) page that the user downloads via an embedded

tag. It may also be directly obtained by typing it as an URI or through the Real-Time Streaming

Protocol (RTSP), signaling via the described method. In case of the streaming delivery option of the

MMS service, the MMS user agent receives a modified MMS message with SDP file from the MMS

relay or server.

The session establishment is the process in which the browser or the mobile user invokes a streaming

client to set up the session against the server. The User Equipment (UE) is expected to have an

active PDP (Packet Data Protocol) context in accordance with [42] or an other type of radio bearer

that enables IP packet transmission at the start of session establishment signaling. The client may

be able to ask for more information about the content. The client shall initiate the provisioning of

a bearer with appropriate Quality of Service (QoS) for the streaming media. Sessions containing

only non-streamable content such as a Synchronized Multimedia Integration Language (SMIL) file,

still images and text to form a time-synchronized presentation do not require the SDP file in session

establishment. The streaming service is set up by sending an RTSP SETUP message for each media

stream chosen by the client. This returns UDP and/or TCP port etc. to be used for the respective

media stream. The client sends a RTSP PLAY message to the server that starts to send one or more

streams over the IP network. This case is illustrated in Figure 1.1.

The minimal requirement for provisioning of a streaming service includes at least a content server

and a streaming client. A streaming server is located behind the Gi interface. Additional components

like portals, profile servers, caching servers and proxies located behind the Gi interface can be involved

as well to provide additional services or to improve the overall service quality (see Figure 1.2). Portals

are servers allowing convenient access to streamed media content. For instance, a portal can offer

content browsing and search facilities. In the simplest case, it is a Web/WAP-page with a list of links

to streaming contents. The content itself is usually stored on content servers, which can be located

elsewhere in the network. User and terminal profile servers are used to store user preferences and

terminal capabilities. This information can be used to control the presentation of streamed media

content to a mobile user.

1.2.1 Streaming protocols and codecs

PSS clients and servers support an IP-based network interface for the transport of session control and

media data. Control and media data are sent using TCP/IP [22] and UDP/IP [23]. An overview of

the protocol stack can be found in Figure 1.3.

The Internet Engineering Task Force (IETF) RTP [24], [42] provides a means for sending real-time or

streaming data over UDP [24]. The encoded media is encapsulated in RTP packets with media specific
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Figure 1.1: Schematic view of a simple streaming session [38].

RTP payload formats. RTP payload formats are defined by [24], [42]. RTP also provides feedback

about the transmission quality by RTCP [42]. The continuous media (speech, audio and video)

flows are encapsulated in the following protocol stacks RTP/UDP/IP of RTP/TCT/IP (Figure 1.3).

Moreover, following RTP payload formats are supported for RTP/UDP/IP of RTP/TCT/IP transport:

• AMR (Adaptive Multirate Codec) narrow band speech codec RTP payload format according

to [25]. A PSS client is not required to support multi-channel sessions;

• AMR wide band speech codec RTP payload format according to [25]. A PSS client is not required

to support multi-channel sessions;

• MPEG-4 AAC (Advanced Audio Coding) audio codec RTP payload format according to RFC

3016 [26];

• MPEG-4 video codec RTP payload format according to RFC 3016 [26];

• H.263 [22] video codec RTP payload format according to RFC 2429 [27].
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Figure 1.2: Network elements involved in a 3G packet switched streaming service [38].

The following speech, audio and video codecs are supported for UMTS streaming. For audio

encoding the following codecs are supported:

• AMR speech codec shall be supported for narrow-band speech [28]. The AMR wideband speech

codec [29] shall be supported when wideband speech working at 16 kHz sampling frequency is

supported.

• AAC Low Complexity (AAC-LC) object type audio codec [30] should be supported. The maxi-

mum sampling rate to be supported by the decoder is 48 kHz. The channel configurations to be

supported are mono (1/0) and stereo (2/0).

• AAC Long Term Prediction (AAC-LTP) audio codec may be supported too.

When a server offers an AAC-LC or AAC-LTP stream with the specified restrictions, it shall

include the ”profile-level-id” and ”object” parameters.

The video codec H.263 [31] profile 0 level 10 is mandatory for the PSS. In addition, PSS supports:

• H.263 [30] profile 3 level 10 decoder,

• MPEG-4 visual simple profile Level 0 decoder, [32] and [33],

• H.264 baseline profile.



1.2. VIDEO STREAMING IN UMTS NETWORK 7

Figure 1.3: Overview of the protocol stack.

Conformance Suffix Content

Release 6 .3gp AMR and hint track

Release 6 .3gp 2 tracks H.263 and 2 hint tracks

Release 6, 5, 4 .3gp H.263, AMR and hint tracks

3fp file, also conforming to mp4

Release 4, 5 and mp4 .3gp MPEG-4 video

mp4 file, also conforming to 3gp

Release 5 and mp4 .mp4 MPEG-4 video and AAC

Table 1.1: Conformance of 3gp and mp4 streaming formats.

There are 3gp and mp4 [33] streaming formats supported in UMTS streaming. The 3gp standard

is defined by 3GPP [2], for creation, delivery, and playback of multimedia over wireless networks.

It enables sharing multimedia files between varieties of mobile devices, handsets and PDAs. The

3gp format is based on the ISO base file format. This allows mixing different types of media (see

Table 1.1), video, audio and text. The 3gp file format can encapsulate the following video end audio

formats: H.263, H.264, MPEG-4, AMR, AAC and timed text.

1.2.2 Structure of video payload

The Network Abstraction Layer (NAL) of the video encoder encapsulates the slice output of the Video

Coding Layer (VCL) encoder into Network Abstraction Layer Units (NALU). Each NALU contains the

compressed video data coming from the video coding layer and provides additional non-VCL (Video

Coding Layer) information, such as sequence and picture parameters, access unit delimiter, filler data,
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Figure 1.4: Format of a NALU and its header.

Supplemental Enhancement Information (SEI), display parameters, picture timing etc.

All data related to a video stream are encapsulated in NALUs in a way most appropriate for a

particular network. The format of a NALU is shown in Figure 1.4. The first byte of each NALU

is a header byte, the rest are the data. The first bit of the NALU header is a zero (forbidden) bit.

The following two NRI (NAL Reference Identification) bits signalize the importance of the NALU

for reconstruction purposes. The next five bits indicate the NALU type corresponding to the type of

data being carried in that NALU, allowing 32 types of NALUs. These are classified in two categories:

VCL NALUs and non-VCL NALUs. The NALU types from one to five are VCL NALUs and contain

data related to the output of VCL — slices. Each encoded slice is also attached a header containing

information related to that slice.

NALUs with a NALU type indicator value higher than five are non-VCL NALUs carrying informa-

tion like SEI, sequence and picture parameter set, access unit delimiter etc. Depending on a particular

delivery system and scheme, some non-VCL NALUs may or may not be present in the stream contain-

ing VCL NALUs. For example, NALU type seven carries the Sequence Parameter Set (SPS), defining

profile, resolution and other properties of the whole sequence; type eight carries the Picture Parameter

Set (PPS), containing type of entropy coding, slice group and quantization properties. These sequence

and picture level data can be sent asynchronously and in advance of the media stream contained in

the VCL NALUs. An active SPS remains unchanged troughout a coded video sequence. An active

PPS remains unchanged within a coded picture. In order to be able to change picture parameters

such as picture size without the need to transmit parameter set updates synchronously to the slice

packet stream, the encoder and decoder can maintain a list of more than one SPS and PPS. Each slice

header contains then a codeword that indicates the SPS and PPS in use.

The NALUs can easily be encapsulated into different transport protocols and file formats, such

as MPEG-2 transport stream, RTP (Real-Time Protocol), MPEG-4 and 3gp file formats. For trans-

mission over mobile networks, a VCL slice is encapsulated in RTP according to [37]. The RTP

payload specification supports different packetization modes. In the simplest mode a single NALU

is transported in a single RTP packet, and the NALU header serves as an RTP payload header. In

non-interleaved mode, several NALUs of the same picture can be encapsulated into the same RTP

packet. In interleaved mode several NALUs belonging to different pictures can be encapsulated into

the same RTP packet. Moreover, NALUs do not have to be sent in their decoding order. Both the

non-interleaved and interleaved modes also allow for fragmentation of a single NALU into several RTP

packets.
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1.3 Principles of video coding and coding artifacts

UNCOMPRESSED video requires large amounts of bandwidth and storage space. Moreover, the

end-user cost in wireless networks is typically proportional to available bandwidth and trans-

mitted data volumes. Therefore, the videos transmitted over wireless networks are compressed with

very effective and lossy compression algorithms. For mobile video streaming, the following video

compression standards are used today: H.263 [39] standardized by International Telecommunication

Union (ITU), MPEG-4 part 2 [32] standardized by International Organization for Standardization

(ISO) Motion Picture Expert Group (MPEG), and the emerging, the newest H.264 [1] (known also as

Advanced Video Coding (AVC) and MPEG-4 part 10), standardized by the Joint Video Team (JVT)

of experts from both ISO/IEC (International Electrotechnical Commission) and ITU. The principles

of the compression for all mentioned codecs are very similar.

In this thesis, the focus is given on H.263 and H.264/AVC codecs, which are designed for a multitude

of applications; the structure of their bitstreams may vary significantly. To avoid the implementa-

tion of all possible stream structures by each specification-conform decoder, profiles and levels were

defined. A profile is a subset of the capabilities including the entire bitstream syntax; a level is a

specified set of constraints imposed on values of the syntax elements in the bitstream. Levels allow

for standard-compliant low-complexity encoder and decoder implementations. The different profiles

and level parameters describe the capabilities of the coder. Several preferred mode combinations for

operation are defined and structured into profiles of support.

In this thesis H.263 up to profile 3 level 10 and the H.264/AVC baseline profile designed for low

complexity and low rate applications are investigated. At the beginning the research was focused on

H.263 (cf. Section 4.6), because it is a freely available mandatory codec in UMTS networks. Later

the research attention was concentrated on H.264/AVC (cf. Section 4.5) because of its efficiency.

Moreover, the processing power of user terminals increases the ability to play H.264 encoded content.

1.3.1 Video and color sampling

The initial step in video processing is sampling in temporal, spatial and color domain. Sampling in the

temporal domain provides a number of pictures per second according to the frame rate, and sampling

in the spatial domain provides a number of points (pixels) in each of the pictures according to picture

resolution. The color sampling refers to color space (gray scale, RGB ...) and number of bits used to

represent the color of a single pixel (color depth).

Frame Rate (FR), or frame frequency, refers to unique consecutive images called frames produced

within one time unit. The frame rate is most often expressed in frames per second (fps) or alternatively,

in Hertz (Hz). In low-rate and low-resolution applications the frame rate is reduced before the actual

transmission to save data rate. Frame rate reduction can be performed by decimating the frame rate

by a factor F — leaving each F th frame while removing the rest. A typical example is mobile video

streaming or call/conferencing with usual frame rates decimated by F = 2,3,4 or even 5. Other frame

rates can be obtained by interpolation and subsequent decimation.

Each frame consists of pixels. Pixels of intensity pictures (black-and-white) are scalar values; pixels

of color pictures are represented by coordinates within the relevant color space. The captured RGB
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Abbreviation Size Description

VGA 640×480 Video Graphics Array

QVGA or SIF 320×240 Quarter Video Graphics Array,

called also Standard Interchange Format (SIF)

Q2VGA 160×120

CIF 352×288 Common Intermediate Format

(quarter of resolution 704×576 used in PAL)

QCIF 176×144 Quarter Common Intermediate Format

Table 1.2: Typical picture resolutions in pixels, used for mobile video services.

picture is thus represented by three N ×M color component matrices consisting of q-bit long numbers

(usually q = 8). In Table 1.2 the most common resolutions for mobile video are summarized. Since

the human visual system is less sensitive to color than to luminance (brightness), bandwidth can be

minimized by storing more luminance detail rather than color detail. At normal viewing distances,

there is no perceptible loss incurred by sampling color details at a lower rate. In video systems, this is

achieved by using the color difference components. The signal is divided into a luminance (denoted as

Y, called shortly ’luma’) and two color difference (chrominance) components, denoted as U and V (or

Cb and Cr, respectively), called shortly ’chroma’. The YUV signals are created from an original RGB

(red, green and blue) source as follows [40]. The weighted values of R, G and B are added together to

produce a single Y signal, representing the overall brightness, or luminance, of that spot:

Y = kr · R + kg · G + kb · B, (1.1)

where kr, kg and kb are weighting factors, with normalization: kb+kr+kg = 1. ITU-R recommendation

BT.601 [41] defines kr = 0.299 and kb = 0.114.

The U signal is then created by subtracting Y from the blue signal of the original RGB, and a

scaling operation; and V by subtracting Y from the red, and then scaling by a different factor. The

following formulas convert the RGB color space and YUV.

Y = kr · R + (1 − kb − kr) · G + kbB,

U =
0.5

1 − kb
· (B − Y ), (1.2)

V =
0.5

1 − kr
· (R − Y ).

The basic idea behind the YUV format is that the human visual system is less sensitive to high

frequency color information (compared to luminance) so that color information can be encoded at

a lower spatial resolution. The subsampling scheme is commonly expressed as a three part ratio

(e.g. 4:2:2) as shown in Figure 1.5. The most common way of subsampling, called 4:1:1 reduces

the number of samples in both the horizontal and vertical dimensions by a factor of two, i.e., for

four luma pixels there is only one blue and one red chroma pixel. The only color impairments is

“color bleeding” (cf. Section 1.3.3), noticeable in between magenta and green color. Hence, the

YUV color space subsampling is the first step to data rate reduction. The original bit rate Rraw
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Figure 1.5: YUV — subsampling.

Figure 1.6: Dataflow diagram of H.264/AVC encoder.

of the raw (uncompressed) RGB video with frame rate fr and picture resolution M × N is given

by Rraw RGB = 3 · fr · M · N · q; the corresponding raw YUV (4:1:1 or 4:2:0 YUV formats) video

only requires rate Rraw YUV = 1.5 · fr · M · N · q. For the QCIF resolution with 25 f/s and 8 - bit

long numbers (q = 8) the necessary bit rate is Rraw YUV QCIF = 7.6 Mbit/s. Although the bit rate

is reduced to 50% of the RGB raw video, it is still not feasible for any today’s Internet or mobile

application. To overcome this, further compression is employed to reduce data rate as described in

the following sections.

1.3.2 Compression mechanisms

The newest video coding algorithms support a hybrid of temporal and spatial prediction, together

with transform coding. Their dataflow diagram is depicted in Figure 1.6. Each frame is split into

non-overlapping areas — macroblocks (MB) — consisting of 16×16 samples of the luma and 8×8

samples of each of the two chroma components. The macroblocks are organized in slices, representing

subsets of macroblocks that can be decoded independently.
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Frames are called intra-coded if they are encoded by means of a spatial prediction without using

information other than that contained in the picture itself. Typically, the first picture of a video

sequence is intra-coded as well as all random access points of the video sequence (pictures that can

be fast accessed without decoding previous parts of video sequentially). Each macroblock in an intra-

coded frame (called also intra-frame or I frame). It is predicted using spatially neighboring samples

of previously coded macroblocks1. The encoder performs a mode choice — it decides which and how

neighboring samples are used for intra prediction. The chosen intra prediction type is then signalized

within the bitstream.

For all remaining pictures of a sequence between random access points, typically inter-coding

is used, employing temporal prediction from other previously decoded pictures. First, the motion

estimation of each block is performed by searching the best matching region from the previous or

following frame(s). Note that the best match is not searched in the original (uncompressed) block,

but rather in the quantized and filtered block. This prevents artifacts during the reconstruction

process. The best match is taken as a prediction of the encoded block. Such a prediction is thus called

motion compensated. Each inter-coded macroblock is a subject to further partitioning into fixed-size

blocks (16×16 luma samples corresponding to no partitioning, 16×8, 8×16 or 8×8) used for motion

description. Blocks of size 8×8 can be split again into submacroblocks (SMB) of 8×4, 4×8, or 4×4

luma samples. Chrominance parts are segmented correspondingly.

The next advanced feature in recent video coding algorithms is multi-picture motion compensated

prediction — more than one previously coded picture can be used as a reference. The accuracy of

motion compensation is a quarter of a sample distance. The prediction values at half-sample positions

are obtained by applying a one-dimensional six tap Finite Impulse Response (FIR) filter. Prediction

values at quarter-sample positions are generated by averaging samples at integer- and half-sample

positions. To enable unambiguous reconstruction at the receiver, the Motion Vector (MV) between

the position of the block within the frame and the position of its best match in the previously encoded

frame has to be signalled as well as the mode of segmentation and corresponding reference frame(s).

To avoid signalizing of the zero motion vectors and zero residuals in the cases of static picture parts,

the SKIP mode allows for skipping of signalized number of P/B macroblocks. In SKIP mode neither

residuals, nor motion vectors are sent. At the receiver, the spatially corresponding macroblock from

the previous frame is taken.

Inter-coded frames are referred to as inter-frames or P and B frames; P being the frames which

use for prediction only previous frames, B being the bi-directionally predicted frames that use for

prediction also successive frames. In H.264/AVC, other pictures can reference B frames for the motion

estimation. The substantial difference between P and B macroblocks is that B MBs may use a weighted

average of two distinct motion-compensated prediction values for building the prediction signal. The

H.264/AVC supports frames with such mixed I,P and B slices. Moreover, P and B slices may even

contain some I MBs.

All luma and chroma samples of an MB are either spatially or temporally predicted and the

resulting prediction residuals (difference between the macroblock samples being encoded and their

1Macroblocks that do not have any previously encoded neighbors (e.g. the first MB in picture and MBs at the top

slice boundary) are encoded without prediction.
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Figure 1.7: Scanning of samples in a 4 × 4 submacroblock.

prediction) are transformed. Depending on the type of residual data that is to be coded more transform

types can be supported:

• a Hadamard transform for the luma Direct Current (DC) coefficients,

• a Discrete Cosine Transformation (DCT); the result of the transformation is a matrix of coeffi-

cients corresponding to different spatial frequencies. The coefficient corresponding to the lowest

frequency is denoted DC, the others are Alternating Current (AC) coefficients.

All coefficients are further quantized. For each macroblock the quantization is controlled by the

Quantization Parameter (QP) ranging from zero to 52. The quantization indices are scanned in zig-

zag order and finally entropy encoded, together with other signalling information. The zig-zag order

used in H.264/AVC is illustrated in Figure 1.7.

A macroblock can be coded in one of many possible modes that are enabled, depending on the

picture/slice type. The mode decision is performed at the encoder, i.e., it is not within the scope of

a standard2. Additional important gains in coding efficiency become possible if a macroblock mode

decision is performed carefully. However, the additional gains can be extracted only at the expense

of considerable increase in encoding complexity for example by implementing a Rate-Distortion Opti-

mization (RDO) at the encoder.

If the encoder parameters (QP, MV search area, etc.) are kept during the encoding, then the number

of coded bits produced for each macroblock will change depending on the content of the video frame

and the mode decision, causing the bit rate of the encoder to vary. This variation in bit rate can

cause problems especially in systems where resources are shared (e.g. wireless systems), the resource

management cannot efficiently perform the resource allocation. The Variable Bit Rate (VBR) pro-

duced by an encoder can be smoothed by buffering the encoded data prior to transmission in a FIFO

(First-In/First-Out) buffer, which is emptied at a Constant Bit Rate (CBR) matched to the channel

capacity. Another FIFO buffer is placed at the input to the decoder and is filled at the channel bit rate

and emptied by the decoder at a variable bit rate since the number of bits to be extracted per frame

is varying over frames, but still the frames have to be rendered on the display with a constant frame

rate. However, the cost is the buffer storage capacity and delay — the wider the bit rate variation,

the larger the buffer size and decoding delay. Another possibility to compensate the VBR is the rate

control using the quantizer adaptation. However, quantizer changes need to be carefully restricted

2Video codec standards define the functions and features of the decoder rather than the encoder.
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based on scene complexity, picture types, and coding bit rate to maintain an acceptable end-user

quality.

In this thesis, focus is given on the H.263 profile 3 level 10 and H.264/AVC baseline profile. Note

that both of them do not support B slices, only I and P frames are possible. Other baseline profile

constraints will be discussed later, when necessary for the particular application.

1.3.3 Compression artefacts

The compression algorithms of the various video coding standards are quite similar. Most of them

rely on motion compensation and on a block-based DCT with subsequent quantization of the coef-

ficients. In such coding schemes, compression distortions are caused by only one operation, namely

the quantization of the transform coefficients. Although other factors affect the visual quality of the

stream, such as motion prediction or decoding buffer size, they do not introduce any visual distortion,

but affect the encoding process indirectly.

A variety of artefacts can be distinguished in a compressed video sequence:

The blocking effect or blockiness refers to a block pattern in the compressed sequence (see Fig-

ure 1.8). It is due to the independent quantization of individual blocks (usually of 8×8 pixels

in size) in block-based DCT coding schemes, leading to discontinuities at the boundaries of ad-

jacent blocks. The blocking effect is often the most prominent visual distortion in a compressed

sequence due to the regularity and extent of the pattern. Recent codecs such as H.264 employ

a deblocking filter to reduce the visibility of the artifact.

Figure 1.8: Blocking effect.

Blurring manifests itself as a loss of spatial detail and a reduction of edge sharpness (see Figure 1.9).

It is due to the suppression of the high-frequency coefficients by coarse quantization.

Jerkiness or Jagged motion refers to object motion disorder. It is usually caused by low temporal

resolution or insufficient motion compensation. Typical example is a poor performance of the

motion estimation. Block-based motion estimation works best when the movement of all pixels

in a macro block is identical. When the residual error of motion prediction is large, it is coarsely

quantized.

Colour bleeding is the smearing of colours between areas of strongly differing chrominance, see

Figure 1.10 a). It results from the suppression of high-frequency coefficients of the chroma

components. Due to chroma sub-sampling, colour bleeding extends over an entire macro block.
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Figure 1.9: Blurring.

Figure 1.10: a) Colour bleeding b) Slanted lines.

The DCT basis image effect is prominent when a single DCT coefficient is dominant in a block.

At coarse quantization levels, this results in an emphasis of the dominant basis image and the

reduction of all other basis images.

Slanted lines often exhibit a staircase effect, see Figure 1.10b). This is due to the fact that DCT

basis images are best suited to the representation of horizontal and vertical lines, whereas lines

with other orientations require higher-frequency DCT coefficients for accurate reconstruction.

The typically strong quantization of these coefficients causes slanted lines to appear jagged.

Ringing is fundamentally associated with Gibbs’ phenomenon and is thus most evident along high-

contrast edges in otherwise smooth areas. It is a direct result of quantization leading to high-

frequency irregularities in the reconstruction. Ringing occurs with both luminance and chroma

components.

