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Image Quality: Seldom a "Front-Burner” Activity
In spite ot how important image quality is fo a product's success, researching

image quality and establishing image quality t
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Humans as Measurement Tools
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One reason, ot course, is that image quality cannot be directly measured th

way other performance aspects such as print speed can be measured.
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obtain image quality appraisals, one must rely on human observers--using
research methodologies and theoretical concepts that are foreign to many

hard-science” product developers and R & D staffers.
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The crux of the problem is that, while we may know
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system's dot addressability, customers do not see dot image A TOOLKIT FOR
vality attribute they do see is ‘sharpness. Psychome A Toolkit for

quality attribute they do see is ‘sharpness. Psychome | IMAGING SYSTEMS

Imaging Systems Development shows how to include human observers in image
quality appraisal studies, and put image quality evaluation programs on solid DEVELOPMENT

theoretical and methodological underpinnings.

Fully Worked Examples Included

Sixteen fully worked MathCad worksheets that de

with real data support Psychometric Scaling: A T
Development. Readers can use the MathCad exercises as mode
scaling studies, or can plug their own study data into the work sheets and get

quick results.

Compete Against the Giants with the Tools they Use
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Psychometric Scaling: A Toolkit for Imaging Systems Development provides a

model for infegrating scchng study h”:dmgs into the product design process

a meaningful way. The mechanism for linking human input to the pr

development process is Imcotek's Image Quality Circle, a development proc

in use by some of the most successful companies in

Image Quality Circle is a process or tramework

specify, and manage the quality performance of imaging systems.
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Preface

Preface

My interest in psychometric scaling was sparked during my under-
graduate days at the Rochester Institute of Technology. I was always
fascinated with the idea of getting people to judge all sorts of imaging
attributes. Since there were no courses on the topic at RIT at the
time, it remained an idle curiosity until my first job.

One of my first jobs was to make simulations of aerial images having
various attributes for a psychometric scaling study. Over the next
few years, I was only casually involved in psychometric scaling, how-
ever. In attempting to learn more about this topic, I was continually
frustrated that there was no text written for scientists and engineers
that described this interesting and essential tool.

By the early 1970s, when I went to work for the Xerox Corporation,
one of the major technical and market issues for the company was
“copy quality.” Clearly identifying “copy quality” requires a human
judgment, so a wide-ranging effort was expended by a group of scien-
tists and engineers to come to grips with the “copy quality problem.”
This effort included spending a lot of time sorting out scaling meth-
odology issues. At that time, Stevens’ (1975) Psychophysics: Intro-
duction to its Perceptual, Neural, and Social Prospects was
published. Stevens’ book summarized ratio scaling, but it did not go
into methods in any detail. The difficulty of learning scaling, from an
engineering perspective, remained. There were some introductory
texts, mostly for psychology majors, but the only books written that
included detailed methodologies were Guilford’s (1954) and
Torgerson’s (1958) texts. The comprehensive work, The Measure-
ment and Prediction of Judgment and Choice by Darrell Bock and
Lyle Jones (1968), scemed to be largely unknown in the early 1970s.

“Copy quality” is still a complex topic that is difficult to convey suc-
cinctly. Out of my efforts to explain to management what the broad
“copy quality” issues were, I began constructing a framework for
understanding image quality—a tool now called the Image Quality
Circle. The group of scientists and engineers I interacted with had
various orientations to the copy quality problem, depending on their
particular backgrounds. I associated with image and color scientists
and engineers that thought image measurements and models were
the answer, and psychologists who thought scaling was the “true
calling.”

After a decade with the Xerox Corporation, an opportunity arose to
form Imcotek, a consulting company that provides expertise in image
and color science to organizations in the imaging industry. What
soon became apparent was that “copy quality” got transformed into
the more general “image quality.” The need for psychometric scaling
was still very much alive.

The last quarter of this century has been a period of dramatic change
in the imaging industry. Product development teams have been chal-
lenged by rapid emergence and acceptance of new core imaging

Xiii

technologies. Mastering basic science and technology are under-
standable objectives for R & D teams. and, for many, the focus on
core technology leaves little time to extend their understanding of
analytic techniques. In most companies I have worked, management
at least implicitly encourages their technical staff to “use the library”
to learn a new field, and not to reinvent the wheel. The literature
covering imaging applications of psychometric scaling has been
sparse, so even “library-inclined” staffers have had little with which
to work.

Psychometric scaling has not died, thanks to several chapters by Jim
Bartleson (Bartleson, 1984) in Volume 5 of the Optical Radiation
Measurement series, and the psychophysics texts by John Baird and
Elliot Noma (1978) and by George Gescheider (1985, 1997). These
texts were very useful, but Bartleson’s work had the added bonus of
focusing on imaging and color. However, given the shrinking product
development cycles there is precious little time available to the engi-
neer to put the methods outlined in these texts to work.

Both personal computer software and hardware have become power-
ful enough to take on the troublesome matrix arithmetic that is an
essential part of applying psychometric scaling techniques. With
powerful mathematical tools such as Mathematica®, MatLab®, and
MathCad® available to all, it seemed to me that the time was ripe to
put together a book that emphasized the tools of psychometrie scal-
ing, as opposed to the theory. This turned out to be a bigger chore
than T had envisioned, partly because | wanted to provide the most
mathematically exact methods available. What I soon discovered
was these exacting methods were buried in literature 50 vears old!
The “old timers” knew their math but did not have handy computer
resources to set up the more exact methods. Inverting a matrix
greater than three by three by hand is a real chore, so practical
approximations were sought. These approximations have survived
over the years, and the more exacting techniques long forgotten.

In unidimensional scaling (the topic of this book), the items of inter-
est lie along a line or a dimension in the “psychological space.” In the
areas where unidimensional scaling was used, it had been recog-
nized that many attributes were multidimensional. With the rise of
digital computers in the late 1950s, the complex calculations for
deriving scales of many dimensions were possible, and thus a new
approach to scaling was born: multidimensional scaling (MDS). At
that point, developments in unidimensional scaling largely stopped.

Over the years working with scientists and engineers, I have learned
that scaling is largely of peripheral interest to them, in spite of
immense practical benefits scaling can offer their development pro-
grams. Although product development people may not have a strong
interest in psychometric theory, they are interested in clear applica-
tion boundaries. When they encounter a gray area in the application
of some method, a common reaction is to pick and choose the tools
they need to “get quick results.” I have written this book in a way
that is intended to deliver such “quick results.” To meet the needs of
practitioners who have to move quickly, this book is decidedly light
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on theory, and has almost entirely avoided psychophysical laws and
models such as Stevens’ Power Law. Weber's Law and Fechner's
Law, and all their variants.

The emphasis on method over theory is both philosophical and prac-
tical. On the philosophical side, T do not see that rehashing these
laws will contribute to the wider use of the Image Quality Circle. On
the practical side, and in the context of the Image Quality Circle,
understanding scaling is the major task, not understanding
psychophysical laws. In any specific circumstance, the scale is the
sought-for end.
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Chapter 1

Image Quality and
Psychometric Scaling

A product development person responsible for image quality has to
work in an area where myths and mysteries endure. One of the major
myths is the idea that humans cannot perform as meters. Skepticism
abounds in the hard-science community on this topic. Thus, observa-
tions and judgments by humans are largely avoided in favor of mea-
suring images with instruments—territory that is much more familiar
to scientists and engineers. Taking the safe approach is indeed unfor-
tunate, because measuring images with instruments completely
ignores the ultimate end user of the image, the human customer.
Worse yet, measuring images can lead to incorrect trade-off decisions
in product development, since one may be attempting to optimize a
quantity not well correlated to human judgment. There are many his-
torical examples of this, but the most recent one is the so-called ink
Jet printer “dpi war,” where the addressability of imaging elements is
the sole arbiter of image quality.

How does one use humans as reliable meters? Psychometric Scaling:
A Toolkit for Imaging Systems Development introduces the basics of
psychometric scaling, and provides many useful scaling ideas and
techniques that have practical applications in the study of image
quality. The goal is to eliminate some of the impediments to a full
and useful application of psychometric scaling to the solution of the
image quality evaluation problem.

For the purpose of this book, an image is defined as a distribution of
a colorant arranged to convey information to the observer. The term
colorant could include ink, wax, toner, phosphors or light sources, for
example. Image quality is the integrated set of perceptions of the
overall degree of the excellence of the image.

A term that encompasses the measurement of image quality is image
evaluation. Two distinct divisions of image evaluation were recog-
nized quite early. The first type, objective image evaluation, involves
physically measuring image quality components with instruments.
Subjective image evaluation, the second type, is not viewed as having
quite the same scientific status since it involves obtaining human
judgments of the various aspects of image quality.
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Figure 1.1 - The complete Image Qudality Circle
showing all the connecting links.

The Image Quality Circle, shown in Figure 1.1, is a framework, model,
or process which helps to understand and manage image quality.
Chapter 2 gives a complete description of the Image Quality Circle.

Human judgments provide a measure for two of the four compo-

nents (boxes in Figure 1.1) of the Image Quality Circle: Customer |

Perceptions-the “Nesses,” and Customer Quality Preference.
Image Quality Models and Visual Algorithms, two links in the
Image Quality Circle (ellipses in Figure 1.1), also require these
human judgments. Obtaining these human judgments is the topic
of psychometric scaling.

For quality estimates, we need the customer’s judgment of the quality
of the image. For visual algorithm development, we need a human
judgment of the “nesses.” Lightness, colorfulness, and sharpness are
examples of Customer Perceptions. Human measurement, or
psychometric scaling, is crucial to the successful implementation of
the Image Quality Circle.

1.1 Psychometric Scaling

Psychometric scaling, literally “mind measuring” (Nunally and
Bernstein, 1994), has not been given the appropriate level of atten-
tion by product development personnel, probably because the tools
and theory of human measurements have been the domain of partic-
ular scientific disciplines not often encountered by physical scientists
and engineers. Psychologists, psychophysicists, social scientists, and
some market researchers use psychometric scaling, but not much of
this rich resource has found its way into the physical sciences or
engineering. One of the barriers to free information flow is disci-
pline-specific technical jargon which is not easily translated from one
discipline to another. However, there are some widely used indus-
trial applications of psychometric scaling, particularly in food prod-
uct development where it is called “sensory evaluation” (Bock and
Jones, 1968; Meilgaard, et. al., 1991; Chambers, et. al., 1996).

1.2 The Scope of This Book

Psychometric Scaling: A Toolkit for Imaging Systems Development
provides practical guidance and useful tools for working scientists
and engineers who need a robust and organized framework for incor-
porating judgments from human observers into their imaging sys-
tems development effort. Although this book was not written for
psychophysicists, psychologists, or social scientists, the methods and
the computational tools provided should be useful to them.

In my experience, psychometric scaling is largely unknown to prod-
uct engineers and scientists. When they are aware of the topic, they
are somewhat skeptical of it. It doesn’t appear to be “hard science.”
Indeed, scaling studies are often referred to as “beauty contests.”

The tools described here are oriented toward business and consumer
imaging, as opposed to the use of imagery for diagnostic purposes

1.3 The Contents of This Book 3

such as medical imaging or military reconnaissance. These applica-
tions have their own set of tools.

There are a small number of statistical hypothesis tests presented in
this book. The guiding principle for inclusion was uniqueness. If the
test was more or less unique to psychometric scaling, it was included.
Otherwise it was left out. Since this book focuses on interval scaling,
most standard parametric hypothesis tests applicable to
psychometric scale values can be found in statistical text books.

No attempt has been made to provide a comprehensive treatise on
scaling, psychophysics, or psychometric theory. For those readers
interested in more theoretical aspects of psychometric scaling and
psychophysics, the texts by Geschieder (1997), Baird (1997),
Bartleson and Grum (1984), Baird and Noma (1978), and Torgerson
(1958), will provide a more complete picture.

1.3 The Contents of This Book

Chapter 2 sets the context for this book. It describes the Image Qual-
ity Circle and puts image quality in a broader historical context.
Chapter 3 provides an overview of the scaling process and offers
practical suggestions on conducting the scaling study.

Psychometric Scaling: A Toolkit for Imaging Systems Development 1s
organized roughly along the lines of Stevens’ (1946) definitions of
psychometric scale types. “Chapter 4: Measurement Scales” defines
nominal, ordinal, interval and ratio scales. Procedures for determin-
ing thresholds and just-noticeable-differences of the “nesses” are
described in Chapter 5. “Chapter 6: Ordinal Scaling” describes meth-
ods for developing ordinal scales. Interval scaling, the main focus of
this text, begins with “Chapter 7: Direct Interval Scaling” and con-
tinues with “Chapter 8: Indirect Interval Scaling—Case V and Paired
Comparison.” “Chapter 9: Indirect Interval Scaling—Generalization
of Thurstone Case V’ provides techniques that expand Thurstone’s
Law of Comparative Judgment beyond the traditional Case V.
“Chapter 10: Indirect Interval Scales-Category Scaling Methods”
completes the coverage of the interval scaling methods. Chapter 11
explores Stevens’ final category, ratio scaling methods. Selecting the
best method for scaling studies can be found in the last chapter,
“Chapter 12: Selecting the Best Method.”

1.4 MathCad® Sheets

Since this book is written primarily for physical scientists and engi-
neers, I have taken advantage of the greater mathematieal and com-
puter skill set often found within this group. With today’s powerful
personal computers and sophisticated data analysis/mathematical
software, we can use calculation techniques and offer mathematical
detail that go beyond the approximations often presented in tradi-
tional psychophysics texts, and implement some original and more
exacting data reduction techniques.
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Having sufficient computer power enables us to illustrate points
with compact matrix representation whenever we need to. Attempts
have been made to make the matrix-vector mathematical presenta-
tion consistent. Sometimes, though, matrix-vector presentation
causes something fundamentally simple to appear cumbersome. In
these situations, the simpler summation notation is used.

The reader will notice a distinct absence of examples in the text. In |

order to save considerable space, the many worked examples are pro-
vided externally. All of the methods described in this book have a cor-
responding MathCad® solution worksheet that illustrates the
method. These can be found on the CD-ROM attached to the back
cover of the book. The purpose of these worksheets is to enable read-
ers to calculate scale values using their own data. The worksheets
are generally structured so that the first step is to read a basic data
matrix into the sheet. Data collection and data matrix construction
are performed externally to the MathCad® solution work sheets.

To use these work sheets you need at least MathCad® version 7.0 on
a Windows® PC or a Macintosh®. Those without MathCad® can
download an evaluation version from www.mathsoft.com that will
run the sheets but not save the computed results.

A final word on the math in this book. A detailed understanding of
the equations in this text is not an essential prerequisite for using
the methods. The MathCad® solution sheets are intended to help
solve practical scaling problems. All that is required for using these
tools is preparing a data matrix for proper input to the solution
sheet, and analyzing the results.

2.1 Imaging Technology Perspective 5

Chapter 2

The Image Quality Circle

This chapter introduces the broader subject of image quality to
establish a reference for psychometric scaling. It highlights how
psychometric scaling fits within the overall theme of image quality.
This larger framework of image quality is called the Image Quality
Circle (Engeldrum, 1995).

2.1 Imaging Technology Perspective

The topic of image quality did not develop overnight. The notion of
1image quality has its genesis in the field of optics. Optics, as a sci-
ence and technology, dates back to about 1200 B.C. with the inven-
tion of curved mirrors (Hecht and Zajac, 1974). The invention of
the optical microscope by Janssen and the telescope by Lippershey
in the first decade of the seventeenth century surely established
the concept of a visual image. But the images in those days were
transient and unrecorded.

Permanent recording of images had to wait for the development of
photography in the first half of the nineteenth century. Attempts at
making permanent images started with Joseph Nicéphore Niepce in
1822, using a photopolymerization process. The first commercially
successful imaging process was developed by Louis Jacques Mandé
Daguerre in 1837. Photography, the two-step negative-positive pro-
cess we know today, is credited to William Henry Fox Talbot, who
developed it during the period 1835 to 1845 (Coe, 1976).

Photography integrates two image-forming processes comprising the
first imaging system. The first imaging process is performed by the
lens, creating an image of a real-world object on the light-sensitive
film. The second process is performed by the photographic film,
recording the quantity of light falling on a particular location. Once
these two steps are completed, a latent image is on the film, and film
development and print-making produce finished images.

The twentieth century brought the development of television and
digital imaging. The development of the iconoscope tube for image
capture by Vladimir Zworykin in 1923 and the demonstration of a
complete television system by Philo Farnsworth in 1935 ushered in
the age of electronic imaging. Like the images in Galileo’s telescope
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centuries earlier, live television images are also transient. Photo-
graphic film was used to record images in the early days of television,
before magnetic tape recording. In its day, the system for recording a
television broadcast was the most complicated imaging system
devised, comprising optics, photography and electronics.

Launching of the Sputnik satellite by the Soviet Union on October 4,
1957 lit the fuse on the race into space. Imaging probes have always
been a principal component of space exploration. The first probes
imaged the moon; later they were sent to outer planets of the solar
system. These probes ushered in the age of digital imaging with both
terrestrial and space applications.

Today digital imaging has progressed from expensive one-of-a-kind
space applications to achieving widespread commercial importance,
starting initially in diagnostic medical imaging and the prepress
area of commercial printing. Digital imaging has been developing in
the consumer and office sectors only since the advent of the personal
computer. And this is only the beginning.

Looking at the history of imaging technology, we see that image
quality has not been at the top of the list of design criteria during the
initial phases of technology development. The imaging system first
had to “work” and record an image. Process sensitivity to light was,
and still is, a high priority. Only after achieving successful image
recording does image quality become a high priority.

The first image quality topic to be addressed was the rendering of
tones that comprise the image, then the spatial structure or the
image details. Finally, as an Imaging technology develops, attention
is focused on the color quality of the image.

2.2 Image Quality Today

Image quality is not to be ignored. Market studies consistently show
that image quality is one of the top customer considerations in pur-
chasing a product, along with such purchase factors as cost,
Achieving good image quality still requires substantial effort, even
with so-called “mature” technologies. It is not a solved problem.
There are several reasons why, after so many years, image quality
remains such an elusive target.

The first reason is that the emphasis for the study of image quality,
past and present, has been on objective image evaluation, which
involves physical measurement of images. This was a difficult task
and required substantial investment in instruments called
microdensitometers. A major goal of objective image evaluation is to
make the connection between image quality and technology vari-
ables, but this has not been universally achieved. Present emphasis
is on gathering extensive Image measurements, and empirically
exploring relationships among the measurements to elucidate pre-
dictors of image quality. Collecting vast amounts of image data is
feasible today because the costs of instruments, equivalent to the
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microdensitometers of old, are orders of magnitude less, and the
measurement speed is far greater. These efforts have not yielded
robust relationships between the physical image parameters and
1image quality because they generally fail to account for the charac-
teristics of a human observer. Simply making more and more image
measurements has not brought us closer to elucidating the underly-
ing relationships.

Secondly, image quality has not gotten the attention pf acac’{emics.
The study of image quality today is a multidlmensmnal,
multidisciplinary topic, driven by equipment and supplies r_napufac-
turers’ product development efforts. As a scientific pursuli_:, image
quality has few academic adherents. But this is slowly changing with
the traditional role of industrial research and development migrat-
ing into the universities.

Even though the study of image quality is driven by manufacturers,
an Image Science or Image Quality function rarely appears on a cor-
porate organization chart, even when the corporation is -prlnc%pally
in the imaging business. Making image quality happen is ty-plcally
left to product development engineers, perhaps in concert with th_e
marketing function. With no top-level concern or assigned responsi-
bility, it 1s no wonder image quality sometimes falls between the
organizational cracks. What's worse is that, since we are all h}lman
observers, the easiest path is to bypass expensive and comph.cated
Image quality programs completely: we establish image quah?y hy
decree, with a statement such as “I can tell if the image quality is
good enough by looking at it.”

Still another reason image quality is elusive 1s that a set of myths
and mysteries surrounds collecting image quality and other‘ attrib-
ute judgments from human customers. This process of COH(—_Z‘CtlI"lg and
analyzing judgments is termed subjective image evaluation in the
photographic industry, and has been treated as a poor second cousin
to objective image evaluation.

The prevailing myth is that “humans can’t be meters, S0 Why shoul.d
we even ask them.” This view is unjustified. A major objective of this
book is to show how we carn make humans be reliable meters. Ip a
very real sense, the customer is the ultimate _“meter’.’ Whe?:l makmg
the final buying decision. (Of course, the buying decision is compli-
cated by many non-image-related factors.)

A corollary to the myth about the inability of humans to perfor‘m_ as
meters is the mystery of psychometric scaling itself. Since the origins
of psychometrics are not in the physical sciences, they are catego-
rized by some as “soft science,” with the implicatio_n being that
psychometrics are not “good enough” to be called real science. In f_act,
there is nothing “soft” about the science of psychometric scaling.
Indeed, some of the greatest contributors to psychometric scaling
started their careers as physical scientists.
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Finally, the lack of a unifying view of image quality has kept people
from taking an organized and comprehensive approach to the disci-
pline. Image quality was, and still 18, a difficult topic to understand.
For more than half a century a plethora of terms described various
components of image quality, but there was no way to get a view of
the “big picture.”

This lack of a unified view of image quality has lead to confusion and
chaos, which has prompted an array of questions. Where does image
quality fit relative to the perceptual attributes that people see? What
are image quality models? Does objective image quality translate to
image quality per se? Where does subjective and objective image
evaluation fit into all of this? And the questions continue.

In an attempt to bring some order to the existing chaos, the Image
Quality Circle (first described as the Four Way Approach) was devel-
oped (Engeldrum, 1989). The basic structure established in 1988 and
1989 remains in place, and continues to be enhanced (Engeldrum,
1995),

2.3 The Image Quality Circle

The Image Quality Circle is a robust framework which organizes the
multiplicity of ideas that constitute Image quality. It also serves as a
process model that can simplify and focus product development
activities. In the decade since its inception, the Image Quality Circle
has been applied in industry by several leading manufacturers of
imaging products. It helps manufacturers implement workable
image quality projects, and integrate image quality into their prod-
uct development cycle.

Before describing the details of the Image Quality Circle, a few defi-
nitions are essential to establish a frame of reference for the terms
image and quality. Not all of the definitions presented here are rec-
ognized by international standards bodies.

In this book, we use the term tmage to mean a colorant arranged in a
manner to convey “information.” Colorant is used in its most general
sense. It can be ink, plastic (toner), wax, dye, silver, phosphors, and
s0 on. The function of the image is to visually communicate informa-
tion, which can be in the form of text, graphs, graphics, images, or
even fine art. The idea of an image is very broad, and need not be a
“hard copy” on a physical substrate. It can be a “soft copy” image on
some form of electronic display, or any other appropriate medium.

Quality is the integrated set of perceptions of the overall degree of
excellence of the image. The set of perceptions can be defined or
undefined. For example, in medical Imaging, quality relates to the
diagnostic capability of the image, and there are specific protocols
which have been defined for making this evaluation. In most other
areas of imaging, image quality has no set of protocols, and is typi-
cally a “beauty contest.” Here, the ultimate measurement of ade-
quate image quality is the purchase of the imaging device or system.

Customer
Quality
Preference

Technology E

Variables

Figure 2.1 - Customer Quudlity Preference (judg-
ment] from samples having variations in Technol-
ogy Variables.
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The Image Quality Circle is a process that connects the Customer
Quality Preference, shown in the top box in Figure 2.1, to the Tech-
nology Variables of the specific imaging system or ‘_[echr{olog'y. shqwn
in the right-hand box. In practice, the Image Quality Circle provides
a structure for putting image quality into products.

2.3.1 Customer Quality Preference-The Image Quality
Value

The Image Quality process begins with determining Customer Qual-
ity Preference. The Image Quality Circle element labeled Customer
Quality Preference (Figure 2.1) represents the judgrpent a customer
renders for a sample image. In a typical judgment situation, a set of
image samples is given to human observers, usua.lly customers or
customer surrogates, and the observers make a judgment about
image quality for each sample presented.

This value represents the customer’s opinion of image quality, and in
the Image Quality Circle framework is context—inde.pendent. T_he
underlyiﬁg assumption is that the customers kno?vv‘ image quality
when they see it and, under experimental conditions, they can
express a judgment about it.

During the measurement of Customer Quality Prefero_ance:, it is pref-
erable to avoid tying explicit or implicit image applications to the
image quality judgment, for a very good reason. A frame of I_'eferenge
or context constrains the image quality scale values to be'lng _vahd
only for that context. For example, suppose-the market application (_)f
a product is for casual snapshots of the family. The usua]_ approach is
to ask customers for a response in context of the application; e.g.,
“Please express an image quality rating for these samples to be used
as family snapshots.” This context results in values on a s_cale f)f
image quality for “use as family snapshots.” A scale constrained in
such a way would not be valid for office documents or any other

application.

Viewing image quality in an abstract or context_—independent way %s
a departure from conventional wisdom. The main argument_ for this
treatment 1s based upon the repeated emplrlc.al observation that
experts and non-experts judge image quality_' similarly When the tgsk
1s application-independent. Performing the ]udgmentg in an applica-
tion-independent environment lowers thg confusion in understand-
ing, interpreting, and using Image Quah_ty Prefere:r_lce values. PL_H:
another way, this approach results in an image quality scale that is
more “absolute.”

There is general agreement that image quality requiremgnfzs are
contingent on the application or use of the image. However, if image
quality scales are not designed to be context-independeqt, then a set
of potentially confusing application-dependent scales will evolve. In
such an environment, Customer Quality Preferences can never be
stated emphatically, and decisions resulting from the use of the
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Image Quality Circle will always have application caveats associated
with them.

Product applications are considered an overlay to the Customer
Quality Preference values to avoid the proliferation of different
image quality scales that are application specific. To generate the
overlay, the customer is asked application-specific questions after a
scaling study or presentation of the image quality scale via physical
examples.

The applicable tool set to determine the Customer Quality Prefer-
ence or the image quality value is psychometric scaling. Getting cus-
tomers to be “quality meters” requires an understanding of the tools,
and is one of the motivations for this book.

2.3.2 Technology Variables-The Things We Control

These are the items that are used to describe an imaging product,
such as dots or pixels per inch, dot or pixel size, paper thickness, or
waterfastness of the image materials. The list of Technology Vari-
ables is almost endless.

Imaging system technologists are in control of the Technology Vari-
able list. Their primary function is to choose the best set or sets of
Technology Variables or parameters from the list that yields the
required image quality. This is easier said than done.

The process implied by Figure 2.1 is never-ending. Change Technol-
ogy Variables. Make samples. Have customers give image quality
Judgments. Manipulate Technology Variables. Make new samples.
Get more customer judgments. There must be a better way!

2.3.2.1 The Simple Process

Especially in a field with some degree of complexity, newness or
unfamiliarity, we tend to latch onto those aspects that are concrete.
Technology Variables are very concrete. So are Physical Image
Parameters (to be introduced below). We measure them because they
are measurable. We change technology variables because we can.

What happens if we combine objective tools that are more familiar
and easier to implement with subjective image evaluation? If one
accepts that humans participating in scaling studies become measur-
ing tools, a much more thorough understanding about how to use
technology to satisfy customer needs will develop, if for no other rea-
son than the discipline of having to think of our products in human
terms. Consider how important hearing human-term appraisals
(both pro and con) of one’s product concepts can be. But the principal
benefit of integrating subjective and objective tools into a product
development process is not from hearing observer commentary about
our product plans. Rather, one develops command over image qual-
ity underpinnings and develops the ability to predict image quality.

Customer
Quality
Preference

The , _
PCrzsto:]ﬁer Image Technology
erceptions- : i |
The "Nesses" QUGI]'I’Y Variables
e H R R
- Circle
Physical
Image
Parameters
R TR

Figure 2.2 The Image Quality Circle with added
elements, Customer Perceptions-"Nesses' and the
Physical Image Parameters.
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Among the advantages of using the “make changes_-ma_k_e sam-
ples-collect judgments” work flow is that the process is intuitive and
simple. It can be quickly implemented, and customer feedback is
direct.

On the other hand, there are several disadvantages. It is an expen-
sive process that, in principle, never stops. Conducting studies of this
kind often requires the services of a market research firm to organize
the study, recruit (sometimes for a fee) study participants, and write
or present the results. It is rare today that product design cycle times
permit even one of these types of studies. In short, the simple process
is expensive 1n both time and resources, and never-ending.

The “make changes-make samples-collect judgments” process is only
useful for the technology variables that are changed to produce the
samples. Of course, technology variables have their highest uncer-
tainty during the early stages of imaging product development. At
best, studies conducted during this phase of the development process
are snapshots of limited longevity. Tomorrow’s new technology
advance will almost certainly raise questions on the usefulness and
validity of today’s study.

The results apply only to the imaging technology tested. The cus-
tomer quality judgment is explicitly tied to the samples that were
judged by the customer. Many technology variables contribute to
image quality in complex and poorly understood ways. Only at some
very global level is it reasonable to develop generalizations about
technology variables. As we develop the Image Quality Circle, it will
become clear that customers do not judge image quality on technol-
ogy variables at all.

Although the simple process is quick and it gives fast results, it does
not contribute in an organized way to understanding the overall
image quality issues of the product or technology over the long run.
To be sure, conducting repeated customer studies on image quality
will increase overall knowledge about both technology variables and
customer preferences. But it 1s highly unlikely that these studies by
themselves help one understand the components of image quality or
help one proceed on a path to the robust image quality prediction.

To address the longer term, both in terms of understanding and pre-
diction, and to provide a comprehensive framework for image qual-
ity, two additional elements need to be added to the Image Quality
Circle. These additional elements are Customer Perceptions and
Physical Image Parameters (Figure 2.2).

2.3.3 Customer Perceptions-The “Nesses”
~The Things We See

Customer Perceptions are the perceptual attributes, mostly visual,
that form the basis of the quality preference or judgment by the cus-
tomer. A percept is a sensation or impression received by the mind
through our senses. An attribute is a characteristic of the image. So a
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perceptual attribute, or “ness,” is a characteristic of an image that we
sense (see). Most visual perceptual attributes end with the suffix
“ness,” so this is the telltale clue. Some examples from imaging are
sharpness, graininess, colorfulness, lightness, and brightness. In
this book “ness” is used as a short-hand notation to mean some per-
ceptual attribute, to emphasize the connection to human perception,

and to distinguish a Customer Perception from a Physical Image
Parameter.

Understanding Customer Perceptions is a key to understanding the
Image Quality Circle. Customers or observers do not make image
qu.ahty judgments on Technology Variables, per se, as many technol-
ogists believe. Instead, they make a quality judgment, or express a

freference for a particular image, on the basis of what they see, the
nesses.” h

Although we use the shorthand term “ness” to characterize the Cus-
tomer Perceptions, not all Customer Perceptions end in “ness.” There
are some perceptions in imaging that are more complex, such as
“tone reproduction.” In color imaging, we have the percepts of “hue”
and “chroma.” For clarity in identifying Customer Perceptions, the
suffix “ness” will sometimes be attached to such traditional terms. In
all likelihood, nowhere but in this book will the reader encounter
“hueness,” which we use to describe the perceptual attribute of color
denoted by words such as blue, green, red, and yellow. ’

No single “ness” completely encompasses the idea of image quality,
since we define image quality as the integrated perception of image
excellence. However, it may happen that a given set of images may
have only one “ness” that varies, so when customers are asked to
Judge the quality of such a set, they will typically respond on the
basis of that “ness” varying in the image set. (Factors affecting
observer judgments are covered in Chapter 3.) In this special case,
the resulting scale will not be one of image quality, but a scale of the
single “ness” that varies. One must not be drawn to the erroneous
conclusion that a specific “ness” constitutes image quality. A large
number of “nesses” are possible in any image set. Fortunat;ely, only a
small number of them vary in typical images, and it is this small set
of Customer Perceptions that drives the judgment of image quality

(Sétultz and Zweig, 1962; Sawyer, 1980; Bartleson, 1982; Engeldrum
1995). - ’

Again we see that establishing a “ruler” for the “nesses” requires
human judgments and thus the application of psychometric scaling.