False edges are a consequence of the transfer of block-boundary discontinuities (due to the blocking

effect) from reference frames into the predicted frame by motion compensation.

Chrominance mismatch is associated with inaccurate motion compensation. Motion compensation

is performed only for luminance component, yet the same motion vector is used for the chroma

components.

Mosquito noise is a temporal artifact seen mainly in smoothly textured regions as lumi-

nance/chrominance fluctuations around high-contrast edges or moving objects. It is a conse-

quence of the coding differences for the same area of a scene in consecutive frames of a sequence.

Flickering appears when a scene has high texture content. Texture blocks are compressed with

varying quantization factors over time, which results in a visible flickering effect.
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Aliasing can be noticed when the content of the scene is above the Nyquist rate, either spatially or

temporally.

While some of these effects are unique to block-based coding schemes (DCT based), many of them

are observed with other compression algorithms as well. The forthcoming analysis informs about the

tolerance of the user with different artefacts. The relevant artefacts for streaming over DCT-based

video coding are blockiness, blurriness and jerkiness.

In wavelet based compression, for example, the transformation is applied to the entire image;

therefore, none of the block-related artifacts occur. Instead, blurring and ringing are the mostly

appearing distortions.

Essential to be mentioned in this context is error-resilience (combating, e.g. packet delays or

losses). With unlimited resources of processing power and storage at the UE the video quality can

be improved considerably. On the other hand, due to limitations of the UE, the video quality can be

enhanced only to a certain point. Therefore, transmission errors and coding artifacts remain visible.

1.4 Subjective video quality

OTHER than objective video quality, the subjective video quality reflects the subjective perception

of individual viewers. The evaluation is performed by a psycho visual experiment and therefore

is influenced by the following subjective and objective factors: video content, encoding parameters,

usage scenario and network performance. Moreover, objective parameters or QoS parameters [43]

are only poorly correlated with subjective quality. The QoS is typically understood as a measure

of ”the collective effect of service performance which determine the degree of satisfaction of a user

of the service” [43]. Service performance is then managed through a set of network parameters and

the end user is not aware of network impairments [8]. The subjective video quality belongs to a

higher abstraction layer also called Quality of Experience (QoE). The QoE basically relates to a

higher abstraction layer when compared to QoS [44], [45], [46], [47] and reflects ”the user’s perceived

experience of what is being presented by the application layer, where the application layer acts as a

user interface front-end that presents the overall result of the individual quality of services” [44]. It

can be considered as a perceptual layer and an extension to the application layer defined in the OSI

Model [48].

Video and audio-visual quality reflects the most significant part of QoE for mobile video services. The

estimation of subjective video quality for mobile scenarios is a challenge. Up to today, several methods

were proposed for the estimation of video quality. Such methods can be classified as follows:

• The first quality distortion measures are Mean Square Error (MSE) and Peak Signal to Noise Ra-

tio (PSNR). Both of them poorly reflect the subjective video quality [4], [5]. Nevertheless PSNR

is still widely used as reference method for comparing performance of video coding algorithms.

• Metrics based on Human Visual System (HVS) were proposed in recent years [14], [15], [17],

[49], [50]. The usage of a metric based on the HVS is expected to be very general in its nature

and applicability. These metrics compute a distance measure based on the outputs of a multiple
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channel cortical model of the human vision which accounts for known sensitivity variations of

the HVS in the primary visual pathway. Moreover, the metrics assume that the multiple chan-

nels mediating visual perception are independent of each other. However, recent neuroscience

findings and psychophysical experiments [51], [52], [53] have established that there is interaction

across the channels and that such interactions are important for visual masking. Thus, in the

close future even better HVS models for reliable quality evaluation are expected. The main

disadvantage of these HVS models is their high computational complexity.

• Metrics based on a set of objective parameters —[4], [18], [19], [20], [21], [63], [64]— provide a

good trade-off between accuracy and complexity. The parameter set consists of quality sensitive

objective parameters. This approach is very suitable for quality estimation in scenarios with

defined usage, content and video service conditions.

A second classification is possible, depending on the required knowledge of the source material:

• Reference-based metrics [54], [55]: measurements based on the computation of differences be-

tween the degraded and the original video sequences. The differences can be used to compute

comparative distortion measures, which have a low correlation with the perceived impairment

but are easy to extract. The reference is required at the input of the measurement system

strongly restricting their applicability.

• Semi-reference-based metrics: measurements obtained by computing a set of parameters on the

degraded picture and comparing them with the same parameters computed on the reference

picture [14], [15], [18], [64]. Quality indications can be obtained by comparing parameters com-

puted separately on the coded pictures and the reference pictures. These parameters can be

distributed in the network at low bit rates to be used when the entire reference signal is not

available.

• Reference-free metrics [63], [112]: they do not require any knowledge of the original video source.

These metrics find a basic difficulty in telling apart distortions from regular content, which is

something that humans can do well by experience. Their biggest advantage is their versatility

and flexibility.

The complexity of recently proposed metrics is rather high. Moreover, most of them were proposed

for broadband broadcasting and Internet video services. In contrast to those, the proposed approach

in this thesis is focused on quality estimation of low bit rate and low resolution videos in mobile

environment.

1.5 Outline of the thesis and contributions

THE scope of this thesis is to estimate subjective video quality for mobile video content. Initial

step to this research is to perform an extensive video quality survey. The extensive survey

has to reflect the test methodology and usage scenario. Moreover, subjective video quality surveys

are complex and time-consuming both in their preparation and execution. Therefore, automatic
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methods are needed for video quality assessment. An ideal system needs to be able to measure video

impairments like a representative sample of human observers do.

The further work continues in investigation of motion and content features of video sequences. This

analysis provides a set of content/motion dependent parameters which were successfully mapped on

subjective parameters. Finally, video and audiovisual quality estimation methods were proposed for

mobile video scenarios.

In the following the organization of this thesis is introduced in detail and the contributions of the

author are highlighted. Throughout the document, the publications (co)authored by the author of

this thesis are marked by blue color.

Chapter 2 presents usage scenario and methodology for subjective testing of mobile video services.

The mobile video streaming domain offers a large choice of parameters, using a variety of propri-

etary and standardized decoders, players, streamed content and UEs. These factors influence the

subjective evaluations [57]. Moreover, the aim of the test methodology is to provide a real world

viewing and usage conditions for subjective testing and to make them reproducible. Therefore, it

is very important to focus initial investigations at defining the usage scenario and test methodol-

ogy. ITU-T P.910 [9] and ITU-T P.911 [10] propose even more methodologies. The most suitable

experimental method, among those proposed in the ITU-T recommendation, is ACR, also called

Single Stimulus Method. This method imitates the real world scenario, because the customers

of mobile video services do not have access to original videos (high quality versions).

Moreover, in this thesis an introduction to the state of the art test methodology is given for

subjective quality evaluation on handheld devices [4], [56]. In order to emulate real conditions

of the mobile video service, all the sequences were displayed on mobile handheld devices [4], [56].

In this single point the proposed methodology is not consistent with ITU-T recommendation.

Finally, the most frequent content classes [64] for mobile streaming scenario are defined.

Chapter 3 presents results of extensive surveys on video quality. In some cases (e.g. choosing a

preferred trade-off between FR, BR and image quality), there is a large number of possible

outcomes and the test designer is faced with the choice between running a very large number

of tests in order to obtain a fine-grained result or limiting the number of tests at the expense

of discretizing the result [13]. Moreover, the subjective testing is extremely man-power and

time consuming. The tests performed within this thesis cover wide ranges of video and audio

codecs and their settings. The obtained MOS data for defined content classes and resolutions

are presented separately. The obtained MOS results clearly show that video quality is content

dependent [4], [100], [93], especially at low bit rates. The video quality surveys allow to estimate

which coding parameters should be used, according to the character of their video content, in

order to maximize the end-users perceived quality.

Moreover, Willingness-To-Pay (WTP) results are introduced. Technically, WTP has emerged

from Subjective or Perceived/Perceptual QoS (PQ) [61] and is solely based on human perception

or satisfaction regarding service usability. Determining PQ is typically carried out by surveying a

set of persons, which participate in a controlled experiment [62]. There were already complex QoS

studies regarding WTP [65] and proposals of WTP utility functions for Internet streaming [66].

Unfortunately, these results are not applicable for mobile streaming due to significantly different
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usage scenarios. Within this thesis the most fundamental WTP features are [67] investigated,

where we defined WTP as “readiness to pay for the provided quality” of video streaming. Finally,

we introduced a single metric with very good performance [67].

Chapter 4 introduces novel methods for estimation of subjective video quality and content classifi-

cation for low-resolution video sequences as they are typical for mobile video streaming. In the

recent period, several objective metrics for perceptual video quality estimation were proposed.

The proposed metrics can be subdivided into two dominant groups: human vision model based

video metrics [14], [15], [16], [17] and metrics based on empirical modeling [18], [19], [20], [21].

The complexity of these methods is quite high and they are mostly based on spatial features,

although temporal features better reflect perceptual quality especially for low-rate videos. Most

of these metrics were designed for broadband broadcasting video services and do not consider

mobile video streaming scenarios.

Due to content dependent video quality it is necessary to design features which allow temporal

content segmentation and content classification of video streams [64]. The temporal content clas-

sification was introduced in order to estimate quality for single sequences within a video stream.

For this purpose an adaptive metric for scene change detection [84] was developed. The next

important approach was to estimate Content Classes (CC) for content specific metrics [4], [64].

For this purpose we investigate the motion and color sequence features and content sensitive

parameters. These parameters are inputs for content classification based on hypothesis testing.

The proposed content classifier is a robust tool for content classification. Moreover, hypothesis

testing allows very fast extension by adding a new content class.

The proposals for quality estimation are trade-offs between applicability, processing demands and

prediction accuracy. The aim was to estimate quality at the receiver with reasonable process-

ing complexity. Furthermore, the proposed estimation methods demonstrate that it is possible

to predict video quality for wireless video streaming scenario with reference-free video estima-

tors, if the chosen parameters are those that most significantly influence the subjective quality.

The relevance of the selected parameters was considered according to results of a multivariate

analysis. This knowledge was successfully applied for SIF-H.264 resolution to the proposed es-

timators based on content adaptive motion parameters which are derived from MV features.

Three reference-free estimation methods were proposed. The first method [64] estimates video

quality in two steps: the content class is estimated from the original video sequence at the sender

side, and then the quality metric is calculated at the receiver with almost zero complexity. The

second and the third estimation methods are suitable for stand-alone estimation at the receiver

side. The second, the ensemble based metric [94] exhibits a performance similar to the content

class based metric. The content classification can be understood as a pre-estimation in order

to obtain a more homogeneous set of results within one content class, which allows for more

accurate quality estimation. This effect was achieved by introducing cross-validation in ensem-

ble based metrics. Furthermore, the direct motion proposal [63] has a slightly worse estimation

performance but allows full reference-free estimation for all content classes. The performance

of the introduced video quality metrics shows good agreement between estimated MOS and the

evaluation set. The proposed estimation methods for SIF resolution and proposed content clas-
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sifier were submitted for a patent [122].

Moreover, for QCIF-H.263 resolution a direct reference-free [4] and an Artificial Neural Net-

work (ANN) [112] - based estimator were proposed. The direct reference-free quality metrics

are dedicated to certain content classes. On the other hand, the ANN model is general for all

content classes and its training performance is sufficient for video quality estimation.

Chapter 5 focuses on estimating the audiovisual quality of mobile multimedia at the user-level. Sev-

eral auditory and visual models are often utilized as basis for multi-modal predictions [117],

[118]. They consider how audio and video signals are perceived by people. In this way the audio

and video signals are perceptually weighted before they are combined in a multi-modal model.

Within this thesis also audiovisual quality was investigated. The scope was to estimate audiovi-

sual quality for mobile streaming services. The audiovisual quality assessments show that audio

quality, video quality and sequence character are important factors to determine the overall

subjective perceived quality. A mutual compensation property of audio and video can also be

clearly seen from the obtained results. In order to predict the audiovisual quality of a multi-

media system it is necessary to propose a metric that takes into account both the audio quality

and the video. Moreover, the cross-modal interaction between audio and video mode is taken

into account [118]. The proposed audiovisual metrics [100] for speech and non-speech content

takes into account the cross-modal interaction.

Chapter 6 summarizes the novel achievements within this thesis in the field of test methodology and

video quality estimation for mobile video services. Moreover, it provides an outlook to their

possible deployment and ends with some general remarks.

Appendix A contains a list of the abbreviations employed throughout this thesis.

Appendix B provides a description of selected objective video parameters defined by ANSI T1.803

[18].

Appendix C presents a brief overview of well known audio quality estimation methods [113] and [115]

for subjective audio quality estimation.
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MOBILE video streaming scenarios are specified by the environment of usage, streamed content,

and the screen size of the mobile terminals [56]. Therefore, mobile scenarios are strictly different

in comparison with classical TV broadcasting services or broadband IP-TV services. Most of the

recommendations for subjective video testing [9], [12], are designed for broadband video services with

QCIF resolution or higher and for static scenarios. On the contrary, the mobile scenario is different

due to technical conditions and usage. Therefore, the initial research scope focused at the design of a

methodology for subjective video testing.

This chapter is dedicated to the design of a subjective test methodology for mobile video services

and the description of content features of most frequent content classes. Finally, the results of video

quality surveys are presented and analyzed.

2.1 Test methodology

THE aim of the test methodology was to provide a real world viewing and usage conditions for

subjective testing and make them reproducible. ITU-T P.910 [9] and ITU-T P.911 [10] propose

even more methodologies. The difference between such methods is in utilizing of explicit references

and methods that do not use any explicit reference. The non-reference methods Absolute Category

Rating (ACR) and Pair Comparison (PC) do not test video system transparency or fidelity. On

the other hand the reference methods should be used when testing the fidelity of transmission with

respect to the source signal. This is frequently an important factor in the evaluation of high quality

systems. The reference method also called Degradation Category Rating (DCR) has long been a key

method specified in [12], for the assessment of television pictures whose typical quality represents

extreme high quality levels of videotelephony and videoconferencing. The specific comments of the

DCR scale (imperceptible/perceptible) are valuable when the viewer’s detection of impairment is an

important factor. Thus, when it is important to check the fidelity with respect to the source signal,

the DCR method should be used. DCR should also be applied for high quality system evaluation in

the context of multimedia communications. Discrimination of imperceptible/perceptible impairment

in the DCR scale supports this, as well as a comparison with the reference quality.

On the other hand, ACR is easy and fast to implement and the presentation of the stimuli is similar

to that of the common use of the systems. Thus, ACR is well-suited for qualification tests. The

principal merit of the PC method is its high discriminatory power, which is of particular value when

several of the test items are nearly equal in quality. When a large number of items is to be evaluated

in the same test, the procedure based on the PC method tends to be lengthy. In such a case an ACR

or DCR test may be carried out first with a limited number of observers, followed by a PC test solely

on those items which have received about the same rating.

To achieve the most effective methodology for subjective testing of wireless video streaming, the

following conditions were defined:

• Viewers do not have access to the test sequences in their original uncompressed form. Only

encoded sequences are displayed, a reference-free subjective evaluation is obtained.
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• The sequences are presented on a handheld mobile device (Figures 2.1 and 2.2).

• The encoding settings reflect a typical UMTS streaming setup (see Tables 3.1 and 3.2).

• The most frequent streaming content types are displayed.

Figure 2.1: Cell phone with display resolution 176×220 pixels.

Figure 2.2: PDA with display resolution 480×640 pixels.

2.1.1 Video quality evaluation

The proposed test methodology is based on ITU-T P.910 [9] and adapted to our specific purpose

and limitations. For this particular application it was considered that the most suitable experimental

method, among those proposed in the ITU-T Recommendation, is ACR, also called Single Stimulus

Method. The ACR method is a category judgment in which the test sequences are presented one

at a time and are rated independently on a category scale. Only degraded sequences are displayed,
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Viewing Distance 20 - 30 cm

Viewing Angle 0◦

Room illumination (ambient light level [lux]) low: ≤20 lux at about 30 cm in front of the screen

Table 2.1: Test environment.

and they are presented in arbitrary order. This method imitates the real world scenario, because the

customers of mobile video services do not have access to original videos (high quality versions). On

the other hand, ACR introduces a higher variance in the results, as compared to other methods in

which also the original sequence is presented and used as a reference by the test subjects. The results

of quality assessments often depend not only on the actual video quality, but also on other factors such

as the total quality range of the test conditions. A description of reference conditions and procedures

to produce them is given in Recommendation P.930 [12]. That ITU-T recommendation proposes LCD

monitors for subjective testing. However, the mobile video streaming domain offers a large choice of

parameters, and uses a variety of proprietary and standardized decoders, players, UEs as opposed to

standard broadband video services (IP-TV, DVB-T ...) where the system parameters do not vary so

much. Therefore, it is far more difficult to evaluate the quality of multimedia images than those in

the broadband video services [57]. Experience shows (see Figure 2.3) that this combination strongly

influences the final subjectively-perceived picture quality. At Figure 2.3 comparison of subjective

evaluations for semantically identical soccer video content are depicted. The sequences are encoded

by a H.264/AVC baseline profile codec. The evaluation at LCD monitors were performed within the

formal verification tests on H.264/AVC defined by JVT [58]. Evaluations at PDAs were performed

within this thesis (cf. Section 3). The results clearly show that test subjects evaluate much more

critical the sequences at LCD monitors.

Figure 2.3: Subjective evaluation at LCD monitor and PDA.

In order to emulate real conditions of the mobile video service, all the sequences were displayed

on mobile handheld devices. Viewing distance from the phone is not fixed, but selected by the test

person. We have noticed that users are comfortable to take UMTS terminal at a distance of 20-30 cm.
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Our video quality test design follows these experiences in order to better reflect real world scenarios.

The test environment (see Table 2.1) fulfills all criteria given by ITU-T P.910 [9]. The critical part

was to achieve suitable lightning conditions, in order to eliminate UE display reflection.

After each presentation the test subjects were asked to evaluate the overall quality of the sequence

shown. In order to measure the quality perceived, a subjective scaling method is required. However,

whatever the rating method, this measurement will only be meaningful if there actually exists a

relation between the characteristics of the video sequence presented and the magnitude and nature

of the sensation that it causes on the subject. The existence of this relation is assumed. Test

subjects evaluated the video quality after each sequence in a prepared form using a five grade MOS

scale: “5–Excellent”, “4–Good”, “3–Fair”, “2–Poor”, “1–Bad”. Higher discriminative power was not

required, because our test subjects were used to five grade MOS scales (school). Furthermore, a five

grade MOS scale offers the best trade-off between the evaluation interval and reliability of the results.

Higher discriminative power can introduce higher variations to MOS results.

2.1.2 Audio and audiovisual quality evaluation

In order to keep consistency with the previously described methodology for video quality and the

ITU-T Recommendations [10],[11] for audio and audiovisual quality evaluation, the ACR method and

a five grade MOS scale was applied. Moreover, for emulating the real word conditions of the UMTS

video service all the audio and video sequences were played at UE (Sony Ericsson Z1010). In this

singular point the proposed methodology for audiovisual quality testing is not consistent with ITU-T

P.911 [10] and ITU-R BS.1534-1 [11]. Furthermore, since one of our intentions is to study the relation

between audio quality and video quality, we have decided to take all the tests with a standard stereo

headset. During the training session of three sequences the subjects were allowed to adjust the volume

level of the headset to a comfortable level. The viewing distance from the phone was not fixed and

selected by the test person but we have noticed that all subjects were comfortable to take phone at a

distance of 20-30 cm.

2.1.3 Subjective testing

At the beginning of each test round a trial run was presented with three sequences. The subjective

quality of these trial sequences varied substantially, in order to offer the test subject initial experience

with subjective quality evaluation. The contents and audio or video coding artifacts of these sequences

were similar to video sequences. The subjective evaluation of trial run sequences was not taken into

account in the statistical analysis of the test results. After this trial run the test sequences were

presented in an arbitrary order, the only conditions being that two clips of the same content, though

differently degradated, must not appear in succession, and that consecutive sequences must not have

identical bit rate and frame rate. If, on the contrary, all the versions of one sequence were displayed

in succession, subjects would perform a degradation rating rather than an absolute rating. Since the

intension is the subjective evaluation on different sequences of different contents relatively to each

other. Therefore, it is important to alternate the sequences.

Duration of clips was approximately 10 seconds. The length was not identical in all the clips, because
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Figure 2.4: Time pattern of the video quality survey.

the sequences were adjusted to a scene cut, in order to keep the contents consistent. The voting time

to respond to questions was also set to 10 seconds. A still image showing the order number of the

following sequence —white big digits on a black background— was displayed during this voting time

between sequences, in order to guide the test person through the questionnaire. The succession of clips

was presented using a playlist, to ensure that the subject did not have to interact with the device, and

could be fully concentrated in his viewing and evaluation task. The use of a playlist assures a level

of homogeneity in the viewing conditions for all the viewers, as the presentations cannot be stopped,

the voting time is fixed, and each test sequence is viewed only once before it is evaluated. The time

pattern for the presentation of the clips is illustrated by Figure 2.4, showing that after third initial

trials the actual evaluation process starts.

2.2 Source materials

ALL the original sequences were formatted to CIF or SIF resolutions. Source material in a higher

resolution were converted to SIF resolution. For mobile video streaming the most frequent

contents with different impact on the user perception were defined, resulting in the following seven

classes:

Figure 2.5: Snapshot of typical content class News (CC1).

• Content Class News (CC1): The first content class includes sequences with a small moving

region of interest (face) on a static background. The movement in the Region of Interests (ROI)

is mainly determined by eyes, mouth and face movements. The ROI covers up to approximately

15% of the screen surface.
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Figure 2.6: Snapshot of typical content class Soccer (CC2).

• Content Class Soccer (CC2): This content class contains wide angle camera sequences with

uniform camera movement (panning). The camera is tracking small rapid moving objects (ball,

players) on the uniformly colored (typically green) background.

Figure 2.7: Snapshot of typical content class Cartoon (CC3).

• Content Class Cartoon (CC3): In this content class object motion is dominant; the

background is usually static. The global motion is almost not present due to its artificial origin

(no camera). The movement object has no natural character.

Figure 2.8: Snapshot of typical content class Panorama (CC4).

• Content Class Panorama (CC4): Global motion sequences taken with a wide angle panning

camera. The camera movement is uniform and in a single direction.

• Content Class Video clip (CC5): The content class contains a lot of global and local motion

or fast scene changes. Scenes shorter than three seconds are also associated to this content class.