2.3.4 Physical Image Parameters-The Things W
Measure (Image Physics) gs e

Physical Image Parameters are quantitative, usually obtained by
physically measuring the image with instruments. thysical image
parameters have historically been called objective measures of image
quality. Typical of such measures, or parameters, are optical density
or spectral reflectance factor. More complex, both in terms of
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Figure 2.3 - The complete Image Quality Circle
showing all the Connecting Links.
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description and measurement, are functions of spatial frequency
such as modulation transfer, Wiener spectra, or amplitude spectra.
The field of image science has a strong focus on physical image
parameters (see Dainty and Shaw, 1974).

In Figure 2.3 we note that Physical Image Parameters are diametri-
cally opposite Customer Quality Preferences. The very configuration
of the Image Quality Circe on the page implies that Physical Image
Parameters are not “close” measures of image quality. In fact, they
are not: when compared to Customer Quality Preferences, customers
don’t see Physical Image Parameters, they see “nesses.”

2.3.5 Image Quality Circle Connecting Links

To complete the Image Quality Circle we need the connecting links
which allow us to move back and forth around the Circle. Moving
around the circle is exactly analogous to performing a system design
or trade-off analysis. Generally one question is something like,
“What set of Technology Variables do we need to yield X image qual-
ity in our product?’ To answer this question one would proceed coun-
terclockwise around the Image Quality Circle starting with the Cus-
tomer Quality Preference. On the other hand, what if the question
was something like, “How does increasing the Z Technology Variable
by 100% affect our image quality?” The approach now is to start at
the Technology Variables element and go clockwise around the
Image Quality Circle. Using the Image Quality Circle in these two
directions is illustrated by the wide two-headed arrows in Figure 2.3.

The three connecting links are illustrated in Figure 2.3 as ellipses.
We shall start the link descriptions, commencing at the System
Models and going clockwise around the circle.

2.3.6 System Models

System Models, sometimes referred to as image models, are formu-
las, physical models, algorithms, or computer code that predict the
Physical Image Parameters from the Technology Variables. The dou-
ble arrow indicates that these models can be used in both directions.
Conceptually, the inputs and outputs can be both the Technology
Variables and the Physical Image Parameters, depending on which

way one is traveling around the circle.

Placing the System Models in this part of the image quality process
is a break with past conceptualizations. Previous arrangements have
used system or image models directly to predict “nesses” or image
quality, a difficult and all-encompassing requirement. The underly-
ing motive for this new construct is to minimize the requirements of
such models. Requiring the System Model to predict only Physical
Image Parameters instead of image quality or “nesses” simplifies the
System Models, increases their modularity and portability, and
increases the success rate.
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Most practical System Models are developed with specific inputs and
outputs, but the System Model's concept 1s not constrained by such
practicalities. System Models that take Technology Variables ag
inputs and generate Physical Image Parameters as outputs are
called forward models. Forward models are often easier to build and
therefore more popular. Since the Image Quality Circle concept has
no defined inputs and outputs—one can go either direction around the
circle—forward models need to be invertible. Another logical possibil-
ity is to construct “reverse” models that have Physical Image Param-
eters as the inputs and Technology Variables as the outputs. Such
models are not easy to construct simply because it is a one-to-many
problem; one Physical Image Parameter can result from many Tech-
nology Variables,

No constraints are put on System Models other than that they pro-
vide the linkage of the Physical Image Parameters to the Technology
Variables. In some cases a System Model is simply a measurement,
Pragmatic engineers and scientists often use models that relate just
a few critical technical variables to a few critical physical image
parameters. The relationships can be purely empirical, like a
multivariate equation developed via regression analysis, or one
based on fundamental detailed physics.

In the early stages of an Imaging technology development, there are
no models at all. Rather, they tend to evolve over time, which makes
building System Models a long-term process. The simple long-term
objective of the System Model connecting link can be summarized as
the capability to predict the measured spectral radiance factor (color)
of an arbitrary image point.

2.3.7 Visual Algorithms

Visual Algorithms connect Physical Image Parameters to Customer
Perceptions (see Figure 2.3). The function of a Visual Algorithm is to
predict a value on a “ness” scale from a suitable set of Physical Image
Parameters. Like System Models, these algorithms can be formulas,
models, or computer code, recipes that are used to compute a value of
a “ness” (e.g. sharpness) from something like the measurement of the
gradient of a printed edge. The “units” of these scales are “ness
units,” and are therefore different one from another. Although we
use the term visual algorithm, it should not be seen in only a visual
context. It is quite possible that important “nesses” are not visual at
all. The substrate of an image is an important quality factor, but it is
often described by tactile “nesses,” not visual “nesses.”

Visually-based algorithms have an extensive history in photographic

image quality, and in recent vears have been extended to electronic
imaging.

Robust Visual Algorithms must include at least two fundamental
properties of the human visual system: the nonlinear response to
light (luminance) and bandpass-like spatial frequency properties.

2.3 The Image Quality Circle 15

See Wandell (1995) for a modern view of visual science that relates
directly to visual algorithms.

There are a few internationally standardized visual algor’ithm.s. In
the field of color science, the definition of CIE lightness is a Vls_ua.d
algorithm in the context of the Image Quality Circle. The CIE d-eflm-
tion of lightness is given by: L* = 116(Y/Y,)'3 - 116, where Y is the
CIE luminance or Y Tristimulus value and Y, is the Y value of the
reference white. In this example, the visual algorithm conmnects
Physical Image Parameters to Customer Perceptions in t\fvo steps.
First comes the calculation of Y from the spectral properties of th'e
image, which would include the light source of the viewing illumi-
nant for reflectance or transmittance images (Physical Ime}ge
Parameters). Then, lightness (I.*} is calculated from Y and Y, using
the CIE defining equation.

In the CIE L*a*b* system of color coordinates there are other visual
algorithms for “chromaness” (chroma, C*) a-nd “hueness angle” (hue
angle, h,). The physical image parameter is the same: the speptral
reflectance, transmittance or radiance property of the colored object.

Color “nesses” are practical examples of the many-to-one mapping
characteristic of the clockwise rotation around the Image Quahty
Circle. In this case the “many” are the spectral properties at thirty OE
more wavelengths (reflectance factor, for example), and the “one
(three really) are the lightness, hue and chroma “nesses..” The com-
plete CIE colorimetric system has its roots in psychophysical scaling.
See Fairchild (1997) for a recent view of color and color appearance.

Some “nesses” have to do with the spatial structure of images; e.g.
the variation in nominally uniform areas called “uniformitynes.;s.” A
well-known subset of “uniformityness” is graininess. Devel-opmg a
successful visual algorithm for graininess would require_the incorpo-
ration of the spatial frequency properties of the human visual system
(Engeldrum and MecNeill, 1985; Dooley and Shaw, 1979).

Visual Algorithms are not unique to the Image Quality Circle con-
cept. Examples of visual algorithms can be found n the areas of com-
putational vision, visual processing, and human visual models. See
Watson (1993) and Landy and Movshon (1994) for I‘epent surveys on
computational vision and visual information processing.

2.3.8 Image Quality Models

Image Quality Models link Customer Perception.s, the “nes.ases,” with
Customer Quality Preferences. The Image Quality Model 1nputsl are
values of “nesses” and the output 1s the image quality value. This is
the ultimate destination in the many-to-one mapping process _of the
Image Quality Circle: a one-number summary desprlptlon of image
guality. By adopting a long-term strategy of bulldlng robust Image
Quality Models with a suitable set of “nesses” that hnl_{ to ‘Fhe cus-
tomer, expensive image-quality scaling efforts can be minimized.
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Building Image Quality Models is an empirical endeavor that com-
bines scales, or rulers, of both image quality and the “nesses.” The

Models, in the Image Quality Circle framework, is that most of the

model construction relies on psychometric scaling studies. Thus,
investments in hardware infrastructure are minimal, compared tg
the considerable resources required for the measurement of Physical
Image Parameters and Technology Variables.

The details of image quality modeling are complex and beyond the:

scope of this book. But for some starting points, see Sawyer (1980),

Bartleson (1982, 1984), de Ridder (1992) and Engeldrum (1995,
1999). For a more general view on how humans perform when asked

to make integrated judgments like image quality Jjudgments, see
Massaro and Friedman (1990) and Baird (1997).

2.3.9 Image Quality Circle Short Cuts

Two short cuts can be created by following a diameter instead of the
circumference of the Image Quality Circle. One short cut connects
Customer Quality Preference to Physical Image Parameters, while
the other connects the Technology Variables to the Customer Percep-
tions. Neither of these two diameter paths are generally recom-
mended.

The image science and image processing/compression literature
describes many attempts to develop values of image quality by tak-
ing these short cuts. The popularity of the short cuts rests on the
widely held idea that a generic mean-squared-difference measure is
adequate for image quality. Some short cuts that have “worked” are
often found to be feeble when either the Physical Image Parameters
or Technology Variables associated with the imaging technology
change. Often, these approaches are doomed to failure because fun-
damental attributes and properties of the human visual system have
not been taken into account, either via Visual Algorithms, or via the
“nesses” that are the components of image quality.

However, there are some exceptions to this rule. One such exception
is in the quality assurance function in a manufacturing environ-
ment. If all the components and the connecting links of the Image
Quality Circle are known, then the Physical Image Parameters that
vield a particular value of image quality are also known. This offers
the opportunity to perform the quality assurance function at the
Physical Image Parameter level, say, instead of the Customer Per-
ception level. Thus the evaluation of image quality components, the
Physical Image Parameters, can be highly automated. Other possi-
bilities, no doubt, exist.
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2.4 Psychometric Scaling and the Image Quaility Circle

Roughly one-half of the Image Quality Cirf:le, from Vl.sual Algo-
rithms to the Image Quality Preference, requires human judgments.
Without some means for obtaining measurements frgm actual cus-
tomers or customer surrogates, we cannot determine in a numerical
fashion Tmage Quality Preference, nor the Custpmer Percgptual
Attributes, or develop Image Quality Models or Visual Algorithms.
In short, we have an incomplete Image Quality Circle unless human
ohservers are involved.

Psychometric scaling is an absolutely essential tool for implem_entmg
the Image Quality Circle. The remainder of the chapters in thl“S bOO]i
present methods for determining the numerical value of the “ness,
or the image quality, for a set of image samples.
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Chapter 3

The Process of Scaling
and Some Practical Hints

Simply stated, the goal of scaling in the context of the Image Quality
Circle is assigning numbers to image quality and the “nesses,” or
attributes. A scaling study is the process of establishing these num-
bers or scale values. On the surface, it appears quite simple to ask
observers to express a judgment or an opinion about some images,
but it is more subtle than that. The purpose of this chapter is to give
an overview of the process of designing and conducting scaling stud-
ies, and to provide practical guidance or hints.

The hints and suggestions presented here are oriented toward a
product development environment where the overriding factor is to
deliver “quick, useful results.” Some of these hints may not be appli-
cable for academic research. However, the hints provided in this
chapter should have appeal to anyone interested in scaling or the use
of scale values as response variables in statistical experimental
design, since all scaling endeavors, be they published works or pri-
vate studies done to support internal product development efforts,
are probably undertaken to develop accurate and precise image qual-
ity or “ness” scales.

For some “nesses,” such as brightness, there is a well-understood
physical correlate (luminance); but for others, such as graininess or
glossiness, the physical correlates (Physical Image Parameters) are
not so obvious. In particular, it is necessary to combine several physi-
cal variables in order to obtain a correlate of these “nesses.” In order
to do this, one needs a Visual Algorithm or a model of some kind to
link the multidimensional physical stimulus to the subjective per-
ception. In some cases such algorithms have been worked out, but in
other cases they have not. One of the great advantages of methods
discussed in this book is that we are able to devise perceptual scale
values without requiring that we have a well-understood Visual
Algorithm to define the combination of Physical Image Parameters
that form the basis for the “nesses.” Only in the case of plotting a
psychophysical function between a physical variable and a percep-
tual variable is it necessary to have a rigorous definition of the stim-
ulus. This 1s also why this book concentrates on the indirect methods
of scaling pioneered by L. L. Thurstone. His original motivation for
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developing these methods was to provide quantification of such Var-
ables as “excellence of handwriting” and “preference for wrist
watches.” These are subjective variables that do not have a readily
defined physical stimulus correlate.

It is a practical impossibility to cover all possible factors affecting th,
results of a scaling task and provide specific recommendations fo
each of them. Attempting to do so would take a book in its own right,
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Table 3.1 Sample Categories

Sample Category

Random and Independent

Properties/Characterisites
(After Bartleson, 1986)

1) Every image has an equal chance of being selected (random). _
2) Selection of one image does not influence the selection of another (independent).

The above, plus:

jecti i imi i ifie ation 1 ified according to some relevant distinction.
The objective here is to limit the hints t some key 5 rel Stratified 1) Population is clasgl . .
ilnzgoinJgC ll%eadeiz liilterézlled ii thestoci)ic I(I)lfe bj?ss;‘ef; ;‘jdegril’;it: 2) Number of items in each class reflects the population of interest.
SR Rolfen (1989). A stratified sample with additional items in classes of particular interest.

Contrast Does not reflect the population.
3.1 The Process _ .
One, but not both, of the following conditions:

At one level the scaling study appears deceptively simple. Anything Purposeful ;) ‘R;_ep}"es?nsz tzﬁfefiillﬂaﬁoime —_—
so simple would not appear to need extensive planning. However, ) Varies indep ¥
Siang hoadlong wtoa scaling activity without a plan is almost guar- . 1) A random independent sample of subgroups of particular interest, or, X
anteed to yield poor results, results that may be useless or totally et 2) A special existing collection that is unique and cannot be added to (“sacred samples”).

Inaccurate. In a schedule-driven product development environment,
this headlong dive is more the rule than the exception, though. The
message 1s simple: before you begin, you need a scaling study plan.
The following sections describe some of the many factors that need
careful consideration in developing a scaling study plan.

The process of developing the scale values for a “ness” or image qual-
ity consists of seven basic steps:

1) Select the samples (stimuli).

2) Prepare the samples for observer judgment.

3) Select observers.

4) Determine observer judgment task or question.

5) Present samples to observers for their judgment or
preference.

6) Collect and record observer responses.

7) Analyze observer response data to generate the scale
values.

These steps interact, often in unforeseen and unpredictable ways.
Serious consideration and planning of the scaling study is needed for
successful results. The remainder of the chapter discusses issues and
provides some useful suggestions for completing the first six of the
seven steps outlined above. Succeeding chapters cover the analysis
methods for actual scale generation.

3.2 Sample (Stimuli) Selection

Selection of image samples, or stimuli, is governed by the objective of
the scaling study and many other practical factors. Sample selection

Four key factors that need to be addressed during the sam_ple selec-
tion or sample generation phase of the scaling study planning are:

1) What categories should the samples represent?

2) What range and distribution of “nesses” should the
sample set contain?

3) What image size should be used?

4) What image content or image elements should the
samples contain?

Although all of these factors are key, there is no univgrsal optimgm
set of these four elements suitable for all scaling studle_s. The choice
of elements will depend on many practical considerations and the
necessary trade-offs,

3.2.1 Categories

Bartleson (1984) proposed five categories to describg samples _of
imagery, and listed their basic properties. These categorlgs, shown in
Table 3-1, can be used as a guide in sample image selection.

The real value of Bartleson’s categorization is that it represents an
organized way to make a rational sample selection; and, conyersely,
identify what properties the sample does not possess. Following the
categories in Table 3-1, some practical suggestions are offered for
selecting an appropriate set of image samples for a scaling study.

Random and Independent-Random and independent sampling of
images, although statistically interesting, is difficult in practice. to
implement. A major issue is the difficulty of defining a populgtmn
that can be randomly and independently sampled. There is no single
reservoir of “the population” of images, although, as digital imagery
continues to develop, there are an increasing number of firms on the

s, In practice, one of the most difficult parts of the scaling study, and
1s not often given the serious attention it requires. Failure to collect
Or generate a suitable sample set has derailed numerous scaling
studies because many of the selection factors are elusive or unde-
fined. By focusing on a few critical factors, the process of sample
selection can be substantially simplified.
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Internet offering image files in an increasingly large number of
image classes. Handy as they may be, files of existing imagery may
have only limited usefulness when image and color characteristics
must be quantified.

Stratified—Stratified sampling or imagery is becoming more practical
due to the wide availability and accessibility of image databases.
Imagery can be defined in classes such as text, graphics and photo-
graphs. The class “photographs” can be further stratified into vari-
ous subclasses such as landscapes, portraits, and groups of people.
Stratified sampling is a very practical approach with wide availabil-
ity of digital image files.

Conirast-Contrast sampling is common in a product development
environment. Usually there is an interest in knowing the quality
requirements or performance of a particular imaging device with
respect to some class of imagery. The classes are shaped by the mar-
ket for the product. For example, if the imaging device is a color com-
puter printer for the office desk, then the image quality performance
requirements for text and color graphics would need to be known. If,
on the other hand, the imaging device was a consumer product to
print “pictures,” then performance over a wide class of photographs
would be of interest. Selecting imagery classes relevant to the prod-
uct application is also efficient because it ignores irrelevant classes.

Purposeful-A purposeful sampling can be extremely useful during
product design. During the product development process, questions
arise that require engineering trade-offs. Often the prototype prod-
uct produces some unexpected “ness,” and raises the question, “What
level of the (unwanted) ‘ness’ is acceptable?” A set of sample images
that exhibit various levels of the “ness” in question would comprise
the sample set to be used in a scaling study.

Incidental-Incidental sampling is, arguably, the most widely used
sample category in imaging product development. Typically, a set
of images is selected as the “reference” set, supposedly represent-
ing product performance requirements. These images then
become the “gold standards” or “sacred samples.” These incidental
samples are often selected by the product development team to
represent a readily understood image quality contract between
the relevant product development organizations—marketing and
engineering, for example.

3.2.2 Range and Distribution of “Nesses”

The samples define the context of the scaled “ness” or image quality.
There are two aspects to this depending on whether a “ness” or
image quality is being scaled. When scaling a “ness,” if the “ness” of
interest does not vary in the sample set, any resulting seale cannot
be a measure of the “ness” in question. The context was incorrect and
it will be a scale of some, perhaps unknown, “ness.” In scaling image
quality, the context is the specific set of “nesses” and their range in
the sample set. It is common in image quality scaling studies that
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the quality judgment varies due to the variation of only one “ness.”
The resulting scale from this sample set will not be one of image
quality. although it may be labeled as such, but a scale of the single
“ness” that varies in the sample set. Much care is needed in identify-
ing the “nesses” in a sample set in order to avoid these pitfalls.

Bartleson and Woodbury (1962) illustrated the change in image
quality judgments that can occur when photographic transparencies
vary in color balance (“color balanceness”). They conducted three
scaling experiments. The first experiment had samples that ranged
in color balance from “cool” (blueish) to “normal;” the second varied
from “normal” to “warm” (vellowish); and the third was the combina-
tion of the “warm” and “cool” sets. Each set had a uniform distribu-
tion with respect to “color balanceness.” Bartleson and Woodbury
showed that observers’ quality judgments change according to the
set (context) they are judging. The sample images were photographic
transparencies viewed in a darkened room, and chromatic adapta-
tion of the human visual system was the main reason for the sam-
ple-set dependence of the quality judgments.

Two solutions to counter chromatic adaptation were suggested. The
first was to interleave “high-quality representative photographs”
with the samples when viewing. The second solution was to view a
0.2 neutral density filter for 15 seconds between sample presenta-
tions (Bartleson and Woodbury, 1962). In an image quality experi-
ment, interleaving an area of constant luminance for 20
seconds—equivalent to viewing a neutral density filter to control
adaptation—has also been suggested (Westerlink and Roufs, 1989).

With some scaling methods, the distribution of the “ness” in the sam-
ple set can also have a significant influence on the scale values. In
category scaling, observers have a tendency to use all categories
equally often (Gescheider, 1997). For example, if a large fraction of
the samples have high values of a “ness” and only a few have low val-
ues, observers tend to make fine discrimination at the high end and
lump the low-valued “nesses” together in the bottom categories. This
judgment behavior results in scale distortion. The best solution is to
have equal numbers of samples that uniformly span the range of
“ness” of interest.

Generating samples using computer image simulation or rendering
techniques can help achieve the required “ness” range and distribu-
tion. This powerful method can be used for sample generation with-
out having to actually construct the imaging device or system. Image
simulation is not a trivial undertaking, however. A substantial and
thorough knowledge of the imaging technology is required to cor-
rectly simulate the desired “ness.” Since no imaging device is perfect,
these images will ultimately be limited in the “ness” and image qual-
ity by the imaging characteristics of the simulation output device.

To reiterate a point made earlier, securing a set of samples that have
the desired “ness” or “nesses” with the desired range and distribution
is often a very difficult problem to overcome. It is more than
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worthwhile to expend the effort to select or generate a sample set
that meets the scaling study requirements.

3.2.3 Image Size and Spatial Sampling

Image size and object sizes in the image are well-known factors in
“ness” and image quality judgments (Corey, et. al., 1983; Westerlink
and Roufs, 1989). These studies used photographic prints and trans-
parencies, both color and monochrome, which varied in sharpness.
The results indicate that the larger the image size, the higher the
quality or sharpness rating, all other things being equal.

In general, expect 1mage size to be a factor influencing observer judg-
ments, ohe way or another. The simplest strategy is to keep the size
of the images in a scaling study constant, thus eliminating or mini-
mizing image size as a judgment factor., Keeping sample image size
constant does not eliminate any context-of-scene dependence factor,
though.

Image size also enters in an indirect way. The scale values of sam-
ples from an Imaging system should not be limited by the inherent
quality of the input image or object, Evaluating the quality of com-
puter printers, for example, should not depend on the spatial sam-
pling frequency (pixels per distance) of the image file being printed.
It is not uncommon for sample images used for output device testing
to have a sampling frequency, pixels per distance, lower than the
addressability (resolution or dotsfinch) of the output device. This tac-
tic of using low-resolution Images ties the “ness” or quality judg-
ments directly to the sampling frequency of the input, rather than
the inherent imaging characteristics of the output device. A good
rule of thumb is to have the sampling frequency of the test samples
be at least equal to the addressability of the output device. This rule
also implies a limit to the size of an image from any given file.

Fortunately there are practical upper limits to the sampling rule.
Otherwise, file sizes can become excessive for high-addressability
output devices. A useful upper bound for spatial sampling frequency
is about 10 samples or pixels per mm for images viewed at “normal”
distances of about 14 inches. If the viewing distance changes, the
upper bound on the maximum sampling interval scale changes in an
inverse manner. Closer viewing distance would require a propor-
tional increase in the sampling frequency, while an increase in view-
Ing distance can use a lower sampling frequency. The key is to keep
the angular sampling frequency (pixels/degree or pixels/radian) con-
stant.

3.2.4 Image Content

There are a host of contexts, overt or implied, within which a sample
is viewed and judged. A helpful rule to remember is, “Preferences do
not occur in a vacuum, they are always formed relative to a context”
(Mellers and Cook, 1996).
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The spatial configurations of the elements and the object content in
sample images are well known “context” factors. The breadth of spa-
tial configurations can vary from large areas of color (or dark areas),
to areas that change rapidly from point to point (so-called “busy”
Images). This dependence of judgments on spatial configuration, or
context, is called scene dependence. The term spatial configuration is
preferred to seene dependence because it more accurately relates to
the judgment factor.

Complicating spatial configuration issues are the inherent interac-
tions of Technology Variables and the “nesses” in real-world images.
Some spatial configurations can amplify poor attributes or defects of
the imaging system, while other configurations minimize them.
Graininess is a good example of this effect. If an imaging system pro-
duces noticeable levels of graininess, typically most visible in large
midtone areas, then any image sample with a large midtone area
will be judged to have high graininess.

To generate useful scales, a balance must be achieved between the
spatial elements and objects in sample images. This is the driving
reason for using more than one Image in scaling studies. The
assumption is that assorted spatial configurations will average out
spatial-configuration effects. Assuring that the “correct” spatial con-
figurations have been selected prior to the scaling study is not usu-
ally possible. However, assessing the dependence of scale values on
the spatial configuration of sample Images can be accomplished aftgr
the scale values are determined. One approach is to use an appropri-
ate statistical experimental design Incorporating analysis of vari-
ance (ANOVA), where the spatial configuration can be tested to see if
it is a factor in determining the scale values.

Most people have fairly consistent preferences for a few “critical” col-
ors, such as flesh tones, green grass and blue sky. It is well known
that the preference for reproduced versions of these colors is quite
different from the preference for the actual colors themselves
(Bartleson and Bray, 1962). These colors provide a context for
observer judgments of image samples, and the judgments may be
substantially altered by their inclusion.

Image classes are also known to exert an influence on judgments.
For example, the sharpness of portraits of people and Iandscgpes are
judged differently (Freiser and Biederman, 1963). In fact Freiser and
Biederman found that if portrait sharpness is too high, observers
find the image “disagreeable.” Portrait photographers have known
for a long time that images taken with a “soft focus” (low sharpness)
are preferred.

Emotional involvement, or potential involvement, of the observer in
the sample image or scene content is another context factor. It is no
secret that sex sells, and for this reason advertising agencies use
alluring women and men in product advertisements. The same idea
applies in the scaling of sample images. The choice of sample, or
scene, can affect the scale values in both positive and negative ways,
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through emotional involvement of the observers. Emotional involve-
ment also applies to “my images” versus someone else’s images. A
bond or attachment to the persons or objects in the images causes
altered judgments.

Electronic image displays are often used to simulate images on sub-
strates such as paper and clear polymer. But the use of such
self-luminous displays does not provide the same mode of appear-
ance as reflection images. Stokes, et. al. (1992) suggested an interest-
ing device to provide better correlation to reflection, or hard-copy,
images. They suggest a pair of hands on a gray background holding a
white card. The sample image is placed in the white card, thus pro-
viding a constant context for the observers’ judgments.

Although the emphasis has been on pictorial imagery, the same gen-
eral rules hold for text and graphic images. For example, samples of
text composed of unfamiliar typefaces (fonts) may create a foreign
context for the ohserver, and not give a useful scale. Similar argu-
ments hold for graphic image classes.

There are no hard-and-fast rules that govern the content or spatial
arrangement of image samples. One useful strategy is to include
samples from various image subclasses such as portraits, land-
scapes, people groups, and so on. This tactic will tend to average out
potential observer biases. An additional option is to maintain differ-
ent scales for different image classes; e.g., a pictorial image quality
scale, a text quality scale, and so forth. However, this is not recom-
mended because of the potential for confusion among the scale users.
A better approach is to treat the image subclasses as an overlay to
the “absolute” image quality scale.

When scaling image quality, it is important to include image classes
that are familiar to, or requirements of, the target market of the
product. Do not limit the selection of image types to those readily
available within the organization. Consider taking advantage of the
vast array of images available on the Internet, but beware that they
may not have important image and color-characteristic descriptive
information.

3.3 Sample Preparation

Once the samples have been selected, it is then appropriate to con-
sider how these samples should be prepared for presentation to
observers. Careful preparation will not only preserve the samples,
but will reduce unwanted, and often unknown, influences on
observer judgments.

3.3.1 Sample Handling and Maintenance

When the scaling study requires a large number of observers, such
practical issues as routine sample handling and keeping the samples
clean become important.
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One useful technique for keeping the sample images clean is to
mount the samples on a rigid base such as cardboard. Care needs to
be taken to ensure that the color of the base or backing does not alter
the appearance of the samples in undesirable ways. For example, a
nonwhite base or sample backing will change the color appearance of
the sample if the sample substrate is not completely opaque. A sim-
ple method for dealing with low substrate opacity is to back the sam-
ple with a highly opaque white material such as a highly reflecting
white cardboard.

Images generated by some imaging technologies are prone to dam-
age due to mechanical abrasions of the imaging material. A cover of
heavy paper or plastic material, hinged on one edge of the sample, 1s
one means of providing protection. If the cover is transparent, it can
also minimize or hide surface textures from the observer, which may
be useful in some situations.

3.3.2 Sample Border or Mask

In addition to mounting on cardboard, placing a frame, border or
mask around the samples has some advantages. The frame, border
or mask is usually a neutral gray cardboard, which serves two pur-
poses. The first is to mask off, by covering any white border sur-
rounding the sample. Masking the border may not be appropriate if
the whiteness of the image substrate is of interest. However, if the
sample set is produced on a variety of substrates, using a mask
around the edge of the sample will eliminate substrate whiteness as
an observer cue, thus eliminating the chance that an unwanted
“ness” might influence observer judgments.

Some 1maging technologies have built-in cues, such as substrate
thickness, tactile feel, image gloss, and image surface texture, that
let observers deduce substantial information about the sample. A
simple mask or border, in conjunction with a backing material if the
image substrate has low opacity, can minimize the cues and allow
the observer to focus on the “ness” rather than the imaging technol-
ogy. It is not a rigid requirement that samples be mounted and have
neutral gray masks, but it should be considered as a useful tool to
isolate the “nesses” you want the observers to focus on.

Another important use of the gray mask is to provide a constant
visual reference or adaptation point. When scaling color “nesses,” a
constant visual reference is important because it stabilizes the chro-
matic adaptation point of the observer, and forces the white point
reference to be in the image sample.

When viewing projected transparent images (overhead transparen-
cies in a typical office environment, for example), the surround,
which is usually white, significantly influences the perception of
lightness in color and monochrome images (Bartleson and
Breneman, 1967). This “surround effect” causes an increase in the
“image contrastness” when the surround is light, and a decrease in
“contrastness” when the surround is dark. Usually photographic
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slides and motion pictures are viewed in a dark room. or equivalently
a dark surround, so an expected range of surrounds from light to
completely dark occurs in many practical viewing situations. The
border or mask surrounding an image is a primary tool in controlling
the image appearance and should receive careful consideration.

The previous discussion focused on hard copy 1maging technologies,
but the same ideas apply to electronic image displays. The tan-col-
ored bezels surrounding the actual displays have almost the same
hue and lightness. However, their influence on observer judgments
can be affected by the illuminance on the display, which is not usu-
ally a factor with images on opaque substrates.

3.3.3 Sample Labeling

Hiding the sample identification helps reduce the chances that help-
ful observers will “solve” the visible code and respond to the sample
identification and not the “ness” of interest., Placing identifying num-
bers or letters on the samples in areas that are visible to the observ-

ers is generally not a good practice. In addition, one should avoid

sequentially labeling samples in the order of some technology vari-
able. The preferred labeling practice is to put the identification on
the back of the sample, If it is essential that some alphanumeric
identification be visible to the observer, use a non-obvious code of
some sort, such as a four-digit sequence of random numbers.

Bar coding of samples can speed data recording and reduce errors.
Bar code generation software and code-reading hardware for PCs is
Inexpensive and easy to use. Labels can be Inexpensively produced
on conventional office printers, and have the added advantage that
they are not readily decoded by observers, so they can be safely
placed in the viewable image area if hecessary. Software is readily
available to scan the bar code and have the data directly placed in a
spreadsheet,.

3.3.4 Numbers of Samples

In scaling studies, the number of samples depends on the scaling
method, covered in later chapters, and the time and resources avail-
able. Using many samples in an attempt to cover all the sam-
ple-selection considerations discussed so far is often impractical.
Depending on the needs of the study, the number of samples can be
anywhere from about three to about thirty.

Scaling method and sample quantity interact considerably. Some
scaling methods are most efficient with small numbers, say less than
ten, while other methods may only yield satisfactory results with
larger numbers. Another consideration is physical sample size.
Manipulating poster-size images is physically difficult, so the num-
ber of samples must be necessarily small if the prints are large.

The length of time it takes an observer to complete a scaling task is a
key consideration. Time is largely driven by the quantity of samples.
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Too many samples can force the observer to lose interest and hurry
through the judgment task, to the detriment of scale quality. Scaling
conducted hastily usually results in scale values with high variance
and bias. If the scaling activity takes an inordinate amount of time
and resources, or gives poor results, it may lose support and wind up
on the organizational pile of “ineffective tools that we tried but did
not work.” Discriminating judgment needs to be applied in deciding
the sample number.

An alternative strategy is to conduct two scaling studies, each with a
smaller quantity of samples. Methods to merge scales generated
from two different scaling studies are presented in later chapters.

3.4 Observers-“Type” and Number

A commonly held belief among newcomers to psychometric scaling is
that experts see things differently, or give different scale values,
than unsophisticated observers. This may or may not be true, and it
depends on the scaling task. Observers who participate in scaling
studies are usually eager to help, and will often use various methods
to provide the “correct” answers. These factors are real and must be
addressed to assure high-quality scale values.

A general discussion of observer selection is outlined in Chapte_r 8 r_)f
Meilgaard, et. al. (1991). ASTM Standard E 1499-97 (1997), whlgh is
primarily oriented to color appearance judgments, gives detailed
guidelines for the selection, evaluation and training of observers.

3.4.1 Expert Versus Average Observers

Observers who have experience in judging or evaluating images usu-
ally fall into the expert observer category. In their vocation, they may
learn to make very fine distinctions of the “nesses” they experience.
To a much greater degree, experts can distinguish among categories
of a specific “ness”: their “ness”-scale resolving power is often much
greater than average or untrained observers. This may become tI:OLl—
blesome with some scaling methods, particularly category scaling,
where the trained or experienced observers distinguish among cate-
gories that average observers do not. Conversely, there are applica-
tions in product quality assurance that require fine quant.lzatlon or
categorization of “ness” values and the detection of small d%fferences.
Trained or expert observers are needed in this type of scaling task.

For specific “nesses” that are relatively unique to a particular imgg-
ing system (a defect for example), experienced observers may give
scale values that are markedly different from average observers.
When this oceurs, it may be due to stimulus errors, which simply
means that observers are making a judgment on a Technology Vari-
able and not a “ness.” Product development personnel are often very
familiar with the Technology Variables of the imaging system, so
recruiting them as observers is not generally recommended. Product
development personnel tend to be more sensitive to “bad” “nesses”
than average observers. After all, their job is to make the bad
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“nesses” disappear. If the potential observer is knowledgeable about
failure modes or technology variables of the particular iImaging sys-
tem, and the scaling study is trying to simulate typical customer
response, then such observers should not be considered for the scal-
ing study.

If the objective is to generate a “ness” scale for average or typical
customers, the safest course is to use typical customers as observ-
ers. On the other hand, if the scaling task is to scale a fundamen-
tal “ness” not specifically associated with a particular imaging
device—colorfulness, for example—most human observers will
respond similarly.

Observer training and task familiarity both play a role in under-
standing the task and the speed of executing the scaling task.
Experts generally give scale values similar to average observers
when scaling fundamental or basic “nesses,” but they often do it
faster.

The most common situation is where expert and average observers
often give distinctly different responses when answering a preference
question. If the scaling task requires a response to any of the follow-
ing questions:

“Which sample do you prefer?”

“Which one do you like?”

“Which one is best for the xxx application?”
then it is a preference task. Confusion about whether the judgment
task is a basic “ness” or a preference is probably the origin of the
myth about expert vs. average observer difference. Statistical testing
1s warranted if there are concerns that observer group expertise may
distort scale values.

3.4.2 Number of Observers

“How many observers do I use?” is a common question when plan-
ning scaling studies. The answer to this question can become compli-
cated, but there are some practical guidelines.

The fundamental advantage of having a large number of observers is
the increased precision of the estimated scale value. Using more
observers decreases the error in the scale value, depending on the
details of the statistics of the scale estimate. However, the general
rule is that scale precision increases as the square root of the number
of observers, a familiar statistical result. Because of the square root
factor, doubling the number of observers does not double the preci-
sion of the scale value. It only decreases the error by a factor of 1.4,
the square root of two.

The number of observers to use in scaling studies is typically gov-
erned by availability. Scaling studies in the imaging arena are con-
ducted with as few as four observers, and with as many as fifty. A
recommended range is from ten to thirty for typical scaling applica-
tions. This is not intended to be a rigid rule, only a guideline subject

to scale precision requirements and the experience and knowledge of
the study administrator. Better estimates of observer numbers can
be obtained by establishing a desired scale precision, and using the
statistical relationships between numbers of observers and scale
standard deviation. Most methods described in this book provide for-
mulas for estimating scale-value standard deviation.

Increasing observer numbers only affects the scale-value precision,
or variability about its average value. There is no practical way to
know the absolute accuracy of a scale value, so the choice of observer
number, per se, does not affect scale accuracy.

3.5 Observer Task Instructions—It's All in the Question

Next to the sample image set, observer instructions are the most sig-
nificant item that controls the context of the observers’ judgments in
a scaling study. Sadly, it 1s far too common to see the observers’ task
instructions get only passing consideration.

To achieve useful and meaningful results, observers need to be told
what they are to do.

1) What, exactly, is the attribute they are to judge, and
what is their judgment task?

2) Is there an explicit or implicit context to the scaling
task?

3) What criteria or definition should they use in their
judgment?

No samples are perfect, particularly in the early stages of product
development. Should the observers be instructed to ignore certain
aspects or defects of the samples?

These considerations are key to any successful scaling study, so we
devote this section to providing guidance. Instead of including proto-
type instructions here, each chapter describing the data analysis
methods includes some suggestions from which to model observer
instructions.

3.5.1 What is the Attribute and Judgment Task?

A common scaling scenario is to use the paired comparison data col-
lection method instructing the observer to answer the question,
“Which do you prefer?” by selecting one of the pair. In reporting the
results, the scale is termed an “image quality” or some other “ness”
scale. This is grossly incorrect because the instructions to the
observer are, “Which do you prefer?” No question was asked about
image quality or a “ness” preference, so the final scale is nothing
more than a basic scale of preference. No reason can be given for the
preference of one sample over another from this type of experiment.
The preference rating may be for overall image quality reasons, or
more likely because of the dominance of one or two “nesses” in the
sample set.
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The general rule is specifically to ask the observer to make a judg-
ment on the appropriate “ness” or image quality. For an image qual-
ity scale, the appropriate instruction to the observer should be
something like, “Select one of the two samples that has the highest
Image quality.”

The judgment task instructions should be clear and should avoid
complex or fuzzy ideas, technical jargon, and the use of Technology
Variable labels. Matching the instructions to the ability of the
observer group is also essential. If there are any time constraints or
other limitations, then these should be clearly stated.

Use of scripts, explained later in this chapter, helps by formalizing
the task for the observers. A recommended procedure is to present a
set of written task instructions to the observer to read. The study

meoderator then asks if the observer understands the instructions,

The scaling administrator needs to be alert at this point, because
over-helpful observers can use this opportunity to obtain some clues
about what answers you want from them. Good practice would have
the scaling administrator provide concise answers, without elabora-
tion. This is like walking a tightrope—you want to make sure the
observer understands, and yet you do not want to provide back-
ground material or explanations that may bias the observer’s judg-
ments.

3.5.2 What is the Contexi?

Observer instructions and scripts frequently set the context of the
judgment in a scaling task. It comes about when the scaling is set in
the background of an application for the image. For example, the
context of the judgment can be set by suggesting that image quality
is, “The quality of images you would give to friends and family.” We
now perform an experiment where the observers judge image quality
using paired comparisons. In a paired comparison judgment, observ-
ers then may be asked, “Select the sample that has the highest
image quality.” The resulting image quality scale would have a con-
text of “images that would be given to friends and family.” To say
that this scale is applicable to the quality of office documents is to
seriously mislabel the resultant scale.

Integrative attributes such as image quality are much more context-
or application-dependent than “nesses” such as image sharpness and
graininess. Image quality, within the framework of the Image Qual-
ity Circle, is an abstract or absolute concept, and is not tied to an
application.

Even when the question and context are carefully described to the
observer, there is no guarantee that the desired results will be
achieved. For example, suppose the observer follows instructions and
scales a set of samples according to image quality. Yet if the sample
set varies only in the “ness” dimension of, say, “textureness,” the
resulting scale has to be called an image quality scale; image quality
15 in fact the question posed to the observer. However, the scale is
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really a scale of “textureness” by virtue of texture being the only
“ness” dimension that varies in the sample set! This is, sadly, an all
too common problem.

In some scaling paradigms, such as the graphical rating scale, the
orientation or context of the scale is not obvious and has to be explic-
itly stated. Is it a “goodness” scale where the attribute increases in
“soodness” from left to right? An example of a “goodness” scale might
be a sharpness scale, since an increase in this attribute is generally
consldered “good.” Going from left to right on the ruler, as the sharp-
ness increases, the “goodness” increases in the same direction. A
“badness” scale is related to a “ness” such as graininess that is “bad”
or unwanted. The scale increases in “badness” left to right.

Although grasping the notion of goodness and badness scales is
easy, there are some attributes that may switch depending on the
amount. Too much of a good thing, such as colorfulness in images,
becomes a bad thing (de Ridder, 1996). Scaling study planners
should be alert to such possibilities when selecting anchors or ref-
erences, because the scale may extend substantially beyond the
high or low references.

The context of the scaling experiment can also be established by an
introductory script that describes the purpose of the scaling. If estab-
lishing a context for the judgment is important, then explaining to
the observer the purpose for the scaling may be useful. There are
mixed views about this. I am from the minimalist school that
believes in giving the observer only the minimum of information that
is needed to do the task. Extra information may distract the observer
from the task at hand. In addition, a long verbal explanation may
allow the observer to pick up extra clues in order to be helpful.
Finally, an excessive question and answer session consumes precious
time for the observer and the administrator. Let the observer spend
time giving you answers, not vice versa.

3.5.3 Criteria and Definitions

Depending on the scaling objective, the “ness” may or may not be
explicitly defined. There are several ways to define a “ness™

* One can use words and define the “ness” In observer in-

structions.

* One can use visual references, which are often used as
anchors.

* One can let the “ness” be defined by the observer using
some internal criteria.

When an observer uses his or her own internal definition, it is of no
use unless the observer somehow conveys its meaning to the study
administrator.

If an explicit “ness” definition is used, it should be unambiguous and
easily accessible to the observers during the scaling study. A card



F

34

Chapter 3 The Process of Scaling and Some Practical Hints

with the written definition can provide a handy reference. Visual ref.
erences are often used as anchors in graphical rating scale experi-
ments, but they can be used with most any other scaling method_
These references are often employed where a word description would
be difficult, or where they supplement a written definition.

Instructing the observers to be either highly critical or tolerant in

their scaling judgments can result in significantly different scale val- &

ues for a set of samples. For example, instructing observers to be
“critical” in their judgment of the image quality of projected photo-
graphic transparencies produced the lowest quality scale values
when compared with instructions of “liberal,” “objective,” or “tolep-
ant” (Bartleson and Woodbury, 1965). There seem to be fow practical
situations where instructing the observer how to apply personal
judgment criteria is appropriate, so it is best to avoid doing so,

3.5.4 Looking Through the Haze-Imperfect Samples

Few samples used in real-world scaling studies are perfect or
defect-free, particularly in the early stages of product development.
To compensate, we can ask observers to ignore scratches or dirt, or
not consider image composition in their judgments. Although
Instructing observers to ignore certain aspects or defects of the sam-
ples is not uncommon, there is no guarantee the observers will do so.

If the attribute of interest does not interfere with, or is different |

from, the sample defects, then expecting that observers will respond
to the “ness” of interest is reasonable. However, if the sample set has
streaks and you are asking the observers to judge “bandingness,” it is

doubtful that, without training, observers can reliably ignore the
streaks and judge only “bandingness.”

Clearly the best strategy is to use samples that do not exhibit any
unwanted “ness,” but this is not wholly realistic. With imperfect
samples, asking the observer to ignore such unwanted “nesses” via
the instructions would be prudent.

3.5.5 Prototype Instructions

Observer instructions are so Important to a scaling study’s success
that prototype instructions appear with each scaling method. These
examples are provided with some reluctance, since no observer
Instruction set is ever perfect. Less experienced scaling enthusiasts
are advised to use the instructions as they are. Attempts at
word-smithing these prototypes may make the instructions more
cumbersome and confusing. After gaining experience with scaling,
the instructions can be refined for particular scaling needs.

3.6 Presenting and Viewing Samples

Viewing conditions and the mode of sample presentation are key fac-
tors in scale accuracy, precision, and scaling study efficiency.
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3.6.1 Presentation Mode

The presentation of sample stimuli to observers occurs _in two basic
ways—all at once or one at a time. Obviously some scahng.rnethods
and situations require one or the other. For example, the pal_red com-
parison method requires that the samples be presented in pairs,
while judging images displayed in electronic form may require tl’_lat a
single sample be presented at a time. There are various views
regarding each presentation method, so judgment on the part of the
scaling planner is required.

If there are no visible references or anchors, then single-stimuli pre-
sentation is prone to a host of influences, including observer criterion
drift. In addition, study planners must account for sequential effects.

Two methods are available for reducing observer criterion drift. The
first 1s to have the observer do a prescaling on a subset of samplg
stimuli covering the full “ness” range of the main sample set. This
familiarizes the observer with the range of “ness” within the set.

A second technique, which aims to achieve the same result with legs
effort, is to present samples to the observer that represent the maxi-
mum and minimum of the “ness” to be scaled. Stabilizing and “Qall-
brating” the observer’s criterion is the primary goal of presca}llpg.
Since the observers’ responses are not yet stabilized, this “training
data” is usually discarded when computing the final scale values.

The sequence of sample presentation can often affect observers’ judg-
ments. The simplest solution is to randomize the sequence using a
computer's random number generator, or a table of random num-
bers. This option may not be available for all scaling methods.

Multiple-stimuli presentation, giving observers the complete St?:t- of
samples at once, offers a simple and efficient way.to stabilize
observer criteria. Observers can get calibrated by viewing the com-
plete sample set. No prescaling 1s needed, which saves time and can
reduce the number of samples required.

A strong motivation for using multiple-stimuli presq?ntation .is th&}t it
simulates the typical observing condition. In a retail sales situation,
the customer may view several print samples before choosing a com-
puter printer. For sample sets greater than about tvyenty, the
all-at-once presentation mode can become unwieldy, but it depends
on the particular details of the scaling method. In order to assure
effectiveness of using the all-at-once presentation method, part of the
observers’ instructions should explicitly request the observer to
review the sample set before commencing the scaling.

3.6.2 Viewing Distance

Generally speaking, “nesses” associated with spatial image structure
such as sharpness, graininess and raggedness will have scale values
that vary with the distance over which the observer views the
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samples. Changing the viewing distance alters the perceptibility,
detectability, or characteristic, and so the scale value of a spatial
“ness.” Raggedness and graininess are more visible when the view-
ing distance is small. Sharpness values, on the other hand. decrease
as the sample distance decreases. This result suggests that the view-
ing distance may need to be controlled during the observers’ judg-
ments, but it depends on the scaling objectives and the level of scale
precision required.

Letting the viewing distance “float” will tend to increase the spread
of the judged scale values over a group of observers. Some experi-
menters fix the distance with a mechanical restraint such as a chin
rest, bite bar, or physical barrier.

3.6.3 Sample lllumination

Light incident on a surface and spectral “quality” are the two princi-
pal illumination variables to control. The absolute light level inci-
dent on the samples, the illuminance, is measured in lumens/m? or
lux. For emissive displays, such as CRTs and LCDs, the appropriate
term for the amount of light coming from the object or surface is the
luminance, in candelas/m? The absolute light level on the sample,
illuminance (or luminance in the case of CRTs and LCDs), affects the
perception of colorfulness, “tone reproductionness,” graininess and
other “nesses.” Increasing the illuminance on a sample increases the
colorfulness (the Hunt effect), makes graininess more visible, partic-
ularly in the dark areas of the image, and generally increases the
sensitivity of the human visual system to spatial details. These
effects are substantial when one shifts from indoor to outdoor illumi-
nation, but they do not vary much under typical indoor lighting. If
the image application will be outdoors in noonday sun, a billboard for
example, then performing the scaling under the same condition
would be appropriate.

The second consideration is the source spectral power distribution,
often stated as the Correlated Color Temperature (CCT), although
these two terms are not exact equivalents. All color-related “nesses”
are affected by the spectral power distribution of the illuminating
source simply because the color appearance changes according to the
spectral quality of the source. (See Fairchild, 1997, for a complete
discussion of color appearance issues.) Scaling a set of color samples
under a light source that is different from the application’s expected
light source will not provide a good prediction of the scale values
under the actual viewing source.

Many common light sources have been standardized by the CIE, an
international standards body for light, illumination and color. There
is a series of CIE Daylight sources the D Series—that represent vari-
ous phases of practical daylight. These sources have nomenclature
such as D5000 (D50 for short) or D6500. The D stands for daylight,
and the four-digit number represents the CCT in Kelvins. Eleven
common flourescent sources have also been standardized as the CIE
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F Series. F2 is the designation for the popular cool white lamp that
has a CCT of approximately 4200K.

The lamp’s spectral power distribution can also have a substantial
effect on the fluorescence of some sample substrates. Many paper
makers incorporate “brighteners” or fluorescent dyes into their
papers to improve the paper’s “brightness.” These dyes are stimu-
lated by short wavelength ultraviolet radiation, UV, that converts
the mostly invisible UV to visible blue light. This increased blue light
compensates for the yellowish hue of the paper and makes it appear
whiter and brighter. When viewing brightened paper samples under
light sources deficient in UV, the paper and any colorant on the
paper will be quite different in appearance. Sometimes colorants
have fluorescent properties, and the color appearance is dependent
on sources’ UV content. Tungsten lamps generally have low UV out-
put, while fluorescent lamps, popular in offices, offer far more output
in the short wavelengths.

The key thing to remember is that, since color appearance varies
depending on light source and absolute light level, the scale values
also vary. The relevant standard for viewing prints, transparencies
and substrates for graphic technology and photography is ISO-3664,
Viewing conditions—Prints, transparencies, and substrates for
graphic technology and photography. This standard specifies a D50
source and two levels of illumination for viewing prints: 2000 lux and
500 lux.

Another factor that is often ignored is the geometry of the sample
illumination. For samples with intermediate levels of gloss, illumi-
nation geometry is critical in controlling the surface appearance. The
recommended viewing practice ig to illuminate the sample at 45
degrees from the normal to the surface, and view the sample normal
to the surface. This geometry is easily accomplished using a viewing
booth, which is therefore recommended for scaling studies. When the
illumination geometry cannot be controlled, the configuration and
size of the illuminating light source should be reported.

3.6.4 Environmental Factors

The scaling study environment, if not carefully examined or con-
trolled, can have adverse effects on the scale values. The most signif-
icant factors to consider in planning the scaling environment are
psychological and physical comfort, noise, and surround.

Ensuring the physical comfort of an observer may seem obvious, but
it 1s easily overlooked. Such simple things as providing a comfortable
chair and having sufficient space to spread samples out while doing
the scaling task can become major problems if not attended to.

Check to see if the support items such as image references, mouse
buttons or other signaling or data-recording devices are conveniently
positioned. Control other obvious items such as room temperature
and humidity.
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Psychological comfort of the observer is also important. Instructions
or scripts can establish a mindset within the observer. For example,
observers should not be made to feel that someone is watching, or
that they are taking a test. Words in the instructions addressing
these concerns can increase the psychological comfort level.
Explicitly informing the observers that they are not taking a test and
that you want their opinions, is often helpful. Clearly, scaling is a
task that can be a challenge, and may generate some psychological
stress. The study planner and administrator should be conscious of
environmental issues in order to reduce the influence of stress on the
scale values.

Noise can affect our ability to perform tasks. Scaling usually occurs
in rooms that are nominally quiet, but may have noises that could
distract some observers. Two ubiquitous noise sources are the 60-Hz
hum of fluorescent light fixtures, and the periodic noise of HVAC sys-
tems. In selecting an area for scaling, a review of these and other
noise sources 1s in order.

A factor that can affect color appearance is the color of the scaling
study room. If a viewing booth is not used, the color of the walls will
combine with the illuminating light source to give an unknown and
arbitrary illumination on the samples. In addition, highly colored
walls can alter the observer’s state of adaptation, possibly changing
the color appearance of the samples. Highly colored surfaces such as
tables, desks and walls are to be avoided in favor of gray or pastel col-
ors. For critical scaling applications, ASTM E 1808, Standard Guide
for Designing and Conducting Visual Experiments (1996) recom-
mends that the area immediately surrounding the samples should
have a color similar to the samples. The remaining area, the ambient
field, should be neutral with a Munsell Chroma less than 0.2, pastel,
and a Munsell Value between N6 and N7, corresponding to a visual

reflectance of between 0.29 and 0.49. For viewing and scaling

images, the standard practice (ISO 3664, ANSI/NAPM/PH2.30) is a
neutral gray background having a reflectance factor of less than
0.20. Note that the ISO and ASTM are not entirely consistent in
their recommendations.

3.6.5 Observer Mofivation

A factor that is sometimes overlooked is observer motivation. Scaling
studies conducted in concert with market research studies commonly
offer observers a small amount of money, about $50. Offering
rewards has not been a common practice when observers are drawn
from within an organization, but it is on the increase. These “inter-
nal” observers are usually given a tangible premium to compensate
them for their voluntary efforts. Sometimes a larger reward, such as
tickets to a concert or sporting event, or a dinner, is given for contin-
ued scaling service. There is no fixed rule, particularly within organi-
zations. In most organizations, observers will volunteer without any
expectation of a reward if they feel that they are contributing to the
organization’s success in some way.
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3.7 Conducting the Scaling Study

A large number of possible methods for conducting the scaling study
are available. There is no universal agreement on a standard
method. Scripts and pilot studies are two recomended tools that can
help eliminate costly errors and improve scaling studies over the
long run.

3.7.1 Scripts

Scripts are the written sequence of procedures, questions, or instruc-
tions to be followed by the scaling administrator. The foremost pur-
pose of the script is to present a consistent narrative to all the
observers. Most observers look, ask, and listen for cues about what
the scaling administrator really wants. They search for cues because
they are usually interested in the scaling process, and they want to
be helpful and do a good job. Scripts are usually read aloud by the
scaling administrator, word for word, as a means of enforcing the
consistency of presentation. Using a consistent procedure (the script)
also reduces the effects of unintended moderator bias as a factor in
observer judgment.

Included in seripts are instructions to observers on how to perform
the task, what criteria to use in the judgment, and pointers to exter-
nal and internal references (anchors) that need to be considered. It is
essential that the script should not imply or refer to criteria, defini-
tions, or other items that can affect observer judgments.

There are several significant benefits to using a script. First is the
ability to test and modify it in order to fine-tune the experimental
procedure. The script should be considered a variable during study
design, and a given during the study itself. Secondly, the well-tested
script can be used multiple times, and simultaneously in multiple
locations, and thus ensure that later scalings will be conducted in the
same manner as earlier ones. Finally, it formally documents the
complete methodology of the scaling study. Using a script is no guar-
antee that results will be identical, since the observers will no doubt
be different, and other factors may change over time. Nevertheless,
using a script will reduce the influence of factors that can affect scale
consistency.

Commonly included as part of the script for the scaling administra-
tor is a list of the environment requirements, such as a specification
of the lighting, a list of equipment, any associated software, and cali-
bration methods. All of these factors can affect the perception and
judgment of “nesses” or image quality. The rigorous specification of
these environmental requirements will assure identical conditions
for any subsequent scalings.

All of this may seem like a lot of effort just to generate a “ness” scale.
However, anyone experienced in doing physical measurements usu-
ally has a measurement procedure. In this respect, scaling or the
measurement of human response is no different.
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3.7.2 Pilot Studies

Pilot studies are small-size trials to test and debug the scaling study
script and response-collection process. One should not expect a script
to be correct without a trial. Pilot studies offer the opportunity to
fine-tune the script and ultimately to save substantial effort. They
are essential in my view.

It is sometimes argued that pilot studies are not needed for the

“casual” study. I wonder what a “casual” scaling study is. In almost

all cases, the motivation for the scaling is to answer some prod-
uct-related question. The answer usually has a non-trivial economie
Impact, so the “casual” scaling study is an example of false economy.

Pilot studies are designed to give study planners quick feedback
regarding the script. A pilot study is conducted using a small number
of samples and observers, along with the draft script. The objective
at this point is to test and debug the seript, not collect precise data.

Script testing and debugging require feedback from the observers at
the completion of the scaling. This is the time to ask observers ques-
tions about the scaling task they just performed. Some of the rele-
vant questions are:

* “Are the instructions clear on what to judge?” A lot of
questions on the part of the obgerver prior to and during
the scaling give clues about areas of the script that need
improvement.

* “Is the visual judgment task easy or difficult? What
parts?” These are critical questions, because you may un-
knowingly be asking observers to do an Impossible task.
Most observers will do something, even if the task is diffi-
cult or impossible.

* “Is the data recording method intrusive?” A popular
method today is for the experimenter to enter the ob-
server’s response data directly into a spread sheet. This,
or any other data recording method, should be transpagr-
ent to the observer and not interrupt the flow of the
study.

* “Were samples presented in a way that was easy to work
with?”

* “Were you physically comfortable during the experi-
ment?’

* “What suggestions do you have that might improve the
scaling task?” This is probably the most Important ques-
tion that can be asked of the observer. Encourage the ob-
server to give feedback on any and all topics, but be
aware that the observer will likely have a number of
questions about the scaling process, the samples, and the
imaging technologies involved.

Observer responses to these questions should be used to amend the
script, particularly the observers’ instructions. At this point the
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scaling study plan is in good shape, and there can be high confidence
for success.

3.8. Analyzing Observer Response Data

The computed “ness” or image quality scale values are a combination
of two scaling study parts-the sample presentation/data collection
method, and the data analysis method. Both together define the
scale properties to be discussed in the next chapter. Referring to “the
scaling method” as if 1t 1s a data collection method, without reference
to the data analysis, is quite common. This is at best confusing, and
often misleading, simply because it is incomplete. I encourage the
readers of this book to describe both parts; for example, a paired com-
parison data collection method combined with Thurstone’s Law of
Comparative Judgment. These fwo pieces in combination define the
generation of scale values.

The next chapters in this book define what is meant by Sf:ale types,
and the mathematical properties they convey. After th_1§ grognd-
work, the remaining chapters discuss all the data analysis options

for scale generation.
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Chapter 4

Measurement Scales

Measurement of human response is not a new field. The well-estab-
lished fields of psychometrics, psychophysics, and sensory evaluation
are rich resources of measurement methods and data analysis.

The words psychometrics, psychophysics, and scaling are often used
interchangeably, which leads to confusion. Additionally, apprecia-
tion of basic scale types is not very common in the physical sciences,
and it is a source of much bewilderment and, quite literally, miscal-
culation. To clarify these topics, the following sections provide defini-
tions, scale type descriptions, and a set of important cautions about
possible misunderstandings when generating scales and analyzing
results.

4.1 Vocabulary of Scaling

Psychometrics (mind measuring) encompasses measuring human
response to the “nesses” or image quality. The field of psychophysics
covers the human response to a stimulus specified by physical
parameters (Physical Image Parameters). The shorthand term scal-
ing, as used in the imaging field, means the generation of a scale or
ruler of the observer’s response to a “ness ” under study. The output
or result of a scaling study is a scale of, say, sharpness, or image
quality. In particular, psychometric scaling is the generation of rul-
ers, or scales, of the “nesses” and image quality by human measure-
ment.

Different disciplines have different words for the same ideas. Under-
lying a scale is a continuum, often called the psychological contin-
uum, or sometimes a psychological dimension. When this continuum
can be directly related to some sensory organ or system, e.g., touch, it
is called the sensory continuum. Sometimes a “ness” cannot be
related to a sense organ, per se. Image quality is one such example.
Another example can be found in the food technology realm, where
the term hedonic scale or continuum is used when describing the
continuum of likes and dislikes of food products. In this text, we use
psychological dimension or psychological continuum, since our sub-
ject matter—-image quality—does not relate directly to a sense organ,
and as a result has no underlying sensory continuum.
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“Measurement is the process of assigning numbers to objects
or events by rules.”

The term observer in this text is used to describe the humans that
view, touch, or feel images. They are variously called subjects,
respondents, judges, or, customers, but in this text these terms are
all equivalent. The key words in Stevens’ definition are process and rules. Both

define the scale properties.
The images or samples we ask the observers to respond to are,
strictly speaking, called stimuli, simply because they stimulate
human sensory systems. In scaling images, the sensory system of
interest is the human visual system, but sometimes the tactile sen- Scale Type Operations
sory system 1s also involved. Samples and stimuli will be used more '
or less interchangeably unless distinguishing between them is
appropriate. Stimuli are also called stimulus objects, psychological Ordinal determination of greater or less than y = g(x), any monotonic transformation
objects, or just objects (Bock and Jones, 1968).

Table 4.1 Stevens’ Classification of Scale Types

Permissible Transformations

Nominal determination of equality v = f(x), any one-to-one transformation

determination of equality of intervals

: g vy = ax+b, any linear transformation
or differences (distance)

. . . Interval
Strictly speaking, when we ask the observers to respond to image

stimuli we are asking for a judgment, which is distinguished from a Ratio determination of the equality of ratios ¥ = ax, any constant scale factor

choice (Bock and Jones, 1968). The judgment implies that the
observer is acting “objectively,” whereas the choice implies some
form of personal preference in the response. We mostly speak of an
observer making a judgement, as opposed to a choice, but on occasion
observer choices are requested.

The term scale value is used consistently throughout this book as the
numerical value obtained from a scaling study. Usage of the term
“scale value” is associated mostly with imaging. L. L. Thurstone,
after starting his career as an engineer and later becoming a great
psychometrician of the twentieth century, used the term affective
value. This term is commonly used in the food technology field (Bock
and Jones, 1968; Meilgaard, et al., 1991).

A scaling study, sometimes called a scaling experiment, is a term
used here to mean the activities or processes that comprise all the
elements needed to generate a scale. Chapter 3 describes a scaling
study in detail. Preference is given to the term “scaling study”
because it is in line with other forms of studies; e.g., market research
studies. The word experiment in the term scaling experiment carries
the unfortunate connotation of being a risky venture that may not
provide useful results.

4.2 Stevens' Scale Classifications

All seales are not equal, either in their classification or the mathe-
matical operations that can be performed on them. In 1946, Stanley
Smith Stevens, a world-renowned psychophysicist and later the
director of the Psychophysics Laboratory at Harvard University, put
forth a scale definition and classification system that has provided
the reference ever since (Stevens, S. 8., 1946).

So far, the term measurement has been used rather loosely. To
shore up the idea operationally, we use Stevens’ definition
(Stevens, S. 8., 1946):

Stevens described four scale types: nominal, ordinal, interval, and
ratio, as shown in Table 4.1. He ascribed the scale types with “basic
empirical operations,” “mathematical group structure,” and “permis-
sible statistics.”

Recently, Velleman and Wilkinson (1993) have challenged Stevens’
classification of “permissible statistics” concerning the scale types as
too restrictive. Since this book does not contain a rigorous analysis of
scale statistics, we do not need to involve the reader in the debate,
and have included only “permissible transformations” in Table 4.1.
As published by Stevens, Table 4.1 had a fourth column, called “per-
missible statistics” which 1s not included here.