• Content Class Video call (CC6): Well-known professional test sequence, which contains

a monologue of a man moving his head dynamically and at the end of the sequence there is
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Figure 2.9: Snapshot of typical content class Video clip (CC5).

Figure 2.10: Snapshot of typical content class Video call (CC6).

a contiguous scene change. This sequence contains a lot of local and global movement. The

”foreman” sequence is a typical scenario for a video call.

Figure 2.11: Snapshot of typical content class Traffic (CC7).

• Content Class Traffic (CC7): The ”traffic” sequence is obtained by a static traffic camera.

The camera is static and slowly moving cars can be observed.

For subjective video testing on different sets of sequences (see Table 2.2) QCIF and CIF resolutions

were chosen, in order to obtain the most representative set for each resolution. Content classes CC1,

CC 2, and CC4 were used for subjective testing in both QCIF and SIF resolution. Content classes

CC3 and CC5 only in SIF resolution and content classes CC6 and CC7 only with QCIF resolution.

In [9] the measure of spatial and temporal perceptual information is used to characterize a video

sequence. The Spatial Information (SI) measurement reflects the complexity (amount of edges) of still

pictures. SI is based on the Sobel filter, that is applied to each luminance frame Fn at time instance

n. After that the standard deviation over the pixels is computed. The maximum value within the
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Resolution CC1 CC2 CC3 CC4 CC5 CC6 CC7

QCIF × × × × ×
SIF × × × × ×

Table 2.2: Sequence sets for subjective tests.

whole sequence represents the spatial information:

SI = max
timen

{
stdspacei,j

[
Sobel

(
Fn(i, j)

)]
}

. (2.1)

The temporal perceptual information measurement is based upon the motion difference feature. For

every time instance n, the luminance pixel values difference is counted:

Mn(i, j) = Fn(i, j) − Fn−1(i, j). (2.2)

Temporal Information (TI) is computed as a maximum over time of the standard deviation over space:

TI = max
timen

{
stdspacei,j

[
Mn(i, j)

]}
. (2.3)

In the following Figure 2.12 SI and TI values of the original sequences are depicted. As it can be

seen the spatial and temporal features of the chosen content types vary significantly.

Figure 2.12: Spatial and temporal features of original test sequences.
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THIS chapter describes the results of subjective video tests. These subjective tests are performed

for mobile scenario, but for different video codecs, resolutions and Content Classes (CCs). The

ACR method was used to capture MOS for a wide range of video sequences. Content was selected to

cover a representative range of coding complexity and content types. The subjective MOS data was

obtained according the subjective test methodology described in Chapter 2. This content was then

encoded at a variety of BRs and FRs and resolutions to represent high and low medium qualities. The

obtained subjective data was analyzed for each resolution and CC. Furthermore, the data was checked

for consistency. The preliminary look at the obtained data shows, that the subjective video quality is

strongly content dependent, especially for lower BR. This feature can be seen in tests on QCIF and

SIF resolution. Furthermore, the results were used for the design of subjective quality estimators.

3.1 Subjective quality tests on QCIF resolution and H.263 codec

ALL sequences were encoded with H.263 profile 3 and level 10. For subjective quality testing we

used combinations of bit rates and frame rates shown in Table 3.1. In total, there were 60

encoded test sequences. Six sequences were excluded due to significant visual impairments in spatial

and temporal domain.

FR [fps]/BR [kbps] 18 44 80

5 CC1, CC2, CC4, CC6, CC7 CC1, CC2, CC4, CC6, CC7 CC1, CC2, CC4, CC6, CC7

7.5 CC1, CC2, CC4, CC6, CC7 CC1, CC2, CC4, CC6, CC7 CC1, CC2, CC4, CC6, CC7

10 CC1, CC2, , CC7 CC1, CC2, CC4, CC6, CC7 CC1 CC2, CC4, CC6, CC7

15 CC1 CC1, CC2, CC4, CC6, CC7 CC1 CC2, CC4, CC6, CC7

Table 3.1: Tested combinations of frame rates and bit rates for QCIF resolution.

To obtain the MOS values, we worked with 38 paid test persons. The chosen group ranged different

ages (between 17 and 30), gender, education and different experience with image processing. Three

runs of each test were taken. In order to avoid a learning effect we made a break of half an hour

between the first and the second run, and a break of two weeks between the second and the third run.

There were not really noticeable differences between the first two runs and the third run, performed

two weeks after.

Finally, the 95% Confidence Interval (CI) was calculated for the obtained data set, in order to comfirm

consistency of the data set. The value xi corresponds to the average MOS of the obtained data set

averaged over all runs of subjective evaluations for one encoding setting of a particular sequence. The

95% CI is given by:

CI = [xi − δi, xi + δi] , (3.1)

where:

δi = 1.96
Si√
W

, (3.2)

where W is the number of MOS values obtained by all runs of subjective evaluations for one encoding
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setting of a particular sequence and Si is the standard deviation for each presentation given by:

Si =

√√√√
W∑

i=1

(xi − xi)2

W − 1
. (3.3)

3.1.1 Results for QCIF resolution and H.263 codec

In the further processing of our data we have rejected sequences which were evaluated with individual

standard deviation higher than one. Following this rule, we excluded 2.23% of the tests results. The

impact of the correction was negligible. The MOS was obtained by averaging over all the remaining

evaluations. The average size 2δi (over all tested sequences) of the 95% confidence intervals (3.1) was

computed as well and is δi = 0.15 on the five grade MOS scale.

3.1.2 Survey results for content class News (CC1)

The survey was performed on one sequence with twelve different encoding settings (see Table 3.1). The

obtained MOS results for CC1 depicted in Figure 3.1 show very high MOS ratings even at extremely

low bit- and frame-rates. This is caused by the static character of the sequence (see Figure 2.12) that

allows very high compression in the temporal domain. Furthermore, the viewers are mainly focusing

on the region of the newscaster’s face, representing approximately 15% of the surface. Results above

MOS grade 4 were achieved at all tested setting encoded at BR 44 kbps and higher. The top grades

were achieved for the encoding combination 80@10 kbps@fps and 80@15 kbps@fps.

Figure 3.1: MOS results for the content class News in QCIF resolution.

3.1.3 Survey results for content class Soccer (CC2)

Subjective quality of one soccer sequences encoded with eleven different settings (see Table 3.1) was

investigated. For soccer sequences insufficient subjective results below MOS grade 3 were obtained.

Moreover, for BR lower than 44 kbps the subjective quality was annoying (see in Figure 3.2). The

first reason of such critical evaluation is that subjective quality requirements for this content type are
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higher. Furthermore, high codec compressions and low video resolutions lead to ball impairment and

loss of lines as well as loss of the ball itself.

Figure 3.2: MOS results for the content class Soccer in QCIF resolution.

3.1.4 Survey results for content class Panorama (CC4)

The survey was performed on one panorama sequence with ten different encoding settings (see Table

3.1). In panorama sequences better MOS values were obtained for low FR as are depicted in Fig-

ure 3.3. The best subjective ratings increase with decreasing BR, the best MOS grades were obtained

for sequences encoded at 5 fps. The explanation of this so called ”panorama effect” [60] is that the

human vision can interpolate the uniform camera movement and test subjects were more sensitive on

spatial details.

Figure 3.3: MOS results for the content class Panorama in QCIF resolution.

3.1.5 Survey results for content class Video call (CC6)

Ten codec settings were encoded in total for CC6 (see Table 3.1). The video call (Foreman) sequence

achieves significantly better MOS values at BR of 80 kbps. This sequence contains a lot of local and

global movement and spatial details. The codec cannot compress this sequence as effective as CC1
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because there is less redundant information in spatial and temporal domain in the Foreman sequence.

Figure 3.4: MOS results for the content class Video call in QCIF resolution.

3.1.6 Survey results for content class Traffic (CC7)

Subjective quality of one traffic sequences encoded with eleven different settings (see Table 3.1) was

investigated. The traffic sequence has a relative static character. For the test subjects a reasonable

trade-off between continuous car movement and spatial details were more important. The subjective

results for the traffic sequence depicted in Figure 3.5 show very high MOS at FR 7.5 fps for BR 44

and 80 kbps.

Figure 3.5: MOS results for the content class Traffic in QCIF resolution.

3.2 Subjective quality tests on SIF resolution and H.264/AVC codec

FOR the tests in SIF resolution all sequences were encoded with the H.264/AVC baseline profile

1b. For subjective quality testing frame and bit rate combinations shown in Table 3.2 were used.
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In total there were 39 combinations.

FR [fps]/BR [kbit/s] 24 50 56 60 70 80 105

5 CC1, CC3, CC4 CC5 CC1, CC2, CC3, CC4 CC1

7.5 CC1, CC3, CC4 CC1, CC2, CC3, CC4 CC5 CC5 CC1, CC2,CC5

10 CC1, CC3 CC1, CC2, CC3, CC4 CC5 CC5 CC1, CC2, CC5

15 CC1 CC1, CC2 CC5 CC1, CC2, CC5

Table 3.2: Tested combinations of frame rates and bit rates for SIF resolution.

To obtain MOS values, we worked with 36 test persons for two different sets of test sequences.

The first set was used for the design of a metric and the second for the evaluation of the metric

performance. The training set test was carried out with 26 test persons and the evaluation test set

was carried out with 10 test persons. The training and evaluation tests were collected from different

sets of the five video classes. The chosen group of test persons ranged different ages (between 20 and

30), gender, education and different experience with image processing. Two runs of each test were

taken. In order to avoid a learning effect, we made a break of half an hour between the first and the

second run.

3.2.1 Results for SIF resolution and H.264/AVC codec

The raw ratings obtained in the subjective quality survey were scanned for unreliable results. Votes

from one viewer to a certain sequence that differ two or more MOS grade from the first to the second

run were considered unreliable and therefore rejected. In total, 12.3% of the results were rejected. In

average the MOS values were modified maximally in 0.04 units, or 1.2%. This modification, though,

had almost no influence, and thus its average effect on the test global mean score was negligible —0.005

points, or 0.16%—. Subsequently, the MOS was obtained by averaging over all the remaining votes.

The average size (over all tested sequences) of the 95% confidence intervals 2δi (3.1) was computed as

well and is δi = 0.27 on the five grade MOS scale.

3.2.2 Survey results for content class News (CC1)

The MOS results for the CC1 ”News” scene (see snapshot in Figure 2.5) are depicted in Figure 3.6.

The subjective quality test included 12 differently degraded versions of this video sequence. The news

sequence is the most static of all test sequences. The highly static character of these test clips can

also be seen in the low values of the TI parameter (see Figure 2.12), the lowest of all test sequences.

Only a small part of the surface is in movement. Viewer are concentrated at the face of the newscaster,

carrying the biggest part of the visual information contained in the clip. The four versions compressed

at 24 kbps received poor scores and all the clips down-sampled at 5 fps obtained subjective MOS scores

below 3. The motion in the face of the speaker is visibly slowed down and looks very unnatural at such

low frame rate and bit rate, what turns out to be a very annoying effect for the viewer. The highest

scores of MOS 3.8 are obtained by the configuration BR@FR = 105@7.5 kbps@fps , closely followed by

105@10 kbps@fps, 56@10 kbps@fps whith MOS 3.7 and 105@15 kbps@fps MOS 3.6, respectively. Very
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interesting is the fact that the viewer seems to notice no difference in quality between the combination

56@10 and 105@10 kbps@fps, which both received very positive evaluations.

Figure 3.6: MOS results for the content class News.

3.2.3 Survey results for content class Soccer (CC2)

The ”Soccer” scene (snapshot in Figure 2.6) is the most dynamic of the test sequences, although the

TI measurement (see Figure 2.12) is the second lowest after the ”News” sequence. This is caused

by the green playground which covers more than two thirds of the screen surface. The MOS results

for the “Soccer” clip are presented in Figure 3.7. A set of seven compressed versions of this sequence

was included in the subjective test. Bit rates below 56 kbps were not used in the survey as their

quality was found to be clearly too poor due to extreme blurriness, which causes the football and

the lines on the playground to disappear from the image. The seven encoded versions were evaluated

rather positively by the test subjects: only the configuration 56@5, in which the motion is very jerky,

receives a MOS below 3. Increasing FR had always a positive effect on the perceived quality. This

means that, on the contrary to what happens with other content types (especially the ”News” case)

in the ”Soccer” sequence viewers prefer smoothness of motion rather than static quality. The best

results are obtained with the configuration 105@15 with a MOS of 4.1 (0.8 points higher than the best

score at 56 kbps). In conclusion, we can say that data rates below 56 kbps or frame rates lower that

7.5 fps do not seem to be appropriate to compress sequences of these characteristics. Moreover, the

encoding setting with higher FR are better evaluated.

3.2.4 Survey results for content class Cartoon (CC3)

The “Cartoon” sequence (snapshot in Figure 2.7) is an animation. In contrast to the other four test

sequences, the motion in this clip was not captured by a camera, but is artificially created. For all

the six encoding configurations, the best subjective quality results were obtained (see Figure 3.8).

In view of the results, we can say that a sequence of these characteristics can be compressed at the

very low data rate of 24 kbps, obtaining a ”good” perceived quality. At 56 kbps the static quality of
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Figure 3.7: MOS results for the content class Soccer.

the images is very good and does not get perceptibly worse with the increasing frame rate. Therefore,

at this data rate, the viewer’s quality perception improves with the frame rate and the configuration

56@10 receives the highest score: 4.4 MOS grade, which is the best score reached in the survey.

Figure 3.8: MOS results for the content class Cartoon.

3.2.5 Survey results for content class Panorama (CC4)

The ”Panorama” sequence (see snapshot in Figure 2.8) is characterized by smoothness and uniformity

of the motion. The TI values (see Figure 2.12) of this clip are the second highest after the ”Video

clip.” The ”Panorama” scene can be very effectively compressed due to the uniformity of the camera

movement and the lack of object motion. It was considered unnecessary to include in the evaluation

compressions of more than 56 kbps, as this data rate already allowed for a very good video quality.
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For the very low bit rate of 24 kbps and frame rate 7.5 reaches ”Panorama” an acceptable 2.8 MOS

grade. The degraded clips at 56 kbps received a much better evaluation. At this data rate, the MOS

values obtained by ”Panorama” are only surpassed by those of the “Cartoon” clip. The configuration

56@7.5 reaches 4.1 MOS points, only 0.3 points below the maximum of the survey. Figure 3.9 shows

that there is no need for compressing above 56 kbps due to high video codec efficiency at this BR.

The fact that the frame rate 7.5 fps is favored over 10 fps indicates that the user gives in this case

priority to the static quality.

Figure 3.9: MOS results for the content class Panorama.

3.2.6 Survey results for content class Video clip (CC5)

The MOS results obtained by the ”Video clip” (snapshot in Figure 2.9) are presented in Figure 3.10.

Due to the presence of scene cuts and fast movement, this sequence’s TI value (see Figure 2.12) is

much higher than those of all the other test sequences. This suspects that this sequence cannot be

easily compressed without loss. In total, nine different compression configurations were included in

the experiment. Versions below 70 kbps received poor opinion scores are affected by severe blurriness.

The combinations with FR 5 fps turns out to be annoyingly jerky and unnatural. Interesting is the fact

that the viewers evaluate all configurations at 70 and 80 kbps almost identically and rather positively,

showing no clear preference for a particular frame rate. The configuration 70@10 kbps@fps seems to

be an acceptable trade-off between required data rate and perceived quality. The clips encoded at the

highest rate 105 kbps have very good acceptance, but again no conclusions can be extracted about

the most appropriate frame rate.

3.3 Summary of survey results

THE most important outcome of our tests is that human visual perception of video content is

strongly determined by the character of the observed sequence. As can be seen at Figures 3.11
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Figure 3.10: MOS results for the content class Video clip.

and 3.12, the measured subjective video quality is strongly content dependent, especially at low BR

and resolution. The difference between two contents can result in up to 3 MOS grades for the QCIF

resolution and 1.6 MOS grades for the SIF resolution.

Figure 3.11: MOS for all the tested sequences for QCIF Resolution.

The subjective assessment for the QCIF resolution (see Figure 3.11) shows that the test subjects

prefer almost for all CCs frame rates 7.5 and 10 fps. The only exception is CC4 due to the ”Panorama

effect” [60] for which the preferable FR is 5 fps. Moreover, it can be seen that lower FRs do not
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typically decrease the subjective quality at a QCIF resolution.

Figure 3.12: MOS for all the tested sequences for SIF Resolution.

The subjective assessment of the SIF resolution (see Figure 3.12) shows high quality variation at

lower BRs, but a quality saturation at bitrates over 100 kbps can also be observed. For the ”News”

sequence, the highest score is obtained by the configuration BR@FR=105@7.5 kbps@fps, closely

followed by 105@10 kbps@fps and 56@10 kbps@fps. Very interesting is the fact that the viewers seem

to notice no difference in quality between the combination 56@10 kbps@fps and 105@10 kbps@fps,

which both receive very positive evaluations. The most dynamic sequence ”Soccer” received the best

evaluation at 105 kbps. An increasing frame rate in soccer videos has always a positive effect on the

perceived quality, which is in contrast with other content types, specially to the more static ”News”

case. In the ”Soccer” sequence viewers prefer smoothness of motion rather than static quality.

Moreover, the video quality surveys allow to estimate which coding parameters should be used,

according to the character of the video content, in order to maximize the end-user’s perceived quality.

Furthermore, the results can be used for determining the most suitable trade-off settings in terms of

bit-rate and subjective quality requirements. Table 3.3 contains the suggested trade-off settings for

low bit-rates for each content class. For these results we selected the lowest bit-rate that scored above

3 MOS grade and chose, for this bit-rate, the frame-rate configuration that obtained the best score.

3.4 Willingness to pay in relation to delivered quality

THE following Willingness To Pay (WTP) results were obtained together with the video quality

survey described above. The WTP was evaluated with a simple binary question:
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Content Class QCIF SIF

BR@FR [kbps@fps] MOStrade−off BR@FR [kbps@fps] MOStrade−off

1 44@7.5 4.8 56@10 3.7

2 — — 56@15 3.3

3 56@7,5 4.1

4 44@5 3.3 24@10 3.6

5 70@10 3.1

6 44@7.5 3.1

7 44@7.5 3.7

Table 3.3: The best trade-off encoding settings.

”If you should pay for this video sequence, would you be satisfied with the video quality?”

The question was designed in order to define a relation between WTP (as is defined) and subjective

quality of video streaming. Technically, WTP has emerged from Subjective or Perceived/Perceptual

QoS (PQ) [61] and is solely based on human perception or satisfaction regarding service usability.

Determining PQ is typically carried out by surveying a set of persons, which participate in a controlled

experiment [62]. Furthermore, the human visual perception of multimedia content is determined by

the character of the observed sequence [63], [64]. The sequence character reflects motion characteristics

(content type, video motion features, spatial information) [63], [64]. The recent trends show that the

perceptual video QoS is defined by a set of intrinsic QoS parameters [61] as well as audio and video

parameters. There were already complex QoS studies regarding WTP [65] and proposals of WTP

utility functions for Internet streaming [66]. Unfortunately, these results are not applicable for mobile

streaming due to significantly different usage scenarios. Furthermore, the consumers do not have a

clear vision how much and what for they are willing to pay for. These conditions make it almost

impossible to objectively perform a classical WTP survey in order to define the maximum amount of

money that may be contributed by an individual to equalize the utility change. Therefore, the most

fundamental WTP [67] features are investigated. The WTP is defined as readiness to pay for the

provided quality of video streaming.

Figure 3.13 clearly shows a linear dependence between MOS and WTP. Moreover, the behavior is

not dependent on the codec or the resolution.

These features allow us to estimate WTP with subjective video quality. The following metrics in

a mobile scenario which returns the percentage of customers that are ready to pay for the provided

video quality are obtained from the QCIF test scenario by a linear regression:

WTPQCIF = 29.952 · MOS − 45.948, (3.4)

and from the SIF test scenario:

WTPSIF = 33.943 · MOS − 46.671. (3.5)

In order to evaluate this regression the Pearson correlation factor separately for both resolutions was

calculated. The performance of metrics (see Equations (3.4) and (3.5)) is over 96%. Moreover, the
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Figure 3.13: Relation between MOS and WTP.

visual inspection shows that QCIF and SIF results are very well correlated. Finally, one universal

metric for both resolutions is proposed by simple linear regression over all measurements:

WTP = 31.514 · MOS − 45.664. (3.6)

For the joined test case the proposed metric is independent from codec, resolution and content. The

performance of the proposed metric for QCIF resolution is 97.53% and for SIF 96.83%. Finally, for

the joint test case 95.73% correlation was achieved.
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4.1 Introduction

THE human visual perception of video content is determined by the character of the observed

sequence. It is necessary to determine different content characters/classes or content adaptive

parameters because the video content itself strongly influences the subjective quality (cf. Section 3.3).

The character of a sequence can be described by the amount of the edges (spatial information) in the

individual frames and by the type and direction of camera and object movement (temporal informa-

tion). The constant BR of the video sequence is shared by the number of frames per second. Higher

frame rates at constant BR result in a lower amount of spatial information in individual frames and

possibly in some compression artifacts.

In the literature the focus is given mainly on the spatial information [20], [21]. Such approaches come

mainly from the quality estimation of still images [68], [69]. However, especially in small resolutions

and after applying compression, not only the speed of movement (influencing at most the compression

rate) but also the character of the movement plays an important role in the user perception. There-

fore, in this thesis the focus is given on the motion features of the video sequences that determine the

perceived quality.

In this chapter the design of content classifiers and video quality estimators for different content

classes, codecs and resolutions are described. Since each shot of a sequence can have a different con-

tent character, a scene change detection is required as a pre-stage of content classification and quality

estimation. Moreover, the quality estimation is based on content sensitive video parameters.

4.2 Temporal segmentation

THE temporal segmentation of a video into its basic temporal units - so called shots - is of great

importance for a number of applications today. Video indexing techniques, which are necessary

for video databases, rely on it. It is also necessary for the extraction of high level semantic features.

Moreover, it provides information for video preprocessing, compression codecs and error concealment

techniques. Temporal segmentation is also a prerequisite in the process of video quality estimation. A

shot is a series of consecutive video frames taken by one camera. Two consecutive shots are separated

by a shot boundary which can be abrupt or gradual. While an abrupt shot boundary (=cut) is

generated by simply attaching one shot to another without modifying them like in Figure 4.1, a

gradual shot boundary is the result of applying an editing effect to merge two shots. For the purpose

of video quality estimation it is sufficient to detect scene cuts because abrupt shot boundaries are the

most frequent and gradual shot boundaries (dissolve, fades or wipes) usually not leading to a content

class change.

Many types of scene change detection schemes were proposed in literature. Scene change can be

described by a similarity measure between two consecutive frames. When this measure reveals a big

enough change defined by a threshold, a scene change is declared. However, a fixed threshold value

does not perform well for all videos mainly due to the variety of content character. The key problem

is to obtain an optimal value for such threshold. If it is set too high, there is a high probability that

some cuts remain undetected. If it is too low, the detection scheme produces false detections. In video
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streams of diverse CC types both cases can appear simultaneously.

Figure 4.1: Abrupt scene change.

A variety of techniques were proposed for shot boundary detection in digital video. A pairwise

comparison checks each pixel in one frame with the corresponding pixel in the next frame [71]. In

order to overcome the detection problem, a double threshold (high – low) was proposed to eliminate

missed scene changes and dismiss false ones [76]. Although it improved the efficiency, results are

not sufficient, especially in real-world videos with high motion like sport games. In addition to this

method, a function-based lowering of the threshold, after a scene change was used to decay from high

to lower threshold [77]. This technique was used to avoid false detections close to a real scene change,

assuming that scene changes cannot occur immediately after each other. However, in most of these

methods an optimal threshold (or two thresholds) had to be determined for each video in advance. The

Likelihood ratio approach compares blocks of pixel regions [71]. Net comparison breaks the frame into

base windows [72]. The color histogram method compares the intensity or color histograms between

adjacent frames [74]. Model based comparison uses the video production system as a template [73].

Edge detection segmentation looks for entering and exiting edge pixels [75]. Other methods were

proposed to find automatically an optimal static threshold e.g. using histogram differences [78],

entropy [79] or the Otsu method [80], all having the disadvantage of a static threshold and therefore

not being suitable for real-time applications. A truly dynamic threshold is presented in [81], where

the input data are filtered by a median filter and then a threshold is set using the filtered output and

standard deviation. However, it is not suitable for real-time applications, as the median filter uses

future frames as well. A different approach for variable bit rate video is presented in [82], where the

bit-rate used in each frame is the change metric. It uses statistical properties of the metric values in

a single shot, together with the shots length, to define a threshold.

4.2.1 Sum of absolute differences

The Sum of Absolute Differences (SAD) is a widely used, extremely simple video quality metric,

applied for block-matching in motion estimation for video compression. It works by taking the

absolute value of the difference between each pixel in the original block and the corresponding pixel

in the block being used for comparison. These differences are summed to create a simple metric of

block similarity. Furthermore, SAD is a very suitable parameter for shot-boundary detection because

SAD provides a clear distinctive measure of the video temporal behavior [83], [84].
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The SAD is calculated between two consecutive frames (n) and (n+1) and is computed as follows:

SADn =
N−1∑

i=0

M−1∑

j=0

|Fn(i, j) − Fn−1(i, j)| , (4.1)

where Fn is the n-th frame of size N × M , i and j denote the pixel coordinates. As can be seen

at Figure 4.4, SAD reflects the sequence motion characteristics as well as indicates shot-boundaries.

Furthermore, the high peaks usually refer to the shot boundaries and gradual SAD changes refer to

dynamic scenes or to cinema tricks. The SAD proportion between the dynamic scenes or to cinema

tricks and shot boundaries is not constant. These features are investigated in the next section.

4.2.2 Analysis of scene change boundaries for different content types

To decide whether a shot boundary has occurred, it is necessary to set a threshold, or thresholds for

the similarity between adjacent frames. The SAD values above this threshold are considered as cuts,

while values below this threshold are ignored. To accurately segment videos of various content types,

it is necessary to balance the following three - apparently conflicting points:

• robust scene change detection in all content types and resolutions,

• prevent detection of false shot boundaries by setting a sufficiently high threshold level,

• detect all shot boundaries, by setting a sufficiently low threshold level.
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Figure 4.2: At the left side the temporal SAD behavior of the ”car race” sequence is shown on the

right side the temporal SAD behavior of the cinema trailer.
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The sequence of SAD values that is computed, has statistical properties that are worth exploiting

in the effort to detect scene changes. The scene changes are simply detected by a high SAD value

(usually peak). However, high SAD values can also be found during rapid movement, sudden light

changes and transition effects such as zoom in/out, dissolve etc. Moreover, the value level of a scene

change is usually not constant. A scene break in which both scenes have similar background does

not give a peak as high as if they had different ones. Furthermore, the maximal differences of two

consecutive frames are much higher for SIF resolution than for QCIF resolution due to the different

amount of pixels. The ”car race” sequence (see Figure 4.3) containing a lot of local and global

movement is taken as an example. This particular sequence leads to very high SAD values and its

variations and mean values. Moreover, this sequence does not contain any cut. On the contrary, a

second example is a cinema trailer which contains 19 cuts. The temporal character of both sequences

can be seen at Figure 4.2. The green line refers to the SAD values and the dashed magenta line

to the mean of the SAD values. As a consequence of the above listed conditions, there should be an

optimal threshold level for all content types and resolutions. Unfortunately, it can be clearly seen at

Figure 4.2 that it is not possible to define a universal fixed threshold, due to significantly different

motion characteristics of the various content classes. Consequently, a thresholding function is needed

which will be able to adapt to the character of the scene without the need for a previous input.

Therefore, the next investigation is focused on variable threshold settings based on local statistical

features.

4.2.3 Dynamic threshold boundaries

Since the sequence can contain different scenes - shots with different characteristics, each sequence

was segmented first by a scene change detection based on a dynamic threshold [83]. For this purpose

the method was adopted to all content types [64].

The thresholding function is based on statistical features of the local sequence. The higher accuracy

Figure 4.3: Right snapshot of ”Car race” sequence and left snapshot of cinema trailer.

was achieved by introducing 10 forecoming and 10 upcoming frames into averaging. The SAD is

calculated between two frames (n) and (n + 1). Moreover, the empirical mean mn and the standard

deviation σn are computed for a sliding window [n − N, n + N, N = 10]:

mn =
1

2N + 1

K=n+N∑

K=n−N

SADK (4.2)
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and

σn =

√√√√ 1

2N

K=n+N∑

K=n−N

(SADK − mK)2. (4.3)

Equations (4.2) and (4.3) are used for defining the variable threshold function:

Tn = a · mn + b · σn. (4.4)

The constants a, b were tuned in order to obtain the best performance for all content types. The

constant a was set in order to avoid wrong scene change detections like as in case of intense motion

scenes; but on the other hand, the detector can miss some low-valued, difficult scene changes. The

constant b was tuned in order to prevent from detecting intense motion as a scene change as can be

seen in Figure 4.4. The peaks above the dynamic threshold function (blue line) are recognized as

cuts. The scene change detector works with both precision and recall higher than 97%.

This implementation differs from [83] in introducing additional future frames (K = n...n + N).
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Figure 4.4: Performance of the proposed dynamic threshold function (4.4) on a sequence with multiple

cuts (•).

Processing of upcoming frames increases the processing delay ( N

FR), but on the other hand improves

accuracy and allows the method to be applied onto all content classes.
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4.3 Video content classification

THE character of a sequence can be described by the amount of edges in the individual frames,

SI, by the type and direction of movement, TI and color features. Moreover, the video quality

estimation can be significantly simplified by content recognition as an independent issue. An automatic

content recognition module is able to distinguish between a discrete set of classes can then be used in

combination with an individual metric to estimate subjective quality of all typical video contents.

4.3.1 SI and TI sequence features

As an initial step for content classification SI and TI sequence features were investigated. SI (2.1)

and TI (2.3) quantify still picture complexity and the motion character, respectively. Moreover, these

parameters play a crucial role in determining the amount of video compression that is possible, and

consequently, the level of impairment that is suffered when the scene is transmitted over a constant

BR digital transmission service channel. The aim was to find a correlation among semantically

related shots and a combination of SI and TI values.

Figure 4.5: Snapshots of investigated content classes: Talk show, Comedy, Cartoon, Nature.

Further investigation was performed on videos grouped to semantically compact content classes.

The SI and TI values were computed only between two cuts and the videos were in original quality

(uncompressed, FR = 25 fps). These sequences were segmented out of pool of more than 40 video

sequences. The results are depicted at Figure 4.6.For this experiment sequences with (semantically)

identical shots within one content class were chosen on purpose. Furthermore, the investigated content

classes were semantically heterogeneous. The following content classes were chosen: Cartoon, Comedy,

Talk show, Nature (see Figure 4.5) as well as Soccer and Cinema trailer.
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Figure 4.6: SI-TI diagram of investigated content classes.

In total more than 400 sequences were investigated belonging to these six classes. The preliminary

look at the results shows big diversity of the values even within one content class; there are not typical

regions for semantically identical content classes. Moreover, the regions are semantically overlapping.

Further statistical analysis (see Table 4.1) shows very high standard deviation in proportion to SI

and TI mean values for all CCs.

CC SImean SIstd TImean TIstd

Cartoon 100.20 37.49 30.38 15.07

Comedy 125.30 39.31 64.15 26.83

Talk show 123.30 40.16 45.61 27.04

Nature 78.18 48.76 23.28 20.57

Soccer 142.20 67.12 52.46 27.72

Cinema trailer 118.90 34.92 58.27 23.73

Table 4.1: Statistical results from obtained SI and TI values.

According to SI and TI values, the most dynamic sequences are Comedy, Cinema trailer and Soccer

as was expected. Surprisingly, the highest SI value was achieved for Soccer sequences; it was caused

due to complexity of significantly high surface of the grand stand. Finally, it can be concluded that SI

and TI values poorly map the content semantic and that another approach has to be used for content

classification.
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4.4 Content sensitive features

Especially at low resolutions and BRs after applying compression, not only speed and the amount of

the movement but also the character of the movement plays an important role for the user perception.

Moreover, the user content perception is also determined by color features of the sequence. Therefore,

in this work the motion and color features of the video sequences within one shot are investigated that

determine the perceived quality.

4.4.1 Motion vector extraction

The block based motion compensation techniques are commonly used in inter-frame video compression

(supported also by H.263 and H.264) in order to reduce temporal redundancy. The difference between

consecutive frames in a sequence is predicted from a block of equal size in the previous frame which

serves as reference frame. The blocks are not transformed in any way apart from being shifted to the

position of the predicted block. This shift is represented by a Motion Vector (MV). This technique

was used to analyze the motion characteristics of the video sequences.

Figure 4.7: Snapshot of two successive frames - Soccer sequence.

The block from the current frame for which a matching block is sought, is known as the target

block . The relative difference in the locations between the matching block and the target block is

known as the MV. If the matching block is found at the same location as the target block then the

difference is zero, and the motion vector is known as zero vector .

The difference between target and matching block increases (approximately linearly) with the size

of the blocks. Thus, smaller blocks better describe the actual motion in the frame. On the other hand

an increase of the objective accuracy does not always imply a better performance. If the blocks are

selected too small, the resulting MVs do not reflect anymore the motion as it is perceived by a viewer

[89]. Due to the unavoidable presence of noise in video sequences, and the characteristics of the human



54 CHAPTER 4. VIDEO QUALITY ESTIMATION

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

Figure 4.8: MV field obtained with blocks of 8x8 pixels without DCT filtering.
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Figure 4.9: MV field obtained with blocks of 8x8 pixels with DCT filtering.

visual system, it happens that movement is detected although a human observer does not see it. Such

behavior is not suitable for the purpose. After several trials with videos of different character, a pixel

block size of 8×8 was selected due to a good trade-off for QVGA resolution sequences. The 320×240

pixels are divided into 30 × 40 blocks (see Figure 4.8), which gives a total number of 1200 MVs per

frame.

The second part of the process, and the most time and resource consuming one, is block matching.

Each block in the current frame is compared to a certain search region in the past frame in order to

find a matching block. This operation is performed only on the luminance component of the frame. A

matching criterion has to be used to quantify the similarity between the target block and the candidate

blocks. Because of its simplicity and good performance, the sum of absolute differences (SAD) was

used and computed as the pixel-wise sum of the absolute differences between the two blocks being

compared:

SADn,m =
∑N−1

i=0

∑M−1
j=0 |Bn(i, j) − Bm(i, j)| , (4.5)

where Bn and Bm are the two blocks of size N ×M , and i and j denote pixel coordinates. If more

than one SAD minimum is detected, priority is given to the matching block the position of which is

most similar to that of the target block, or equivalently, to the MV of smallest size.
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The presence of noise, lighting variation, and the existence of multiple local minima in the SAD dis-

tribution in the video sequences causes that the system detects movement although a human observer

does not perceive it. Such effect introduces significant deviation to further usage of MV features for

content classification and quality estimation. The vector fields found after performing the described

exhaustive search on raw luminance frames do not always represent the true motion. A good example

can be seen at the MV field in Figure 4.8 made out of two consecutive soccer frames (see Figure 4.7).

This problem is not new, the possible solution to erroneous motion detection is the use of smoothing

techniques [86]. Smoothing techniques can be applied to the motion vectors that can detect erroneous

MVs and suggest alternatives. The alternative motion vectors can be used in place of those suggested

by the block matching algorithm. Moreover, this technique is not suitable for the purpose due to

adding considerable complexity to the motion estimation algorithms and smoothing can cause the

wrong detection of small moving objects.

The next option is to apply a binary mask to the motion field in order to exclude the low-textured

areas from computation. A convolution mask is run in each macro-block of the uncompressed image,

and those macro-blocks that have too few edge pixels (pixels with a gradient above a given threshold)

are considered low-textured [87]. The drawback of such approach is that the uncompressed original

images need to be available.

Another approach is MV correction based on the pattern-like image analysis [88] which exploits SAD

distribution. This method does not provide sufficient accuracy for all content types and adds consid-

erable processing complexity.

Therefore, it was necessary to develop a new, low complexity, and reference-free method. The most

suitable approach was to analyze the AC components of the DCT coefficients and introduce additional

low-pass filtering before the block matching [89]. The matching algorithms are applied using 8 × 8

pixel blocks and then the first ten coefficients of the inverse DCT are extracted. It can be observed in

the example at Figure 4.7 where two successive frames are depicted . The comparison of the MV field

before filtering in Figure 4.8 and MV after filtering in Figure 4.9 shows considerable improvement.

4.4.2 Extraction of motion sequence parameters

The extracted and filtered MVs allow the further analysis of the motion (motion features) in the

sequence. The static or dynamic character of a sequence is one of the main causes for the differences

in perceived quality [64]. This investigation leads to a classification not only in terms of ”static se-

quences” and ”dynamic sequences”, but also to deeper understanding of these aspect and to determine

typical levels of quantity of movement for every content class. The overall amount of movement, or

equivalently, the lack of movement in a frame, can be easily estimated from the proportion of blocks

with zero vectors, that is, blocks that do not move from one frame to the other. Therefore, the aver-

age proportion of static blocks in a sequence of frames is very useful when it comes to distinguishing

contents with typical different ”levels” of overall movement.

The length of the MV indicates how far the block has moved from one frame to the next, and its angle

tells us in which direction this movement occurred. Therefore, the mean size of the MVs in a frame

or sequence of frames is an indicator of how fast the overall movement happens. Moreover, detecting

a main direction of movement, that corresponds to a big proportion of MVs pointing in the same
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direction, is a valuable information. Thus, it can be assumed that the analysis of the distribution of

sizes and angles of the MVs can provide substantial information about the character of the motion in

the sequence [89].

A set of statistical MV features were investigated in order to study their level of significance for further

content classification. As initial step, the motion features were analyzed throughout the sequence in

order to observe their temporal behavior. The following statistical and resolution independent features

of MVs within one shot (over all the frames of the analyzed sequence) were investigated:

1. Zero MV ratio Nz:

Percentage of zero MVs in a frame. It is the proportion of the frame that does not change at

all (or changes very slightly) between two consecutive frames. It usually corresponds to the

background if the camera is static within one shot.

2. Mean MV size M :

Proportion of mean size of the MVs within one frame normalized to the screen width, expressed

in percentage. This parameter determines the amount of the global motion.

3. Mean non-zero MV size n:

Proportion of mean size of the non-zero MVs within one frame normalized to the screen width,

expressed in percentage. This parameter determines the amount of the global motion.

4. Intra-frame MV standard deviation F :

Standard deviation of MV sizes in the frame. MV standard deviation is expressed as a percentage

of the MV mean size in the frame. This feature is sensitive at dynamic motion changes.

5. Intra-frame standard deviation of non-static blocks f :

Standard deviation of the sizes of non-zero MVs, expressed as a percentage of the mean size of

these MVs in the frame. It is a measure of the uniformity or dynamic changes of the moving

regions.

6. Uniformity of movement d:

Percentage of MVs pointing in the dominant direction (the most frequent direction of MVs) in

the frame. For this purpose, the granularity of the direction is 10 degrees.

7. MV direction uniformity of non-static blocks B:

Percentage of MVs pointing in the main direction in the moving regions (zero MV are excluded).

A Principal Component Analysis (PCA) [90] was carried out on the obtained data set. PCA is

a suitable method for viewing a high-dimensional set of data in considerably fewer dimensions. For

this purpose, it is necessary to calculate and plot the scores of k sample members using the first few

principal components as axes. PCA can be described as follows:

As scalar variate (yj) is a linear combination a1x1 + a2x2 + ... + apxp of original variates xi (boldface

xi elements represent row elements of matrix X). In this particular case data matrix X = {X[p, n]}
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is represented as:

X =




Nz1
. . . Nzp

M1 . . . Mp

n1 . . . np

F1 . . . Fp

f1 . . . fp

d1 . . . dp

B1 . . . Bp




. (4.6)

Thus, it can be more concisely written as y = Xa, where aT = (a1, a2, ..., ap) and X = (x1,x2, ...,xp).

The coefficients of aT
j are given by the elements of the eigenvector corresponding to the j-th largest

eigenvalue lj of the covariance matrix S of dimension n × n:

S = 1
p−1

∑p
i=1(xi − x)(xi − x)T . (4.7)

The j-th principal component is a linear combination y = Xa which has the greatest sample

variance for all aT
j satisfying aT

j aj = 1 and aT
j ai = 0 (i < j).
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Figure 4.10: Visualization of PCA results for content class News (CC1).

The first two components proved to be sufficient for an adequate modeling of the variance of the

data. The first principal component is the linear combination y1 = Xa1 of the original variables

which has maximum variance among all such linear combinations. The second principal component

y2 = Xa2 has the second largest variance among all such linear combinations.

Finally, the biplot technique [91] was applied for representing the first two principal components by

means of parameter vectors. The biplot provides a useful tool of data analysis and allows the visual

appraisal of the structure of large data matrices. It is especially revealing in principal component

analysis, where the biplot can show inter-unit distances and indicate clustering of units as well as

display variances and correlations of the variables.

To approximate biplot representation involves constructing the rank-2 approximation S̃ to covariance
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(original) matrix S provided by the singular value decomposition (covariance matrix S is symmetric)

given by:

S = σ1v1v
T
1 + σ2v2v

T
2 + . . . + σkvkv

T
k , (4.8)

then the 2- rank approximation of S is:

S̃ = σ1v1v
T
1 + σ2v2v

T
2 . (4.9)

S̃ =
(
v1 v2

) (
σ1 0

0 σ2

) (
vT

1

vT
2

)
.

If the vector vi are given by vi = (vi1, vi2, ..., vin, ) for i = 1, 2, then we have:

S̃ =




v11 v21

v12 v22

...
...

v1m v2m




(
σ1 0

0 σ2

) (
v11 v12 v1n

v21 v22 v2n

)
.

To obtain a biplot, it is first necessary to write S̃ as a product of matrices GGT , where G is an

(m × 2) matrix. This can be done by a simple factorization:

S̃ = GGT , (4.10)

S̃ =




v11
√

σ1 v21
√

σ2

v12
√

σ1 v22
√

σ2

...
...

v1m
√

σ1 v2m
√

σ2




(
v11

√
σ1 v12

√
σ1 v1n

√
σ1

v21
√

σ2 v22
√

σ2 v2n
√

σ2

)
.

Finally, the end point of the parameter vectors represents (v1i
√

σ1, v2i
√

σ2). The parameter vectors

show variances and correlations of the defined video quality parameters. The variance of the first two

components is over 90%. Moreover, the PCA results (see Figures 4.10, 4.11, 4.12, 4.13, 4.14) show

a sufficient influence of the investigated parameters on the data set within each content class.

The visualization of PCA results shows that all parameter vectors have approximately similar

influence on the data set. Therefore, it was not possible to set hard decision criteria for selection of

video quality parameters according to PCA results. The chosen parameters have low computational

complexity and good distribution over the most significant subspace of PCA within all content classes.

According to PCA results and computational complexity, the following three parameters were

chosen:

• Zero MV ratio (Nz),

• The mean non-zero MV (n),

• The uniformity of movement (d).
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Figure 4.11: Visualization of PCA results for content Soccer (CC2).
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Figure 4.12: Visualization of PCA results for content Cartoon (CC3).

Finally, the selected content sensitive parameters reflect the static part of the surface, the significance

of the movement in the non-static part and the dominant motion direction.

In order to increase the accuracy of the proposed content classifier it was necessary to define content

sensitive features for detecting movement in horizontal direction as well as green color . Therefore, an

additional feature for detecting the amount of horizontal movement was defined.

8. Horizontalness of movement h:

Horizontalness is defined as the percentage of MVs pointing in horizontal direction. Horizontal

MVs are from intervals 〈−10; 10〉 or 〈170; 190〉 degrees.

This feature allows enhanced detection of panorama and the most accurate detection of soccer

sequences. As can be seen at Figure 4.15 in Panorama and Soccer, the horizontal movement is
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Figure 4.13: Visualization of PCA results for content Panorama (CC4).
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Figure 4.14: Visualization of PCA results for content Video clip (CC5).
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Figure 4.15: MV field of typical Panorama (left) and Soccer (right) sequences.
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dominantly presented.

Soccer sequences for example contain a lot of varying green colors while cartoon sequences exhibit

discrete saturated colors. For this purpose the color distribution of CCs was investigated. Color

histograms provide additional information about the spatial sequence character because in different

types of contents, the density and magnitude of colors differ as well. This characteristic has important

consequences to the compression and transmission artifacts. Therefore, the following parameter was

analyzed:

9. Greenness g:

Define greenness as percentage of green pixels in a frame. For this purpose the RGB color space

was down sampled to two bits per color component, resulting in 64 colors. Five colors out of the

64 colors cover all variation of the green color.

For calculating color histograms sequences were converted to RGB color space and down-sampled

to 64 colors. The color bins were regularly spaced. As can be seen at Figure 4.16 the five green color

bins proved to be an effective element in the detection of the green sequence.
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Figure 4.16: Color histogram of Soccer sequence.

4.4.3 Hypothesis testing and content classification

The content classification is based on the above defined parameters. Due to the extensive set of ob-

jective parameters, a statistical method was used for data analysis and content classification. This

excludes content classifying based on threshold which is a limited and not accurate method for evalu-

ating larger data sets.