The mathematical “power” of the scale types in Table 4.1 increases
as one moves through the scale types from the nominal scale to the
ratio scale. Every scale type below a particular type has the proper-
ties of that scale type plus all the types above. For example, an inter-
val scale has the property of an ordinal scale and a nominal scale. In
practice, this means that we can “demote” a scale to one of lesser
power, by using a different data reduction or data analysis method.
From the point of view of scale generation, demotion 1s not very com-
mon, but there are some situations where it is convenient for per-
forming statistical tests.

4.2.1 Nominal

A nominal scale has names or labels assigned to objects or events. An
easy way to remember is that “nominal equals names.” The numbers
on the jerseys of football players constitute a nominal scale of football
players of the X team. The names of colors—red, green, and so forth
also form a nominal scale. The scale of football players uses numbers
as labels, while the color hue scale uses names.

Using numbers for a nominal scale does not mean that the numbers
themselves possess any mathematical or arithmetic properties. The
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lack of the addition property is illustrated with telephone numbers,
“If you added 1-800-255-5188 (1-800-CALL-ATT) to 1-800-265-5328
(1-800-COLLECT, from MCI) would you expect to get Candice
Bergen (Sprint spokesperson) to answer?” (Person, 1998). Using
phone numbers, football players’ jersey numbers and social security
numbers helps us with identification, but, used in nominal scales,
the numbers are just labels and do not possess any numerical prop-
erties.

With nominal scales we can arbitrarily relabel, or transform, objects
or events providing we use a one-to-one mapping, or relationship, of
the labels. A one-to-many or a many-to-one is not permissible; we
would generate or lose some elements that constitute the original
scale. For example, we can renumber all the football team’s jerseys,
but we do not give the same number to more than one plaver. This
preserves the one-to-one relationship.

The equality of the scale objects, or events, occurs when the names,
numbers or labels are identical. They are not equal in the usual
mathematical sense. They are equivalent, one to another.

Nominal scales may not appear to be highly useful. However, they
can form the basis of scales of higher types. For example, the stan-
dard of colorimetry, the 1931 CIE Two Degree Standard Observer, is
based upon the matching of color in the spectrum to a combination of
three colored lights: red, green and blue. From these nominal scales,
known as the CIE XYZ, tristimulus values, we have boot-strapped
the tristimulus values to an interval scale. The most widely used
colorimetric interval scale is the CIE L*a*b* system.

4.2.2 Ordinal

An ordinal scale uses labels (usually adjectives) or numbers to repre-
sent the order of the objects or events. (Remember that “ordinal
equals order.”) An ordinal scale has a greater than (=), or less than
(<), property. As an illustration, consider a size scale of spherical
objects that range from marbles, golf balls, tennis balls, and soccer
balls, up to and including basketball sizes. On this scale, characteris-
tics such as the volumes or diameters of the spherical objects, pos-
sess the property of “greater than” or “less than” depending on the
direction one is going with respect to the scale. Notice that the diam-
eters of the objects do not necessarily increase uniformly. The change
or difference between the diameter of a marble and a golf ball is
smaller than the diameter change from a tennis ball to a soccer ball.
From an ordinal scale, all we can state about the diameters of the
spheres is that they are greater than the sphere preceding it on the
scale.

One could use an ordinal scale in imaging to rank, for instance, sam-
ples according to some property, say image quality. All we know
about the image quality ranks are that some samples have greater
image quality than other samples. Although this knowledge of the
sample order in terms of image quality can be very valuable, it does
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have limitations. The main limitation of an ordinal scale is that we
do not know how “close” each sample is to the adjacent samples. An
all-too-common practice is to assign numbers to the ranks and aver-
age the ranks over the observers and then invoke the properties of
numbers to deduce the distance between samples. This is incorrect
because the numbers assigned to the ranks have only a
“greater-than” property. The distance between samples ranked with
a one (first) and two (second) may not be the same as the distance
between samples ranked with a nine and a ten. For determining the
distance between samples, we need to have at least an interval scale,
the next scale type.

4.2.3 Interval

An interval scale adds the property of distance to the ordinal scale.
Physical scientists and engineers normally think of interval scales
when they use numbers for measurements. The Fahrenheit and Cel-
sius temperature scales are interval scales.

Generally, the origin and the multiplier of the interval scale are
unknown and arbitrary. In this sense interval scales are on “rubber
bands” that hnearly stretch and move. They “float.” The key property
of the interval scale, as far as the Image Quality Circle and
psychometric scaling are concerned, is that equal differences in scale
values represent equal differences in a “ness” or image quality. This
is an extremely valuable property.

A persistent product development question is, “How close? How
close do our images have to be to the specification or to a customer
requirement? Knowing the distances between images on some “ness”
or image quality scale helps product managers and product develop-
ment teams set and achieve objectives. An interval scale has the
required property to answer the “how close” question, so it is the
minimum scale type for Image Quality Circle applications. Interval
scales are the essential scale type for generating scales of image
quality and customer attributes or “nesses.” For this central reason,
a substantial amount of this book is devoted to methods for generat-
ing interval scales.

Not all “ness” scales are interval scales, since some have a known,
fixed zero point. The CIE Lightness scale is one such example. Scales
that have a zero point, and are at least interval in nature, are of a
higher type called the ratio scale.

4.2.4 Ratio

The ratio scale adds an origin to the distance property of the interval
scale. Equivalently, a ratio scale is an interval scale with the additive
constant, or origin, equal to zero. This origin may or may not be
experimentally measurable. Unlike the interval scale, the ratio scale
does not “float” with respect to a scale origin. Ratio scales generally
differ by a multiplying factor, but the multiplying factor can be quite
different for each ratio scale. For example, one unit on a ratio seale of
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lightness is not necessarily equal to one unit on a ratio colorfulness

scale,

A ratio scale is assumed to have a zero point, which may cause both
conceptual and experimental difficulties. For some “nesses” a zerg
value is easy to conceptualize, but for others it is not so clear. Fop
example, the concept of zero colorfulness, a gray, is intuitively
straightforward. What about a “hueness” scale with a hue having a
value of zero? How does one go about defining the concept of zero
image quality? This difficulty suggests that all “nesses” are not equal
when defining them on ratio scales.

Stevens, who was the major figure in developing ratio scaling meth-
odology from about 1938 to his death in 1975, defined two different
psychological continua: prothetic and metathetic. Prothetic continua
are associated with an attribute or “ness” that has quantity. Exam-
ples of prothetic continua in the imaging field are lightness, bright-
ness, and colorfulness; they possess the idea of “quantity” or “how
much,” Metathetic continua have a qualitative, or where, aspect.
Stevens’ metathetic example was sound pitch (Stevens, 1975). The
complete set of colored hues forms a metathetic continuum, although
mixtures of two specific hues can be prothetic (Indow and Stevens,
1966).

In practical scaling situations, the distinctions between these two
continua are not of major importance. The differences only come to
the fore when comparing ratio scales with scales generated by inter-
val scaling techniques. Metathetic continua often show a linear rela-
tionship between interval and ratio scales, for the same set of
samples, while prothetic continua do not.

There are still unresolved theoretical issues about the role of
prothetic and metathetic continua in scaling. For detailed discus-
sions on this topic the interested reader is referred to Stevens (1975),
Gescheider (1997), Baird and Noma (1978), and Torgerson (1958).

4.3 Numbers, Numbers

The use of numbers for measurement in physical sciences is almost
exclusively associated with either ratio or interval scales: e. g., mass,
length, time, and temperature on the Celsius scale. Since most scien-
tists and engineers are familiar with numbers in the context of ratio
and interval scales, they are not accustomed to examining the num-
bers associated with a measurement scale. As mentioned above,
when numbers are used as labels in a nominal scale and for position
I an ordinal scale, the numbers do not possess the properties we
usually associate with numbers.

There are a few examples of numerically based scales that are nomi-
nal or ordinal. One of these scales is the CIE tristimulus values, X, Y,
and Z, which are nominal scales. This nominal property comes about
because the numbers were derived from color matching
experiments—experiments to establish the “equality” of colors. In this
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experiment there was no concept of one color being “greater than”
another color. Neither was the concept of the distance between colors
part of the original experiments that established the CIE
colorimetric system.

Scales derived from CIE XYZ, such as CIE L*a*b*, are widely
believed to have at least interval properties. To make the transfor-
mation from a nominal scale to an interval scale required another set
of psychometric data that had known experimental conditions and
an interval scale property. Albert Munsell, an art teacher at the
Massachusetts School of Art, developed the Munsell Book Of Color,
which consisted of color patches arranged in a three-dimensional
cylindrical coordinate system (Munsell, 1902). He used interval scal-
ing techniques to determine the distances between the color patches
in lightness (called value in his system), hue, and chroma. In the
early 1940s the color patches contained in the Munsell Book of Color
were measured using the CIE XYZ system (Newhall, Nickerson and
Judd, 1943). From these physical measurements approximate
empirical transformations from the CIE XYZ values to Munsell
“nesses” of hue, value and chroma were developed. This has further
evolved, based on suggestions by Adams (1942) into the now-stan-
dardized 1976 CIE L*a*b* color space.

Using models of human judgment to convert from a nominal scale
type to a scale type with more mathematical power is common, and
forms a basis for data analysis methods described in the chapters
that follow.

4.4 Same Data, Different Scales

As a rule, the greater the power of the scale, the greater are the
demands placed on the observers who are required to give a response
or make judgments. Generating a nominal scale by naming items, or
generating an ordinal scale by sorting samples into a “greater than”
sequence, are both easy tasks for observers. A ratio scale demands
more from observers since they are required to respond with a num-
ber for the ratio of the attributes. In concept this is simple, but it is
often difficult for observers without some training (Lodge, 1981).
Chapter 11 explores study design considerations for ratio scales in
more detail.

When communicating results to others, the practitioner is urged to
make clear distinctions between the data collection method, the
analysis method, and the resulting scale type. Occasionally, the data
collection and analysis methods can be mixed and matched so that
different scale types result from the same data. For example, differ-
ent analysis methods can generate either ordinal scales or interval
scales. Data collected in category scaling, for instance, can generate
an ordinal scale, or with auxiliary models, the same data can be used
to generate an interval scale. Given this potential source of confu-
sion, one must be clear and emphatic about data collection method,
analysis method, and scale type.
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Scales generated using the methods described in succeeding chap-
ters can be used as response variables in a wide array of statistical
decision-making procedures to answer specific product development
questions. Although the statistical properties of scale values are
important in practical applications, covering all statistical analysig
methods would take us too far afield, into territory that is heavily
trodden. Therefore, in this book, the presentation of statistical testg
of scale values will be limited to those that either test underlying
models or may not be readily available in introductory statistical
texts,

4.5 Multidimensional Scaling

The basic idea of multidimensional scaling, or MDS, is to create a
multidimensional spatial picture or a map of observer judgments in
a psychological space. See Kruskal and Wish (197 6) for a very read-
able introduction to MDS. A recent detailed text on MDS is by Borg
and Groenen (1997).

Many computer programs are available to “map” human responses
into as many dimensions as the program operator desires. Basically
they arrange the points to minimize some distance criterion between
the data and the computed spatial representation. MDS has been
quite successfully applied to many areas of the social sciences, and
remains one of the most widely used scaling tools.

Multidimensional scaling is a very powerful scaling technique, but it
is not magic. The major disadvantage of MDS, regarding practical
applications, is that it does not direct one to an understanding of
either the number of spatial dimensions or the psychological mean-
ing of the picture or map axes. Identification of these dimensions
needs an experienced psychometric practitioner.

In spite of its power and popularity, we see no need to cover MDS in
this book. Several reasons support this decision. First, it is fraught
with uncertainties. There are no agreed-upon methods—standards if
you will-by which to compute the spatial configuration from the scal-
ing data. Each commerecially available MDS package uses different
algorithms and will give slightly different results for the same data
set. Additionally, compared with unidimensional scales, there is a
paucity of inferential statistical methods by which to test the spatial
configuration to determine if it is “correct.” Further, there is a lack-
luster track record of using MDS to discover meaningful attributes in
images. Careful examination of the sample set will reveal, more
often than not, what “nesses” exist in the images. Finally, the analy-
sis technique almost requires a book of its own for it to be practically
useful,

The complete picture of MDS is not at all negative, however. MDS
can be a very powerful tool in image quality research. In fact there
are many areas where MDS should be applied, particularly in help-
ing to identify the components or “nesses” that result from image
processing and compression algorithms. However, examination of
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the image quality produced by image processing and compress_ion
algorithms is more research-oriented compared with the practical
product-development focus of this book.

The remaining chapters of this text describe the practical application
of scaling techniques useful for the study, analysis and desigq of
imaging systems. Emphasis is placed on methods of generatl_ng
unidimensional interval scales where the attribute or “ness” lies
along one psychological continuum or dimension.
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Thresholds and
Just-Noticeable
Differences

Two questions that are often important in product development:
“What is the value of the ‘ness’ that is just visible, or just detectable
by an observer?” and “What is the minimum value of the ‘ness’ that is
just seen as different from a reference or standard?”’ The first ques-
tion asks about the absolute threshold, and the second question asks
about the difference threshold or just-noticeable difference (JIND).

Both are equally important, but the emphasis depends somewhat on
the level of imaging technology development. The threshold dictates
how low a “ness” has to be “pushed” so it is not detectable by observ-
ers, and therefore contributes to an image quality judgment. The
just-noticeable difference tells how much the “ness” must change so
that some fraction of the customers or users actually sees a differ-
ence in the “ness.”

“Ness” scale values most often possess only interval properties, hav-
ing an arbitrary constant and multiplier. Manipulating the scale val-
ues by adjusting the arbitrary constants does not increase or
decrease the underlying psychological precision, nor does it change a
psychological zero point. Knowledge of both the absolute threshold
and the just-noticeable differences over the full “ness” scale would
also be of great practical value in establishing the numerical range of
“ness” scale values. For example, the threshold of a “ness” can be set
as the zero value of the scale, and the scale increment set equal to the
just-noticeable difference at some convenient scale value. Thresholds
and JNDs are also valuable in identifying the component “nesses’ In
an image quality judgment. Any “ness” that is below the absolute
threshold cannot be seen and is irrelevant. The number of JNDs
describing a “ness” in a sample set is a measure of the range of the
“ness” discussed in Chapter 3.

Assigning scale values in terms of absolute thresholds and JNDs is
not a fundamental scaling requirement, but it can help in communi-
cating the significance of scale values to scale users. A “ness” scale
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arranged so a zero value is the threshold and a JND the unit incre-
ment, is more interpretable than a scale with an arbitrary origin and
multiplier. This property is a nicety, and it is almost never the mot;i-
vation to pursue such absolute and JND studies.

This chapter describes the basic methods used to find both the abso-
lute threshold and the just-noticeable difference.

5.1 Thresholds, Just-Noticeable Differences and the
Image Quality Circle

There are two ways to look at thresholds. First, classical
psychophysics views thresholds as the amount of a physical stimu-
lus needed for detection or to evoke a just-noticeable difference. In
the classical view, thresholds are expressed as a physical specifi-
cation of the stimulus, which we would call a Physical Image
Parameter in the realm of the Image Quality Circle. The second
view is our view. In the Image Quality Circle the threshold or the
just-noticeable differences are expressed in terms of the “ness,”
the Customer Perceptions. This perspective is not unique to the
Image Quality Circle. See Baird (1997) for a detailed discussion of
just-noticable-differences of “nesses.”

This view 1s a departure from classical psychophysics, but it has the
advantage that there are no requirements for a single physical speci-
fication (Physical Image Parameter) of the stimulus. Without the
requirement to tie into or link to Physical Image Parameters, one
can determine thresholds or just-noticeable differences for “nesses”
such as graininess (Engeldrum and McNeill, 1985; Dooley and Shaw,
1979) or printed line darkness (Dvorak and Hamerly, 1983), that are
combinations of Physical Image Parameters. Taking this view does
not preclude applying classical psychophysics. In fact, both can live
in harmony within the Image Quality Circle context. One
acknowledged disadvantage is that some independent means of
measuring the “ness” scale value must be available. In the Image
Quality Circle context, this approach requires a sufficiently accurate
Visual Algorithm for computing the “ness” from the Physical Image
Parameter(s). (See Chapter 2).

5.2 Basic Concepts

The discriminal dispersion or probability density function (discussed
in Chapter 8) is the principle behind the concept of just-noticeable
differences and thresholds. The observer is asked to respond “yes” or
“no” to a “Do you see it?” question or “Is A different from B?” ques-
tion. Responses are accumulated over a number of observers. For
many reasons, the observers’ responses vary even when the stimulus
1s held constant. This variation is described by a probability distribu-
tion, like the discriminal dispersion of Thurstone (1927). The estima-
tion of the probability distribution i1s the objective of the
experimental just-noticeable difference or threshold procedure. Once
the empirical probability distribution (cumulative histogram) is
established, a psychometric model is fit to the data and some useful
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parameters are deduced. Details of model fitting and parameter
determinations are the topics of this chapter.

Over the last century, three basic methods have evolved to deter-
mine absolute thresholds and just-noticeable differences. The three
methods are the method of limits, the method of adjustment, and the
method of constant stimuli (Baird and Noma, 1978; Gescheider,
1985). They vary in their method of stimulus presentation and, to
some extent, data analysis. Both the method of limits and the
method of adjustment have been widely used to find the thresholds
of light, sound, and other “simple” attributes where the stimulus can
be easily controlled. Threshold and just-noticeable difference deter-
mination of more complex “nesses,” the types common in the field of
imaging, are more easily obtained using the method of constant
stimuli and its variants.

In the sections that follow, the basic threshold and just-noticeable
difference methods are described. Emphasis is on the method of con-
stant stimuli because of its easy application to most types of imaging
systems.

5.3 The Psychometric Curve and its Parameters

One might think that the visual threshold for a “ness” is some fixed
value. Above the fixed value the “ness” 1s visible, and below the
threshold the “ness” is invisible. In reality, the notion of a threshold
is really a statistical concept—the value of the “ness” where the
observer says “yes” or “no” is a random variable, This random vari-
able idea is conceptually identical to the discriminal dispersion idea
underlying paired comparisons and category scaling. The recurring
thread throughout many scaling methods is this idea of a judgment
having random variation. It will continue to resurface under various
guiges in upcoming chapters.

A basic threshold determination consists of presenting a stimulus of
a certain level of “ness” and asking the observer if they see the
“ness.” Observers are instructed to respond with a “ves” or “no,” a
binary response. Next, the level of the “ness” is changed, and they
are asked whether they see it or not. This process is repeated for a
range of “ness” levels.

The psychometric curve, sometimes called the frequency-of-seeing
curve, describes the proportion of “yes” responses given by observers
to various levels of the “ness.” Statistically the curve is called a
cumulative density function, or sometimes an ogive. A typical curve
is shown in Figure 5.1.

The analysis of the empirical proportions essentially consists of
determining the threshold and other useful parameters that describe
the psychometric curve. For this we need some vocabulary.

The following are some terms used in the field of psychophysics to
describe various characteristics of the psychometric curve
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Figure 5.1 - A typical psychometric curve. The axis
is the value of a “ness"” and the ordinate is the pro-
portion or probability of observers responding
“yes."” Shown in the figure are the Interval of Uncer-
tainty, the Absolute Threshold and Point-of-Subjec-
tive-Equality (PSE) and the Just-Noticeable
Difference (JND).

(Gescheider, 1997; Baird and Noma, 1978). Some of these terms
apply to determining a threshold, while others are applicable to a
just-noticeable-difference determination.

Absolute threshold or stimulus threshold is the smallest amount of
stimulus “energy,” Physical Image Parameter, or “ness” needed to
produce an awareness of a “ness.” The threshold is usually taken as
the point where 50% of the observers see the “ness.”

Point of subjective equality (PSE) is used to describe the 0.50 proba-
bility point of a psychometric curve from just-noticeable-difference
studies. This is the value of the stimulus where 50% of the responses
are “yes” to seeing a difference. It is defined in a just-noticeable-dif-
ference study as the point where observers find two stimuli equal in
the statistical sense. Note that the absolute threshold and the point
of subjective equality are the same point on the psychometric curve,
but the interpretation depends on the type of threshold that is being
determined.

A stimulus just-noticeable difference (JND) is the stimulus change
required to produce a just-noticeable difference in the perception of
the “ness.” These are also known as difference thresholds or incre-
ment thresholds. Note that the just-noticeable difference is related to
the steepness of the slope of the psychometric curve; a steep slope

vields a small just-noticeable difference. In statistical terms, the

just-noticeable difference is proportional to the standard deviation of
the underlying probability density function used to model the
psychometric curve.

Generally, the just-noticeable difference depends on the stimulus
level, and is often proportional to the stimulus value. The just-notice-
able difference is usually defined as the “ness” value where 75% of
the observers see a stimulus with this “ness” value greater than the
standard. Although widely recognized, this percentage point is based
on convention, and is not a standard. Another value can be used if it
is absolutely essential, but a clear statement of the percentage used
is mandatory to eliminate confusion.

Interval of uncertainty is the range of stimulus “energy” for which the
judgments “can go either way.” Marked in Figure 5.1 by the outer set
of dotted lines, it is the “ness” or physical image parameter interval
corresponding to the range of 0.25 to 0.75 proportion points. The
interval of uncertainty is determined by reflecting the two propor-
tions onto the “ness” axis. Most mathematical formulations of the
psychometric curve are symmetrical about the threshold, although
there are a few exceptions. When symmetry holds, the interval of
uncertainty is equal to twice the just-noticeable difference.

5.4 Method of Limits

Both the absolute threshold and the just-noticeable difference can be
determined by the method of limits. The basic procedure is to start a
sequence of presentations with a sample that does not have the
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“ness” perceptible, and keep increasing the “ness” amount in the
sample until the observer detects the presence of the “ness.” At the
point of detection, the value of the “ness” is recorded. The presenta-
tions are then repeated, starting with the sample having a clearly
visible “ness” and decreasing the level of the “ness” until it is no lon-
ger visible. The stimulus value is recorded, and after a large number
of observers, experimental proportions are estimated. Methodologi-
cal details are described in the following sections.

5.4.1 Method of Limits—Absoclute Threshold

For the determination of the absolute threshold, start with a
sequence of closely spaced stimuli exhibiting a single “ness” with
known values, xq, X3, X3, ....., X5 Stimuli of increasing “ness” value are
sequentially presented to the observer, in what is called an ascend-
ing series. As described above, upon presentation of the stimulus, the
observer 1s asked whether he or she “sees” (detects) the “ness.” If the
“ness” 18 not detected, the next stimulus in the sequence is presented
and the question is repeated. This process of presenting the sample
and asking the question is repeated until the observer responds
“ves.” When the first “yes” response occurs, the study administrator
presents the next stimulus in the sequence to be sure that the
observer actually saw the stimuli. If the response is again “yes,” the
study administrator records the “ness” value that is intermediate
between the “ness” value that was not detected and the first “ness”
value that was detected.

The study administrator repeats the process, this time starting with
the stimulus with the highest value (descending series), asking the
observer if the “ness” is visible or not. Again, when the observer says
“no” the “ness” is not visible, the study administrator presents the
next stimulus and establishes that the observer has indeed seen a
change. As before, the “ness” value that is intermediate between the
first “no” and the last “yes” is used as one estimate for the absolute
threshold.

Two major sources of observer errors are possible with the method of
limits (Gescheider, 1985). The first is called the error of habituation.
This error occurs when the observer continues to make the same
response because the stimulus sequence 1s monotonic in either an
increasing or decreasing direction. Habituation errors tend to inflate
the threshold in an ascending sequence, and cause deflation in a
decreasing sequence.

The second 1s called the error of expectation. Expectation error occurs
because the observer expects the stimulus to change and therefore
may respond by saying it has changed when it has not. This error
will decrease the threshold in an ascending series, opposite to that of
the error of habituation.

Although opposite in effect, for either the ascending or descending
series, these two different errors do not necessarily cancel each
other out in practical situations. To combat such errors,
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5.4.2 Method of Limits=Just-Noticeable Difference

experimenters vary the starting point of each series and avoid

excessively long trials.
When a just-noticeable difference is required, the method of limits

procedure is changed slightly. First, a sample with a known “ness”

A variation on the basic method of limits to reduce these errors is the
value is selected as a standard. Next, a set of stimuli that bracket the

up-and-down or staircase method. The up-and-down method wag

developed in 1943 at the Explosives Research Laboratory, Bruceton “ness” of the standard is selected.

PA, to test explosives’ resistance to weights dropped on them (Dixon

and Mood, 1948). An arbitrary height was selected and a known Starting with a “ness” value below the standard, each member of the
weight was dropped on a sample of explosive to see if it detonated. If stimulus sequence increasing in “ness” (ascending sequence) is pre-
it did, the height was decreased. Conversely, if it did not explode, the sented to the observer. The observer is then asked if the sample
height was increased. The critical height, of course, was the height at matches the standard. At the point where the observer says there is
which the weight just caused the specimen to explode. a match, the study administrator records the value of the “ness.” The

descending stimulus sequence, starting from the highest level, is
then presented to the observer, one by one, and the observer is asked
if the sample matches the standard. Again, at the point where the
observer changes response categories, the study administrator
records the value of the “ness.” To avoid errors, both the standard
and test stimuli should be simultaneously presented to the observer.

The staircase method starts like the basic method of limits with the
presentation of either an increasing or decreasing sequence of stim-
uli. When the observer switches their response from a “no” to a “yes,”
the value of the “ness” is recorded, and the study administrator
immediately changes the direction of the sequence. After a few pre-
sentations in the other direction, observers reverse their response

again. The study administrator records the “ness” value and Variations on the basic method of limits are described in Baird and

switches the sequence direction again. This method quickly “con- Noma (1978) and Gescheider (1985).
verges” about a value and is stopped after a certain number of rever-
sals. In one respect, this method is analogous to the mathematical 5.4.3 Method of Limits-Data Analysis

summing of terms in an alternating convergent series.
Data analysis for the method of limits is straightforward. If we

The eff_iciency in the. method lies in the fact that the complete assume that the data follow a normal or Gaussian distribution (see
lncreasing or decreasing sequence is not presented, lessening the the discriminal dispersion of Thurstone, Chapter 8), then either the
bquden on the observer. Bakshi and Fuhrmann (1997) used the probability density function, histogram, or the cumulative probabil-
stal.rcase method in determining the threshold for various image ity functi(;n can be completely described by two parameters. These
coding schemes by constructing a computer “movie” for stimulus two parameters are the mean, u, and the standard deviation, 0. The
presentation. mearn, u, 1s the 0.50 (50%) probability point of the cumulative density
function, and the standard deviation, o, is proportional to the
Cornsweet (1962) observed that a less-than-honest observer can bias just-noticeable difference.
the results. To avoid this possibility, he proposed a refinement on the
staircase method called the double staircase method. The basic idea For either the absolute threshold or just-noticeable difference, the
is to hgve two sequences of presentation, one decreasing and one data consist of a collection of “ness” values, x;, at the point the
increasing, and randomly switch between them. At some predeter- observer changes response on hoth ascending and descending trials.
mined -random time, the study administrator switches from the For an estimate of the 0.50 probability point, the mean of the “ness”
ascending sequence to the descending sequence, and then at another . 1 values can be used. The well known estimate of x, x, is given by
randomly chosen time interval, switches back, F undamentally, the (5.1) HEST N'fo' equation (5.1). Here N = the number of threshold estimates and x; is
idea is to keep the observer “honest” in the sense of reducing the ~ the j* threshold estimate. The average “ness” value, x, is the abso-
errors of expectation and habituation. Bartleson (1984) described lute threshold estimate and is the estimate of the point where 50% of
both the single and double staircase methods in detail. the observers say that the “ness” is just visible.
Depending upon the objective, any of the above method of limits pro- In a just-noticeable difference experiment where there is a compari-
cedures can be repeated many times with the same observer. This is son against a standard, one would expect the “ness” value for the
called a trial, and it measures the absolute threshold for that one 0.50 probability point to be equal to the standard, but this may not
observer. The alternative is to conduct the procedure using a group of be so. Recall that the “ness” at the 50% point in a just-noticeable dif-
observers representing an observer population such as the customer ference determination is called the point of subjective equality. This

is the point that the observers judge equal to the standard. Ideally,
this value should equal the standard, but it may not. In practice, if
the point of subjective equality fits within the confidence interval of

population, which would yield an estimate of the threshold for the
customer population.
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the standard, it can be considered equal. The usual statistical
hypothesis test for the difference in two means is appropriate.

Since the just-noticeable difference is proportional to the standard
deviation, we need to estimate the standard deviation. The standard
deviation, o, is just the square root of the variance. Under the normal
or Gaussian distribution assumption, the usual unbiased estimator
for 0 is 5, and can be calculated from equation (5.2).

Using the conventional definition of just-noticeable difference, the
0.75 probability point can be computed under the normal assump-
tion by scaling the estimate of the standard deviation, s, by a factor,
This factor equals 0.67449, and is the number of standard deviations
of a unit normal distribution that equal 0.75 probability. Thus the
just-noticeable difference, JND, is calculated from equation (5.3).

If there is concern that the threshold may be different for the ascend-
ing and descending series, then the “ness” data can be segmented.
into two groups. From each group the mean and standard deviation
are estimated according to equations (5.2) and (5.3), and the usual
t-test for the differences in the means can be performed. The null
hypothesis of the t-test is no difference in the means, or thresholds,
for the ascending or descending series. Testing the hypothesis that
the standard deviations are equal might also be prudent because the
just-noticeable difference is derived from this estimate. Any elemen-
tary statistics textbook can be consulted for details regarding
equal-mean and equal-variance hypothesis tests.

5.4.4 Method of Limits—Considerations

The biggest advantage of the method of limits is its efficiency; a
threshold of known precision can be obtained with a few trials. In
any practical application of the method, there are a few factors that
the study administrator needs to consider. Cornsweet (1962) sug-
gested procedural tactics in four key areas.

1) Where to start the “ness” sequence.
2) Initial “ness” step size.

3) When to stop collecting data.

4) Modification of step sizes.

Where to Start the “Ness” Sequence—For maximum efficiency, the
study administrator needs to have a good idea of the threshold or
just-noticeable difference, since the series needs to be started near
and should surround the threshold or just-noticeable difference. Of
course, if the threshold were known, there would be no need to collect
the data.

An approximate threshold or just-noticeable difference estimate can
be obtained by conducting a pilot experiment with only a few observ-
ers. Knowledge of the threshold is not critical for the method, for
after a few trials the observer starts to hover around that value,
assuming no adaptation effects. What is critical is the stimulus set
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must bracket the threshold, and this may be difficult for image
“nesses” that are not easy to control.

Initial “Ness” Step Size—-A step interval that is too small will require
a great many trials, while a too-large interval will not enable suffi-
clent precision in the threshold estimate. Arguments suggest that
the “ness” interval should be equally spaced logarithmically, bgt
these arguments are based on classical psychophysics and there is
nothing to suggest that logarithmic spacing should be a requirement
for image “nesses.” A linear “ness” step size or increment is often
used for image “nesses” (Hamerly, 1983; Hamerly and Dvorak, 1981;
Zwick, 1975). The optimum step interval is the just-noticeable differ-
ence (Dixon and Massey, 1948).

When to Stop Collecting Data—Knowing when to stop the data collec-
tion series contributes to the efficiency. The more trials, the better
the threshold estimate, but data quality may be compromised if
observer fatigue and boredom take over. Establishing the number of
response changes to be used as the stopping criterion before starting
the study is the simplest and most rudimentary method. Main-
taining the number criterion during the study is also important
because it affects the threshold estimate. More sophisticated and
more complex approaches are available. Wetherill and Levitt (1965)
provided additional alternative stopping rules that can be used for
estimating percent “yes” responses other than 50%.