A statistical method based on hypotheses testing was introduced. Each of the described content classes

is determined by unique statistical features of motion and color parameters (see Figure 4.17). Due

to their unique statistical features of well defined content classes it is not necessary to perform M-ary
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hypothesis testing and it is sufficient to formulate a null hypothesis (H0) for each content class based

on these statistical features separately. The obtained Empirical Cumulative Distribution Functions

(ECDF) from the typical set of sequences for each content class show substantial differences (see Fig-

ure 4.17). From the next investigation it results that it is very difficult to determine single parametric

distribution model representation from the obtained ECDFs. For this purpose a hypotheses testing

method allowing for defining non-parametric, distribution free H0 hypotheses was of interest.

For the hypothesis evaluation a method is needed capable of working with empirical (sample) distri-

butions. For this purpose the most suitable is the non-parametric Kolmogorov-Smirnov (KS) test [92].

The KS test is used to determine whether two underlying probability distributions differ, or whether

an underlying probability distribution differs from a hypothesized distribution, in either case based on

finite samples. The two-sample KS test is one of the most used and general non-parametric methods

for comparing two samples, as it is sensitive to differences in both location and shape of the empirical

cumulative distribution functions of the two samples.

From the typical set of sequences for each content class the ECDFs are obtained. The model ECDFs

were derived from a set of 142 typical sequences. Each content class is described with five model

ECDFs (zero MV ratio (Nz), mean MV size (n), uniformity of movement (d), horizontalness of move-

ment (h), greenness (g :)), which correspond to their H0 hypothesis, respectively. Furthermore, it is

necessary to find the maximal deviation (DCC max) within one content class for all parameters (for

each model ECDF). If Qn(x) is the model ECDF and Q(x) is the ECDF of the investigated sequence.

Dn is the maximal difference between Qn(x) and Q(x):

Dn = maxx ‖Qn(x) − Q(x)‖ . (4.11)

The content class estimation is based on a binary hypothesis test within the four content classes

(CC1 — CC4). With the KS test the ECDFs of the investigated sequence and all model ECDFs

of the first four content classes are compared. The KS test compares five ECDF (of defined MV or

color parameters) of defined content classes specified by the H0 hypothesis with all five ECDFs of the

investigated content.

Dn ≤ DCC max. (4.12)

DCC max reflects maximal deviation from model ECDF within defined content class (see Table 4.2).

If the Dn obtained for the tested CC, is smaller than DCC max for each parameter (4.12), then the

sequence is expected to match this CC.

DCC max Nz n d h g

News 0.4120 0.6952 0.4708 0.0467 0.9406

Soccer 0.8410 0.7234 0.8226 0.7654 0.1912

Cartoon 0.7548 0.9265 0.7093 0.4198 0.9362

Panorama 0.9716 0.9034 0.9113 0.0000 0.9017

Table 4.2: Statistical results from obtained SI and TI values.
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Figure 4.17: Model ECDF of zero MV ratio and uniformity of movement.

If the ECDFs of the investigated sequence have not a fit with any of the first four content classes,

the content classifier decides for the remaining content class number five. The classifier estimates the

content at transmitter side from the original sequence.

The performance of the content classifier was evaluated with two parameters. False detection reflects

the ratio of improper detection of a content class, in the case when investigated sequences belong to

any other content class. Good match reflects the ratio of successful classification of investigated

sequences, when investigated sequences belong to any of the first four classes. Note, the sequences

contain almost only cuts and no gradual changes. The scene change detector was sensitive on gradual

shot boundaries (dissolve, fades or wipes). 786 sequences were tested to evaluate the performance of

the content classifier, 98% were classified correctly. The achieved precision of the content classifier is

shown in Table 4.3, what is a satisfying result for further quality estimation.

Content class False detection [%] Good match [%]

1 0 97

2 0 100

3 5.6 92

4 0 100

Table 4.3: The evaluation results of content classifier.
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4.5 Video quality estimation for SIF-H.264 resolution

IN this section, three methods for quality estimation in SIF resolution are presented. The proposed

methods are focused on reference free video quality estimation. The character of motion is de-

termined by the amount and direction of the motion between two scene changes. The first method

estimates video quality in two steps. First, a content classification with character sensitive parameters

is carried out [64]. Finally, based on the content class, frame rate and bitrate, the video quality is

estimated in a second step. The following method thus presents the design of a quality metric based

on content adaptive parameters, allowing for content dependent video quality estimation. The second

method estimates the quality with one single universal metric. In contrast to those two, the third

method exploits the estimation ensemble of models. The performance of the proposed method is eval-

uated and compared to the ANSI T1.801.03 metric. The results show that the motion-based approach

provides powerful means of estimating the video quality for low resolution video streaming services.

4.5.1 Content based video quality estimation

The estimation is based only on the compressed sequence without the original (uncompressed) se-

quence. If estimation is performed on the receiver side, the information about the content class needs

in parallel to be signalized with the video stream (see Figures 4.18 and 4.19). Such measurement

setup allows for continuous real time video streaming quality measurement on both sides: user and

provider. The video quality is estimated after content classification (cf. Section 4.3 and Figure 4.19)

within one cut (cf. Section 4.2).

Figure 4.18: Content classifier.

Due to limited processing power of the user equipment it was necessary to identify low complexity

objective parameters. In order to keep the complexity as low as possible the most suitable parameters

are already provided: FR and BR. These parameters are the codec compression settings and signalized

during the initiation of the streaming session, requiring no computational complexity for estimation
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Coeff. CC 1 CC 2 CC 3 CC 4 CC 5

ACC 4.0317 1.3033 4.3118 1.8094 1.0292

BCC 0 0.0157 0 0.0337 0.0290

CCC −44.9873 0 −31.7755 0 0

DCC 0 0.0828 0.0604 0.0044 0

ECC −0.5752 0 0 0 −1.6115

Table 4.4: Coefficients of metric model for all content classes (CC).

as they are known at both transceiver and receiver.

Figure 4.19: Content based video quality estimation.

The proposed low complexity metric is thus simply based on two objective parameters (BR and

FR) for each content class:

M̂OS = f(BR, FR, CC). (4.13)

A general model is proposed with linear and hyperbolic elements (see (4.14)). The coefficients vary

substantially for each content class. Typically, some of them even take a zero values. On the other

hand, rather good correlation was achieved with one offset and two non-zero coefficients (see Table 4.4).

M̂OS = ACC + BCC · BR + CCC

BR + DCC · FR + ECC

FR . (4.14)

The metric coefficients were obtained by a linear regression of the proposed model with the training

set (MOS values averaged over two runs of all 26 subjective evaluations for particular test sequence).

The performance of the subjective video quality estimation compared to the subjective quality data

is summarized in Tables 4.6 and 4.7 and shown in Figure 4.22. Further ahead, the obtained

correlations with the evaluation set show very good performance of the proposed metric for all content

classes except for Cartoon (CC3), containing two and three dimensional cartoon movies. The proposed

metric has weak estimation performance for the three dimensional cartoon sequences.
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4.5.2 Quality estimation based on content sensitive parameters

In this section the focus is given on the motion features of the video sequences. The motion features

can be used directly as an input into the estimation formulas or models as shown in Figure 4.20.

Both possibilities were investigated in [63] and [94], respectively.

The investigated motion features concentrate on the motion vector statistics, including the size distri-

bution and the directional features of the motion vectors (MV) within one sequence of frames between

two cuts. Zero MVs allow for estimating the size of the still regions in the video pictures. That, in

turn, allows to analyze MV features for the regions with movement separately. This particular MV

feature makes it possible for distinguishing between rapid local movements and global movement.

Figure 4.20: Video quality estimation based on content adaptive parameters.

Extraction of content adaptive features

The aim was to define measures that do not need the original (non-compressed) sequence for

the estimation of quality because this reduces the complexity and at the same time broadens

the possibilities of the quality prediction deployment. Furthermore, the size distribution and the

directional features of the MVs were analyzed within one sequence in between two cuts. The details

regarding MV extraction can be found in Section 4.4.1. The still and moving regions were analyzed

separately. The size of the still region was estimated by the amount of zero MV vectors. That

allows to analyze MV features separately for regions with movement. This particular MV features

make it possible to detect rapid local movements or the character of global movements. The content

sensitive parameters and BR were investigated. For this purpose motion sequence parameters (cf.

Section 4.4.2) were reinvestigated. Furthermore, it was necessary to investigate the influence of

these motion parameters and the BR on investigated contents. For this purpose we used a PCA

analysis [90]. The PCA was carried out to verify further applicability of the motion characteristics,

BR for metric design. It turned out that the first two components proved to be sufficient for an

adequate modeling of the variance of the data. The variance of the first component is 60.19% and

second 18.20%. The PCA results (see Figure 4.21) show sufficient influence of most significant

parameters on the data set for all content classes.

The following features of MV and BR represent the motion characteristics:
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• Zero MV ratio within one shot Z:

The percentage of zero MVs is the proportion of the frame that does not change at all (or changes

very slightly) between two consecutive frames averaged over all frames in the shot. This feature

detects the proportion of a still region. The high proportion of the still region refers to a very

static sequence with small significant local movement. The viewer attention is focused mainly

on this small moving region. The low proportion of the still region indicates uniform global

movement and/or a lot of local movement.

• Mean MV size within one shot N :

This is the percentage of mean size of the non-zero MVs normalized to the screen width. This pa-

rameter determines the intensity of a movement within a moving region. Low intensity indicates

the static sequence. High intensity within a large moving region indicates a rapidly changing

scene.

• Ratio of MV deviation within one shot S:

Percentage of standard MV deviation to mean MV size within one shot. A high deviation

indicates a lot of local movement and a low deviation indicates a global movement.

• Uniformity of movement within one shot U :

Percentage of MVs pointing in the dominant direction (the most frequent direction of MVs)

within one shot. For this purpose, the resolution of the direction is 10o. This feature expresses

the proportion of uniform and local movement within one sequence.

• Average BR:

This parameter refers to the pure video payload. The BR is calculated as an average over

the whole stream. Furthermore, the parameter BR reflects a compression gain in spatial and

temporal domain. Moreover the encoder performance is dependent on the motion characteristics.

The BR reduction causes a loss of the spatial and temporal information what is usually annoying

for viewers.

The perceptual quality reduction in spatial and temporal domain is very sensitive to the chosen

motion features, making these very suitable for reference free quality estimation because a higher

compression does not necessarily reduce the subjective video quality (e.g. in static sequences).

4.5.3 Direct motion based quality estimation

The initial approach is to design a universal metric based on content sensitive parameters [63].

The subjective video quality is estimated with five objective parameters. Additional investigated ob-

jective parameters do not improve the estimation performance. On the other hand, reducing objective

parameters decreases significantly the estimation accuracy. The proposed model reflects the relation

of objective parameters to the MOS. Furthermore, the mix-term (S ·N) reflects the dependence of the

movement intensity (N) and its motion character (S). Finally, one universal metric is proposed for all

contents based on the defined motion parameters Z, S, N, U and the BR:
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Figure 4.21: Visualization of PCA results.

Coeff.

a 4.631

b 8.966 × 10−3

c 8.900 × 10−3

d −5.914 × 10−2

e 0.783

f −0.455

g −5.272 × 10−2

h 8.441 × 10−3

Table 4.5: Coefficients of estimation model.

M̂OS = a +b · BR +c · Z +d · Se+

+f · N2 +g · ln(U) +h · S · N .
(4.15)

The metric coefficients (see Table 4.5) were obtained by a regression of the proposed model with

the training set (MOS values averaged over two runs of all 26 subjective evaluations for a particular test

sequence). To evaluate the quality of the fit of the proposed metrics for the data, a Pearson correlation

factor [85] was used. The metric model was evaluated with MOS values from the evaluation set (MOS

values averaged over two runs of all 10 subjective evaluations for the particular test sequence). The

performance of this proposed model was not satisfying (see Tables 4.6 and 4.7). In the following

so obtained estimates were used as input for a further design of an ensemble based video quality

estimator.
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4.5.4 Ensemble based quality estimation

In order to obtain higher prediction accuracy, ensemble based estimation was investigated. Ensemble

based estimators average the outputs of several estimators in order to reduce the risk of an unfortunate

selection of a poorly performing estimator. The very first idea was to use more than one classifier for

estimation comes from the neural network community [95]. In the last decade research in this field

has expanded in strategies [96] for generating individual classifiers, and/or the strategy employed for

combining the classifiers.

The aim is to train a defined ensemble of models with a set of four motion sensitive objective parameters

(Z, N , S, U ) and BR. The ensemble consists of different model classes to improve the performance

in regression problems. The theoretical background [97] of this approach is that an ensemble of

heterogeneous models usually leads to reduction of the ensemble variance because the cross terms in

the variance contribution have a higher ambiguity. A data set with input values (motion sensitive

parameters and BR) x and output value (MOS) y with a functional relationship is considered , where

e is an estimation error:

y = f(x) + e. (4.16)

The weighted average f̄(x) of the ensemble of models is defined as follows:

f̄(x) =
K∑

k=1

wkfk(x), (4.17)

where fk(x) denotes the k-th individual model and the weights wk sum to one (
∑

k wk = 1). The

generalization (squared) error q(x) of the ensemble is given by:

q(x) = (y(x) − f̄(x))2. (4.18)

According to [97], the error can be decomposed as follows:

q(x) = q̄(x) − ā(x). (4.19)

This assumption allows us to neglect the mixed terms of the following equation where the average

error q̄(x) of the individual model is:

q̄(x) =
K∑

k=1

wk(y(x) − fk(x))2, (4.20)

and the average ambiguity ā(x) of the ensemble is:

ā(x) =
K∑

k=1

(fk(x) − f̄(x))2. (4.21)

• A consequence of (4.19) is that the ensemble generalization error q(x) is always smaller than the

expected error of the individual models q̄(x).
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• The previous equations (4.16) — (4.21) require that an ensemble should consist of well trained

but diverse models in order to increase the ensemble ambiguity.

This prerequisite was applied to an ensemble of universal models. In order to estimate the gener-

alization error and to select models for the final ensemble a cross-validation scheme for model training

[98] was used. These algorithms increase the ambiguity and thus improve generalization of a trained

model. Furthermore, an unbiased estimator of the ensemble generalization error was obtained. The

cross-validation works as follows:

• The data set is divided in two subsets and the models are trained on the first set.

• The models are evaluated on the second set, the model with the best performance becomes an

ensemble member.

• The data set is divided with light overlapping with previous subsets into two new subsets and

the models are trained on the first set.

• The cross-validation continues until the ensemble has a desired size. The best trade-off between

ensemble complexity and performance was achieved for an ensemble of six estimators.

The final step in the design of an ensemble based system is to find a suitable combination of models.

Due to outliers and overlapping in data distribution of the data set, it is impossible to propose a single

estimator with perfect generalization performance. Therefore, an ensemble of many classifiers was

designed and their outputs were combined such that the combination improves upon the performance

of a single classifier. Moreover, classifiers with significantly different decision boundaries from the

rest of the ensemble set were chosen. This property of an ensemble set is called diversity. The above

mentioned cross-validation introduces model-diversity, the training on slightly different data sets leads

to different estimators (classifiers). Additionally, diversity was increased by using two independent

models. Furthermore, in cross validation classifiers with worse correlation than 50% on the second set

were automatically excluded.

As the first estimation model, we chose a simple nonparametric method, the k-Nearest Neighbor rule

(kNN) with adaptive metric [98]. This method is very flexible and does not require any preprocessing

of the training data. The kNN decision rule assigns to an unclassified sample point the classification

of the nearest sample point of a set of previous classified points. Moreover, a locally adaptive form of

the k-nearest neighbor was used for classification. The value of k is selected by cross validation.

As the second method an Artificial Neural Network (ANN) was used. A network with three layers

was proposed; input, one hidden and output layer using five objective parameters as an input and

estimated MOS as output. Each ANN has 90 neurons in the hidden layer. As a learning method

Improved Resilient Propagation (IRPROP+) with back propagation [99] was used. IRPROP+ is a

fast and accurate learning method in solving estimation tasks for the data set. Finally, the ensemble

consists of two estimation models kNN and ANN and six estimators, three kNN and three ANN.

The performance of the ensemble based estimator is the best out of the proposed ones. The results

show a very good agreement between estimated and evaluated MOS values (see Tables 4.6 and 4.7).
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Metric Pearson correlation

Content based 0.8303

Direct motion based 0.8190

Ensemble based 0.8554

ANSI 0.4173

Table 4.6: Metrics prediction performance on evaluation set by Pearson correlation.

Metric/Content type CC 1 CC 2 CC 3 CC 4 CC 5

Content based 0.93 0.97 0.99 0.90 0.93

Direct motion based 0.85 0.98 1.00 0.71 0.95

Ensemble based 0.93 0.97 0.77 0.91 0.97

ANSI 0.63 0.85 0.95 0.93 0.97

Table 4.7: Metric prediction performance on defined CC by correlation on evaluation set.

4.5.5 Performance of the video quality estimators

To validate the performance of the proposed metric, the Pearson (linear) correlation factor [85] was

applied:

r =
(x − x)T (y − y)√

((x − x)T (x − x))((y − y)T (y − y))
, (4.22)

Here, the vector x corresponds to the average MOS values of the evaluation set (averaged over

two runs of all obtained subjective evaluations for particular test sequence and one encoding setting)

for all tested encoded sequences and x corresponds to average over x. Vector y corresponds to the

prediction made by the proposed metric and y corresponds to average over y. The dimension of x and

y refers to amount of tested sequences. In order to provide a detailed comparison, the performance of

the ensemble based estimator [94] was compared with the content class based [64] and direct motion

based [63] estimator as well as the ANSI metric [18] on the evaluation set. The depicted results for

the Pearson correlation factor in Table 4.6 reflect the goodness of fit (see Figure 4.22) with the

independent evaluation set for all content types together.

This correlation method only assumes a monotone relationship between the two quantities. A

virtue of this form of correlation is that it does not require the assumption of any particular functional

form in the relationship between data and predictions. The results in Table 4.6 clearly show a good

agreement between the obtained and the estimated values for all proposed metrics. In addition, the

goodness of the fit on different content classes (see Table 4.7) was investigated. The best performance

over all content classes is provided by ensemble and content class based metrics. A fair performance

was obtained by the motion based metric and very poor performance by the ANSI metric.

The ensemble based metric shows a performance similar to the content class based metric. The

content classification can be understood as a kind of pre-estimation in order to obtain a more ho-

mogeneous set of results within one content class, which allows for more accurate quality estimation.
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This effect was achieved by introducing cross-validation in ensemble based metrics. The direct motion

based metric suffers from weak estimation performance for news and cartoon sequences in comparison

to the other content classes.

The weak performance of the ANSI metric shows that this metric is not suitable for a mobile streaming

scenario. The usage of the mobile streaming services influences the subjective evaluation. Therefore,

a universal metric like ANSI is not suitable for the estimation of mobile video quality. Only for higher

MOS values which occur at high bitrates (≥ 90 kbps) the ANSI metric performs comparable to the

proposed metrics (see Figure 4.22). A closer look on the ANSI metric performance shows that the

ANSI metric provided a good fit for CC3, CC4, CC5 and poor performance only for CC1 and CC2.

However, the ANSI metric requires the knowledge of a reference video (original) and is the most

complex estimator.

1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

MOS

E
st

im
at

ed
 M

O
S

 

 

ANSI metric
Direct motion based metric
Content based metric
Reference line

Figure 4.22: Estimated vs. subjective MOS results.

4.6 Video quality estimation for QCIF-H.263 resolution

IN this section a low-complexity reference-free estimation of visual perceptual quality for QCIF

resolution is presented, based on a combination of a small set of the most important objective

parameters - compression settings and content features [4]. To achieve this, the chosen objective

parameters are mapped on obtained MOS by an extensive survey.

For QCIF resolution and mobile environment it is possible to find simpler estimates achieving the

same performance as the already known ones [18] and [19]. Therefore, the focus is given on the quality

sensitive measures that would not need the original (non-compressed) sequence for the estimation of

quality, because this reduces the complexity and at the same time broadens the possibilities of the

quality prediction deployment.
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4.6.1 Quality sensitive parameter set

Nine objective video parameters were investigated with various computational complexity:

• sigain, • hvloss, • TI,

• siloss, • SI13, • BR,

• hvgain, • SI, • FR.

The first five of the objective video parameters (sigain, hvloss, siloss, hvgain and SI13) are also

recommended in [18]; further parameter details are described in Appendix B. The first two of them

are sigain and siloss measuring the gain and the loss in the amount of spatial activity, respectively.

If the codec operates through an edge sharpening or enhancement, a gain in the spatial activity

is obtained, that is an improvement in the video quality of the image. On the other hand, when a

blurring effect is present in an image, it leads to a loss in the spatial activity. The other two parameters,

hvgain and hvloss measure the changes in the orientation of the spatial activity. In particular, hvloss

reveals if horizontal and vertical edges suffer of more blurring than diagonal edges. The parameter

hvgain reveals if erroneous horizontal and vertical edges are introduced in the form of blocking or

tiling distortions. These parameters are calculated over the space-time (S-T) regions of original and

degraded frames. The S-T regions are described by the number of pixels horizontally, vertically and

by the time duration of their region. An S-T region corresponds to 8×8 pixels over five frames. The

complexity to calculate these parameters is rather high. Please, note that these parameters require

the knowledge of the original sequence.

The fifth ANSI parameter SI13 is a reference-free measure of overall spatial information, since images

were preprocessed using the 13× 13 Sobel filter masks. It is calculated as the standard deviation over

an S-T region of R(i, j, t) samples, i and j being the coordinates within the picture displayed in time

t. The result is clipped at the perceptibility threshold P [18]:

SI13 = max
timet

{
stdspacei,j

[
R(i, j, t)

]}∣∣∣∣∣
P

: i, j, t ∈ {S-T region}. (4.23)

This feature is sensitive to the changes in the overall amount of spatial activity within a given

S-T region. For instance, localized blurring produces a reduction in the amount of spatial activity,

whereas noise produces an increase of it. Well-known reference-free parameters [9] describing the video

sequence character are also SI (2.1) and TI (2.3). Finally, the codec compression settings FR and BR

were investigated, requiring no computational complexity for estimation as they are known at both

sender and receiver. The video sequences were encoded on constant BR, therefore it can be assumed

that BR = BR.