Modification of Step Sizes—As the observer converges on the thresh-
old value, modifying the step size under some circumstances is possi-
ble. Initial steps may be large, but as the threshold is approached (as
indicated by the change in response category), the interval may be
decreased.

If automating the threshold determination task is possible, sophisti-
cated procedures incorporating the considerations given above are
available. PEST (Parameter Estimation by Sequential Testing), is
an adaptive procedure proposed by Taylor and Creelman (1967). An
improved version is called the Best PEST by Lieberman and Pent-
land (1982), who also provide a simple BASIC computer program.
The PEST methods are quite efficient and use the statistical proce-
dure called maximum likelihood to estimate the threshold.

QUEST (Watson and Pelli, 1983), a method similar to PEST, uses
Bayesian statistics to compute the threshold. It makes optimal use of
all the data to both estimate the threshold and stop taking data
when the estimate is within a certain confidence interval. A rudi-
mentary BASIC program is provided to carry out the necessary cal-
culations as the stimuli are being presented.

Comparing the PEST and QUEST statistical threshold estimation
techniques via computer simulation, Emerson (1986) concluded that
the Bayesian method produces a threshold that has a smaller bias
and lower variance. However, his simulations were limited with
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respect to the parameter space that he explored, so this is not the
last word on the topic.

F_or the serious user of method of limits, implementation of either the
simple Best PEST or the QUEST adaptive technique is recom-
mended. No MathCad® sheets for these procedures are provided.

5.5 Method of Adjustment

The method of adjustment goes under several pseudonyms: method
of_ average error, method of reproduction and method of equivalent
stimuli. Basically the method of adjustment is very similar to the
method of limits, except the observer adjusts the “ness” by turning a
knob, moving a slider, or using another control method.

First, a random value of the “ness” is selected by the study adminis-
_trator. Next, the observer adjusts the “ness” of the sample until it is
Just visible (for an absolute threshold determination), or until it
matches the standard (when determining a just-noticeable differ-
ence). At this point the test administrator records the “ness” value
and then randomly selects a new “ness” value. ’

Like the method of limits, this procedure can be repeated many
times by one observer or once by many observers. The number of
observers depends on the precision of the threshold needed.

Applying the method of adjustment to imaging situations requires
the "ness” to be continuously adjustable by the observer. For complex
“nesses,” the method of adjustment has a major drawback, namely
the difficulty of changing the “ness” instantaneously in response to
an mput from the observer. The method of adjustment has been used
to identify thresholds of light and sound levels, but few reported
studi’es have used the method of adjustment for typical imaging sys-
tem “nesses.” However, as computer power increases and knowledge
of the Physical Image Parameters comprising “nesses” becomes more
comprehensive, the method of adjustment will find more widespread
application.

A particular advantage of the method of adjustment over the method
of limits is the active involvement of the observer. Actively engaging
the observer raises interest, reduces boredom and tediouvsness, and
generally improves the quality of the data.

5.5.1 Method of Adjustment-Data Analysis

Data analysis for the method of adjustment follows the same course

as the method of limits. The data to be analyzed consists of the “ness”

control setting (the “ness” value) obtained either during the thresh-

old adjustment experiment or an adjustment-to-standard experi-

kJf:lent. All the data analysis methods in Section 5.4.3 can be applied
ere.

Table 5.1 Data Summary for Method of
Constant Stimuli

Sample ID  “Ness” Value

A

£ Xl
B X,
( X,
" Xk

Proportion, p, = £/N
f,/N
f./N

f./N

/N
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5.6 Method of Constant Stimuli

In the method of constant stimuli for determining an absolute
threshold and just-noticeable difference, the “constant” is a selected
set of samples (stimuli) that remain fixed throughout the experi-
ment. This contrasts to the varying nature of the stimuli used in
the method of limits and method of adjustment. The set of samples
is usually chosen such that the sample member with the lowest
level of “ness” is never selected by the observers and the sample
with the highest “ness” level is always selected by all of the observ-
ers. Usually a pilot study must be run to identify the never-selected
and always-selected samples. A typical sample count is between
five and ten.

Unlike the method of limits and method of adjustment, the method
of constant stimuli collects data that can be analyzed as a
psychometric curve.

5.46.1 Method of Constant Stimuli-Absolute Threshold

Instead of responding to a standard or reference, the observer is
asked to indicate if the “ness” is detected in each sample. Samples of
the set are presented to the observer in a random sequence, and a
response is requested during each presentation. If the observer
answers “ves” to the “can you see the ness” question, the study
administrator increments the frequency counter opposite the sample
“ness” value. The data is recorded in a form like that in Table 5.1. In
this table the left-hand column is the sample or stimulus identifica-
tion. The middle column is the “ness” value of the sample, x;, deter-
mined independently by way of a Visual Algorithm connecting the
“ness” to the Physical Image Parameters. The third column is the
total number of observers responding “yes” when the sample was
presented, f.. Division by the total number of observations, N, yields
the proportion, or fraction, of “yes” responses.

At the end of the data collection process, the study administrator has
the samples with the known “ness” values and the proportion of
times that the “ness” was seen or detected by the group of observers.
This data is plotted as a curve like that shown in Figure 5.1, where
the axis is the “ness” values, x;, and the ordinate is the corresponding
f/N. This plot is the experimental data from which the psychometric
curve and its parameters will be estimated.

5.6.2 Method of Constant Stimuli-Just-Noticeable Differ-
ence

TFor determining just-noticeable differences, the observer is given the
reference or standard and a sample. The ohserver’s task is to com-
pare each sample with the reference sequentially and indicate if the
sample has more of the “ness” than the reference. A “yes” response is
recorded in the data sheet by incrementing the frequency counter.
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5.6.3 Psychometric Models-Basic Data Analysis

When the observer makes a “ves” response, a one is scored for sample

x;, and nothing is scored when the response is “no.” The proportion,
pi, of “yes” responses for sample x; is just the sum of the responses
divided by the total number of observers, N, that judged that specific
stimulus, fi/N.

Two data vectors are available, the known values of the “nesses” and
the proportion of “yes” responses for each sample. To analyze the
data, we need a suitable model of observer response. In the context of
absolute thresholds and just-noticeable differences, these models are
called psychometric models, psychometric functions, or psychometric
curves.

For all psychometric models, the dependent variable is the fraction
or percent of “ves” responses. A “yes” response can mean either the
stimulus was detected, or a sample was judged greater than a stan-
dard. These data are empirical estimates of probabilities.

The general estimation problem is to determine the value of the
“ness” at some fixed probability or proportion of a “yes” response. By
convention, the fixed percentage point, the criterion, for a just-notice-
able difference is the 0.75 or 75% percentage, which is halfway
between pure chance, 0.50, and perfect, 1.00 (Torgerson, 1958).
Recall that the just-noticeable difference is the “ness” distance equiv-
alent to the difference between the 0.50 and 0.75 proportion points.
The 0.75 proportion is a convention and is strongly recommended.
The criterion point of threshold estimation is the 0.50 point.

A plot of the empirical probabilities or proportions versus the “ness”
value is called a psychometric curve, or sometimes the fre-
quency-of-seeing curve (see Figure 5.1). If many observers are used,
the data will follow a smooth curve. With few observers—a common
occurrence-the plot of the empirical proportions may vary consider-
ably from a smooth curve.

One could draw a smooth psychometric curve through the data and
estimate the criterion “ness” value, but such an estimate may not be
very precise. A quantitative alternative is to hypothesize a model, or
a functional form for the psychometric function, and fit this function
to the experimental data. Knowing the functional form of the
psychometric curve enables a reliable estimate of the “ness” value for
the absolute threshold or just-noticeable difference.

Models or techniques called linear probability models, logit and
probit models, and logistic regression analysis provide the tools for
estimating the parameters of the psychometric function. These tech-
niques are extensively used in areas where the response to a ques-
tion either is binary (yes/no) or limited to a few categories.

The basic idea of linear probability models is to determine empiri-
cally what factors account for the probability of a “yes” response by

5.49) P, =F(a,+Bx,)
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fitting a model to empirical data. An excellent series of monographs
(Aldrich and Nelson, 1984; Liao, 1994; Menard, 1995) is available
from Sage Publications that discusses these models and techniques
in more detail.

A strong connection exists between the functional forms of the
psychometric curve and the models of indirect scaling covered in
later chapters. The psychological process of deciding if two samples
are different in a paired comparison situation is not conceptually dif-
ferent from the process of deciding if a sample is just-noticeably dif-
ferent from some standard. In fact, Gaussian and logistic functions
are two functions used extensively as models for psychometric curves
and indirect scaling, as we will see in later chapters.

Formally, equation (5.4) states that P, the probability that sample
(stimuli) j is judged to have more of the “ness” than the standard s, is
some linear function, F{( ), of the “ness” value, x;. This formulation is
also called a linear probability model. The function F() distinguishes
the type of psychometric, or linear probability model.

Two popular psychometric models—Gaussian and logistic—and meth-
ods to estimate the parameters o and [ of equation (5.4) are
described in the next sections.

5.6.3.1 Gaussian Psychometric Model

The function F( ) for the Gaussian model is shown in equation (5.5),
and denoted for convenience as @(w, + B x;,).

The solution to equation (5.5) is just the inverse, @ /(P;,) = a, + 1= 2
and is called the probit in some contexts and z-value in others. No
closed form for the inverse Gaussian probability function is known,
s0 the inversion requires either tables or numerical computer rou-
tines for a solution.

The simplest solution method, although not necessarily the best from
a statistical point of view, is to estimate o, and [3, as follows:

1) Convert the proportions, Pj, to standard normal z-values
via a table of normal probability giving z = «; + f; x;. Note
that the x;, are the known or measured values of the “ness”.
Proportions of 1.00 and zero correspond to indeterminate
z-values. One solution that substitutes 1/2J for the zero
proportion and I - 1/2J for the unity proportion can be
applied here. (This technique is used again in Chapter 9.)
However, if the data includes more than one adjacent zero or
one proportion, Bock and Jones (1968) suggest applying the
above rule only to the first value in the sequence and
eliminating the remaining zeros and ones from the analysis.

2) Use a linear least squares-fit (linear regression) to find
the best line for z = «, + B, x, thus yielding estimates of the
slope, fi;, and the intercept, o,.
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Once the parameters of the psychometric curve have been estimated,
other values of interest need to be determined: the threshold and/or
the just-noticeable difference, and the point of subjective equality.

1) The absolute threshold is the “ness” value corresponding
to z = 0, or where the probability of detection is 50%. For a
Gaussian function, it can be determined from o, + B, Xy = 0,
giving Xy, = -0,/ P, as the absolute threshold estimate. In a
just-noticeable difference experiment where a standard is
used, the point of subjective equality (PSE) is also the “ness”
value corresponding to z = 0, and ideally should equal the
“ness” value of the standard. If it does not, this error is called
the Constant Error, CE, and is defined as CE = PSE( “ness”
- standard(“ness”).

2) The just-noticeable difference is normally defined as
one-half the average of the “ness” interval between the 0.25
and the 0.75 probability points. For the normal distribution,
the z-values for these probability points are +0.67449. The
upper (0.75) proportion point, x, is computed using (0.67449 -
as)/P, and the lower (0.25) proportion point, x;, is computed
using (-0.67449 - &) /B,. The average just-noticeable difference
is computed using (x, +x;)/2. If the “ness” values have not been
transformed, say by taking the logarithm, then the Gaussian
psychometric model is symmetrical with respect to z = 0. When
the Gaussian psychometric model is symmetrical, it is
sufficient to take x, - xpsp as the estimate for the just-noticeable
difference.

The basic criticism of this least squares approach is that it minimizes
the squared deviations about the z-values, not the experimental pro-
portion values, Pj. Bock and Jones (1968), Aldrich and Nelson

(1984), and Liao (1994) described other computational techniques

such as weighted least squares, minimum chi-square, and maximum
likelihood, with different minimization objectives.

With today’s capable data analysis packages, carrying out a nonlin-
ear least squares-fit to minimize the squared deviations about the
proportions is very convenient. Other considerations include good-
ness-of-fit of the psychometric model to the data and confidence
intervals for the point of subjective equality and the just-noticeable
difference. The confidence interval on the parameters will be
addressed later in this chapter.

MathCad® sheet yndgl .mcd provides a least squares solution to the
Gaussian psychometric model.

5.6.3.2 Logistic Psychometric Model

The logistic model has its roots in toxicology, but has been applied
recently in the social sciences and psychophysics areas. Equation
(5.6) describes the logistic psychometric function.
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The lower equation on the far right-hand side of equation (5.6) is the
definition commonly found in the social science literature. The one
above this is often found in the psychophysics literature, no doubt
because of its compactness.

Expanding the exponent(s) of equation (5.6) to include other factors
in linear combinations, yields what are called linear probability mod-
els. These models do not seem popular with psychophysicists, but for
modeling “nesses” that are combinations of two or more Physical
Image Parameters, they offer some additional pessibilities. A linear
probability model could be used to establish a “ness” threshold in
terms of the relevant set of Physical Image Parameters if the Visual
Algorithm is known (Engeldrum, 1998).

Equation (5.6) can be solved directly for o, + B; x;;, which yields equa-
tion (5.7).

The quantity [n[P;/(1 - Py)] is called the logit, and this formalism is
often called the logit model. Note from equation (5.7) that the logit is
a linear function of the “ness” values, and is related to the “nesses”
in the same conceptual way as the Gaussian model.

Logistic parameter estimation proceeds similarly as with the
Gaussian psychometric model:

1) Convert the number of positive (“yes”) responses, rj, to
logits, [, using In[(r;,+ ¥2) [ (J - rjs + ¥%2)] = o5 + Bs x;5. Note that
the x;, are the measured values of the “ness,” from, say a
Visual Algorithm, and «/ 1s the number of observers that
responded to that particular sample. Adding the % factor in
the above equation reduces the slight bias in the logits that
result from taking the simple ratio of r;/.f as the estimate of
the proportions (Anscombe, 1956). An added advantage of
the 4% factor is that it eliminates the zero and 1.00 proportion
problem,

2) Use a linear least squares-fit (linear regression) to find
the best fit for [ = &, + B %, thus yielding estimates of the
slope, B;, and the intercept, o,. An alternative option is to use
nonlinear least squares estimation software to fit equation
(5.6) directly.

Once the parameters of the psychometric curve have been estimated,
we need to compute the threshold and/or the just-noticeable differ-
ence, and the point of subjective equality, (PSE). (In the field of toxi-
cology the threshold in a logistic psychometric model is also known

as the “lethal dose.”)

1) The threshold, or point of subjective equality, is the value
where logit, I = 0, or where the probability of detection is
50%. This value can be determined from o, + ; x;, = 0, giving
%js =-0,s/ P, as the threshold estimate. Note that this estimate
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is identical to the estimate using the Gaussian psychometric

function.

2) The just-noticeable difference is normally defined as the
average of the “ness” interval between the 0.25 probability
and the 0.75 probability points. For the logistic model, the
values for these probability points are +1.0986. The upper,
DI, is computed using (1.0986 - o,) /B, and the lower, DI, is
computed via (-1.0986 - «,)/P,. The just-noticeable difference
or AS estimate is computed by (DI, + Di))/2. Because of the
symmetry of the logistic function, working with either the
upper or lower probability points will suffice, providing the
“ness” scale has not been nonlinearly transformed.

Other computing options are available for determining the parame-
ters of the logistic function (Bock and Jones, 1968; Aldrich and Nel-
son, 1984; and Liao, 1994). The distinction among the methods is the
variance in the estimates of o, and f,. In a study comparing maxi-
mum likelihood and minimum chi-square estimation procedures,
Berkson (1955) could find no compelling reason for one method over
another, The differences in the results from the two estimation
methods hinge on the symmetry of the “ness” values around the
point of subjective equality, and how the zero and unity proportions
are treated (Bock and Jones, 1968). For “ness” values symmetrical
about the 0.50 proportion point, and proportions in the 0.05 to 0.95
range, all the methods produce essentially equivalent results. How-
ever, the maximum likelihood method is very popular, and is avail-
able in many popular computer statistics packages.

A least squares solution for the logistic model can be found in the
MathCad® sheet indll.mecd.

P, =1-e (%) 5.6.3.3 Other Psychometric Models

The Gaussian and logistic models are not the only ones available.
Watson (1979) describes the use of the Weibull (1951) distribution.
Watson also provides a maximum likelihood method for estimating
the parameters. The general form of the Weibull probability is given
by equation (5.8), where « and B are parameters to be estimated. A
more general form that includes guess rates and “finger error rates”
is described by Watson and Fitzhugh (1990).

As we will see in the section on confidence intervals, and in later
chapters on indirect scaling, it is extremely difficult in practice to
choose the “correct” psychometric model. The standard assumption
1s to use the Gaussian psychometric model; without some theoretical
assumptions or a large number of observers, little rationale exists for

selecting others.

5.6.4 Variations on the Method of Constant Stimuli

Variations on the basic method of constant stimuli are available and
can be applied in many practical circumstances. They are all
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equivalent, in that they all generate data for fitting a psychometric
curve. Selection of a particular method is largely a matter of practi-
cal working conditions and time available for data collection. Some of
these additional methods are described next.

5.6.4.1 Paired Comparison Variation

One useful variation on the method of constant stimuli is standard
paired comparisons with some additional steps (Guilford, 1954;
Culler, 1926). It is assumed that a set of closely spaced stimuli is
available, and the “ness” values of this set are known. The
paired-comparison method is a sequence of two-sample comparisons.
The frequency or proportion data matrix forms the basis of scale
value determination (see Chapter 8). Inherent in the paired-compar-
ison data collection method is the method of constant stimuli, where
each sample serves, in effect, as a standard. There are several differ-
ences in both the method of sample presentation and of data collec-
tion between the standard paired-comparison data collection method
and paired comparisons with constant stimuli.

First, all combinations are presented to the observer with “left-right”
order tracked, which will average out position effects. A comparison
of pair A-B, with A on the left and B on the right, 1s assumed to be
different from the comparison of pair B-A. The major consequence of
this change is the increase in the number of comparisons to n(n-1)
from n(n-1)/2, resulting in a doubling of observer effort. If pairs of
identical samples are available, then like samples can be compared:
A-A for example. These self-comparison results can be used to esti-
mate observer guessing rates. With this addition, the full n2 number
of comparisons is required.

Secondly, in the standard paired-comparison methodology, when the
observer selects the member of the pair that has more of the “ness” or
is preferred, one is added in the column of the frequency matrix
when the observer chooses the column sample over the row sample
(see Chapter 8). Standard paired-comparison methodology also
assumes that the comparison of A-B is the same as B-A, and that in
an A-A or a B-B comparison, one sample will be selected over itself
50% of the time. A result of the last two assumptions is that only
n(n-1)/2 comparisons need be made, and that the proportion matrix
is symmetric; that is, p;; + p;; = 1.

Finally, the analysis of the data in this variation proceeds in quite a
different manner than in standard paired-comparison scale
development. The objective In standard paired comparison is to gen-
erate scale values, but the goal of this constant stimuli variation is to
estimate the psychometric function.

A real advantage of this method is that a psychometric function, and
therefore the just-noticeable difference, can be determined for each of
the n samples used in the paired comparison. This may offer real
convenience and time savings in some applications.
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5.6.4.1.1 Data Collection

Application of the paired-comparison method to the determination of
absolute thresholds or just-noticeable differences requires two modi-
fications to the standard paired-comparison data collection proce-
dure:

1) All pairs are presented to the observer, a total of n(n-1)
comparisons. This means there is a distinction between the
“left” and “right” in a pair, and both pairs are presented. If
exact duplicate samples are available, then perform the
comparison of the sample with itself, for a total of n2?
comparisons. This will yield estimates for p; rather than
using an assumed (.50 probability. These estimates can be
used as probabilities in correcting for observer guessing (see
Section 5.9).

2) Upon presentation of sample pair ij, ask the observer to
select the one sample that has the highest visible “ness.” Add
one to the frequency data matrix, F, at location ij, row
column notation. Recall that sample i is on the “left,” or the
first presented, and sample j is on the “right” or the second
one presented. The pair ji is the space-reversed pair; i.e., j is
on the left and i is on the right.

3) Repeat the process for J observers. See Section 5.8 on the
number of observers for an appropriate selection of .J.

5.6.4.1.2 Data Analysis

The generation of a psychometric curve for each sample (stimuli)
proceeds as follows:

1) Take the n by n frequency matrix of data, F, and divide
each entry by the number of observers that observed each
combination. This yields an n by n proportion matrix, P, that
has values from zero to 1.00.

2) Form two data vectors, x and y. The x vector contains the
physically measured “ness” values. The n y vectors are the
columns of the proportion matrix, P. The two vectors are the
empirical data that comprise the axis, x, and ordinate, y,
values, describing the n psychometric curves.

3) Use any of the methods described in Section 5.6.5.1 to fit
each psychometric curve and determine the absolute
threshold or the just-noticeable difference. Either Gaussian
or logistic psychometric curves are applicable.

Generally, an excessive data collection effort is required to use this
technique. Yet under some circumstances it may be useful, particu-
larly when no specific standard is available for a comparison. Often
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in imaging applications, standard samples cannot be generated with
precisely known values of “nesses.”

Incorporating paired comparisons into the method of constant stim-
uli can reduce bias, as well. After multiple presentations with a fixed
reference, even though left-right may be randomized, it is possible
when using the standard method of constant stimuli for the observer
continually to select the reference, essentially guessing. In this
paired-comparison variation, the presentation of all possible pairs
effectively “randomizes” references, so the observer will be less likely
to give a biased response.

5.6.4.2 Sorfing

Sorting stimuli according to some criteria is an easy task for most
observers. This is a variation on category scaling, except the number
of categories is two-"see a ness,” or “not see a ness.”

The task is to have the observer sort a set of stimuli into two piles
according to whether the “ness” is present (detected) or not present
(not detected).

Tor absolute threshold determination, the observer puts each sample
into a pile marked “no ness” if the “ness” is not visible, and the
remainder goes in a second pile marked “yes ness.” The above is
repeated many times by one observer, or performed once by many
observers.

For determining just-noticeable differences, there is slight variation
in the experimental procedure. Typically there is a comparison stan-
dard, and the observer is asked to put the stimulus into the “greater
than the standard” pile if the stimulus is judged to have a “ness”
value greater than the standard. The second pile collects samples
with “equal to or less” of the “ness” than the standard.

5.6.4.2.1 Data Collection

Using the sorting method, data is recorded in the following manner.
On the data sheet two columns are constructed, one that contains
the “ness” values of each sample, and a second that contains the
response data. If a sample is judged by an observer to have the “ness”
in question (a “yes”), a one is added to the number in the second col-
umn opposite the sample. Over a large number of observers, there
are an increasing number of “yes” responses as the “ness” value
increases. Dividing the number (frequency) of “yes” responses by the
total number of observers (or observations if it is one observer) gives
the proportion (probability) for each value of “ness.” This is the basic
psychometric curve data.
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5.6.4.2.2 Data Analysis

Once the proportions are generated, any of the methods described in
Section 5.6.3 can be applied to compute the psychometric curve
parameters, threshold and just-noticeable difference.

5.6.4.3 Triangle or Three-Sample Method

The previous method of constant stimuli variation used two samples
(sample stimuli and the standard or reference) in a comparison.
There are some cases where a “ness” may not be clearly defined, but
determining an absolute threshold or a just-noticeable difference is
required. The three-sample procedure (Bock and Jones, 1968) and
the triangle tests (Meilgaard, Civille and Carr, 1991) provide alter-
natives in these situations.

As the name implies, three stimuli or samples are used in the judg-
ment. Two of the three samples are the same, and one is different.
The observer’s task is to pick the one that is different: the odd stimu-
lus. For threshold determination, two of the three samples would
have a “ness” value of zero and would appear in all trios. In a
just-noticeable difference determination, two samples of the trio
would be the reference sample. Suppose the reference, or no-“ness”
sample, is designated x,, and the set of samples x;, j = I...k. The sam-
ples are presented in the sequence x, x4, x;, with the spatial or tem-
poral position of x; randomized in each presentation (Bock and Jones,
1968).

An advantage of the three-sample method is the ability to decide if
the observer is “correct” in selecting the sample. If the study admin-
1strator knows the correct answer, then it is possible to detect when
the observer is guessing and apply a correction (see Section 5.9). This
type of paradigm is called a three-alternative-forced-choice. With two
samples it is called the two-alternative-forced-choice.

One possible disadvantage to this technique for imaging applications
is the requirement of duplicate samples at each level of the “ness.”
Making exact duplicates of images is possible with some imaging
technologies, but often it is not. When it cannot be assured that two
of the samples are identical, this method is not appropriate for
threshold or just-noticeable difference determination.

5.6.4.3.1 Data Collection

Tabulating the response data for the three-sample method is slightly
different. The basic data arrangement of Table 5.1 is used. Here, the
counter is increased only when the correct response is given. The cor-
rect response is known by the location, or position, of the stimulus.
For example, if the “odd” sample was the first in a row of three and
the observer selected the first sample, this would be a correct
response. The selection of any other stimulus is incorrect. A zero, or
no increase in the counter, is tabulated when an incorrect response is
given.
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5.6.4.3.2 Data Analysis

Analysis of the frequencies of correct response proceeds as with other
scaling exercises. Each frequency is divided by the number of judg-
ments ylelding the proportion of correct responses, P,;. These propor-
tions are then corrected for guessing using equation (5.9) (see Section
5.9 for details).

If an observer just guesses, then there is a 1/3 probability that a cor-
rect response will be given. Thus the lower limit on the proportions is
1/3 and the upper limit is 1.00. Note that the corrected proportions,
P';; are bounded by zero and one.

The corrected proportions from equation (5.9) can be used in calcu-
lating the psychometric function parameter estimates as described
in Section 5.6.3.

5.7 Confidence Intervals on Estimates

Once the absolute threshold and the just-noticeable differences are
estimated, a further consideration is the precision of these estimated
values. A simple method is presented here based on the usual
assumption that the observers’ responses are drawn from a binomial
distribution.

After the parameters a, and B, of either the Gaussian or Logistic
models are estimated, the shape and location of the psychometric
curve is considered known in relation to the “ness.” For computing
the confidence intervals on the proportions, we accept the estimated
parameters as defining the psychometric curve. Once the upper and
lower proportions, Ty, and T, are determined, these are con-
verted to “ness” scale values using the fitted psychometric model.
Confidence intervals for any other proportion can also be determined
using this method.

The usual approach is to solve the binomial distribution, given the
number of “yes” responses and number of observations, for the prob-
ability p of the distribution (Bock and Jones, 1968). This is a little
cumbersome, and a simpler method giving the exact confidence
interval is available using the F-distribution (Sachs, 1984; Bock and
Jones, 1968).

Let » = the number of “ves” responses, J = the number of observers,
o = the tail probability or risk, and F, ;.- the F distribution with tail
probability y and degrees of freedom v/, v2. Note that since the num-
ber of observers, «J, is known, the number of correct responses, r, can
be estimated for any specific proportion from the relation r = propor-
tion times .J. This enables confidence interval estimation for any pro-
portion that results from integer r and /. The following equations
(5.10) give the upper and lower proportions, m,,,. and .., as the
I1-y confidence intervals.
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Once 7. and 7y, are determined from equations (5.10), the upper
and lower confidence limits on the “ness” for the (raussian model are
determined by solving equation (5.5), ®(T,,p.) = &, + BsxXypper, for
Xuppers AN s0lVING O 1(Tyer) = e + By Xigyers fOF Ko For the logistic
model. the appropriate equations are, In[1, /(I - Tuppe)] = 05 + B,
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In all practical experiments, the number of observers, -J, is a finite,
usually small number. One significant consequence is that the pro-
portions are quantized to values that are multiples of 1/.J. For exam-
ple, if there are twenty observers, then the proportions can only have
values that are increments of 1/20 = 0.05. This means that when
using equation (5.10) to estimate the confidence limits, the intervals
are tied to the number of observers; of and r are integers. When com-
puting the confidence intervals for the proportion of 0.75, the conven-
tion for a just-noticeable difference, it may not be possible to compute
the confidence intervals for exactly 0.75. If, for example, only 19
observers were used in a study, then the proportions are quantized
at 1/19 = 0.0526 increments, and the closest values to the 0.75 pro-
portion are 14/19=0.7368 and 15/19 = (.7895. One could choose the
closest proportion from which to compute the confidence limits:
14/19 = 0.7368 in this case. Another possibility is to compute both
the upper and lower confidence limits for the two closest values and
then compute a weighted average, weighting according to the differ-
ence to the desired proportion.

5.8 Number of Observers

The number of observers and the confidence limits are two sides of
the same coin. Knowing a threshold or a just-noticeable difference to
high confidence, small error, requires a large number of observers.
Alternatively, if the objective is to find the absolute threshold or
just-noticeable difference of an individual observer (not a common
situation in product development), the judgments are replicated
about fifty to one hundred times by a single observer. For n samples
this means 7100n total judgments from one observer!

In practical cases, interest lies in the threshold or just-noticeable dif-
ference of a population—specifically, the population of customers. It
may or may not be easy to obtain one hundred or so observers, so
practicality dictates the actual number to be used in such studies.

The number of observers can be computed directly once one knows
the desired confidence interval. However, this assumes that we know
the precision on the proportions. The exact solution is to solve equa-
tions (5.10) for N, with 7, and 7., assumed known. This is
tedious, so a good approximation is in order,

Using the normal approximation to the binomial distribution, a sim-
ple approximation can be developed for the number of observers, ¢,
assuming a known confidence interval on the proportions, T, -
and .- (Sachs, 1984). This approximation is given in equation
(5.11).
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In equation (5.11) z = the z-value from a table of the normal distribu-
tion, for 95% confidence, z = 1.96. This approximation is quite good
for proportions around 0.50, the absolute threshold. At high and low
proportions, equation (5.11) is not as accurate because of the poor
approximation of the binomial distribution. The range of useful pro-
portions for using equation (5.11) is about 0.20 to 0.80. In equation
(5.11) the maximum value of J occurs when n = 0.5, and (5.11)
reduces to [2,/(Typper- Tiwer)] % & conservative estimate for oJ.

If the slope of the psychometric curve B, is known by some previous
experiment, then the number of observers, .J, can be estimated in
terms of the confidence interval on the “ness,” Ax. Equation (5.12)
gives a conservative approximation for /.

Both equations (5.11) and (5.12) give observer estimates that are
often higher than required. If a precise estimate of observers is
required, the rough value can be fine tuned by substituting the com-
puted value of «J into equation (5.10) and estimating the confidence
limits about the selected proportions. Iterating between equations
(5.11) and (5.10) will improve the estimate of ./,

5.9 Correcting for Observer Guessing

There is a distinction between the different variations of the method
of constant stimuli or method of limits, and the standard method.
The distinguishing feature is that the study administrator knows
when the observer 1s “correct” in the standard method. Two ways for
the study administrator to know if the observer makes the correct
selection are to present the stimulus in a known spatial (or temporal)
location, or present the stimulus with other stimuli that are
“blanks.” For threshold studies, the spatial location is common, while
the “blank” method is more applicable to just-noticeable difference
investigations. If the observer selects the wrong location or the
blank, the study administrator knows the observer made an error.
This construct enables a determination of observer error, guessing,
and is called a two-alternative-forced-choice paradigm. This is con-
trasted with the typical method of limits and method of constant
stimuli techniques that are “yes/no” methods and usually do not offer
an estimate of observer error, or “guessing rate.”

When observers cannot decide which sample to choose in the judg-
ment task, they may guess. Observers may also be instructed to
guess if they cannot readily determine which sample to choose. In
fact, a guessing strategy that always selected the reference sample
would lead to an erroneous 0.50 correct proportion.