For the reduction of the dimensionality of the data set while retaining as much information as possible,

the PCA [90] was used. The PCA was carried out to determine the relationship between MOS and the

objective video parameters and to identify the objective parameters with the lowest mutual correlation,

allowing us to propose a compact description of the data set. The PCA was performed for all content

classes separately. In this case the first two components proved to be sufficient for an adequate

modeling of the variance of the data, because the total variance of the first two components was

at least 81% for all content classes. Variability describes the percentual part of data sets variance

that is covered by the variance of particular component. Each of the nine parameters and MOS is
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represented in the Figures 4.23, 4.26, 4.24, 4.25, 4.27 by a vector. The direction and length of the

vector indicates how each parameter contributes to the two principal components in the graph.
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Figure 4.23: Visualization of PCA results for content News (CC1).
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Figure 4.24: Visualization of PCA results for content Soccer (CC2).

According to this analysis, each parameter in the analyzed data set can be assessed concerning its

contribution to the overall distribution of the data set. This is achieved by correlating the direction of

the maximum spread of each variable in the direction of each principal component axis (eigenvector). A

high correlation between PC1 and the investigated parameters indicates that the variable is associated

with the direction of the maximum amount of variation in the data set. A strong correlation between

the parameters and the PC2 indicates that the variable is responsible for the next largest variation in

the data, perpendicular to PC1.
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Figure 4.25: Visualization of PCA results for content Panorama (CC4).
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Figure 4.26: Visualization of PCA results for content Videocall (CC6).

Conversely, if a parameter (vector) does not correspond to any principal component axis and its

length is small compared to the principal component axis dimensions, this usually suggests that the

variable has little or no control on the distribution of the data set. Therefore, the PCA suggests which

parameters in the data set are important and which ones is of little consequence. Moreover, the length

and direction of parameter vector.

According to the PCA results the most suitable objective parameters are determined for the metric

design relevant for all content classes. Surprisingly, the objective parameters with higher complexity

(sigain, siloss, hvgain, hvloss) did not correlate better as low complexity parameters with PC1 and

PC2 for all sequences. PCA results (see Figures 4.23, 4.26, 4.24, 4.25, 4.27) and high complexity

of these objective parameters show us that these parameters are not appropriate for metric design in
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Figure 4.27: Visualization of PCA results for content Traffic (CC7).

our scenario.

After considering all content classes, the complexity of the objective parameters, and correlation

between MOS and parameter vectors of video quality parameters. The following parameters were

selected:

• FR has almost zero computational complexity and very well correlates with parameter vector

MOS over all CCs,

• BR has almost zero computational complexity,

• SI13 very well correlates with parameter vector MOS over all CCs.

4.6.2 Direct reference-free quality estimation

Due to different spatial and temporal sequence characteristics of investigated CCs the proposed metric

[4] has different coefficient values for each CC. Furthermore, the proposed metric is based on three

objective parameters, encoding parameters FR and BR and sequence character parameter SI13, ac-

cording to the correlation with PC and their complexity. The uniform mathematical model for all

content classes was chosen due to its simplicity and rather good fit with the measured data.

MOS = KCC +ACC · BR +BCC · FR

+CCC · SI13 +DCC · BR · FR +ECC · BR · SI13
+FCC · FR · SI13 +GCC · BR · FR · SI13.

(4.24)

As initial step the simple linear model was used for metric design. The model contains only the

first four elements (KCC , ACC , BCC , CCC) of model (4.24). The results in Table 4.8 show already a

satisfying fit. Moreover, this confirms our choice of objective parameters.

In order to design a more accurate estimator the simple linear parameter combination was im-

proved with four mixed terms reflecting all possible mutual combinations selected objective parameters
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Coeff. News Video call Soccer Panorama Traffic

KCC −78.4283 3.5970 −6.1850 −12.6834 −11.1982

ACC −0.0302 0.0411 0.0241 0.0226 0.0322

BCC 0.1382 −0.0371 −0.0117 −0.0688 −0.02701

CCC 0.9252 −0.0288 0.1237 0.1429 0.14415

r 0.9500 0.9600 0.9800 0.9300 0.9000

Table 4.8: Coefficients of linear metric model and correlation of average MOS with so obtained

estimation for all content classes.

Coeff. News Video call Soccer Panorama Traffic

KCC −39.0282 50.6525 98.3703 134.2721 −181.0251

ACC 2.1618 1.4769 −1.1826 −3.4122 2.2139

BCC −3.2939 −4.9962 −13.7067 −33.2325 11.1780

CCC 0.4491 −0.5986 −1.7714 −1.2473 2.0426

DCC −0.1338 −0.0936 0.1623 0.7717 −0.0859

ECC −0.0234 −0.0158 0.0219 0.0325 −0.0244

FCC 0.0407 0.0592 0.2479 0.3134 −0.1256

GCC 0.0014 0.0010 −0.0029 −0.0073 0.0010

r 0.9890 0.9970 0.9960 0.9990 0.9740

Table 4.9: Coefficients of improved metric model and correlation of average MOS with so obtained

estimation for all content classes.

of (4.24). This extension introduced higher accuracy on cost of additional complexity. Furthermore,

in Tables 4.8 and 4.9 it can be clearly seen that the metric model coefficients are different for each

content class. This suggests that the choice of the content classes is right and subjective video quality

is content dependent.

4.6.3 ANN based quality estimation

In this section the design of an Artificial Neural Network (ANN) with low complexity for the

estimation of visual perceptual quality is presented [112], based on a combination of a possibly small

set of the objective parameters (compression settings and content features). To achieve this, the

neural network was trained with a set of objective and subjective parameters, obtained by an extensive

survey. Inputs of proposed ANN are three reference-free measures, two encoding parameters BR,

FR, and the sequence character parameter SI13 with the estimated MOS as output (see Figure 4.28).

In multi-layer networks, with any of a wide variety of continuous nonlinear hidden-layer activation

functions, one hidden layer with an arbitrarily large number of units suffices for the ”universal

approximation” property [101], [102]. According to this knowledge the network with three layers

was designed - input, one hidden and output layer (Figure 4.29). But there is no theory yet to
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Figure 4.28: ANN for MOS estimation.

determine, how many hidden units are needed to approximate any given function. The best number

of hidden units depends in a complex way on: the numbers of input and output units, the number

of training cases, the amount of noise in the targets, the complexity of the function or classification

to be learned, the architecture, the type of hidden unit activation function, the training algorithm

and the regularization [103]. In most situations, there is no way to determine the best number of

hidden units without training several networks and estimating the generalization error of each. If

there are too few hidden units, high training errors and high generalization errors are obtained due

to underfitting and high statistical bias. If there are too many hidden units, low training errors still

having high generalization errors are obtained due to overfitting and high variance [104]. The error

on the training set is driven to a very small value, but when new data is presented to the network

the error increases. The network has memorized the training examples, but it has not learned to

generalize new situations. Assume for example, if there is one continuous input X that takes values

on the interval (0, 100) and if there is one continuous target Y = sin(X). In order to obtain a good

approximation to Y , about 20 to 25 hidden units with tangents-hyperbolic function are required,

although one hidden unit with a sine function would do the job [105]. A possible way how to improve

generalization is to have a network that is just large enough to provide an adequate fit because it can

approximate a more complex function. In case of a sufficiently small network, it will not have enough

power to overfit the data. But it is difficult to know beforehand how large a network should be for

a specific application. Another way is to have much more points in a training data set than network

parameters, avoiding the chance of overfitting.

A typical recommendation is that the number of weights should be not more than 1/30 of the

number of training cases [105]. Such rules are only concerned with overfitting and are at best crude

approximations. Also, these rules do not apply when regularization is used. It is true that without

regularization, if the number of training cases is much larger (but no one knows exactly how much

larger) than the number of weights, overfitting or underfitting appears more often. For a noise-free

quantitative target variable, twice as many training cases as weights may be more than enough to

avoid overfitting [106].

The lack of training data in this case requires to improve on the generalization. A few training methods

(Variable learning rate, Resilient backpropagation, Quasi-Newton algorithm) was tested, but general-

ization was insufficient. Finally, the methods improving the generalization were applied. This method

is called Automated regularization [107], that is a combination of Bayesian regularization [108], [109],

and Levenberg-Marquardt training [110]. The weights and biases of the network are assumed to be
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Figure 4.29: Architecture of the proposed three-layer feedforward ANN.

random variables with specified distributions. The regularization parameters are related to the un-

known variances associated with these distributions. One feature of this algorithm is that it provides

a measure of how many network parameters (weights and biases) are being effectively used by the

network. The inputs are scaled and targets so that they fall in the range [-1,1], because this algorithm

generally works best when the network inputs and targets are scaled so that they fall approximately

in the range. The outputs were converted back into the same units that were used for the original

targets.

Once the network weights and biases were initialized, the network is ready for training. During training

the weights and biases of the network are iteratively adjusted to minimize the squared error between

the network outputs and the target outputs.

Finally, several ANNs were designed, in order to find a trade-off between the ANN’s minimal number

of neurons in the hidden layer and their accuracy. We used for the training 54 vectors (rows of matrix

4.25) with dimension of four (BR, FR, SI13 and MOS), with three input values and one target value

(see Figure 4.29 and (4.25)).

XT =




BR1 FR1 SI131
MOS1

...
...

...
...

BR54 FR54 SI1354
MOS54


 (4.25)

The three layered ANN architecture was introduced with three linear units in input layer and one

linear unit in the output layer. The minimal training and generalization error was obtained for hidden

layer which consists of 20 tangents-signoid neurons [111].

Moreover, a linear regression analysis between the network response and the corresponding target was
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performed. This relationship between estimated (y) and target data (x) or between predicted and

measured subjective MOS is represented in the form:

y = mx + b, (4.26)

where m corresponds to the slope and b to the y-intercept of the best linear regression relating targets

to the network outputs. If there is a perfect fit (outputs are exactly equal to targets), the slope is

1, and the y-intercept is 0. In our case we obtain results clearly close to optimum m =0,80215 and

b=0,59462. Furthermore the correlation factor (4.22) between estimated and target data (or between

predicted and subjective MOS) of the proposed ANN is 90,4% (see Figures 4.30).

4.6.4 Performance of the video quality estimators

Note that the direct reference-free quality metric from Section 4.6.2 is not general but dedicated to a

certain content class. On the other hand, the ANN model is general for all content classes and training

performance is sufficient video quality estimation. Therefore, a better fittng performance of the direct

reference-free quality metric was expected.

Figure 4.30: Estimated vs. subjective MOS results.

A further metric performance evaluation was executed with two different sequences. The test

sequences were approximately ten-seconds long, in order to keep scene integrity. The first sequence

was a soccer sequence (CC2) and the second sequence was a typical talking head scenario (CC6).

To validate the performance of the proposed metrics, the Pearson (linear) correlation factor (4.22)

was applied. The performance of direct reference-free quality metric was 0.96 and the ANN based

estimator achieved 0.89 (see Figure 4.30). Furthermore, the results in Table 4.11 clearly show good

agreement between the obtained and the estimated values for both proposed metrics. In addition, the

goodness of the fit on different content classes (see Table 4.10) was investigated. Both metrics have
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Metric/Content type CC 1 CC 2 CC 4 CC 6 CC 7

Direct Reference-Free metric 0.99 0.99 0.99 0.99 0.98

ANN based metric 0.91 0.98 0.97 0.98 0.97

Table 4.10: Metric prediction performance on defined CC by Pearson correlation.

Metric Pearson correlation

Direct Reference-Free metric 0.96

ANN based metric 0.89

Table 4.11: Metrics prediction performance by Pearson correlation.

over 97% prediction performance over particular content classes. The lower ANN accuracy is the prize

for its universality. Moreover, the validation results for significantly different content types show, that

our ANN takes also content character into account.

4.7 Summary of video quality estimation

In this section video quality estimators were proposed for the mobile environment. Initially, the

research was focused on quality estimation for H.263 codecs and QCIF resolution. This streaming

setup was mainly used in mobile environment due to processing limitations of handheld devices and

license conditions of the H.263 codec. Moreover, the H.263 codec is mandatory for UMTS video ser-

vices. The proposed estimators perform very well for this streaming setup.

The recent development in handheld devices and video encoding brought significant improvement in

processing power of handheld devices thus allow increasing screen resolution of these devices. More-

over, H.264 codec, which significantly outperform H.263 in coding efficiency, became the state of the

art codec for mobile video services. This brought the research attention to H.264 streaming at SIF

resolution. The metrics proposed for this scenario show good performance on all investigated content

classes. The scenarios for H.264 streaming at QCIF resolution and H.263 streaming at SIF resolution

were not investigated because mobile video services are provided only marginally with these settings.

Finally, accurate video quality estimators were proposed for the most frequent content types and

streaming setups. On the other hand, the drawback of the proposed estimation methods is depen-

dency from video codec and resolution. Moreover, it was not possible to set selection criteria of

video quality parameters precisely because the PCA results for QCIF and SIF resolution show similar

performance for all investigated video parameters.
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Audiovisual quality estimation
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5.1 Introduction

THE majority of the recently proposed metrics for quality estimation assumes only one continuous

medium, either audio [113], [114], [115] or video (cf. Section 1.4). The focus of this chapter is

to estimate the quality of mobile multimedia in form of audio and video signals at the user-level. In

order to predict the audiovisual quality of a multi-media system it is necessary to propose a metric

that takes into account both the audio and the video quality [100]. When assessing a multi-modal

system, one cannot model it only as a simple combination of mono-modal models, because the pure

combination of audio and video models does not give a robust perceived-quality performance metric

[116]. So, it is imperative to take into account the cross-modal interaction between audio and video

modes. In this particular case the cross-modal interaction was introduced by proposing independent

models for speech and non-speech scenarios including mixed-terms.

Various auditory and visual models have served as basis for multi-modal predictions [117], [118]. They

consider how the audio and video signals are perceived by people. In this way the audio and video

signals are perceptually weighted before they are combined in a multi-modal model. But the multi-

modal model must also account for cross-modal interactions as well as task influences in order to give

a task related perceived performance metric. Perceptual interaction is indeed dependent on the nature

of the task undertaken. In multi-media systems video and audio modes not only interact, but there is

even a synergy of component media. It is a human ability to make up for the lack of information from

one sense with the other senses. A similar observation may be made on a multi perceptual model.

In video telephone system, for instance, even if the quality of the video stream is somewhat low, the

voice stream with good quality can compensate for the degradation of the overall perceptual quality,

and vice versa [118]. In other words, we expect that different media compensate for each other from

a perceptual point of view.

As initial step video and audio objective parameters describing the character of the sequence are

investigated. Due to the complexity of this task only the objective parameters of known audio and

video quality estimation models were investigated. Furthermore, according to their relevance for our

scenario the most suitable were chosen. Finally, a model for audiovisual quality evaluation is proposed.

5.2 Audio and audiovisual subjective quality tests

THE intention of this section is to investigate the relation between perceived audio quality and

video quality. Moreover, the focus was given on impact of encoding algorithms for video and

audio and encoder settings on perceived audiovisual quality. For audiovisual quality tests only three

sequences were selected due to the size of the combination set. The first two sequences Cinema trailer

and Video clip belong to content class CC5. The main difference between them is in their audio part.

In the cinema trailer the music is only accompanied to video and no voice is present. In the Video

clip instrumental music with voice is present in the foreground. The next sequence belongs to content

class CC6, in which the only audio material is a speech monologue.

From the obtained results for audiovisual quality it can be seen that audio quality, video quality as

well as sequence character are important factors to determine the overall subjective perceived quality.
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Content Codec combination Audio BR [kbps] Video BR [kbps] MOSav

Video call H.263/AMR 7.9 97 3.1

Cinema Trailer MPEG4/AAC 16 59 3.8

Video Clip MPEG4/AAC 24 51 3.9

Table 5.1: The best trade-off audiovisual quality.

A mutual compensation property of audio and video can also be clearly observed from our results at

sequences encoded below 75 kbps. This effect was more dominant for cinema trailer and video clip

contents. In the video call content the MOSav is more influenced by the audio quality than the video

quality. In Table 5.1 the best encoding settings are selected for audiovisual quality if minimal BR is

considered according to following equation:

min
enc. param.

{BR} s.t. MOSav ≥ 3 (5.1)

Figure 5.1: Snapshots of selected sequences for audiovisual test: Cinema trailer (left), Video clip

(middle), Video call (right).

5.2.1 Audio subjective quality tests

In order to investigate the mutual compensation property between audio and video the audio tests

were performed independently. Moreover the performance of Advanced Audio Coding (AAC) and

Adaptive Multi-Rate (AMR) audio codecs on speech and music contents was investigated. The same

audio content as for the audiovisual tests was used. In total 26 audio encoding settings (see Table 5.2)

were selected for subjective testing.

As can be seen in Figures 5.2 and 5.3 the video call (CC6) content and the Cinema trailer/Video

clip content (CC5) are perceived differently. This behavior is certainly due to the fact that the audio

material is speech in the Video call, whereas it is music in the Video clip and in the Cinema trailer.

It can be clearly seen that the AMR codec operates very efficiently in the Video call (see Fig-

ure 5.2). For the Video call audio content high MOS audio values (MOSa) for very low BR 5.9 kbps

were obtained. Further improvement by increasing the BR is not considered. The mean value of

MOSa is 3.5 using the AMR codec. On the contrary, the AAC codec performs in dependence on the

bit rate. The MOSa is smaller than 2.5 for BRs 8 kbps and 16 kbps, whereas it is higher than 4 for

BRs 24 kbps or 32 kbps.
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AAC 8 kbps clips 1,2,3

audio bit rate 16 kbps clips 1,2,3

24 kbps clips 1,2,3

32 kbps clips 1,2,3

48 kbps clips 1,2

AMR 5,9 kbps clips 1,2,3

audio bit rate 7,9 kbps clips 1,2,3

10,2 kbps clips 1,2,3

12,2 kbps clips 1,2,3

Table 5.2: encoding settings for audio content. Clip 1 = Cinema trailer, Clip 2 = Video clip, Clip

3 = Video call.

Figure 5.2: MOSa results for the Video call audio content.

Figure 5.3: MOSa results for the Cinema trailer/Video clip audio content.
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The AMR codec performs inadequate for the cinema trailer/video clip video content. The obtained

results are below 2.2 MOSa grade. Moreover, for the investigated audio content the subjective audio

quality improves with increasing BR. For BRs above 24 kbps the subjective quality is higher than 3

MOSa grades.

5.2.2 Audiovisual subjective quality tests

H.263 and MPEG-4 video codecs, and AMR and AAC as audio codecs were chosen for audiovisual tests.

In total there were 102 encoding combinations (see Table 5.3) tested. The test methodology described

in Section 2.1.2 was followed. The video FR was set to 7.5 fps according to previous experiences (cf.

Section 3.1.1). The FR 7.5 fps provides the best trade-off for QCIF resolution between spatial and

temporal video features. To evaluate the subjective perceptual audio and audiovisual quality a group of

20 people was chosen. The chosen group ranged different ages (between 17 and 30), gender, education

and experience. The sequences were presented in an arbitrary order, with the additional condition that

the same sequence (even differently degraded) did not appear in succession. In the further processing

of data results we have rejected the sequences which were evaluated with individual variance higher

than one. In total there were 7% of the obtained results rejected. Two rounds of each test were taken.

The duration of one test round was about 40 minutes.

Video + Audio BR

56 kbps 75 kbps 105 kbps

AAC 8 kbps clips 1,2,3

16 kbps clips 1,2,3 clips 1,2,3

audio bit rate 24 kbps clips 1,2 clips 1,2,3 clips 1,2,3

32 kbps clips 1,2 clips 1,2,3

48 kbps clips 1,2

AMR 5,9 kbps clips 1,2,3 clips 1,2,3 clips 1,2,3

audio bit rate 7,9 kbps clips 1,2,3 clips 1,2,3 clips 1,2,3

10,2 kbps clips 1,2,3

12,2 kbps clips 1,2,3 clips 1,2,3

Table 5.3: Encoding settings for audiovisual test 36 combinations; for Cinema trailer (clip 1) and

Video clip (clip 2), 30 combinations for Video call (clip 3).

5.2.2.1 Video call test results

Video calls contain lower amounts of spatial and temporal information leading to a loss of the critical

ability of the subjective judgment. We can also observe in Figures 5.4, 5.5, 5.6, 5.7 (color code

serves for better visualization of the results) that in the Video call scenario the MOSav depends more

on the audio quality than on the video quality; the first reason is because in this case the audio

information is more important than the video; the second reason for this is that the video encoding

efficiency does not significantly influence the audiovisual quality due to low structural complexity of
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video call content. Therefore, the obtained MOSav results show that the most suitable combination

for the Video call scenario is a combination of a H.263 video codec with AMR audio codec. The best

MOSav trade-offs between audiovisual quality and BR were achieved for the combinations H.263/AMR

and MPEG4/AAC at 105 kbps with MOSav grades around 3. If the amount of processing power is

considered, the combination H.263/AMR is more suitable due to its simplicity in comparison to the

MPEG4/AAC combination.

Figure 5.4: MOSav results for the Video call content - codecs combination H.263/AMR.

5.2.2.2 Video clip and Cinema trailer test results

For Cinema trailer and Video clip we obtain better MOS results with MPEG-4 than with H.263 ( see

Figures 5.8, 5.9, 5.10, 5.11, 5.12, 5.13, 5.14 — color code serves for better visualization of the

results) because these sequences contain a lot of spatial and temporal changes (fast camera movements,

scene cuts, zoom out/in). It was evident that the AMR codec cannot achieve sufficient results for

music and non speech audio content. The audiovisual subjective quality judgment is below 2.8 MOSav

(see Figures 5.8, 5.12, 5.9). Moreover, the obtained results for all combinations with the H.263

codec are below MOSav grade 3. It can be assumed that for high structured and dynamic contents

H.263 and AMR codecs are not suitable. For fast movement sequences the mutual compensation effect

can be clearly observed. The MOSav is significantly more influenced by audio quality for the lowest bit

rate (56 kbps). It is caused by a loss of spatial information due to the compression, where higher audio

quality can compensate the lower video quality. On the other hand MOSav is not strongly influenced

by audio quality for the higher bit rates (75, 105 kbps).
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Figure 5.5: MOSav results for the Video call content - codecs combination H.263/AAC

Figure 5.6: MOSav results for the Video call content - codecs combination MPEG4/AMR.
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Figure 5.7: MOSav results for the Video call content - codecs combination MPEG4/AAC.

Figure 5.8: MOSav results for the Cinema trailer content - codec combinations H.263/AMR.
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Figure 5.9: MOSav results for the Video clip - codecs combination H.263/AMR.

Figure 5.10: MOSav results for the Cinema trailer content - codecs combination H.263/AAC.
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Figure 5.11: MOSav results for the Video clip - codecs combination H.263/AAC.

Figure 5.12: MOSav results for the Cinema trailer content - codecs combination MPEG4/AMR.
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Figure 5.13: MOSav results for the Cinema trailer content - codecs combination MPEG4/AAC.

Figure 5.14: MOSav results for the Video clip - codecs combination MPEG4/AAC.
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5.3 Audio and video parameters

DUE to the complexity of audiovisual quality estimation the already known audio and video

metrics were investigated and used for further audiovisual quality estimation. For video quality

estimation the ANSI T1.803 [18] metric was investigated and for audio and speech quality estimation

the metrics in [113] and [115] were investigated. Finally, the metrics were tuned for a mobile scenario

according to an obtained audiovisual quality survey.

5.3.1 Video parameters

First, objective video parameters defined by the ANSI standard T1.803 [18] were investigated. The

ANSI standard in [18] defines seven objective parameters based on spatial, temporal and chrominance

properties of video streams. In order to decrease their complexity a reduced ANSI metric was proposed.

The focus was given at the four most relevant ones:

• sigain, • hvloss,

• siloss, • hvgain,

because in the former study [119], [120], these parameters are the most significant for quality estima-

tion in this particular scenario.

The relevance of these parameters was explained and investigated in Section 4.6.1 and further param-

eter details are described in Appendix B. Thus, the following video quality metric based only on the

four most important parameters [119], [120] was proposed:

MOSv = 5 +0.8388 · siloss −2.3876 · hvloss

−0.9932 · hvgain +9.3664 · sigain|0.56,
(5.2)

where the positive parameter sigain is clipped at an upper threshold of 0.56 (if sigain > 0.56

than set sigain = 0.56) which indicates the maximum improvement of the video quality observed in

the encoded sequences [18]. It is thus a shortened ANSI metric with the four most relevant objective

video parameters for mobile video scenario. Furthermore, the output of the ANSI metric was mapped

to the five grade MOS scale.

5.3.2 Audio parameters

Different subjective evaluation was noticed between the subjective evaluation of speech and music in

audio and in the audiovisual survey. Therefore, it was necessary to design two independent metrics

for speech and for music. For speech quality evaluation we have adopted the Auditory Distance

(AD) parameter, according to [115]. It measures the dissimilarities between the original and the

compressed speech signals. The main components in the AD metric are the delay estimation between

the two input vectors of speech samples, the perceptual transformation and the distance measure

(see cf. Appendix C) [115]. Designing an audio quality metric we have noticed a difference in the

subjective audio evaluation when the sequences are encoded with the codec AMR or AAC. The

maximal correlation between our quality prediction and the measured MOSa (MOS audio) is obtained
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by linear regression with a translation of the speech audio metric in the two cases of AMR (5.3) and

AAC coding (5.4).

MOSAMR
a = −6.996AD2 + 10.95AD + 1.165, (5.3)

MOSAAC1
a = −6.996AD2 + 10.95AD + 0.370. (5.4)

AD is here normalized between 0 and 1; further details can be found in (C.7). The reason for

this translation is due to the operation of the codecs. The AAC codec utilizes a wider range of

frequencies; thus it degrades objectively the signal less than AMR. However, the subjective audio

evaluation is higher for AMR. Indeed AMR is a codec designed for speech. It degrades the signal

in a way that human ears do not perceive it. Therefore, although the objective degradation is

stronger for AMR, the subjective speech evaluation is higher. The fit of proposed metrics accord-

ing to the Pearson correlation factor (4.22) is 98% for the AMR (5.3) and 84% for the AAC (5.4) metric.

For music quality evaluation were used a more suitable audio metric according to [113]. The

original and the encoded streams were splited into 32 ms frames with 50% overlap [113]. Successively

each frame of the two signals was transformed in the perceptual Bark frequency scale [113]. In this way

we obtain both temporal and frequency information of the original and the encoded signals. According

to the internal representation of audio signals in the human auditory system, the signals are elaborated

through Zwicker’s law [121] that takes into account how the human ears perceive sound loudness. The

first parameter [113], Integrated Frequency Distance (IFD), measures how much the powers of the

original and of the encoded signals diverge. The IFD is the integrated difference between the non

compressed audio signal and the compressed one (see cf. Appendix C). The other two parameters,

denoted as Dn and DAn (disturbance indicators) [113] (see cf. Appendix C), consider how much the

presence of noise and the loss of time-frequency components influence the audio quality.

The resulting music audio metric is a linear combination of the parameters IFD, Dn and DAn obtained

by linear regression:

MOSAAC2
a = 3.1717 +

4.8809

IFD
+ 0.3562 · Dn + 0.0786 · DAn. (5.5)

This metric exhibits 91% for AAC codec correlation (4.22) with the subjective evaluation.

5.4 Audiovisual model

IN the Video call scenario the MOSav (MOS audiovisual) depends more on the audio quality than

on the video quality, because in this case the audio information is more important than the video.

Therefore, the obtained MOSav results show that the most suitable combination for the ”video call”

scenario is a combination of H.263 video codec with the AMR audio codec (Figure 5.4). It makes no

sense to use an AAC codec, because AAC needs higher throughput for the same perceptual quality

performance of human speech. For Cinema trailer and Video clip scenarios we obtain better MOS

results with MPEG-4 than with the H.263 ( see Figures 5.13 and 5.14) because these sequences con-

tain a lot of spatial and temporal changes (fast camera movements, scene cuts, zoom out/in). It was
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Model Kcc Acc Vcc AVcc A′

cc V ′

cc correlation

MOSI
av -0.4934 0.5420 0.4327 / / / 0.8800

MOSII
av 0.9987 / / 0.1536 / / 0.8915

MOSIII
av 0.6313 0.2144 0.0124 0.1184 / / 0.9023

MOSIV
av 0.5723 9.6508 0.2686 0.2244 -0.0171 -0.0940 0.9057

Table 5.4: Coefficients and correlation of ”Video call” model.

expected that the AMR codec cannot achieve sufficient results for music content. For fast movement

sequences we can clearly observe the mutually compensation effect. The MOSav is significantly more

influenced by audio quality for the lowest bit rate (56 kbps). It is caused by a loss of spatial informa-

tion due to the compression, where higher audio quality can compensate the lower video quality. On

the other hand MOSav is not strongly influenced by audio quality for the higher bit rates (75, 105

kbps).

Therefore, it can be assumed that obtained results are significantly influenced by the sequence char-

acter. For instance, video calls contain lower amount of spatial and temporal information leading to

the loss of the critical ability of the subjective judgment when the media has small video informa-

tion contents. Therefore, it is necessary to propose one audiovisual model with different coefficients

for Video call and Cinema trailer or Video clip. The mutual compensation property and synergy of

component media have to be taken into account. The following model was investigated:

MOSav = Kcc +Acc · MOSa +Vcc · MOSv

+AVcc · MOSa · MOSv +A′

cc · MOS2
a +V ′

cc · MOS2
v ,

(5.6)

where Kcc is a constant, and Acc, Vcc, AVcc, A′

cc, V ′

cc are weights of MOSa and/or MOSv (MOS

video). Inputs of this model are the above described audio and video metrics. The focus was taken

at the best trade-off between complexity and correlation with the subjective audiovisual quality.

All these models are designed for speech (video call) and for non-speech (video clip/cinema trailer)

scenarios. The coefficients are shown in Tables 5.4 and 5.5. The highest Pearson correlations (4.22)

in both cases are obtained by models MOSIII
av and MOSIV

av . In Figure 5.15 the correlation in each

case is visualized. The correlations in the models MOSIII
av and MOSIV

av are almost equal, but the

model MOSIV
av with the two terms of second degree for MOSa and MOSv is much more complex

than model MOSIII
av . Therefore, a good trade-off between quality and complexity of the audiovisual

quality is the model MOSIII
av . Although, the proposed models are a combination of two mono-modal

models the cross-modal interaction is introduced by the product term in MOSII
av , MOSIII

av , MOSIV
av .
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Model Kcc Acc Vcc AVcc A′

cc V ′

cc correlation

MOSI
av -1.5025 0.7380 0.7411 / / / 0.8879

MOSII
av 0.9135 / / 0.2329 / / 0.8415

MOSIII
av -0.9222 0.5691 0.5064 0.1697 / / 0.9106

MOSIV
av -1.1895 0.5947 0.7126 0.0677 -0.0031 -0.0395 0.9117

Table 5.5: Coefficients and correlation of ”Cinema trailer”/”Video clip” model.

Figure 5.15: Pearson correlations of proposed models.

Self criticism

In this section the ANSI, AD and PESQ metrics were tuned for the mobile environment and

extended to the proposed audiovisual model. The proposed audiovisual model has a few drawbacks:

• the model needs a reference video sequence,

• the model does not introduce new audio or video parameters,

• in former Section 4 it was shown that the model relies on the ANSI video quality parameters

which do not perform very well in mobile scenarios.

The explanation for is that this was the initial work to quality estimation for mobile environments

and reflects the actual state of the art and its applicability for mobile scenarios.



98 CHAPTER 5. AUDIOVISUAL QUALITY ESTIMATION



Chapter 6

Conclusions

THIS thesis is dedicated to the estimation of subjective quality for video streaming over wireless

mobile networks. The topic covers a multitude of designs of estimation methods for subjective

video quality. As an initial step, it was necessary to define the usage scenario and to design the

setup for subjective assessments. Furthermore, it was necessary to investigate and develop methods

for content segmentation in order to introduce content awareness in the quality estimation. Finally,

reference-free estimation methods for the mobile scenario were investigated and proposed.

The proposed estimation models are focused at reference-free quality estimation due to their lower

complexity and better applicability. The mobile video streaming scenario reflects an environment of

usage, user equipment and typical types of video content. For this purpose mobile scenarios and a test

methodology were investigated and defined in order to achieve the best emulation of the real world

scenario, covering the most frequent content classes (CC). The scenario is characterized by the size

and resolution of the user terminal screen, user mobility and network performance.

These experiences were exploited in a subjective assessment design. For the emulation of the ”real

word” scenario the ACR assessment method is the most suitable, because a user does not have access

to original sequences. Furthermore, the assessments were performed for semantically different content

classes. The tested sequences were encoded with encoding settings typical for wireless video streaming.

The proposed methodology follows ITU-T recommendations except one point. After an initial video

quality assessment it was observed that a systematic deviation appears between subjective evaluations

performed at an LCD screen and at a screen of a mobile phone. Therefore, for further assessments,

only cell phones or PDAs were used.

The so obtained results show the very important feature of subjective evaluations that the subjective

video quality is content dependent. The maximal difference between two CCs encoded under equal

conditions in a five grade MOS scale can be up to 3 MOS grades for QCIF resolution and 1.6 MOS

grades for SIF resolution. Due to content dependent video quality, it is necessary to design features

which allow temporal content segmentation and content classification of video streams. A temporal

content segmentation was introduced in order to estimate the quality for a single sequence within a

video stream. For this purpose an adaptive metric for scene change detection was developed. This

metric is able to detect scene changes in all defined content types with both precision and recall higher

than 97%.

The next important approach was to classify CCs for content specific metrics. For this purpose the
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motion and colour sequence features were investigated, and content sensitive parameters were ex-

tracted. These parameters are then input for a content classification based on hypothesis testing. The

proposed content classifier is a robust tool for content classification. Moreover, the hypothesis testing

allows very fast extension of the number of CCs by adding a new content class.

Our proposals for quality estimation are trade-offs between applicability, processing demands and

prediction accuracy. The aim was to estimate quality at the receiver with reasonable processing com-

plexity. Furthermore, the proposed estimation methods demonstrate that it is possible to predict

the video quality for the wireless video streaming scenario with reference-free video estimators. The

relevance of the required parameters was considered according to the results of a multivariate analysis.

This knowledge was successfully applied to the proposed direct reference-free quality and ANN for

QCIF resolution. The direct reference-free quality metrics are dedicated to certain content classes.

On the other hand, the ANN model is general for all considered content classes and the training

performance is sufficient for video quality estimation. Therefore, a better fitting performance of direct

reference-free quality metrics was expected.

Moreover, for SIF resolution estimators were proposed based on content adaptive motion parameters

which are derived from MV features. Three reference-free estimation methods were proposed. The

first method estimates video quality in two steps: the content class is estimated from the original

video sequence at the sender side, and then the quality metric is calculated at the receiver with almost

zero complexity. The second and the third estimation methods are suitable for stand alone estima-

tion at the receiver side. The second, the ensemble based metric has a performance similar to the

content class based metric. The content classification can be understood as a kind of pre-estimation

in order to obtain a more homogeneous set of results within one content class, which allows for more

accurate quality estimation. This effect has been achieved by introducing cross-validation in ensemble

based metrics. Furthermore, the direct motion proposal has a slightly worse estimation performance

but allows a completely reference-free estimation for all content classes. The performance of intro-

duced video quality metrics shows a good agreement between estimated MOS and the evaluation set.

Moreover, the proposed estimation methods for SIF resolution and proposed content classifier were

submitted for patenting [122].

Within this thesis also the audiovisual quality was investigated. The aim was to estimate an audio-

visual quality for mobile streaming services. The audiovisual quality assessments show that audio

quality, video quality and sequence character are important factors to determine the overall subjective

perceived quality. A mutual compensation property of audio and video can also clearly be seen from

the obtained results. The proposed audiovisual metrics for speech and non-speech content show over

90% agreement with the test results.

In addition, also the WTP was investigated in the tested scenarios. The obtained results clearly show

a linear dependence between the subjective measure MOS and WTP. The proposed metric exhibits

more than 95% correlation with tests results. Moreover, this relation did not show dependence on

codec or resolution.
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List of abbreviations

3G 3rd Generation

3GPP 3rd Generation Partnership Project

AAC Advanced Audio Coding

AAC LC AAC Low Complexity

AAC LTP AAC Long Term Prediction

AC Alternating Current

ACR Absolute Category Rating

AD Auditory Distance

AM Acknowledged Mode

AMR Adaptive Multirate Codec

ANN Artificial Neural Network

ARQ Automatic Repeat Request

AS Application Server

AUC Authentication Center

AVC Advanced Video Coding

CABAC Context Adaptive Binary Arithmetic Coding

CAVLC Context Adaptive Variable Length Coding

CBR Constant Bit Rate

CC Content Class

CDF Cumulative Distribution Function

CIF Common Intermediate Format

CN Core Network

CRC Cyclic Redundancy Check

CS Circuit Switched

DC Direct Current

DCT Discrete Cosine Transform

DCR Degradation Category Rating

DL Downlink

ECDF Empirical Cumulative Distribution Function
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FIFO First-In/First-Out

FIR Finite Impulse Response

FR Frame Rate

GGSN Gateway GPRS Support Node

GSM Global System for Mobile Communications

HLR Home Location Register

HSDPA High Speed Downlink Packet Access

HSUPA High Speed Uplink Packet Access

HTML Hyper-Text Mark-up Language

HVS Human Visual System

IEC International Electrotechnical Commission

IETF Internet Engineering Task Force

IFD Integrated Frequency Distance

IP Internet Protocol

IRPROP+ Improved Resilient Propagation

ISO International Organization for Standardization

ITU International Telecommunication Union

JM Joint Model

JSCC Joint Source-Channel Coding

JVT Joint Video Team

kNN k-Nearest Neighbor

KS Kolmogorov-Smirnov

LAN Local Area Network

MAC Medium Access Control

MB MacroBlock

MMS Multimedia Messaging Service

MOS Mean Opinion Score

MPEG Motion Picture Expert Group

MSC Mobile Switching Center

MSE Mean Square Error

MV Motion Vector

NAL Network Abstraction Layer

NALU Network Abstraction Layer Unit

NRI NAL Reference Identification

NTSC National Television Systems Committee

OSI Open System Interconnection

PAL Phase Alternation by Line

PC Pair Comparison

PCA Principal Component Analysis

PDA Personal Digital Assistant

PDF Probability Density Function
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PDP Packet Data Protocol

PDU Packet Data Unit

PESQ Perceptual Evaluation of Speech Quality

PHY PHYsical Layer

PPS Picture Parameter Set

PQ Perceived/Perceptual QoS

PS Packet Switched

PSS Packet-Switched Streaming

PSNR Peak to Signal-to-Noise Ratio

QCIF Quarter Common Intermediate Format

QoS Quality of Service

QoE Quality of Experience

QP Quantization Parameter

QVGA Quarter Video Graphics Array

RAB Radio Access Bearer

RACH Random Access Channel

RAN Radio Access Network

RB Radio Bearer

RD Rate-Distortion

RGB Red, Green, Blue

RNC Radio Network Controller

RNS Radio Network Subsystem

ROI Region of Interest

RRC Radio Resource Control

RS Redundant Slices

RTCP Real-Time Control Protocol

RTP Real-Time Protocol

SAD Sum of Absolute Differences

SAP Service Access Point

SDP Session Description Protocol

SDU Service data Unit

SECAM Séquentiel couleur à mémoire

SEI Supplemental Enhancement Information

SGSN Serving GPRS Support Node

SI Spatial Information

SIF Standard Interchange Format

SIM Subscriber Identity Module

SIR Signal to Interference Ratio

SM Synchronization Mark

SMB Submacroblock

SMIL Synchronized Multimedia Integration Language
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SPS Sequence Parameter Set

SVC Scalable Video Coding

TB Transport Block

TCP Transmission Control Protocol

TE Terminal Equipment

TF Transport Format

TI Temporal Information

TPC Transmitter Power Control

TTA Telecommunication Technology Association

TTC Telecommunication Technology Committee

UDP User Datagram Protocol

UE User Equipment

UEP Unequal Error Protection

UL Uplink

UMTS Universal Mobile Telecommunications Network

URI Universal Resource Identifier

UTRAN UMTS Terrestrial Radio Access Network

VBR Variable Bit Rate

VCL Video Coding Layer

VGA Video Graphics Array

VLC Variable Length Code

VLR Visitor Location Register

WAP Wireless Application Protocol

WCDMA Wideband Code Division Multiple Access

WLAN Wireless LAN

WTP Willingness To Pay



Appendix B

Description of ANSI T1.803 video

parameters

THE standard ANSI T1.803 specifies a method for estimating the video performance of a one-way

video transmission. The video performance estimator is defined for the end-to-end transmission

quality. The encoder can utilize various compression methods. This estimation method is based on

quality parameters that measure the perceptual effects of a wide range of impairments such as blurring,

block distortion, unnatural motion, noise and error blocks. Each quality parameter is calculated

through a quality feature, defined as a quantity of information associated with a spatial-temporal

sub-region of a video stream.

B.1 Quality features

THE quality feature is defined as a quantity of information associated with, or extracted from,

a spatial-temporal sub-region of a video stream (either original or processed). By comparing

features extracted from the processed video with features extracted from the original video, a set of

quality parameters is computed in order to detect perceptual changes in video quality. Initially, a

perceptual filter is applied to the video stream to enhance some property of perceived video quality,

such as edge information. After this perceptual filtering, features are extracted from Spatial-Temporal

(S-T) sub-regions. Finally, a perceptual threshold is applied to the extracted features. Features

calculation is performed in the following steps:

• Perceptual filtering.

• Video stream segmentation in S-T region.

• Feature extraction or summary statistics, from each S-T region (e.g. mean, standard deviation).

• Perceptual thresholding.
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B.1.1 S-T regions

Each S-T region describes a block of pixels. S-T region sizes are described by the number of pixel

horizontally and vertically and the duration of the region. One fifth of a second is a desirable temporal

extend, due to ease of frame rate conversion. Figure B.1 illustrates a S-T region of 8 horizontal

pixels, 8 vertical pixels, 5 video frames, for a total of 320 pixels.

Figure B.1: Example spatial-temporal (S-T) region.

B.2 Features based on spatial gradients

THE features derived from spatial gradients can be used to characterize perceptual distortion of

edges. The Y (luminance) components of the original and processed video streams are filtered

using horizontal and vertical edge enhancement filters. Next, these filtered video streams are divided

into spatial-temporal (S-T) regions from which features, or summary statistics, are extracted that

quantify the spatial activity as a function of angular orientation. Then these features are clipped at

the lower end to emulate perceptual thresholds. The edge enhancement filters, the S-T region size,

and the perceptual thresholds were selected based on [18].

B.2.1 Edge enhancement filters

The original and precessed Y (luminance) video frames are first processed with horizontal and vertical

edge enhancement filters. Two filters are applied separately, one to enhance the horizontal pixel

difference while smoothing vertically and the other to enhance the vertical pixel difference while
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smoothing horizontally.

H =




−wn ... −w2 −w1 0 w1 w2 ... wn

... ... ... ... ... ... ... ... ...

−wn ... −w2 −w1 0 w1 w2 ... wn

−wn ... −w2 −w1 0 w1 w2 ... wn

−wn ... −w2 −w1 0 w1 w2 ... wn

... ... ... ... ... ... ... ... ...

−wn ... −w2 −w1 0 w1 w2 ... wn




. (B.1)

The two filters H for vertical edge enhancement and V = HT for horizontal edge enhancement

with size 13 × 13 have the following filter weights:

wx = k ·
(x

c

)
· e
{
−( 1

2
)(x

c )
2
}

, x = 0, 1, 2, ..., 6,

where x is the pixel displacement from the center of the filter, c is a constant that sets the width

of the bandpass filter, and k is a normalization constant selected such that each filter would produce

the same gain as a true Sobel filter [123]. For the optimal choice of the parameters see [18].

B.2.2 Description of features fSI13 and fV H13

This section describes the extraction of two spatial activity features from the S-T region of the original

and processed video streams. These features will be used to detect spatial impairments as blurring

and blocking. The filter H enhances the spatial gradient in the horizontal direction while the filter

V = HT enhances the spatial gradient in the vertical direction. The response at each pixel from

the horizontal and vertical filters can be plotted on a two dimensional diagram with the horizontal

filter response forming the abscissa value and the vertical filter response forming the ordinate value.

For a given image pixel located at row i, column j, and time t, the horizontal and vertical filters

will be denoted as H(i, j, t) and V (i, j, t), respectively. These responses can be converted into polar

coordinates (R, θ) using the relationship:

R(i, j, t) =
√

H(i, j, t)2 + V (i, j, t)2

and

θ(i, j, t) = tan−1

[
V (i, j, t)

H(i, j, t)

]
.

The first feature is a measure of the overall spatial information (SI), denoted as fSI13, since images

were preprocessed using the 13 × 13 filter masks. This features is computed simply as the standard

deviation over the S-T region of the R(i, j, t) samples, and then clipped at the perceptual threshold

[18].

fSI13 =

{
stdi,j,t[R(i, j, t)]

}∣∣∣∣∣
P

: i, j, t ∈ {S − T region} (B.2)

This feature is sensitive to changes in the overall amount of spatial activity within a given S-T

region. For instance, localized blurring produces a reduction in the amount of spatial activity, whereas

noise produces an increase.
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Figure B.2: Division of horizontal and vertical spatial activity into HV (left) and HV (right) distri-

bution.