In a threshold determination where there are no extraneous influ-
ences on the observer, one would expect the proportions of “ves I see
the ness” to drop to zero when the “ness” reaches some small value,
and climb to 1.00 when the “ness” reaches some high value. If in fact
the proportion of “yes” responses does not drop to zero for very low
“ness” values, it 1s an mndication that the observer is resorting to
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guessing. In some situations the proportions of “ves” responses follow might be prudent if the experimental conditions allow. On the other
the expectation of the observer that the stimulus will appear. hand, when using a group of observers, a realistic assumption is that

. their individual guessing strategies are highly variable and a correc-

One effect of guessing is that the proportion (probability) of correct tion for guessing is not needed.

responses estimated from the number of correct responses may not

be accurate. This is a consequence of a forced-choice experiment. A Although the methods in this chapter are described in terms of a
simple correction for guessing can be made, as the following analysis “yes/no” paradigm, recasting them into a two-alternative-forced-choice
illustrates (Frieden, 1983). method is possible. By using space (location) or time to vary the dis-
play of the reference stimulus, the study administrator knows the cor-
~ _ Let P(correct) = the probability of a correct decision, P(cor- rect answer, and can use the guessing model described here to correct

(5.13) P(correct) B P(correctldeteczs)f’(detects) rect |detects) = the probability that the observer gives the correct the empirical proportions. These corrected proportions can then be

+P(correct|guesses) P guesses)  response given that he detects a “ness” or a difference in the samples, used in the psychometric curve estimation procedures described in
P(detects) = the probability that the observer actually detects a Section 5.6.3.
“ness” or a difference, P(correct | guesses) = the probability that the
observer gives the correct response given that he guesses there is a More sophisticated psychometric models with parameter estimation
“ness” or a difference in the samples, and P(guesses) = the probability methods that include guessing and other factors, are available (Wat-
the observer guesses. The Plcorrect) is represented by equation(5.13). son, 1979; Watson and Fitzhugh, 1990).
P(correct) -3 It is reasonable to assume that if the observer detects a “ness” or a 5.10 Imaging Thresholds and Just-Noticeable
(5.14) P(detects) = px =——— . 2 difference, a correct response will always follow, so P(correct | detects) Differences
I3 =1.00. Over many observations, it seems rational to suppose that, on
=2P(correct) -1 average, the P(correct | guesses) = . One last assumption is that the A limited amount of information exists in the literature on thresh-
observer always guesses when there is no detection of the difference, olds or just-noticeable differences for imaging “nesses.” The lack of
so P(guesses) = 1-P(detects). Substituting these assumptions into Visual Algorithms to be used in calculating the “nesses” is at the root
equation (5.13) and solving for the probability that the observer of this paucity. Some work has been done, though, in the study of
detects a difference between two samples or stimuli, yields equation oraininess thresholds in the context of a linear probabilty model
(5.14). (Engeldrum, 1998), and colorimetric tolerances for image reproduc-
_ ) tion (Stokes, Fairchild and Berns, 1992).
MP(correct) -1 This result can be generalized for_ M-choice methods, such as the
(5.15) P(detectS) =p¥=- M1 three sample method, (M = 3) yielding equation (5.15). Generally, threshold and just-noticeable difference efforts have
- focused on physical image parameters. Threshold determinations are
The corrected probability values, p*, given by equation (5.15) are available for the following physical image parameters:
used as the proportion values to estimate the parameters of the
psychometric models described in Section 5.6.3. * Line and edge boundary variations (Hamerly and
Springer, 1985).
In the practical application of the guessing correction, defined by + Sinusoidal reflectance variations, “banding” (Burningham,
equation (5.14), some problems arise. First, it is over many observa- 1994).
tions that the probability of a correct response given the presence of a
“ness” is expected to be 0.50 (Pfcorrect |guesses) = 0.50). For any f A few physical image parameter just-noticeable differences have also

observer, the proportion can be greater or less than its expected been reported:

value. Second, the above analysis assumes that the observer always

guesses when there is no detection of the “ness” or a difference, so * Text character optical density, font line width, line

P(guesses) = 1 - P(detects). For each decision or trial, the observer boundary variation (Dvorak and Hamerly, 1983).

may not abide by this rule. Because these probabilities are in fact + Edge gradient extent, and line profiles extent (Hamerly

random variables, for any given experiment the computed P(detects), and Dvorak, 1981).

according to equation (5.14), may be negative or greater than 1.00. s Uniform areas having line and random non-uniformities

Bock and Jones (1968) suggest that for P(correct) < 1/M the value (Hamerly, 1983).

1/M + 1/M.J be substituted, where o/ = number of observers. For * Color granularity (Zwick and Brothers, 1975).

P(correct) > 1, substitute 7 - 1/M.J. These are somewhat arbitrary,

but rational, substitutions in these situations. Additional work is needed in this area using both conventional meth-
ods, like the ones described here, and more sophisticated models of

A reasonable assumption for one observer is that their guessing thresholds and just-noticeable difference such as signal detection

strategy would be constant, and correcting the empirical proportions theory. Both these paths will be enhanced when there are more of
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the Image Quality Circle components in place—notably Visual Algo-
rithms.

5.11 Advanced Methods-Signal Detection Theory

The most significant criticism of the conventional threshold and
just-noticeable difference methods, and indeed the whole threshold
concept, 1s the empirical evidence showing that these values depend
on an observer’s criterion (Gescheider, 1997; Swets, 1996;
Macmillian and Creelman, 1991; Baird and Noma, 1978).

Fortunately, a comprehensive theory accounts for an observer’s crite-
rion, guessing (“false alarms”), and other practical issues associated
with thresholds and just-noticeable difference studies. It is called
signal detection theory (theory of signal detection), and it was devel-
oped in the 1950s from ideas in the fields of communication, radar
detection, and statistics. In fact, a basic notion of signal detection
theory is equivalent to statistical hypothesis testing (Macmillian and
Creelman, 1991).

Signal detection theory will not be covered in this text, simply
because it is beyond our scope. There seem to be no reported applica-
tions of signal detection theory in the field of conventional imaging,
although it has been applied to the assessment of medical imaging
systems. Other obvious applications could include assessment of
color differences, and criterion-free estimates of observer sensitivity
to small changes in “nesses.”

A good overview of the successful applications of signal detection the-
ory in a number of diverse fields is provided by Swets (1996), a pio-
neer in the application to the field of psychology. Gescheider (1997)
provides several highly readable introductory chapters on the topic.
The most comprehensive reference on signal detection theory, in a
scaling context, is the text by Macmillian and Creelman (1991).
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Chapter 6

Ordinal Scaling

From the perspective of an observer, ordinal scaling studies are sim-
ple tasks, which may be why they are so widely used. However, it is
often not appreciated that, without additional theoretical assump-
tions, ordinal seales only reveal the “greater-than” property of sam-
ples. In some applications, this greater-than property is sufficient
and clearly warrants the use of these techniques. Unfortunately, for
Image Quality Circle applications such as formulating Image Qual-
ity Models and Visual Algorithms, an ordinal scale will be found
lacking, and an interval scale is a minimum requirement.

Among the most common ordinal scaling methods are the ranking
method, the paired-comparison method, and category scaling.

6.1 Rank Order Method

Asking observers to rank samples is perhaps the simplest ordinal
scaling method to administer. The observer is asked to rank the
image samples in order, from best to worst, along an attribute
defined by the instructions, such as text darkness. If there are n
samples, where n can be quite large, then the ranks go from one to n,
where n is usually assigned to the greatest amount of the attribute.
The usual stratagem is to get rankings from <J observers, assign a
number to the ranks and calculate an average of the ranks. Recall
that this scale only gives information about the sequence of image
samples that have a greater amount of the “ness” than the preceding
sample. In Chapter 9, we will show how these ranking data can be
transformed into an interval scale by adding some additional theory.

6.1.1 Observer Instructions

This prototype for the rank order scaling method is modeled after
Bartleson (1984). The observers’ task is to arrange a series of sam-
ples in order of some “ness.” This instruction prototype has the sam-
ple with the lowest “ness” on the left, and the highest “ness” on the
right.

“Here is a set of stimuli (samples). Please place them in
order of how much ('...ness’) they have. The sample with the
smallest amount of (...ness’) is placed on the left and the
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Table 6.1 Illustration of data matrix, R, from a
ranking study

Observer

(6-1)

Sample number

2 3
1 n
3 n-1
1 n-2
1 n

AvgRank zll 11
-

o

-1

1,]R

Table 6.2 Tllustration of the histogram data
matrix, H, from a ranking study

Sample Rank

1

Sample number

2 3
0 0
2 0
27 1
1 5

sample with the greatest amount of (*...ness’) is placed on the
right. You may move the samples around and rearrange
them until you are satisfied that they are ordered from left
to right according to (...ness’).”

Try these instructions in a pilot study before doing extensive word
smithing.

6.1.2 Data Collection-Observer-by-Observer

Two possible methods for data collection for rank order scaling are
available. Both methods generate the same scale values, but repre-
sent the data in two different ways.

The first option is to form a data matrix, R, with a column represent-
ing each sample, numbered I to n in Table 6.1. Each row of this data
matrix contains the responses of an observer (recorded as numbers
from I to n), representing the rank of each sample, recorded in the
column for that sample. Observers are identified in the first column,
numbered I to J in our example. For each observer, we record the
rank given by the observer for the stimuli identified by the column.
For example, in Table 6.1, observer one ranked sample one in third
position, sample two in first position, sample three in the nt* position,
and sample n in sixth position. The data matrix, R, is of size J rows
by n columns.

This method of data presentation is convenient for converting the
ranking data into a proportion matrix, and is therefore the preferred
method. Once the proportion matrix is available, other techniques
can be used to generate an interval scale, as we will see in Chapter 9.

6.1.3 Analysis-Observer-by-Observer

The scale consists of the average rank of each sample and can be cal-
culated by equation (6.1).

The row vector of 1’s in equation (6.1) is of length /. Equation (6.1)
computes the column sum and divides the result by the number of
observers, yielding the average rank for each stimulus or sample.
The vector AvgRank; has length n, the number of image samples.

6.1.4 Data Collection-Histogram Method

The second method collects the data as a histogram matrix. As with
the observer-by-observer method, the columns are the samples. With
the histogram method, the rows are the ranks, I to n. Each cell of the
data matrix, H, contains the number of times the sample was judged
to have the rank specified by the row, as shown in Table 6.2.

Data matrix H should have as column sums the number of times
each sample was ranked. For example, in the cell representing the
rank of one for sample one (row one, column one), we find the entry

oshies et

o-q vom—T

AvgRank, =%[1 2 3

n]H
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“10.” Sample one was ranked number one by ten observers. The next
row entry for sample one is “31,” so sample one was ranked number
two 31 times. The remainder of the table is filled out similarly.

6.1.5 Analysis-Histogram Method

The data matrix is in the form of a histogram, with a row for each
rank, a column for each sample, with cells containing the frequency
of rank selection. If each entry in the data matrix is divided by the
number of times the sample was ranked, then we have an estimate
of the probability of the sample being assigned the rank. The average
rank for each sample is computed by multiplying this probability
estimate by the rank and summing over all ranks. This can be com-
puted from equation (6.2).

The row vector in equation (6.2) has the integer values of the ranks
from I to n, and H is the n by n histogram matrix. The number of
obhservers, f, divides the results to give the average rank as the scale
value. Equation (6.2) is easily recognized as the expected value (aver-
age), of a scale of integer numbers (the ranks).

Recall that the ranks calculated by these two methods only possess
the greater-than property of an ordinal scale. When observers rank
samples, they do not produce an interval scale. No knowledge of the
distance between the samples on the “ness” scale is available. In
other words, the distance on the “ness” scale between an average
rank of, say, 2.50 to 3.50 and 6.50 to 5.50 is generally not the same,
in spite of what may be implied by the arithmetic. The only state-
ment that can be made is that, on average, one sample is ranked
higher or lower than another sample on the “ness” scale. No signifi-
cance should be attributed to the fact that the average rank of two
samples is, say, 3.56 and 3.58, and a second pair may have values
5.00 and 9.00. Conclusions for both pairs are the same; the samples
with the average rank of 3.58 and 9.00 have a greater amount of the
“ness” than the samples with the average rank of 3.56 and 5.00.

4.1.6 Variations

Instead of a straight rank order, other methods exist for having
observers put samples in order of increasing or decreasing “ness.”
The next two variations are really computer-sorting algorithms per-
formed by observers. The observer acts as the comparator and
decides whether the sample has more or less of the “ness.” Based on
this decision, the observer moves the sample.

6.1.6.1 Human Bubble Sort

This is a version of the computer bubble sort. It i1s not efficient,
because for n samples it can require of the observer, at most, n? com-
parisons. A set of 50 samples could require as many as 2,500
comparisons! Only the most dedicated observer will complete such a
large task.
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The method is as follows:

1) The study administrator randomly lays out the sam-
ples on a table from one to n.

2) The observer starts at the first or “left”-most position
and compares samples one and two. If the samples
are in increasing order of the “ness,” or image quality,
then the samples are left in order; otherwise they are
reversed.

3) Next, the observer compares samples two and three.
Again, if the samples are in increasing order of the
“ness,” or image quality, then the samples are left in
order, otherwise they are reversed.

4) This process is repeated until the observer makes one
pass through the n samples.

5) After the first pass the observer continually repeats
the process until all n samples are rank ordered.

A variation of this 1s called the insertion sort, which 1s what a card
player does when ordering the cards according to suit and rank
within the suit. At worst, it still requires n? effort by the observer.
However, this is conservative hecause human observers can see pat-
terns and groups, and can arrange samples in groups larger than
one.

If the observer is a “perfect comparator,” then the samples are guar-
anteed to be in rank order according to the “ness.” All the samples
are vigible and the observer has the ability to fine-tune the order.

Other computer-sorting algorithms can be used, such as Shell’s sort
or the very efficient heapsort (Press et. al., 1986). However, these
methods can result in a complex task for the observer, negating the
advantage of the rank order data collection procedure.

Data is tabulated according to Table 6.1, and equation (6.1) is used to
compute the average ranks.

46.1.6.2 Human Quick Sort

If physical space for laying out the samples is limited, and the num-
ber of samples is large, say 50 or more, then the human quick sort
may be the answer. The idea is to sort a “pile” of samples into “high”
and “low” piles of the “ness” or image quality. This is repeated for
each pile the observer generates until the sort is reduced to one or
two samples.

The method goes like this:

1} All the samples are given to the observer with the
instructions to look through the “pile” to get an idea of
the range of the “ness.”

2) The observer then sorts the “pile” into a highl “ness”
pile and a low1 “ness” pile.

S
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3) Next the observer sorts the highl “pile” into a high2
“ness” pile and a low2 “ness” pile. This is followed by a
sorting of the low1 “ness” pile into a high3 and low3
“ness” pile. This sorting is not unlike generating a
binary tree.

4) The process is repeated until about four to eight sam-
ples remain in each pile. At this point, the observers
simply rank order the remaining samples in each pile.
All the rank orders of each pile are brought together
for the rank order of all the samples.

One disadvantage of this method is the possible shift in the
observer’s criterion. Once the piles are generated the observer does
not have convenient access to the samples in other piles to stabilize
the criterion.

In large-sample and small-space scaling study environments, the
advantages are quite compelling. Space is only needed for the piles, a
small number, and the number of sorted piles is logs(n) at most. Such
large sample numbers are rarely required, but when large numbers
are essential, the human quick sort is recommended.

Data is tabulated according to Table 6.1, and equation (6.1) is used to
compute the average ranks. This is the preferred method because the
data can be used to develop a proportion matrix from which an inter-
val scale can be computed. Chapter 9 describes this method.

6.2 Paired-Comparison Method

The technique of paired comparisons is attributed to Gustav
Fechner, who described it in 1860 (Torgerson, 1956; David, 1988).
Paired comparisons are rarely used for ordinal scale generation
because the procedure is so time-consuming. The real utility of
paired-comparison methodology is the ability to generate, with some
additional theory, an interval scale from such data. Generating
interval scales from paired-comparison data will be explored in
detail in Chapter 8.

Suppose we have a set of n color image samples and we wish to scale
their colorfulness. The samples are presented to an observer in pairs
and the observer responds by selecting the sample that has the
greatest amount of colorfulness. This pairwise presentation is
repeated for all possible n(n-1)/2 pairs, the number of all possible
combinations of n objects taken two at a time. For a few samples
there are few pairs to be judged, but for, say, 20 samples, the number
of judgments climbs rapidly to 190, a task that can become tiresome
for the observer.

6.2.1 Observer Instructions

The observer’s task is to choose one out of the two samples presented
that has the characteristics the study administrator has focused on.
For example, an observer may be directed to “Choose the sample that
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has more sharpness.” Paired comparison is a method sometimes
used where a preference question is asked; i.e., “Choose the one you
prefer.” To be sure a “ness” scale is created, the observer must be
explicitly instructed to respond to the “ness.” A question about pref-
erence only gives an answer to the observer’s preference.

The following are some prototype observer instructions. The first one
is used to gather a response about a “ness,” and the second asks a
preference question.

“I will present to you pairs of stimuli (samples, pictures,
images). Please tell me (select) which one of the pair has the
greatest (...ness,” image quality).”

“T will present to you pairs of stimuli (samples, pictures,
images). Please tell me (select) which one of the pair you
prefer.”

The Paired Comparison method can often be completely
automated, where the observers selection process 1s indicated by
a mouse click or a keystroke on a computer keyboard. The exact
phrasing in the observers’ instructions should reflect the actual
method of data collection.

6.2.2 Data Collection-Paired Comparison

Data is collected as a matrix, F, with both columns and rows identi-
fied to represent each sample. If the observer selects sample j over i,
j>i, we put a one in the j® column and the i** row of the data matrix
F. Following this procedure for -/ observers we can accumulate a
data matrix that has in each location the number of times the sample
in the jt» column was chosen over the sample in the i row.

6.2.3 Analysis—Paired Comparison

An average rank can be calculated from this data matrix, F, by
computing the column average given by the following formula,
equation (6.3).

AvgRank; is a 1 by n vector that contains the average rank of the n
samples. The row vector of ones is n elements in length, F'is an n by
n matrix, and J is the number of observers used to gather the
paired-comparison data in F.

If each element in the F matrix is divided by the number of observers
who contributed to the datum, then the new matrix, P, is an esti-
mate of the proportion (probability) that the column stimulus was
chosen over the row stimuli. This interpretation will be used 1n
Chapter 8 to develop an interval scale from this proportion matrix.

(6.4)
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6.3 Category Scaling

Although category data collection methods can produce interval
scales, the most common data collection method used can only be
guaranteed to yield an ordinal scale, so a brief description is appro-
priate here. Chapter 10 contains a comprehensive discussion of using
category scaling methodology to generate interval scales.

6.3.1 Data Collection-Category Scales

Category scaling requires the observer to place samples in catego-
ries. These categories can be labeled with names like “good,” “better,”
and “best,” or with numbers (1 to 5), or names for ranks (first, second,
third). Data is collected as a matrix, K, with the n rows being the
samples and the m+7 columns the categories. Each element in the K
matrix is the frequency that the sample (row) was placed in the cate-
gory (column). Each row of K is a histogram.

In a typical application of category scaling, the observer is instructed
to make the categories equal intervals, the method of equal-appear-
ing intervals. However, with this method observers tend to use each
category equally often, independent of the distribution of the attrib-
ute in samples (Gescheider, 1985 and Guilford, 1954). Also, there is
no way to decide, using this method, if the observer is following the
“equal-interval” instructions. This can introduce scale distortion, in
that the categories are assumed to have equal “width” on the “ness”
dimension, but they may not. So the scale 1s ordinal at best.

Under some situations, observers can easily put samples in equal
interval categories, and Bartleson (1984) gives an example of scaling
colorfulness using color chips as stimuli. When observers can easily
construct equal intervals, a direct interval scale is possible by com-
puting the average category for the samples. This is only valid if the
equal interval properties of the categories are confirmed. Details on
using category scaling to generate interval scales can be found in
Chapter 10, and it is highly recommended that the chapter be read
before using this method.

6.3.2 Analysis—Category Scales

Generating a scale requires numbers for the categories. If categories
are numbered, these may be used directly. For named categories, we
need to assign arbitrary values, or weights, to the categories to com-
pute an average.

Usually the first category is given the value I, the second 2, and so
forth, up to m+1 categories. The scale consists of the average cate-
gory of each sample and can be calculated by equation (6.4).

The row vector in equation (6.4) is of length m+1, the number of cate-
gories. Equation (6.4) computes the average category for each stimu-
lus or sample. If the same number of observers did not judge all the
samples, then each row should be divided by the K matrix row sum.
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The vector of scale values (AvgCat), has length n (the number of
image samples).

Worked examples of these ordinal scaling techniques can be found in
the file ordscall.mcd on the MathCad® disk.
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Figure 7.1 Discriminal Dispersions for Three Samples.
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Chapter 7

Direct Interval Scaling

Interval scaling can be put into two basic classifications: direct (or
partition) scaling, and confusion (or indirect) scaling (Stevens, 1960).
The appropriate choice of the technique for any given scaling study
depends on the characteristics of the samples, or stimuli, to be
scaled. The key criterion is how “close together” the levels of the
attributes, or “nesses” are in the sample set.

Figure 7.1 illustrates three hypothetical distributions representing

“ness” judgments of many observers for three samples, A, B, and C.
The mean value of each distribution, S,, Sy, or S, is the
psychometric or scale value of the “ness.” The width or standard
deviation of these distributions, the discriminal dispersion as
Thurstone (1927) called it, describes the variation in responses by
the observers.

In Figure 7.1, the judgment distributions representing the samples A
and C are completely separated. They do not overlap, so there is com-
plete agreement among the observers when these two samples are
compared or ranked-there is no “confusion.” This implies that the
“ness” or attribute levels are widely spaced, compared with the vari-
ation in judgment.

Using indirect interval scaling, with wide spacing of distributions
and therefore no confusion or overlapping of distributions for adja-
cent samples, the theoretical challenge is to decide exactly where on
the “ness” dimension the samples lie.

The distributions representing samples A and B in Figure 7.1 dis-
play a level of “confusion” between the two samples. Since the distri-
butions overlap, observers do not universally agree on the scale
values. Sg, the mean scale value from sample B, is greater than Sy
the mean scale value for sample A. However, the overlapping tails of
the distributions suggest that in some small fraction of judgments,
the sample A would have been judged to have more of the “ness” than
sample B.

Thurstone’s Law of Comparative Judgment, covered in Chapters 8
and 9, provides a theoretical foundation for accommodating such
confusion when generating interval scales. If the samples possess
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only small differences in the “ness” and there is much confusion in
the judgments, the paired-comparison data collection method com-
bined with the Law of Comparative Judgment is preferred to direct
interval scaling. In situations where no confusion exists among the
samples, there are two reasons for not using confusion-based scaling
methods. The first reason is the fact that the paired comparison data
collection method is very inefficient in the number of judgments
required of the observer. Secondly, with no confusion among sam-
ples, scale values cannot be determined. A better approach would be
to use one of the direct interval scaling techniques described below.

7.1 Graphical Rating Scale Method-With Anchors

The underlying concept of the graphical rating scale method requires
the observer to equate a physical distance to the distance between
samples on the “ness” scale. Numerous experiments have demon-
strated that over short distances, observers use physical distance to
express a distance on a “ness” dimension, (See Chapter 11 on Ratio
Scaling for more applications of this interesting property.) Two
methods of this technique—the line and the ruler—are in wide use
(Bartleson, 1984; Zwick, 1984; Jones and McManus, 1986).

7.1.1 Line

In one technique, the observer is given a card with a line of about 5"
to 6" in length. At the ends of the line there are adjectives describing
the amount or strength of the “ness.” For example, at the left end of
the line there might be a label, “No graininess,” and at the right end
the label might read, “Very extreme graininess.” The task for the
observer is to indicate, by a mark on the line, the amount of the
attribute in each sample. Physical distance on the line is taken as
the distance of the stimuli on the attribute or “ness” scale. The
end-point adjectives can be thought of as anchors in that they pro-
vide two reference points. Lines on cards are not essential to this
method; any convenient method of collecting distance, such as the
movement of a cursor on a computer screen over a distance selected
by the observer, would be equally acceptable.

7.1.2 Data Reduction-Line

Data reduction for this method consists of computing the average
distance of the mark on the line for each sample. The distance can be
referenced from the end of the line and then normalized relative to
the length of the line or any other convenient distance increment.
Normalizing relative to the length of the line is permissible because
the interval scale 1s “floating” with respect to an additive constant
and a multiplication factor. Formally, the data is tabulated in a / by
n matrix, D, where the columns are the samples, and the rows are
the observers. A row vector, I by o/, of I’s multiplies the data matrix.
The sum or average of the columns provides an interval scale value
for each sample, as shown in equation (7.1).
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The disadvantages of this technique are the time-consuming sequen-
tial presentation of each stimulus, and the possibility of the criterion
for judgment shifting during the data collection session.

7.1.3 Ruler

A variation of the graphical rating scale method with anchors is to
use a large ruler, 4 feet to 5 feet in length, with tick marks along the
ruler (Engeldrum, 1991; Engeldrum and MeNeill, 1985). A tape mea-
sure may also be used. The ruler may or may not have numerals at
appropriate intervals, but a numbered ruler makes data collection
somewhat easier. At intervals of say 15% and 85% of the full length,
are placed reference samples called anchors. These samples, usually
drawn from the sample set, are the approximate “best” and “worst”
samples. By placing the anchors at 15% and 85% of the ruler ends,
the observers are allowed to make judgments greater and lesser than
the anchor values, if they so desire. Often the best and worst samples
are obvious, but not always. To eliminate the possibility of unin-
tended bias in the selection of anchors, a small-scale ranking study
can be conducted. The samples that are consistently ranked the low-
est and highest by observers should be selected as anchors. Do not be
overly concerned about correct selection. By not placing the anchors
at the ends of the ruler, provision is made for any observer that may
not agree with the anchor selection.

Each observer is asked to place the sample on the ruler, varying the
distance according to the amount of the “ness” it has compared with
the reference or anchor samples. The task can become unwieldy if
there is a large number of samples, but experience suggests that a
set of 20 to 25 samples on a large ruler 1s workable. This technique
allows the observer to see all the samples simultaneously, and
untrained observers seem to have little difficulty.

7.1.4 Data Reduction-Ruler

The generation of scale values uses the same equation used for the
line technique, equation (7.1). The column means produce scale val-
ues directly. Besides the column mean, the column variance can also
be computed from the data matrix.

These two parameters, combined with standard statistical tech-
niques, can be used to assess the precision of the scale values and the
significant differences between the samples. See Klockars and Sax
(1986) and Toothaker (1993) for some important statistical consider-
ations when comparing the scale values.

7.1.5 Observer Instructions

Prototype observer instructions for the graphical rating scale method
using a ruler with anchors follow. Notice the instruction at the end
reinforcing the idea that this is not a test and that the observer’s
opinion on the samples is what is wanted.
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“In front of you is a scale (ruler) with values from (X) to (Y)
that will be used to determine your ratings of (...‘ness,” image
quality). [ Two samples have already been placed next to the
scale at values (A) and (B). These are reference points.] A
higher number on the scale indicates more (...ness, image
quality). Please place the samples on the ruler so the
distance between the samples on theortional to the
difference in the (...'ness,” image quality). If two or more
samples have the same (...'ness,” image quality) place them
above the other(s). There are no right or wrong answers. We
are seeking your opinion.”

If there are no references, or anchors, eliminate the two sentences
within the brackets, [ |, from the instructions.

Instructions for a graphical rating scale using marks on a reference
line to indicate the judgments follow (Bartleson, 1984):

“You will be shown each, in turn, of a series of colored
samples. We would like to know how much colorful(‘ness’)
each of these samples has. A paper will accompany each
sample. The paper contains a line running from ‘No
Colorfulness’ to ‘Very Colorful.” Please use the pencil that
you will be given to place a mark on the line at the position
where you think the colorfulness of the sample belongs. You
may place marks at the ends of the line but not off the line
beyond the ends.”

For a computer-controlled data collection procedure where a “shider”
is used as an indicator, change the pencil and paper references.

7.2 Graphical Rating Scale Method-No Anchors

Sometimes using anchors with the graphical rating scale method is
either impractical or inconvenient. Anchors require two samples,
usually drawn from the sample set, which may not be available. One
must also be concerned that arbitrarily selecting the anchors, essen-
tially fixing the scale between the anchors, may inadvertently bias
the results. For these and possibly other reasons, forgoing the use of
anchors may be desirable in some instances.

The no-anchor method is identical to the line-and-ruler methods,
except there are no references or anchors of any form: either visual,
verbal, or printed words. If anchors are not used, then there is no
guarantee that each observer will use the line, or ruler, the same
way. For example, they may not use the full length of ruler or place
the samples on the same portion of the ruler.

The consequence of observers using the scale any way they wish is
that each observer's ratings are on a “rubber band” with respect to
every other observer’s ratings, and the rubber band may be shifted
about some origin. To be sure, the rubber band is finitely expanded
or contracted, but nonetheless the section of the ruler used by each
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observer is different. An interval scale has two arbitrary constants, a
multiplier and some additive constant, so this effect does not violate
the interval scale assumptions. Without some accounting for this
rubber band effect, the variance of the scale value calculated over all
observers can be expected to be larger than the “with anchors” case.

7.2.1 Data Analysis-No Anchors

The solution to the rubber band effect to is to put each observer on a
common scale after data collection; in essence, we expand or contract
and relocate the rubber band for each observer so they all coincide.
Two common methods to accomplish this normalization of observers
are available.

The best-known method is to compute the mean and variance of the
rating scale values of each observer for all the samples. The variance
or its square root, the standard deviation, 1s a measure of spread, or
how much of the total ruler the observer used. A centering value for
the observers’ ratings is the mean rating scale value that 1s an esti-
mator of the central location of the scale for each observer. If the rat-
ing data is organized as a matrix with the rows as observers and the
columns representing the samples, these calculations are performed
for each row or observer. With the standard deviation as the esti-
mate of the length of the ruler the observer used, and the mean as
the estimate of what part of the ruler was used, we can adjust the
data to a common rating scale for each observer. This can be accom-
plished by subtracting the mean value from each cbserver’s rating
and dividing the result by the observer’s rating scale standard devia-
tion. In this way all observers have a mean scale value of zero and a
spread, standard deviation, of unity. The calculations are given in
equation (7.2), where A is the normalized rating data, D is the raw
rating data matrix, mean; is the row mean and std. dev; is the row
standard deviation. Interval scale values can now be calculated
using equation (7.1).

A second method for data adjustment uses a linear transform for
each observer that adjusts each observer’s raw data so that, on aver-
age, it is equal to the group average. The first step is to calculate the
column means of the I matrix using equation (7.1), which gives a set
of group average scale values. The next step is to find the slope and
intercept of a linear equation that can be used to adjust each
observer’s raw data so that it equals the average scale value (deter-
mined in the first step), in a least squares sense. If we have J obsgerv-
ers, we need J pairs of slopes and intercepts, one for each observer.
Here we treat the group mean scale values as dependent variables
and each observer’s set of ratings as the independent variable. If we
let by and by; be the intercept and the slope of the linear transform
for the i*® observer, then the adjusted rating data matrix, A, is calcu-
lated according to equation (7.3). The column means of the adjusted
matrix A can be computed, according to equation (7.1) to yield the
scale values of the samples,
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Frequently, the normalizing techniques described above will reduce
the estimated standard deviation of a sample scale value. Of course,
within any given sample set some scale values may have an
increased standard deviation. Also, in any given scaling study, the
reductions in the standard deviations or variances of the scale values
using any of the above normalizations may not all be statistically sig-
nificant. Reduction in the scale value standard deviation is impor-
tant if scale values are used as response variables in a statistically
designed experiment, or if statistical conclusions must be drawn
regarding scale value differences.