The second feature, fHV 13, is sensitive to changes in angular distribution, or orientation, of spatial

activity. Complementary images are computed with the shaded spatial gradient distributions shown

in Figure B.2. The image with horizontal gradient, denotes as HV , contain the R(i, j, t) pixels

that are horizontal or vertical edges (pixel that are diagonal edges are zeroed). The image with the

diagonal gradients, denoted as HV , contains the R(i, j, t) pixels that is diagonal edges (pixel that

are horizontal or vertical edges are zeroed). A gradient magnitude R(i, j, t) less then rmin [18] is

zeroed in both images to assure accurate θ computation. Pixel in HV and HV can be represented

mathematically as:

HV (i, j, t) =





R(i, j, t) if R(i, j, t) ≥ rmin and mπ
2 − ∆θ < θ(i, j, t) < mπ

2 + ∆θ

(m = 0, 1, 2, 3)

0 otherwise

(B.3)

and

HV (i, j, t) =





R(i, j, t) if R(i, j, t) ≥ rmin and mπ
2 + ∆θ < θ(i, j, t) < (m + 1)π

2 − ∆θ

(m = 0, 1, 2, 3)

0 otherwise

(B.4)

where: i, j, t ∈ {S-T region}.

The feature fHV 13 for one S-T region is then given by the ratio of the mean of HV to the mean

of HV , where these resultant means are clipped at their perceptual threshold P , namely:
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fHV 13 =

{
mean[HV (i, j, t)]

}∣∣∣∣∣
P{

mean[HV (i, j, t)]

}∣∣∣∣∣
P

.

The fHV 13 feature is sensitive to changes in the angular distribution of spatial activity within a

given S-T region. For example, if horizontal and vertical edges suffer of more blurring than diagonal

edges, fHV 13 of the processed video will be less than fHV 13 of the original video. On the other hand, if

erroneous horizontal or vertical edges are introduced, say in the form of blocking or tilling distortion,

then fHV 13 of the processed video will be greater than fHV 13 of the original video. The fHV 13 feature

thus provides a simple means to include variations in the sensitivity of the human visual system with

respect to angular orientation.

B.3 Video parameters

THE video parameters that measure distortion in video quality due to gains and losses in the

feature values are first calculated for each S-T region by comparing the original feature value,

fo(s, t), with the corresponding processed feature values, fp(s, t). Several functional relationships are

used to emulate the visual masking of impairments for each S-T region. Next, an error-pooling func-

tion [18] across space and time emulates how humans deduce subjective quality ratings. Error pooling

across space will be referred to as spatial collapsing, and error pooling across time will be referred

as temporal collapsing. Sequential application of the spatial and temporal collapsing function [18] to

the stream of S-T quality parameters produces quality parameters for the entire video clip, witch is

nominally 5 to 10 seconds in duration. The final time-collapsed parameter values may be scaled and

clipped to account for a non-linear relationship between the parameter value and the perceived quality

and to further reduce the parameter sensitivity.

The video parameters are calculated in the following steps:

• Compare original feature values with processed feature values.

• Perform spatial collapsing.

• Perform temporal collapsing.

• Perform nonlinear scaling and/or clipping (optional).

B.3.1 Comparison functions

The perceptual impairment at each S-T region is calculated using functions that model visual masking

of the spatial and temporal impairments. This section presents the masking functions that are used

by the various parameters to produce quality parameters as a function of space and time.
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B.3.2 Error ratio and logarithmic ratio

Loss and gain are normally examined separately, since they produce fundamentally different effects on

quality perception (e.g., loss of spatial activity due to blurring and gain of spatial activity due to noise

or blocking). Of the many comparison function that have been evaluated, two forms have consistently

produced the best correlation to subjective ratings. The distortion measures are calculated for each

S-T region by comparing the original feature values, fo(s, t), with the corresponding processed feature

values fp(s, t):

ratio loss(s, t) = np

{
fp(s, t) − fo(s, t)

fo(s, t)

}
,

ratio gain(s, t) = pp

{
fp(s, t) − fo(s, t)

fo(s, t)

}
,

log loss(s, t) = np

{
log10

[
fp(s, t)

fo(s, t)

]}
,

log gain(s, t) = pp

{
log10

[
fp(s, t)

fo(s, t)

]}
,

where pp is the positive part operator (i.e, negative values are replaced with zero), and np is the

negative part operator (i.e, positive values are replaced with zero).

The visual masking function implies that impairment perception is inversely proportional to the

amount of localized spatial or temporal activity that is present. In other words, spatial impairments

become less visible as the spatial activity increases (i.e. spatial masking), and temporal impairments

become less visible as the temporal activity increases (i.e. temporal masking). While the logarithmic

and ratio comparison function behave very similarly, the logarithmic function tends to be slightly

more advantageous for gains, while the ratio function tends to be slightly more advantageous for

losses. The logarithm function has a larger range, and this is useful when the processed feature values

greatly exceed the original feature values.

B.3.3 Spatial collapsing functions

The parameters from the S-T region from three-dimensional matrices spanning one temporal axis and

two spatial dimensions (i.e. horizontal and vertical placement of the S-T region). Next, impairments

from the S-T regions with the same time index t are pooled using a spatial collapsing function.

Spatial collapsing yields a time history of parameter values. This time history of parameter values,

denoted generically as p(t), must then be temporally collapsed using a temporal collapsing function.

B.3.4 Temporal collapsing function

The parameter time history results p(t) output from the spatial collapsing function is next pooled

using a temporal collapsing function to produce an objective parameter O for the video clip, which is

nominally of 4 to 10 seconds length. Viewers seem to use several temporal collapsing function when

subjectively rating video clips that are approximately 10 seconds length. The variable entitled mean

over the time is indicative of the average quality that is observed during the time period. The 90%
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and 10% percentiles over the time are indicative of the worst transcient quality that is observed for

gains and losses, respectively.

B.3.5 SI and HV video parameters

Initially, the ratioloss function on the fHV 13 feature and on the fSI113 are computed, where the thresh-

old P in (B.2) is 12. These two parameters (matrices) are denoted as hvloss and siloss, respectively.

Then the loggain function on the (fHV 13 feature and on the fSI13) where the threshold P in (B.2.2)

is 8, is calculated. These two parameters (matrices) are denoted as hvgain* and sigain*, respectively.

The hvloss∗, siloss∗, hvgain∗ and sigain∗ (see Appendix A of [120]) matrices give both spatial in-

formation (given by the rows) and temporal information (given by the columns). Now, impairments

from the S-T region with the same time index t are pooled using a spatial collapsing function. Spatial

collapsing yields a time history of parameters values.

The spatial function [18] is set below 5% and is applied on hvloss∗ and siloss∗. For each temporal

index t (i.e. for each column of the matrices), this function sorts the parameter values from low to

high. Then it computes the average of all the parameter values that are less than or equal to the 5%

threshold level. For loss parameters, it produces a parameter that is indicative of the worst quality

over space.

The spatial function is set above 95% and is instead applied on hvgain∗. For each temporal index t

(i.e. for each column of the matrix), this function sorts the parameter values from low to high. Then it

computes the average of all the parameter values that are greater than or equal to the 95% threshold

level. For gain parameters, it produces a parameter that is indicative of the worst quality over space.

Finally, the mean is computed over all the parameter values. It produces a parameter that is indica-

tive of the average quality over space and parameters have become row vectors (parameters denoted

with ∗∗). Now all the elements of each vector are pooled using a temporal collapsing function to

calculate single parameter for the video sequence.

For the siloss ∗ ∗ row vector, the temporal collapsing function produces a parameter that is indicative

of the worst quality over time. The temporal function is set to 10%. It sorts the time history of

the parameter values from low to high and selects the 10% threshold level. This is the final siloss

parameter.

The temporal function mean is instead applied on the sigain∗∗, hvloss∗∗ and hvgain∗∗ row vectors.

The three mean parameters are indicative of the average quality over time. The hvgain parameter is

so defined completely.

Finally, a clipping function is calculated for products of a temporal collapsing function on sigain ∗ ∗
and hvloss ∗ ∗ parameters in order to reduce the sensitivity of the parameters to small impairments.

A clipping function is mathematically represented as:

clipT (p) =

{
max(p, T ) − T ; p ≥ 0

min(p, T ) − T ; p < 0
(B.5)

where p is the clipped parameter and T the threshold. The threshold T is 0.004 for the sigain ∗ ∗
parameter and 0.06 for the squared hvloss ∗ ∗. After the application of this clipping function, also the

sigain and hvloss parameters are completely defined.
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Appendix C

Description of audio quality parameters

C.1 Model for perceptual evaluation of speech quality

THE perceptual model for the Perceptual Evaluation of Speech Quality (PESQ) [113] defined by

ITU is designed to calculate a distance between the original and degraded speech signal (PESQ

score). The PESQ score is usually mapped to a MOS scale, a single number in the range of -0.5 to

4.5, although for most cases the output range will be between 1.0 and 4.5, the typical range of MOS

values found in an ACR listening quality experiment.

In PESQ the time signals are mapped to the time-frequency domain using a short-term Fast Fourier

Transform (FFT) with a Hann window [125] of size 32 ms. Adjacent frames are overlapped by 50%.

The absolute hearing threshold P0(f) is interpolated to get the values at the center of the Bark

bands [126] that are used. These values are stored in an array and are used in Zwicker’s loudness

formula [126]. The Hertz scale is converted to the Bark frequency scale:

b = 6 · sinh−1

(
f

600

)
. (C.1)

There is a constant gain following the FFT for time-frequency analysis. This constant is computed

from a sine wave of a frequency of 1000 Hz with an amplitude at 29.54 (40 dB SPL - Sound Pressure

Level) transformed to the frequency domain using the windowed FFT over 32 ms. The (discrete)

frequency axis is then converted to a modified Bark scale by binning of the FFT bands. The peak

amplitude of the spectrum binned to the Bark frequency scale (called the ”pitch power density”)

must then be 10 000 (40 dB SPL). The latter is enforced by a post multiplication with a constant,

the power scaling factor Sp.

The same 40 dB SPL reference tone is used to calibrate the psychoacoustic (Sone) loudness scale.

After binning to the modified Bark scale, the intensity axis is warped to a loudness scale using

Zwicker’s law, based on the absolute hearing threshold. The integral of the loudness density over the

Bark frequency scale, using a calibration tone at 1000 Hz and 40 dB SPL, must then yield a value

of 1 Sone. The latter is enforced by a post-multiplication with a constant, the loudness scaling factor Sl.
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C.1.1 Description of PESQ algorithm

Because many of the steps in PESQ are quite algorithmically complex, a description is not easily

expressed in mathematical formulas. This description is textual in nature and the reader is referred

to the C source code [127] for a detailed description. Figure C.1 shows the core of the perceptual

model. For each of the blocks a high level description is given.

The part depicted on Figure C.1 of PESQ algorithm is explained in following sections.

C.1.2 IRS filtering

It is assumed that the listening tests were carried out using an IRS receive or a modified IRS receive

characteristic in the handset. A perceptual model of the human evaluation of speech quality must

take account of this to model the signals that the subjects actually heard. Therefore IRS-like receive

filtered versions of the original speech signal and degraded speech signal are computed.

In PESQ this is implemented by a FFT over the length of the file, filtering in the frequency domain

with a piecewise linear response similar to the (unmodified) IRS receive characteristic (ITU T P.830),

followed by an inverse FFT over the length of the speech file. This results in the filtered versions

XIRSS(t) and YIRSS(t) [127] of the scaled input and output signals XS(t) and YS(t) [127]. A single

IRS-like receive filter is used within PESQ irrespective of whether the real subjective experiment used

IRS or modified IRS filtering. The reason for this approach was that in most cases the exact filtering

is unknown, and that even when it is known the coupling of the handset to the ear is not known. It

is therefore a requirement that the objective method be relatively insensitive to the filtering of the

handset.

The IRS filtered signals are used both in the time alignment procedure and the perceptual model.

C.1.3 Computation of the active speech time interval

If the original and degraded speech file starts or ends with large silent intervals, this could influence

the computation of certain average distortion values over the files. Therefore, an estimate is made of

the silent parts at the beginning and end of these files. The sum of five successive absolute sample

values must exceed 500 from the beginning and end of the original speech file in order for that position

to be considered as the start or end of the active interval. The interval between this start and end is

defined as the active speech time interval. In order to save computation cycles and/or storage size,

some computations can be restricted to the active interval.

C.1.4 Short-term Fast Fourier Transform

The human ear performs a time-frequency transformation. In PESQ this is simulated by a short-term

Fast Fourier Transform (FFT) with a window size of 32 ms. The overlap between successive time

windows (frames) is 50%. The power spectrum - the sum of the squared real and squared imaginary

parts of the complex FFT components - are stored in separate real valued arrays for the original and

degraded speach signals. Phase information within a single Hann window is discarded in PESQ and

all calculations are based on only the power representations PXWIRSS(f)n and PYWIRSS(f)n [127].

The start points of the windows in the degraded signal are shifted over the delay. The time axis of
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Figure C.1: Overview of perceptual model.

the original speech signal is left as is. If the delay increases, parts of the degraded signal are omitted

from the processing, while for decreases in the delay parts are repeated.
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C.1.5 Pitch power densities

The Bark scale reflects that at low frequencies, the human hearing system has a finer frequency

resolution than at high frequencies. This is implemented by binning FFT bands and summing the

corresponding powers of the FFT bands with a normalization of the summed parts. The warping

function that maps the frequency scale in Hertz to the pitch scale in Bark scale is introduced. The

resulting signals are known as the pitch power densities PPXWIRSS(f)n and PPYWIRSS(f)n [127].

C.1.6 Partial compensation of the original pitch power density for transfer func-

tion equalization

To deal with filtering in the system under test, the power spectrum of the original and degraded pitch

power densities are averaged over the time. This average is calculated over speech active frames only

using time-frequency cells whose power is more than 1000 times above the absolute hearing threshold.

Per modified Bark bin, a partial compensation factor is calculated from the ratio of the degraded

spectrum to the original spectrum. The maximum compensation is never more than 20 dB. The pitch

power density PPXWIRSS(f)n of the original speech signal of each frame n is then multiplied with

this partial compensation factor to equalize the original to the degraded signal. This results in an

inversely filtered original pitch power density PPX ′

WIRSS(f)n [127].

This partial compensation is used because severe filtering can be disturbing to the listener. The

compensation is carried out on the original signal because the degraded signal is the one that is

judged by the subjects.

C.1.7 Partial compensation of the distorted pitch power density for time varying

gain variations between distorted and original signal

Short-term gain variations are partially compensated by processing the pitch power densities frame by

frame. For the original and the degraded pitch power densities, the sum in each frame n of all values

that exceed the absolute hearing threshold is computed. The ratio of the power in the original and the

degraded files is calculated. A first order low-pass filter (along the time axis) is applied to this ratio.

The distorted pitch power density in each frame n is resulting in the partially gain compensated pitch

power density PPY ′

WIRSS(f)n [127] for degraded signals.

C.1.8 Calculation of the loudness densities

After partial compensation for filtering and short-term gain variations, the original and degraded pitch

power densities are transformed to a Sone loudness scale using Zwicker’s law [121].

LX(f)n = Sl ·
(

Po(f)

0.5

)γ

·
[(

0.5 + 0.5 · PPX ′

WIRSS(f)n

Po(f)

)γ

− 1

]
(C.2)

with P0(f) the absolute threshold and Sl the loudness scaling factor. Above 4 Bark, the Zwicker

power is 0.23, the value given in the literature [121]. Below 4 Bark, the Zwicker power is increased

slightly to account for the so-called recruitment effect. The resulting two-dimensional arrays LX(f)n

and LY (f)n [127] are called loudness densities.
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C.1.9 Calculation of the disturbance density

The signed difference between the distorted and original speech signal loudness density is computed.

When this difference is positive, components such as noise have been added. When this difference is

negative, components have been omitted from the original signal. This difference array is called the

raw disturbance density.

The minimum of the original and degraded loudness density is computed for each time frequency cell.

These minimums are multiplied by 0.25. The corresponding two-dimensional array is called the mask

array. The following rules are applied in each time-frequency cell:

• If the raw disturbance density is positive and larger than the mask value, the mask value is

subtracted from the raw disturbance.

• If the raw disturbance density lies in interval [− |mask value| , |mask value|], the disturbance

density is set to zero.

• If the raw disturbance density is < − |mask value|, the mask value is added to the raw distur-

bance density.

The impact is that the raw disturbance densities are pulled toward zero. This represents a dead

zone before an actual time frequency cell is perceived as distorted. This models the process of small

differences being inaudible in the presence of loud signals (masking) in each time-frequency cell. The

result is a disturbance density as a function of time and frequency, D(f)n [127].

C.1.10 Cell-wise multiplication with an asymmetry factor

The asymmetry effect is caused by the fact that when a codec distorts the input signal it will in

general be very difficult to introduce a new time-frequency component that integrates with the input

signal, and the resulting output signal will thus be decomposed into two different percepts, the input

signal and the distortion, leading to clearly audible distortion [124]. When the codec leaves out a time

frequency component, the resulting output signal cannot be decomposed in the same way and the

distortion is less accurate. This effect is modeled by calculating an asymmetrical disturbance density

DA(f)n [127] per frame by multiplication of the disturbance density D(f)n [127] with an asymmetry

factor. This asymmetry factor equals the ratio of the distorted and original pitch power densities

raised to the power of 1.2. If the asymmetry factor is less than 3, it is set to zero. If it exceeds 12, it

is clipped at that value. Thus, only those time frequency cells remain, as non zero values, for which

the degraded pitch power density exceeded the original pitch power density.

C.1.11 Aggregation of the disturbance densities over frequency and emphasis on

soft parts of the original

The disturbance density D(f)n and asymmetrical disturbance density DA(f)n are integrated

(summed) along the frequency axis using two different Lp norms and a weighting on soft frames

(having low loudness):
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Dn = Mn 3

√ ∑

f=1,...Number of Bark bands

(|D(f)n| · Wf )3 (C.3)

DAn = Mn

∑

f=1,...Number of Bark bands

(|DA(f)n| · Wf ) (C.4)

with multiplication factor Mn defined in [127], resulting in an emphasis of the disturbances that

occur during silences in the original speech fragment, and Wf a series of constants proportional to the

width of the modified Bark bins. These aggregated values, Dn and DAn, are called frame disturbances.

C.1.12 Integrated frequency distance parameter

Integrated frequency distance (IFD) is a non reference parameter with a good hyperbolic correlation

with the subjective audio quality. The values of the PPX ′

WIRSS(f)n matrix and of the PPY ′

WIRSS(f)n

matrix are aggregated over time with a mean function (see Appendix A of [120] and [127]). Every

bark frequency is weighted with the PESQ perceptual model values [113]. Therefore the distance

between the original and compressed values in frequency domain, for one bark frequency value, is also

adequately weighted. We can see in Figure C.2 that the distance between original and degraded

signals in Bark scale may be a good and simple indicator of the audio quality degradation. IFD is the

integrated difference between the non original audio signal and the degraded one.

Figure C.2: Distance between original and degraded signals in Bark scale.

IFD =
∑

f=1,...Number of Bark bands

(mean power(f)originaln − mean power(f)degradedn
). (C.5)

Where mean power(f)originaln (see Appendix A of [120]) is for every bark frequency the mean over

time of the original audio signal (the mean of the PPY ′(f)n rows); and the mean power(f)degradedn
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(see Appendix A of [120]) is for every bark frequency the mean over time of the compressed audio

signal (the mean of the PPX ′(f)n rows).

C.2 Auditory distance

THE Auditory Distance (AD) [115] is calculated in following steps the perceptual transformation

and the distance measure (see Figure C.3).

Figure C.3: High-level block diagram of the objective estimation approach of AD.

C.2.1 Perceptual Transformations

This perceptual transformation is applied to frequency domain representations of the speech signals.

Speech signals are segmented into frames, multiplied by a Hamming window, and then transformed

to the frequency domain using an FFT. The nonuniform frequency resolution is treated by the use of

a psychoacoustic frequency scale: a Bark frequency scale. The Hertz scale is converted to the Bark

frequency scale (C.1).

C.2.2 Distance Measures

The measure of the distance between the two perceptual transformed signals happens through a

hierarchical structure of Measuring Normalizing Blocks (MNB).

A time measuring normalizing block (TMNB) is shown in Figure C.4 and a frequency measuring

normalizing block (FMNB) is given in Figure C.5. Each of these blocks take the perceptually

transformed input and output signals X(f, t) and Y (f, t), respectively as inputs, and returns a set of

measurements.

The TMNB integrates the original and the degraded signals over some frequency scale, then measures

differences between the so integrated degraded and original signals, and normalizes the output signal

at multiple times.
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Figure C.4: Time measuring normalizing block (TMNB).

Figure C.5: Frequency measuring normalizing block (FMNB).

An FMNB integrates over some time scale the original and the degraded signals, then measures

differences between the so integrated degraded and original signals, and normalizes the output signal

at multiple frequencies. There are two MNB structures that offer relatively low complexity and high

performance as estimators of the perceived speech quality. These structure are shown in Figures C.6

and C.7.

Both MNB structures start with an FMNB that is applied to the input and output signals at the

longest available time scale. Four measurements are extracted and stored in the measurement vector

m. These measurements cover the lower and upper band edges of telephone band speech (from 0

to 500 and from 3000 to 3500 Hz). In MNB structure 1, a TMNB is then applied to the input and

output signals at the largest frequency scale (approximately 15 Bark). Finally, a residual measurement

is made.

We can loosely describe the action of these MNB structures as a dynamic decomposition of a codec

output signal. This decomposition proceeds in a space that is defined partly by human hearing and

judgment (through the MNB structure) and partly by the codec input signal. The parameters of this

dynamic decomposition are combined linearly to form a measure of the perceptual distance between

two speech signals. Each measure m taken at different frequencies, is weighed with different coeffi-
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Figure C.6: MNB structure 1.

cients, because the human ears do not perceive all the frequencies in the same way. The MNB structure

1 consists of m = (m(1), m(2), ..., m(12)) and MNB structure 2 consists of m = (m(1), m(2), ..., m(11)),

for example see Figures C.6 and C.7 . The value that results from this linear combination is called

auditory distance :

AD′ = wT · m (C.6)

where w is a length 12 (MNB structure 1) or 11 (MNB structure 2) vector of weights. In practice,

AD values are nonnegative. When the input and output signals are identical, all measurements are

zero and AD is zero. As the input and output signals move apart perceptually, AD increases. Finally,

the AD′ was mapped to a finite range (0,1):

AD =
1

1 − eAD′
−max (AD′)

. (C.7)
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Figure C.7: MNB structure 2.
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