MathCad® sheet grs1.mcd implements the methods described by
equations (7.1-7.3).
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Chapter 8

Indirect Interval
Scaling-Case V and
Paired Comparison

The previous chapter described methods in which the observer is
asked to estimate the amount of a “ness” or image quality attribute
and equate that estimate with distance. In this sense, the observer
gives a direct estimate of the “ness” scale value. Although indirect
scaling may be simpler in data collection, it is more complicated in
data analysis and requires additional theory or models for scale gen-
eration.

We start the topic of indirect scaling with the well-known and widely
used technique of paired comparisons. The psychological theory for
converting paired-comparison data to an interval scale has been
around for nearly a century, but is often a confusing method to new
users. The method of data collection using paired comparisons was
mentioned briefly in Chapter 6, which covers ordinal scaling meth-
ods. As described in Chapter 6, using a proportion data matrix with-
out additional theory limits paired comparison to ordinal scaling.

This chapter provides a descriptive approach to the method of paired
comparison combined with Thurstone’s Law of Comparative Judg-
ment to generate an interval scale. A more comprehensive treatment
of the paired-comparison method is given by David (1988) and Bock
and Jones (1968). Some statistical tests of significance for
paired-comparison data are described by Starks and David (1961,
1988).

8.1 Paired-Comparison Data Collection Method

We introduced this data collection method in Chapter 6 on ordinal
methods, but for clarity the method is repeated here.

The basic method of paired comparisons consists of sequentially pre-
senting pairs of samples to an observer and asking the observer
which one of the pair has the greatest amount of the “ness.” If, upon
presentation of a pair of samples, the observer selects sample j over i,
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J=i, as having more of the attribute or “ness” in question, we put a
in the j column and the i* row of the data matrix.

Using all of the J observers, we accumulate a data matrix, the fre-
quency matrix, F, that has in each location of the matrix the number
of times the sample in the j* column was chosen over the sample in
the i*" row.

The next step is to form the proportion matrix, P, by dividing each
element by the number of observers that judged the pair. If all the
observers did not judge each pair, then the proportions can be deter-
mined from the frequency matrix by the relationship: p; = fi;/ (f;+3).
Most often, o/ observers will judge all pairs, so all the frequency data
matrix elements are divided by f to calculate the proportion. Only
the upper or lower triangle above or below the diagonal of the propor-
tion matrix needs to be calculated. This is because the proportions
always sum to unity, p; + p; = 1, and so either half can be computed
from the other. This proportion matrix, P, is the starting point for
one of several models used to generate an interval scale value.

8.2 Thurstone’s Law of Comparative Judgment

Leon Lewis Thurstone was a notable psychophysicist in the first half
of the 20t century. Interestingly, like Gustav Fechner, the physi-
cist-turned psychologist, Thurstone started his career as an engineer
(Stevens, 1959). In his now-classic 1927 paper (Thurstone, 1927) he
formalized a model for the judgment process, enumerated different
cases of the model, and identified the assumptions needed for deter-
mining scale values.

Imagine one observer repeatedly comparing a set of samples on some
“ness” dimension, psychological dimension or the psychological con-
tinuum, as Thurstone (1927) called it. For various reasons, an
observer may vary his or her response for the same two samples,
resulting in a distribution of responses like those illustrated in Figure
7.1 of the previous chapter. In the years since Thurstone’s work, the
vocabulary used in judgment theory has changed. Thurstone called
the process by which we make judgments of samples the discriminal
process. In today’s nomenclature, we call the discriminal process a
random variable (Luce, 1994). (It is also possible to consider
Thurstone’s discriminal processes as analogous to the membership
functions of fuzzy logic theory.)

Thurstone (1927) assumed that the discriminal process was a ran-
dom variable whose probability density function follows a Gaussian
or normal function on the psychological continuum or “ness” scale.
Since Thurstone expressed the scale in terms of the probability den-
sity function, the mean value of the probability density function is
the scale value. Thurstone called the standard deviation, o, or spread
of the observers’ responses, the discriminal dispersion. Today we
would say that the discriminal dispersion is just the standard devia-
tion of the responses.
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The problem for which Thurstone provided the model was the gener-
ation of the scale values of the samples from the proportion matrix,
P, which is experimentally determined via the paired-comparison
technique. Thurstone observed that the proportion of times that
stimulus A was judged greater than B, A>B, was an indirect mea-
sure of the distance on the “ness” scale between A and B. From sta-
tistical theory, the average, or expected value, of the difference of two
random variables is just the difference in the expected values. This
result is independent of the distribution of the discriminal process.
For samples A and B, the average value 1s just the difference in the
scale values, S;-Sg.

The square of the standard deviation of the probability density func-
tion describing the difference between the two samples, the variance,
024.p, 1s well known and is given by: 0245 =024+ 025 - 2po,05, where p
is the correlation between stimuli A and B and has values that range
from -1 to +1. The difference in the mean scale values can be normal-
ized by dividing by the standard deviation, giving results in terms of
well-known z-values. Equation (8.1) formalizes this result.

Thurstone’s assumption that the diseriminal difference follows a nor-
mal or Gaussian distribution lets us use the shaded area in Figure
8.1 to describe the relationship between the experimentally deter-
mined proportion, or the probability of S, preferred to Sg, and the dif-
ference in the scale values. This is formally given by equation (8.2).

Equation (8.2) establishes a relationship between the empirical pro-
portions, or probability, and the parameters of the scale difference,
AS = §,-5g, probability density function. Substituting equation (8.1)
into (8.2) and changing the variable of integration will be convenient
for later work. This yields equation (8.3).

Given the experimentally determined proportion for each element in
the P matrix, we need to determine the differences in scale value,
S,-Sg that satisfy equation (8.2). Using equation (8.1), Thurstone
developed an expression for the secale value difference in terms of
z-values, the variances and the correlation coefficient. This model is
shown in equation (8.4).

Thurstone’s complete Law of Comparative Judgment is defined by
equation (8.4), but there is no known general solution. To solve the
problem, some simplifying assumptions about the sample variances
and the correlation coefficient must be made. Thurstone organized
the assumptions into five cases that are summarized in Table 8.1.
Cases I and II are virtually identical, and require knowledge of all
the parameters in equation (8.4) for a solution. Case III makes the
simplifying assumption that the correlation between the observers’
responses is zero. Case IV assumes that the variances for the two
discriminal processes, 0%y and 0%, are approximately equal. This
assumption reduces the problem of finding the scale values to a
linear problem that has a solution described later. A Case IV solution
gives both the scale values and the discriminal dispersions. Case V,
by far the most widely applied, uses the assumptions of Case IV plus
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Table 8.1 Thurstone’s Six Cases of the Law of Comparative Judgment

Case

I - Replication over trials for single
observer

IT - Replication over observers

111

IV

VI
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the added supposition that the two variances are indeed equal. Case
V enables the practical application of the Law of Comparative
Judgment.

In 1951 Mosteller (1951a) showed that assuming a correlation of zero
is not necessary for Case V, only that it is a constant. This
less-restrictive assumption is often called Thurstone’s Case Va. No
particular distinction is made, in practice, between Case V and Case
Va. The reason is that both cases describe a scale value with an arbi-
trary unknown multiplier, so it 1s practically impossible to distin-
guish between them.

Later, Stevens (1959) added what he called Case V1. In Case VI, the
standard deviations are assumed to be proportional to the scale val-
ues, and the correlation between the sample scale values is assumed
to be zero. Under Case VI assumptions, the discriminal dispersion is
now assumed to be the lognormal distribution, which results in a
scale that is linear on a logarithmic basis. Another interpretation is
that the empirical proportions are related to a ratio of the scale val-
ues, and are therefore equivalent to the differences in logarithms
(Helm, Messick and Tucker, 1961).

There are few reported uses of Case VI, but in at least one instance it
has been shown superior to Case V (Jones, 1967). The solutions are
1dentical to Case V where the scale value is now logarithmic, not Iin-
ear. No a priori reason exists to know or assume that the “ness” scale
1s logarithmic, and there are no external criteria to help in invoking
the Case VI assumptions for practical scaling applications. However,
when developing visual algorithms, it might prove useful to consider
the “ness” scale to be logarithmic.
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The parameter assumptions and model equations for the six cases of
the Law of Comparative Judgment are summarized in Table 8.1. The
most practical and useful cases of the Law of Comparative Judgment
are Case IV, V, Va. In this chapter, we will focus mostly on Case V,
leaving the other cases for Chapter 9.

Scale values generated using Thurstone’s Law of Comparative Judg-
ment are interval scales, and they can be multiplied by an arbitrary
constant. It 1s common practice when using Case V and Va to assume
that all the multipliers of the z-value in the right-hand column of
Table 8.1 equal unity. Still, this is an arbitrary scale factor, which
can be adjusted according to the use of the scale.

8.2.1 Case V Solufion

Case V of the Law of Comparative Judgment is most extensively
used because the scale values can easily be determined from the pro-
portion matrix using the paired-comparison data collection method.
In describing this solution for the scale values, a general approach is
taken that will lay a foundation for introducing and applying
non-Gaussian discriminal dispersions.

The model equation for Case V, from Table 8.1, shows that the scale
value difference, S-S, is equal to the standard normal z-value times
a constant according to equation (8.5).

Recall that the empirical proportion is used as the estimate of the
probability of one sample selected over the other sample. This is for-
mally stated in equation (8.6) where P(A>B) is the probability that
sample A being chosen over B, S; and Sp are the scale values, and
H{( ) is the cumulative density function that transforms the scale dif-
ferences into probabilities. In principle we can invert equation (8.6)
and solve for the differences in the scale values using equation (8.7).

Usually, H( ) can be any suitable cumulative probability density
function. Different H( ) functions represent different models of the
judgment process, some of which will be described in the next chap-
ter. Note that the inverse function in equation (8.7) is equal to the
unit-normal z-values of equation (8.4), where we have set the param-
eter ¢ times the square root of two equal to unity. In practice one can
use a table, a spreadsheet, or another means of calculating the z-val-
ues for a unit-normal distribution.

Sometimes the experimental proportions are either one or zero; in
fact if a one exists in the proportion matrix, a corresponding zero also
exists, so there is always an even number of ones and zeros. For
these cases, the scale values of the differencalues, take on values of £
e and are not suitable for scale computation. Right now this can be
ignored, since we will assume no unanimous agreement. However,
this and other practical problems will be explored more fully later in
this chapter.
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ues, S, according to equation (8.9). If the scale values
have been multiplied by a factor and a constant has
been added, they must be transformed back to the
original z-values before computing the elements of
the Z matrix.

2) Convert the z; to probabilities, Py, using a table of
normal deviates, equation (8.3).These proportions are
what is expected if the Case V model is correct.

S, -8, S,-8, .. §,-§ After using the inverse of equation (8.3), to transform each element (8. 10) 9 =sin”! (2 o 71) 3) Transform both rgeasurred pr()portmlns_, pi_;.da_l‘nd t}ée
B B~ .. =85 in the P matrix, we have a matrix, S, of scale value differences, as ' computed proportions, p'y, to an angle in radians, bU
8.8 . SI S S-S S _S lustrated in equation (8.8). The actual numerical values in the and 0'j, using the arcsine transformatlonfgiventv v
(8.8) N e T matrix are the z-values, but we use the scale value difference to illus- equation (8.10). This is a well.-km_)wn transformation
: trate the Case V solution clearly. that converts the binomially distributed proportion tFJ
S, -8, S, -8, " an asymptotically normal (G_aussian) random vari-
The least squares solution for the scale values for Case V can readily , able, N(b, 1/.J), for large J (Wilks, 1962). 8.11)
be determined from the column sums and some auxiliary assump- (8.11) X' =JY,(8, -07,) 4) Form the %? variable according to equali_:lorg_ Akl
tions (Mosteller, 1951; Noether, 1960). Note that the sum of the first e where J = the number of observers or replications,
column of the § matrix divided by the number of samples is
Iy o Q : The degrees of freedom, df, for the x? test are: df = (n-1)(n-2)/2,
o ;(SI —, ] = (‘51 -8 ) If we set the arbitrary constant of the scale where n = the number of samples.
so that the average of all the scale values is zero, S =0, then the col- i ller (1951¢) ts that wh T
i i -5,-0= i Mosteller (1951¢) reports that when usin -
WA, SHena giverihe S Widues EEREE ) =0 : Sf' {chordmg 3 may be a tendency to accept the hypothesis that the model fits the
Noether (Noether, 1960), this least squares solution is independent y s should b ected. In other words. the
of the function, H( ), used to transform the proportion data to scale data, when the hypothesis sho ! e Il'leJe_C eB. E ?1958)Wand ji30ck
value difference data. Note also that the row sums vield an inverted model often appears better t ag 1h reith_y }S.d Oct - inilerent o
but valid scale that is the negative of the scale values when summing and Jongs (1968) have st}ggeste that this 15 due to
over columns relation in the observers’ responses because there are common sam-
| ples in the scale value estimate. Such correlation in observers’
. . 2 ; istical s ing i 1d not be confused
Case V assumptions—namely zero correlation between the samples (8.12) 2 _ X TESPONSCS 1 staﬁlstlcal bamphng_ IR al}d shqu 1oL be co \
i SR " ; FAATE X corr with the correlation of the discriminal dispersions of Thurstone's
and equal variance or diseriminal dispersions—are not as limiting as 1-2p L £ O tive Judgment. The solution proposed by Bock
= - aw of Comparative !
t}-ley- W'Ould sy Mostell_er Loy b shown Siac ot (1958, 1968) is to “correct” the x? value according to equation (8.12).
discriminal dispersions or variances are constant except for some ’
e > mples th'at i }-Ehe _assumptlons will be " A major practical difficulty arises because the value of p is generally
rectly spaced; the violators will not. Tt is difficult to know, a priori, o i Bock's analysis (1958, 1968), the valis of the
which samples have different discriminal dispersions, but at least unknow'n. UWEVEL, In T0c ) = a‘h o A ' from. & masimum of
the other scale values are not affected by these deviant samples. correlation coefﬂc1ent: p, was shown to vary m
one-third for scale estimates with a common sample, to a minimum
® i i of zero for scale estimates with no common sample. These two
$E : l\ilath,CaI(‘i& S};egt that 11;11 usiz]rages thf Casi Vf solgt}onf.(l)f bounds enable some approximate model testing, but an area of inde-
Cllrigcril =7 T ol oimparaiive Sudmont can be found in fild cision remains. Note that by substituting p = 1/3 and p = 0 into equa-
e tion (8.12), the two values of x%,,, become 3x? and %2 If the adjusted
g i i = 2o = %2, then one
. ¥ Zeorr 18 NOt significant when assuming p = 1/3, %0 = 3%,
8.22Test of the Law of Comparative Judgment Cacrolrrreasonably assume that the Case V model represents the data.
i i i = Alternatively, if the unadjusted ¥2 is significant, then the model does
To guard against a situation where the Case V model is nadequate not fit the data. When the correlation coefficient lies between zero
due to unequal variances and the possibility that the correlation and one-third, the situation is more complex, and the interested
coefficient is not zero, Mosteller (1951c) proposed a chi-square test on reader can see Bock (1968) for more information.
an arcsine transformation of the reconstructed matrix of proportions.
The arcsine transformation changes the proportions into normal Note that it is the angular transformation of the proportion that
deviates, assuming many observers, that has a mean value of zero leads to equation (8.12), not the Gaussian model underlying
and a constan‘_u variance of 1/J. The following formulation of Thurstone’s Case V. Using the revised 2 test of equation (8.12) for
Mosteller’s test is by David (1988): the Gaussian model, or any of the models described in the next chap-
i i serious errors providing the proportions lie
(8.9) 2 =8 -8 1) Form the estimate of the Z matrix from the scale val- ter, should not cause any p
4]

within the range of 0.05 to 0.95.

Failure of Thurstone’s Case Va or V model can have several causes.
A basic assumption of this model is that the “ness” being scaled is
unidimensional and lies along one psychological dimension. Circular
triads or intransitivity may suggest that the unidimensional
assumption is not correct. A circular triad is a logical inconsistency
in an observer’s ordering of the samples. For example, if an observer
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prefers A over B and B over C, logically A should be preferred over C.
If this logical ordering does not occur, it is called a circular triad.
Scaling study administrators should take such inconsistencies as
clues that the attribute may not be unidimensional. Statistical tests
of significance for the number of triads can be found in Kendall and
Gibbons (1990). Be aware, though, that observing a few circular tri-
ads does not necessarily suggest lack of unidimensionality.
Depending on the particulars, that is, the mean and standard devia-
tion of the discriminal process, there may be a non-zero probability
that a circular triad should occur.

The Case V model can fail if the assumption of equal discriminal
dispersions is inappropriate, in which case the use of Case IV may
be more appropriate. Case IV requires the estimation of both the
scale value and discriminal dispersion for each sample, and a dif-
ferent scale estimation procedure must be used. Using Case IV as
a model has not been popular, possibly because of the extensive
computations—which will be described in Chapter 9—and lack of
awareness that a reasonably simple solution exists.

The calculations for Case V of the Law of Comparative Judgment,
along with Mosteller's x? test of proportions, can be found in the
MathCad® file pcl.mod

8.2.3 Confidence Interval and Sample Size

Bock (1968) proposed a confidence interval for the difference between
two scale values, AS, based upon the arcsine transform, equation
(8.10), and the limiting, large n, normal {Gaussian) distribution. This
critical difference can be computed according to equation (8.13).

Here zis the (7-a/2) value from the table of normal probabilities, n is
the number of samples, </ is the number of observers and p is the cor-
relation coefficient, 0<p<1/3. Equation (8.13) can be solved for o/ , the
number of observers, in terms of the confidence interval z-value, the
difference between two scale values, AS, and the number of samples,
n. The solution for the number of observers is given by equation
(8.14), where a value of p = 1/3 is used to give an upper bound value
for /.

This method can be used to decide, for example, how many observers
are needed to achieve a 95% confidence interval in the difference of
two sharpness scale values of, say, 0.25. Assume the number of sam-
ples, n, is 7 and a 0.95 confidence interval is desired: (I-0) = 0.95 and
therefore a = 0.05. The z-value from a table of normal probabilities
can be determined by looking for the z-value that gives a probability
of (1-0/2) = 0.975. This z-value is 1.96. Substituting these values into
equation (8.14) readily yields the number of observers, about 47. If
one 1s willing to assume that p = 0, the number of observers shrinks
to about 18. This can be readily verified from equation (8.13).

8.3 Reducing the Work 101

8.3 Reducing the Work

Using the paired-comparison method for samples that are not close
on the “ness” dimension is inefficient. Comparisons of pairs that are
far apart result in unanimous judgments, which leads to a zero or
one in the proportion matrix. The obvious strategy is to avoid com-
paring pairs that are widely spaced on the “ness” dimension. Sug-
gesting avoidance is an easy statement to make, but knowing which
samples are far apart implies the scale values are known. Then there
would be no need to perform the scaling! If there is some idea of the
samples that are far apart, then these comparisons are not per-
formed, and the scale can be generated using the incomplete matrix
methods of Chapter 9.

8.3.1 Sample Subgroups and Scale Merging

When the paired-comparison scaling method must be used but the
number of samples is quite large, making all n(n-1)/2 comparisons
may be impractical. One comparison-reduction method is to divide
the samples into subgroups. The subgroups are selected so that
within each subgroup there are no unanimous choices. Since the sub-
groups are smaller, the overall number of comparisons is smaller.
However, there is a bit of circular reasoning in this logic—one needs
to have some knowledge of the scale values to construct the sub-
groups, so some preliminary experiments may be needed. A small
ranking study will suggest which samples lay at the extremes of the
scale, and will provide an order for the samples.

With a strategy for dividing the samples into more-manageable sub-
groups, one must also have a strategy for reuniting the subgroups
into a single group. Each subgroup scale is an interval scale with an
arbitrary multiplication factor and an arbitrary additive constant,
usually zero. The task is to stitch each subgroup scale together into a
continuum. Stitching the scales is accomplished by computing a lin-
ear transformation of adjacent subgroups to map one scale to the
next adjacent scale. To make one continuous interval scale, two or
more “end” samples of one subgroup must appear in the next (adja-
cent) subgroup, so the linear transformation can be computed. The
rank order of the complete sample set can be used to identify adja-
cent or “end” samples in each subgroup.

At least two samples are needed to estimate two parameters, the
slope and intercept of the transformation. In practice, a pilot experi-
ment may be needed to ensure that the two or more samples that
appear in the two subgroups do not suffer from the unanimity of
agreement. This scale-stitching technique was used by Stevens and
Volkman in 1940 (Stevens and Volkman, 1940) to build an auditory
pitch scale from scaling temporal frequency stimuli, and more
recently by Burningham and Ng in constructing an image quality
scale of printers (Burningham and Ng, 1992). Torgerson (1958) also
suggested methods of reducing the number of comparisons.
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The mathematical procedure for combining two scales with at leagt
two common samples is as follows. Assume the scale value of sample
1 on scale 1 (denoted S;,), sample 2 on scale 1 (denoted S,;), sample 1
on scale 2 (denoted S;5), and sample 2 on scale 2 (denoted Sy,), are all
known. From these known values two coefficients, by and by, of a lin-
ear transformation that relates the values on scale one to the values
on scale two, are determined by solving equations (8.15).

The solution to by and b, for two overlapping samples is given by the
set of equations (8.16).

Least squares techniques can be used to estimate the parameters by
and by if three or more overlapping samples are available. In matrix
notation we can rewrite equation set (8.16) as matrix equation (8.17).

The least squares solution for the coefficient vector, b, for any num-
ber of samples greater than two, common to the sets, is given by
equation (8.18).

Reducing the overall number of comparisons using a sample sub-
group method is recommended if the full set of samples covers a wide
“ness” range, and/or the sample set is large. Breaking a large sample
set Into smaller subgroups reduces the number of pairs to compare,
reduces the stress on the observers, and can eliminate the incom-
plete matrix problem. However, a penalty for using this technique is
that one must determine the approximate scale values so appropri-
ate subgroups can be constructed.

8.3.2 Sorting

Subgrouping a large number of samples for use with paired compari-
sons 18 not the only method to reducing the observer work. Whaley
(1979) proposed an interesting solution using a computer sorting
algorithm. (Sorting algorithms for rank ordering samples were dis-
cussed in Chapter 6.) Using a sorting algorithm yields three advan-
tages: 1) it reduces the average number of comparisons because it
has a tendency to compare samples that are close; 2) it does not make
many comparisons of samples far apart and; 3) the sorted list is the
rank order of the samples.

All sorting algorithms require a test of inequality: for example, is
A>B? Whaley’s approach is to use the observer as the inequality
tester instead of using the computer. The computer sorting algo-
rithm would present the observer with the pair to evaluate and
the observer would enter the judgment to the computer.

Whaley’s example used the shell-sorting algorithm that requires an
average of n/2comparisons, worst case (Press, et. al., 1986). Any effi-
cient sorting algorithm can be used: for example, the Heapsort that
requires only nlogs(n) comparisons, worst case (Press, et. al., 1986).
The break-even point for the shell sort is six samples (seven samples
for the Heapsort), so when scaling six or fewer samples these algo-
rithms offer no advantage. Be cognizant that some popular sorting
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algorithms, such as the Quicksort and Bubblesort, require in worst
case situations n? comparisons, which always exceeds n(n-1)/2 com-
parisons for standard paired comparison. Also, because all compari-
sons are not made, the frequency matrix will not have the same sum
for all the Fj; + F; elements and care should be exercised when com-
puting proportions.

Using sorting algorithms appears like a “quick fix” for large numbers
of samples, but it has its down side. The major disadvantage is that
there is a tendency to present one sample of a pair twice in a row;
that is, the same sample appears in two sequential pairs. This vio-
lates the basic principle of keeping a common sample maximally sep-
arated in time (Torgerson, 1958), and could give biased results.

8.3.3 Proportions From Ranking Data

The process of ranking a set of n samples from I to n along a “ness”
dimension is inherently a comparison of all samples with each other
(Thurstone, 1931). Thus a set of ranks of n samples contains the
same data as a paired-comparison experiment, but it is gathered in a
different way. A considerable saving of experimental labor is possible
by converting ranking data to a proportion matrix.

Thurstone (1931) described an exact method-but in 1931, without
computers to do calculations, this method was laborious. Thus,
Thurstone was forced to develop a practical approximation. With
computers to do the work, there is no need to use the approximation.
The following explanation of the exact method is close to Thurstone’s
original work (1931), but also benefits from Bock and Jones (1968).

For illustration, assume four samples: A, B, C, and D. For these four
samples there are n(n-1)/2 or six possible comparisons. Suppose the
four samples are ranked B, D, A, and C by the first observer. Taking
the rankings pairwise, from left to right gives, B=D, B=A, B>C, D>A,
D>C, and A>C, for a total of six comparisons of one sample over
another. The greater-than symbol, >, is taken to mean that the left
member is selected over the right member of the pair. What remains
to be done is to convert these rankings into a frequency matrix, F.

Starting at the first of the six comparisons (B>D), and using the
usual convention of the column preference over the row, add one to
the count in the cell of the F matrix at the intersection of column B
and row D. The next addition to the cell counter goes at the intersec-
tion of column B and row A, and so forth. The beginning of an algo-
rithm to convert ranking data to a frequency matrix starts to
emerge. Instead of using labels for the samples; e.g. A, B, C, D, we
use numbers, and collect the ranking data so the number in the col-
umn is the rank (position) assigned to that sample.

To apply this technique, the data are collected using any of the rank
order methods described in Chapter 6. Generally, these methods
have the observer rank the samples in order of increasing “ness,”
with the lowest amount of “ness” on the left and the highest on the
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right. The raw data in each element of matrix R is the rank awarded
the sample (column) by the observer (row) with I equal to the lowest
value and n equal to the highest or greatest amount of the “ness.”

The algorithm to convert the ranking data to a frequency matrix pro-
ceeds similarly:

1) Start with the first observer and begin with the first
sample, column one, and compare the number in the
second column to the number in the first column. If
the number in the first column is greater than the
number in the second column, then the first sample is
preferred to the second sample and the counter is
incremented in location F; ; of the frequency matrix,
F; otherwise the counter in F; is incremented.

2) The next comparison is column one to column three,
and the same test is performed. All other columns are
tested against the first column.

3) Start the same sequence of comparisons at column
two. At the end of the comparison sequence, compari-
sons of columns 2-3, 2-4, ete. up to 2-n are complete.

4) Start the same process with column three and repeat
the test with each subsequent pair in the row. The
process is continued until the last comparison is
between column (r-1) and n.

5) At this point the frequency matrix is complete for the
first observer. Iterating over all the observers gives
the complete frequency matrix for the ranking
experiment.

Another, probably clearer, way to describe the algorithm is to write it
in so-called pseudo-code. Start with an n by n frequency matrix, F,
that has zeros in all its cells and the rank order data matrix R. The
following “for” loops are the embodiment of the previous five step
description:

for1=1 to number_rows of R
for j = 1 to number_of columns_of R-1
for k =j + 1 to number_of columns_of R
if Rij > Ry, then
ij - ij +1
else
F K= F]q' +1
endif
endfor
endfor
endfor

At the end of this process, the n by n matrix ¥ has the number of
times the column sample was preferred to the row sample. Division
of each element of F by the number of observers, .J, converts the
numbers into an n by n proportion matrix, P.
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A MathCad® sheet, file rnkZpro.mad contains a program to convert
ranking data to a proportion matrix, along with an example.

8.4 Paired Comparison Variations

All of the methods described thus far are based on the application of
Thurstone’s Law of Comparative Judgment. There are other ways to
generate an interval scale from paired-comparison data collection
techniques that do not invoke the Law of Comparative Judgment,
but often involve other assumptions. The rubric under which these
methods fall is called non-Thurstonian scaling, and we will describe
two here. The Scheffé method assumes that the seven categories are
spaced at equal intervals, that is, that the “ness” distance between
the categories is the same. Chapter 10 explores this issue more fully,
so it is recommended that Chapter 10 be read before using the
Scheffé method. The second method uses paired comparisons, with a
twist; the observer 1s asked to indicate on a numerical scale how dif-
ferent the two samples are. As described in “Chapter 11: Ratio
Scaling,” the observer may or may not use numbers according to the
difference in the sample “ness.” Nevertheless, this method can be
used to estimate interval scales, but not without some mathematical
manipulation.

8.4.1 Paired Comparison Plus Category

The motivation for the development of this technique by Scheffé
(1952) was his interest in developing an analysis of variance tech-
nique for paired comparison. His method uses a seven-point scoring
scale by which to judge the difference between the pairs. In this
respect the technique is a combination of a seven-point category rat-
ing scale and paired comparison. The idea is to have the observer
estimate the difference in the pair and assign a number to this differ-
ence. One of seven values is assigned to the pair according to the
expression of difference by the observer, using the following set of
descriptors.

+3 = strongly prefer sample i to sample j.
+2 = moderately prefer sample i to sample j.
+1 = slightly prefer sample i to sample j.

0 = no preference.

-1 = slightly prefer sample j to sample i.

-2 = moderately prefer sample j to sample 1.
-3 = strongly prefer sample j to sample .

One can consider this method to be a named-category scale within a
paired-comparison experiment. See Chapter 10 for more discussion
on assigning numbers and adjectives to categories.

8.4.1.1 Data Collection and Scale Generation

Scheffé’s (1952) original method made a distinetion between an ij
and a ji sample presentation. The reason for this distinction was that
he wanted to estimate the effects of sample presentation order on
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scale value. The method described here does not include this order-
ing effect, and so it is more in line with classic paired-comparison
methods.

In a comparison of sample i to sample j, the observers’ response (+3
to -3), is added to the number in the n by n frequency matrix, F, at
location i,j. The complementary number is added to the numberin
location j,i in the frequency matrix. For example, if the observer
“moderately prefers” sample 2 to sample 5, a +2 1s added to the fre-
quency matrix at Fy5 and a -2 is added to the frequency matrix at
F; 5. The elements of the frequency matrix accumulate the number of
“points” assigned to the sample pair. A check on the [requency
matrix is possible by noting that F;; + F;; = 0. A scale value can be
computed for each of the n samples by taking the column sum of the
frequency matrix, F.

The categories using this method are not limited to seven—a larger
number can be used. In fact, Scheffé (1952) proposed the addition of
two more categories because he found that observers “jammed” the
scores at each end when there were no further extreme categories for
their judgments. What has been described here are categories of
“preference,” but for “ness” or image quality scaling these categories
need to be relabeled. Chapter 10 has some suggestions on the num-
ber of categories and the labels.

8.4.2 Paired Comparison Plus Distance

The implied assumption in this method is that a physical distance
selected by the observer represents a “ness” or image quality
distance between samples or stimuli. This is the same assumption
made when using the graphical rating scale method described in
Chapter 7. Upon presentation of a pair of samples, the observer
selects one of the pair and gives an estimate of the difference
between the samples. This difference estimate may be a =3 point
scale, without descriptive adjectives associated with the numbers,
or a 0 to 10 scale, say, for characterizing the difference from “no
difference” to “extreme difference.”

Another possibility is to use a piece of paper, asking the observer to
draw a line indicating distance. Similarly, a slider on a computer
monitor interface can be positioned to show distance. Again, the
ruler may be anchored via adjectives, or can be merely a numerical
range. Note that the paired-comparison-plus-distance method is just
a graphic rating scale method implemented on a pairwise basis.

8.4.2.1 Data Tabulation and Scale Generation

As one would expect, the tabulation of the observers’ response data is
different when distance is considered along with paired comparisons.
One way to arrange the data matrix is to have the rows represent the
observers, I to.JJ, and the columns represent all possible paired com-
parisons. If there are n samples there will be n(n-1)/2 columns of the
data matrix, D. Labeling the top of the columns as i-j to represent the

(5.19)

(8.20)

—_ o O © = H o
Y

—_ O = = O O

8.4 Paired Comparison Variations 107

pairs under consideration is useful. As an illustration, suppose there
are four samples: A, B, C, and D. For the column headings write all
possible pairs; for example, A-B, A-C, A-D, B-C, B-D, and C-D. The
reason for writing them this way, and in this order, is to make the
analysis clearer.

In the data collection step we need to keep track of the choice and
distance, and assign an appropriate sign to the distance for the anal-
ysis. The distance between two objects is always positive, but by
incorporating a sign at this stage of analysis, we can call the distance
a directed distance. For example, if the sign is positive, the observers’
response is in the “positive direction.”

Suppose sample pair B-D is given to the &t observer for a judgment.
The observer chooses D and estimates the difference between sample
B and D, on a scale of 0 to 10, to be, say, four. The study administra-
tor puts the “sign of D times distance” into the row of the k% observer
and the column B-D in the data matrix D. In this instance a -4 is put
in the data matrix. Had the observer chosen B, instead of D, the
administrator would have put a +4 in the same location. The algo-
rithm to set the sign of the distance is simply the sign of the sample
letter (identification) in the column heading. At the completion of the
experiment matrix D contains J rows, one for each observer,
n(n-1)/2 columns headed by the pair identifications, and the entries
are the signed distances between the two samples given by the
observer.

One cannot assume that each observer will use the number scale the
same way, so each observer’s raw scale values are computed from the
array of distances. For example, one person’s four is another person’s
eight for the same sample.

1) Form a column matrix from each observer’s row of
data; this is just the transpose.

92) Construct a coefficient matrix (sometimes called “con-
trasts” by statisticians) that forms a series of linear
equations representing the data. For each observer,
the left column vector in equation (8.19) 1s identical to
the row vector of the data sheet, which is the column
of signed distance numbers, except in symbolic form
for this illustration. The matrix X, is a coefficient
matrix that forms the difference (distance) for all the
pairs. The last row in the data vector and the X
matrix forces the sum of the distances, or scale val-
ues, equal to zero for each observer. We expect the
range of the score values to be different for each
observer because observers do not use the numbers in
the same way. Equation (8.19) in matrix notation is
equation (8.20).

In equation (8.20) d is the column vector of signed dis-
tances between the sample pairs, of length
n(n-1)/2+1; X is the coefficient matrix, n(n-1)/2+1 by
n;and S is the vector of scaled values of length n. The
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least squares solution of equation (8.20) for the vector
of scale values S is given by equation (8.21).

3) Equation (8.21) gives the scale values for only one
observer, so the equation must be solved repeatedly
for all / observers. Recall that the sum of the scale
values is zero, but the range of values for each
observer will be different because they used the dis-
tance scale differently. To reduce this “rubberband”
effect, each observer’s data needs to be multiplied by
a constant. (Recall that the same problem was
encountered with the graphical rating scale method
in Chapter 7.) A simple way to align the scores of all
the observers to a common reference is to divide each
observer’s scores by their score’s standard deviation.
The sequential combination of computing the score
and dividing by the standard deviation gives each
observer’s scale a zero mean and unit standard devia-
tion. This process reduces the scale variance due to
each observer’s unique use of the number scale in
estimating the distance between samples.

4) At this point a standardized interval scale for each
observer exists, and appropriate statistical analysis
can be performed. A simple averaging of the observ-
erg’ scores for each of the n samples yields a scale
value for the sample.

The MathCad® sheet pcdist.med illustrates the computation of
scale values starting with the data matrix D.

This chapter has focused only on Thurstone’s Case V or Va of his
Law of Comparative Judgment. If this case applies, the scale values
can be tested statistically. Yet what does one do if Case V is found not
to apply to our scaling data? The next chapter, Chapter 9, looks at
solutions to other cases, discusses additional practical details, and
generalizes Thurstone’s model.
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Chapter 9

Indirect Interval
Scaling-Generalization of
Thurstone’s Case V

In the previous chapter, we explored Thurstone’s Case V model of
the Law of Comparative Judgment in its most widely used applica-
tion: with paired-comparison data. In this chapter, we will examine
Thurstone’s Case IV model, which is rarely used by researchers. In
addition, Chapter 9 will present methods to deal with the problem of
scale estimation with the zeros and ones that often appear in the pro-
portion matrix. Recognizing that experimental data has inherent
variability, the final section in this chapter looks at the bias and vari-
ance of computed scale values, and suggests tactics for reducing
them.

9.1 Other Thurstonian Case V Models

The “ness” is a random variable whose probability density function
is widely assumed to follow a normal or Gaussian model. Although
Thurstone’s Law of Comparative Judgment is most often applied to
Case V and paired-comparison data, conversion of experimental
proportions to scale value differences can be accomplished with
other models or theories. In a series of papers, Yellot and coauthors
(1977, 1978, 1979) show the equivalence of Thurstone’s Case V to
other so-called “choice and utility” models. Their work lets us apply
the Law of Comparative Judgment in the broader context of choice
and utility theory, as opposed to simple scaling theory (Baird and
Noma, 1978).

The function or model associated with any of these theories is the
cumulative distribution function, which is the integral of the proba-
bility density function that characterizes scale value differences. For
independent, identically distributed random variables (Case V only),
the scale value difference probability density function results from
the self-convolution of Thurstone’s discriminal process probability
density function. Various assumptions about the discriminal process
probability density function can yield different models. Five such
models are summarized in Table 9.1 (David, 1988; Baird and Noma,
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Table 9.1 Summary of Thurstonian Case V Models
(After Baird and Noma, 1978 and David. 1988)
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1978). Note that the Angular Transformation model listed in Table
9.1 does not provide a probability density function for discriminal
process or judgment errors. Thus the Angular Transformation model
does not, strictly speaking, follow the classical Thurstone Case V
Law of Comparative Judgment. An extensive discussion is beyond
this book’s scope, but see Yellot (1977) and Baird and Noma (1978)
for an interesting examination of applying Thurstone’s Law of Com-
parative Judgment in cases without probability density functions.

As Bartleson (1984) has remarked, in most applications there is little
to choose among, given real-world experimental data. Often, the
number of observers is insufficient to enable statistical selection of a
particular model. In practice, the choice of model relates more to the
underlying assumptions one is willing to make regarding the
“discriminal process” than anything else. Of all the discriminal pro-
cess probability density functions listed in Table 9.1, the normal or
Gaussian model used in Thurstone’s Case V seems the most plausi-
ble, lacking any additional information. Perhaps this is why it is 80
widely used.
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Figure 9.1 Comparison of four transformations: nor-

mal, logistic, uniform, and arcsine.
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The selection of a particular function to transform the proportion
data has theoretical implications. As an example, the discriminal
process (probability density function), associated with the logistic
function is known as the extreme value or Gumbel distribution. This
density function is not symmetrical about the mean value, and has a
tail that extends to positive values. For Case V, choosing the logistic
transformation theoretically implies that the observers’ discriminal
processes are positively skewed, which may or may not be true. An
Important underlying theoretical point is that each transformation
function implies something about the observers’ judgment process.
To view the choice of transformation as a function fitting problem
ignores these theoretical assumptions. However, as with all theories,
one is free to choose a theory that is appropriate. Unfortunately, the
selection criteria used most often is how well the model fits the data.

Selecting the appropriate model is made more complicated because
each model varies in the basic shape of the transformation equation,
and real-world realities mean that we work with a finite number of
observers. For example, it is known that around the 0.50 proportion
point the models are approximately linear, so all transformation
models in Table 9.1 give virtually identical results around this point.
This is illustrated in Figure 9.1, where the transformation curves
have been scaled so the probabilities match when S-S = +1.00.
Note that over the range of S;-Sp =+1.00, there is little difference in
the probabilities or proportions among the various models; the
curves are virtually identical. The differences become apparent when
S4-Sp exceeds 1.00, or when extreme proportions occur.

Recall that the basic data set for application of a Thurstonian model
1s the frequency that one of a pair is chosen over another, provided as
a number. The sum of the frequencies for the ¢ and ji pair is equal to
the number of cbservers that judged the pair. Division of these two
frequencies by the total gives an estimated proportion of one sample
chosen over the other. Since the number of observers is finite, there
are a finite number of proportions. In fact, for proportions other than
zero and one, they occur in increments of 1/(number of observers).
For example, if J = 5 observers judge a sample, the proportion incre-
ments occur at every 1/J or 0.20: 0, 0.20, 0.40, 0.60, 0.80, and 1.00,
and there are exactly J+I possible proportions. There are no other
values. Ignoring the unanimous proportions, zero and one, the small-
est possible proportion is I/(number of observers) and the largest
1-1/(number of observers). This quantization of the proportion values
limits the practical range of the models to the central region, unless
the quantization is reduced by using a very large number of observ-
ers. To complicate the model selection issue further, appropriateness
is also affected by the statistical method of scale estimation, such as
least squares or maximum likelihood.

Hohle (1966) compared the Gaussian distribution, Thurstone Case V
and the logistic (Bradley-Terry-Luce, BTL) models (Table 9.1) using
maximum likelihood methods of scale estimation. He concluded that
the logistic model offered a marginally better fit of experimental
data. Jackson and Fleckenstein (1957) tested the logistic and
Gaussian models, among others, and concluded that the logistic



. 1
SA _*SB = _5 ZA_B(GA +GB)

Chapter 9 Indirect Interval Scaling-Generalization of Thurstone's Case V

model represented the data slightly better than the Gaussian model;
however, there were enough caveats about violations of the assump-
tions to cloud the conclusion.

9.2 Case IV Solution

By supposing Case V holds, one assumes that the observed propor-
tion matrix is unaffected by discriminal dispersions (variances) or
correlations. Mosteller (1951b) has shown that only the samples
whose discriminal dispersions(s) are different from the group will
have errors in scale values. If one is willing to accept some error in
computed scale values of samples that violate the Case V assump-
tions, it reduces the motivation for considering the more complicated
Case IV. Also, using Case V makes the analysis or scale-generation
problem much easier. Whether Case V is the appropriate model can
be tested. If Thurstone’s Case V model fails using Mosteller’s test
described in Section 8.2.2 (Mosteller, 1951c), the next possible step in
the analysis is to consider Case TV.

Thurstone’s Case IV (Thurstone, 1927) is based on the assumption
that the discriminal dispersions (variances) for all the samples are
approximately equal and the correlations between samples are zero.
The assumption of approximately equal discriminal dispersions
reduces the square root of the sum of the variances, in the general
Law of Comparative Judgment, to the sum of two standard devia-
tions (see Table 8.1). This approximation makes estimating the scale
values and the discriminal dispersions a linear problem.

Surprisingly, Case IV is almost never invoked in practice. One rea-
son for lack of use is that the prevailing method of solution, a varia-
tion on Thurstone’s (1932) original method, is only an approximation
(Torgerson, 1958). However, Gibson (1953) worked out a least
squares solution of Case IV that gives both the scale values and the
discriminal dispersions for each sample. We have not seen use of
Gibson’s method reported in the literature, possibly because of two
problems. First, there is a minimum 10-by-10 matrix to invert,
clearly a non-trivial matter in 1951. Secondly, there is an apparent
error in his formulation. The matrix issues are of no practical conse-
quence with today’s computers, so the next section describes Gib-
son’s method with a correction to “make it work.”

9.2.1 Gibson’s Solution for Case IV

For Case IV, Thurstone (1927) assumed that the correlation
coefficient between two samples equals zero and the discriminal
dispersions, o, are approximately equal. He specifically assumed
that o; = 0;+ A, where A is a small value. The derivation will not be
repeated here, but basically the approach is to expand, in a series,
the square root term in Case III, which yields the defining
equation (9.1) for Case TV.

The Case IV problem is to estimate Sy, Sg, 04, and og. Gibson (1953)
recognized that Case IV was a linear problem and solvable by
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well-known methods. His contribution was to put the set of equa-
tlons in a usable form for a practical solution.

Solving equation (9.1) for n samples uses two constraints: 1) Z5;=0
and 2) Zo; = n. Defining the sum of the scale values to be zero estab-
lishes the interval scale constant, and represents the usual Case V
practice. The second constraint establishes the overall “scale multi-
plier” of the interval scale, and is equivalent to making the average
discriminal dispersion equal to unity. Both are arbitrary constants
and are permitted operations on an interval scale.

Gibson proposed two methods of solution. The second method,
described here, uses the two constraints described above and
requires a minimum of five samples for solution. Derivation of the
method of solution proceeds as follows. For each pair of samples,
there is one equation like (9.1) above. To each equation add the scale
values S, through S, on the left-hand side (LHS). Since the sum of
these values is zero, it does not change the balance of the equation.
The next step is to scale the set of equations by multiplying each side
by zap/N2 and then add the sum of the ¢’s to the LHS and n times
zap/N2 to the right-hand side (RHS). Collecting terms yields a system
of ten equations and ten unknowns: the five scale values and the five
discriminal dispersions. This results in a system of equations given
by (9.2).

1 1
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\,@ 12( 3 4 a) xE 12

1
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1 1
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The last equation is just a formalization of the two constraints: the
sum of the scale values equal zero and the sum of the discriminal dis-
persions equal the number of samples. Gibson’s formulation without
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Table 9.2 Number of “Excess” Equations Using
Gibson’s Case IV Solution

Number of Number of “Excess” Number
Samples Comparisons of Equations
B3] 10 0
6 15 3
7 21 7
8 28 12
9 36 18

this final equation yields a matrix of insufficient rank. This system of
equations can be readily put in matrix form given by equation (9.3).

In equation (9.3) E is a column vector of the known z-values multi-
plied by a constant, nz;/\2. Bis a (2n+1) by 2n matrix of coefficients
of the S's, and ¢’s, G is a column vector of unknowns, the scale val-
ues, S;, I...n, followed by the discriminal dispersions, o; 1..n. The
least squares solution for the vector G is given by equation (9.4).

From equation set (9.2) it can be seen that there are 2n unknowns, n
scale values plus n discriminal dispersions, so at least 2n equations
are necessary. For paired comparisons a total of n(n-1)/2 data points
are available. The minimum number of samples, n, can be deter-
mined by equating the two constraints, 2n = n(n-1)/2, and solving for
n. Thus, at least five samples are necessary to use this method.

Using Gibson’s method when there are ones and zeros in the
paired-comparison proportion matrix is also possible. Recall that if
there is complete agreement among the observers, the proportion
will be either a one or a zero, and the z-values will be indeterminate,
The strategy for coping with this problem is to leave the equation
with the one or zero proportion out of the system of equations. This is
only possible with enough samples, where we have more equations
than are required for a solution, or “excess” equations. The number
of excess equations, 8, can be determined by solving 2n - n(n-1)/2=28
for 8. This yields Table (9.2), which displays the number of samples
and the excess number of equations.

According to Table 9.2, if there are only five samples then there is no
possibility of excluding an equation because there are no excess
equations. However, as the number of samples increases, there is a
substantial possibility of eliminating equations. If one’s study uses
six samples, Table 9.2 shows that up to three equations could be
eliminated with enough equations remaining for calculating a least
squares solution for the scale values and discriminal dispersions.
Recall, though, that for every zero in the proportion matrix there is
also a one; they come in pairs, so full advantage cannot be taken
unless the number of available excess equations is even.

9.2.2 Case IV as an Approximation to Case I

Case IV, compared to Case V, is one step closer concerning model
parameters to Thurstone’s complete Law of Comparative Judgment.
The next step “up” i1s known as Case III, where the parameters or
factors to be estimated are the square root of the sum of the vari-
ances. In this sense, Case III is closer to the full Law of Comparative
Judgment, as it has only the assumption of zero correlation in its for-
mulation.

On the surface it appears that Case 1V, where the sum is used
instead of the square root of the sum of the squares of the discriminal
dispersions, is a poor approximation to Case III. An analysis readily
reveals that the Case IV approximation, the sum of the discriminal
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dispersions divided by the square root of two, is numerically identical
to Case III if the dispersions for the two samples are equal. The
approximation error increases as the differences, or A, increases. We
can form the fractional error, €, by taking Case III as “correct,” and
find that it depends on the ratio 6y/0,. The derivation will not be
given here, but we state the result in equation (9.5), where R =
(0'2/01) - 1.

From equation (9.5) several things can be seen. First, the error in
Case IV compared to Case III is always negative, meaning that the
Case IV approximation always underestimates the square root of the
sum of the squares. Secondly, when R is zero the error, €, is zero, as it
should be. The range of R is determined by the assumptions made in
deriving Case IV. This range is -1 < R < 1.81. When R = -1 the maxi-
mum error is -29.3%. If, on the other hand -0.5 < R < 1, implying that
the discriminal dispersions ean stand in up to a 2:1 ratio, then the
error in using Case IV parameters is only -5.1%. Therefore, under
highly practical circumstances, Case IV is a very good approximation
to Case ITT when combined with Gibson’s simple least squares
method for estimating scale values and diseriminal dispersions.

An example of Gibson’s Case IV method is found in the MathCad®
file pcivl .med.

9.3 The Zero-One Proportion Matrix Problems

When one works with paired comparisons and Thurstone’s models,
the basic data takes the form of a proportion matrix; the proportion
of the time sample A is chosen over sample B. It often happens that
some matrix cells will have ones and zeros, or they are blank. In
most practical imaging applications, the diagonal cells are blank
because the sample is rarely compared with itself. A one or zero
occurs in the matrix when there is unanimous agreement among
observers for a particular sample pair. Early in Chapter 7, we
observed that when the distributions or diseriminal dispersions of
responses do not overlap, there is no “confusion” about the samples
(see Figure 7.1). In other words, the samples are too far apart on the
“ness” scale to yield differences of judgments.

Using any of the models presented in section 9.1 to transform a prob-
ability or proportion of one or zero results in a z-value of -« or +e«,
which makes practical computation impossible. Cells without data,
on the other hand, are caused by pairs not being judged, for whatever
reason, which results in an incomplete data matrix. Since these situ-
ations occur frequently in practice, some solution is required.

The strategies for dealing with this problem fit broadly into two dif-
ferent categories. Either get the data matrix “right” by adding
observers, or make the best estimate of the scale values using the
existing data. Selection of the most appropriate strategy depends on
practical and philosophical considerations.
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9.3.1 More Observers

The most obvious technique is to use more observers. Since only one
observer 1s needed to change the proportions to something less than
one and greater than zero, recruiting observers is, essentially, bet-
ting that someone will eventually make the contrary judgment and
break the unanimity. If in fact the samples are very far apart on the
“ness” dimension, an observer with a contrary judgment may never
be found. There are practical and economic limits to the number of
observers, so this is not a realistic strategy for solving the zero-one
proportion problem.

9.3.2 Zero-One Data Substitutions

Data “fixing” methods substitute the ones or zeros of the data matrix
with another value. Guilford (1954) recommended setting the maxi-
mum or minimum proportions to 0.977 and 0.023. This corresponds
to z-values of £2, using the Thurstone (Gaussian) model. Such arbi-
trary substitutions can bias the scale. Noether (1960) had a less arbi-
trary suggestion. He recognized that the proportions are in fact
quantized data, which is quantized in increments of I/number of
observers. The ones and zeros are converted to a proportion that is
the difference between the last quantized value before one, or the
first quantized value after zero. Thus p =0issetto I/(2n) and p =1
is set to 1-1/(2n). Noether's tactic addresses the arbitrariness of
Guilford’s suggestion, and it reduces the bias in the scale value.
There are other methods that are found in the literature that pro-
mote the addition of a suitable constant to numerator and denomina-
tor before calculating an experimental proportion. On the surface
these factors also “solve” the zero-one proportion problem, but they
were not designed to do so. Their main purpose is to reduce the bias
and variance in the estimated scale value, and when used they
should be used for all proportion estimates. Bias and variance of the
estimated scale values is a topic of Section 9.4.

All of these data substitution schemes are rather arbitrary, and
there is no compelling reason to employ any one of them. The pre-
ferred method is the least squares solution, described next, which
does not use the zero and one proportion data to estimate the scale
values.

9.3.3 Morrisey's Incomplete Matrix Solution-Case V

The one-zero problem can be handled as an incomplete-matrix prob-
lem by ignoring the cells with the ones or zeros. In the late 19508
both Morrisey (1955) and Gulliksen (1956) independently proposed a
least squares solution to this problem. Morrisey, who worked for the
Eastman Kodak Company and was interested in using scaling to
solve problems related to image quality, published his work in the
Journal of the Optical Society of America, the preeminent optical
journal of the day. Gulliksen, a professor at Princeton and consultant
to the Educational Testing Service, published his work a little over a
year later in Psychometrika, the preeminent psychometric journal,

(9.6)

(9.7)

(9.8)

(9.9)

(9.10)

2= 81 _Sz
2y 1 -1 0 0 - 0, S1.
25 1 0 -1 0 - 0, S2
z, =01 0 -1 - 0, 83
0,. _I 1 1 1 - 118,

S:(XTX)"XTZ

(z-x8)" (- XS)
% :\’7 7 k—n

S=M'"D=(X"X)"'X"z

9.3 The Zero-One Proportion Matrix Problems 117

apparently unaware of Morrisey's work. The following description of
the method follows Morrisey (1955).

The key to both methods is to recognize that there is an incomplete
set of equations that relate the scale value difference to the trans-
formed values, or z-values, determined from the proportions. For any
of the Case V models described in Table 9.1, a linear relationship
exists between the scale value difference and the z-value for each
judged pair. For sample one and sample two we have equation (9.6).

There are no equations for the missing pairs or unanimous (zero-one
proportion) pairs. A set of linear equations can be written for the
measured sample pairs in a vector format, where the elements of the
z column vector are the z;-values of the judged pairs, equation (9.6).
We form a matrix, X, sometimes called the design matrix by statisti-
cians, where the columns correspond to the samples and the rows
represent the judged pair. Recall that in a complete matrix there are
n(n-1)/2 rows, but because the proportions are incomplete, the
design matrix will be (k+1)n, where & is less than n(n-1)/2. The
entries of the X matrix consist of +/ and -1 in the columns of the pair
that has been compared. In the n by I column S vector are the
unknown scale values. To assure that X not be singular, we increase
the rank of X by adding the usual constraint that the sum of the
scale values is equal to zero; thus the last row of X has all I’s as
entries and the last element of the Z vector has a 0. So, we have the
following matrix formulation in equation (9.7).

Note that there must be valid data for at least n judged pairs to use
this method and & > n. Usually, there will be more equations than
unknowns so a least squares solution, equation (9.8), is used to solve
for the S vector of scale values.

The standard error of the least squares fit to the scale values has
been given by Jackson et. al. (1957) as equation (9.9).

The method of Gulliksen (1956) is slightly different, and constructs
both the X7X matrix and the X7Z matrix directly. Let M = XTX and
construct M according to the following algorithm:

1) Enter a 1 in M for each cell entry in the transformed
proportion matrix, Z, where the proportion is either a
zeroor a l.

2) Enter zero in all other off-diagonal cells.

3) For the diagonals of M enter the number of data points
in each column of the proportion matrix, including
the comparison of the sample with itself.

4) The matrix D = X7z is just the vector of column sums
of the Z matrix.

5) With these two matrices the solution for the least
squares scale values, 8, can be obtained by using equa-
tion (9.10).
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Using Gulliksen’s treatment, there is no X matrix to estimate the
standard error, but this is moot if Mosteller’s (1951c) x? test, equa-
tion (8.11), is used to test the proportion matrix.

This least squares method is a superior alternative to data-fixing
methods because it ignores the zero or one proportions and uses the
balance of the data to make the best estimate of the scale values. It is
highly preferred for this reason.

This solution method, incomplete least squares, can be found in the
MathCad® file pc2 .mcd.

9.3.4 Different Scaling Method

If none of the previous solutions to the zero-one problem is accept-
able, then consider modifying the study by using a different scaling
technique. The one-zero problem comes about because the samples
are spaced far apart on the “ness” dimension, and using a confusion
scaling technique is not appropriate. A better approach is to use a
direct technique such as the graphic rating scale method described in
Chapter 7. Be aware of the tendency to cling to a “favorite” method
when it should be abandoned in favor of a more appropriate one.

Experience suggests that the fewer assumptions that need to be
made to generate the scale, the better. Paired-comparison methods
require several assumptions-including assumptions for the linear

Table 9.3 Bias Corrections for Proportions
and Thurstonian Paired—Comparison Models

Bias Correction Formulas

Conceptually, a problem arises because every time the experiment is
repeated, a new value of f/J is calculated. This 1s called sampling,
and the underlying sampling distribution is assumed to be the bino-
mial. However, this is not the complete picture for Thurstonian mod-
els. All proportions undergo some form of nonlinear transformation
to z-values from which the scale values and discriminal dispersions
are calculated. A significant consequence of the combination of an
underlying binomial proportion distribution with a nonlinear conver-
sion of p to z-values is the introduction of a bias and variance in the
computed scale values, loosely called sampling errors. Not confusing
the parameters of the Law of Comparative Judgment and nonlinear
models in Table 9.1 with these sampling errors is important. They
are very different.

The next section provides an outline of the bias and variance in scale
values, and offers tactics for correction. This treatment is brief
because it is beyond the scope of this book, and a thorough discussion
would take many chapters. The interested reader is referred to Bock
and Jones (1968).

9.4.1 Bias and Variance Corrections

The most detailed investigation available of the bias and variance in
the scale value for several Thurstonian models is reported by Bock
and Jones (1968). They showed that the bias and variance can be
reduced by using bias correction factors like those outlined in Table

model and for the scale estimation methods—in order to construct an Model Name et 9.3. Figure 9.2 (next page) illustrates the bias in the transformed
interval scale. z-value as a function of the true proportion, for a different number of
- ki observers. For the curves illustrated here, the Gaussian
9.4 Statistical Bias and Variance in Scale Estimates VOf R Thurstonian model was used and a factor of 3/8 was added to the
i o 3 numerator and 3/4 to the denominator_' before calculation of the pro-
Statistics describing the scale and discriminal dispersion estimates y 2 p, = o7 for 7 +}; o= portion. The bias with the correction is very small-essentially zero
get very little attention in most scaling literature. A desirable attrib- D v for mid proportions—but increases as the proportion approaches the
ute of scale values using any of the Thurstonian models of Table 9.1 p,=1-- for fo 4 extremes. Notice that the maximum bias occurs at the last
is what statisticians call minimum variance unbiased estimators. ) 2J i+ 1 quantized proportion and it is essentially independent of the num-
Overall, most of the estimators for both scale values and discriminal (Bock and Jones, 1968) ber of observers. Note that these curves are for a single proportion.
dispersion are biased, and do not have a constant variance. All hope _
is not lost, for there exist methods of calculation, called estimators, Dz =1 ik The variance as a f’uncti.on of true proportion, usin-g th_e same bia}s
that can be used to minimize both the bias and variance in the scale ¥ J—f, +° correction as that used in the calculations shown in Figure 9.2, is
estimate. Other than Bock and Jones (1968), we have seen no reports : ) illustrated in Figure 9.3 (next page). The peak variance occurs at the
of scaling studies using the bias-correction approach in practical Logistic 2) z, —h{_. i_+z_ ] true proportion value of 0.50 and decreases as the proportion departs
applications of paired comparison. ” =1, te from this value. Increasing the number of observers flattens and
for f, =0 or J use ! instead of . depresses the peak so the variance is relatively flat over the central
In all the paired-comparison methods, an experimental proportion is {Anscombe; 19586 region, having a value of about 0.12 for fifteen observ.rerte,. Recall that
converted to a z-value using one of the Thurstonian models described these are variances, the squares of the standard deviations, and are
in section 9.1. These experimental proportions, p, are the frequen- 3 i, %5 much smal_ler num_er.icall)f. As can be seen from Figure 9.3, the vari-
cies, f, that one sample is selected over another sample, divided by P £ f 4l ance of a single pair 1s quite dependept on the number of observers.
the total number of ohservers, «f, that evaluated that particular sam- {Asise Dmbe‘ i9 48) Increasing the count of observers will reduce the variance almost
ple pair: p = f/J. Statistically, f is a random variable usually Angular L everywhere.
assumed to come from a binomial distribution with parameter p*: 2) p, = fy+] »
the true probability of choosing one sample over another. A mini- T dgtitd At first glance it would appear that there is substantial bias and

mum variance unbiased estimate of p* is in fact /., so as far as pro-
portion estimates go, this is a good estimator.

(Anscombe, 1956)

variance in the computed scale values for any type of Thurstonian
scaling model. However, these values are for one comparison pair,



120 Chapter ¢ Indirect Interval Scaling-Generalization of Thurstone’s Case V

0.7 -

0.6 \

- 5 observers

0.5 -~ 10 observers

. — — 15 cobservers
04 + — - - 20observers
0.3 +y-

\
0.2 -\

A \
01+ N

D

0.0 - e s

g1 01 02 03 04 05 0.4

I-value bias

02 +

0.3
-04 —
-0.5
~0.6 —

-07 -
True proportion

Figure 9.2 Z-value bias for a Gaussian discriminal
dispersion model and the bias correction in Table
9.3.
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Figure 9.3 The sampling variance for the Gaussian
discriminal dispersion when using the bias correc-
fion in Table 9.3.

and scale values are typically estimated by taking an average, which
would be the column average of z-values for Case V. This averaging
process reduces both the scale bias (the biases are often positive and
negative and tend to cancel) and the variances.

Remarkably, the highly recommended “cure” for the zero-one propor-
tion problem, substituting I/2.J for the zero proportion and 1-1/(2J)
for the unity proportion, is also a useful estimator for reducing the
variance and bias. Better solutions are described in Section 9.3.3
that ignore the pairs that have the zero-one proportions.

Historically, the analytical emphasis on bias reduction has been to
consider only the logistic and angular transforms because they are
mathematically tractable (Anscombe, 1948). The simplest correc-
tions have been to add small constants to the numerator and denom-
inator of the f/.J fraction. According to Bock and Jones (1968) these
bias corrections also serve to reduce the variance in the scale value.
Numerical analysis, the same performed to calculate the curves in
Figure 9.2 and 9.3, illustrates that there exists a “universal” bias
corrector that also reduces the sampling variance. This correction,
which the analysis shows will work for nearly all the transforma-
tions in Table 9.1, is simply the addition of a small fraction to the
numerator and denominator. The simplest and most general correc-
tion consists of adding 3/8 to the numerator, f, and 3/4 to the denomi-
nator, . These fractions can be analytically derived for the logistic
and angular transformations (Anscombe, 1948), but not for Case
V.Gaussian combinations. (Appreciate that a greater reduction in
the bias and variance can be obtained by increasing the number of
observers than by a mathematical correction.) Table 9.3 summarizes
suggested bias correction methods for some popular Thurstonian
models. These bias corrections are often promoted as methods for
correcting the zero-one proportion problem, but they are conceptually
completely different. Although they do, in fact, “golve” the problem
for zero and one proportions by preventing their occurrence, this
method is not recommended.

One major benefit to using the corrections in T. able 9.3 is the redue-
tion in bias for extreme z-values and the variance reduction for z-val-
ues about zero (Bock and Jones, 1968). Since there is no compelling
reason not to correct for known bias effects in scale estimation, it
should be incorporated as standard practice when estimating propor-
tions that will be subsequently transformed to z-values.

The MathCad® sheets accompanying this book offer the option to
use these bias and variance reduction techniques.

9.4.2 Other Applications Untried

Paired comparison is not the only scaling method that uses propor-
tions as the basic building block for scaling. In the next chapter the
method of category scaling called the Law of Category Judgment will
be described:; it also uses proportions but with one important change.
This method of deriving a scale from category scaling data uses the

Fbaiie
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sum of proportions before transforming to z-values. Yet there does
not seem to be any literature on bias and variance reduction tech-
niques for this scaling method.

Applying these bias and variance reduction techniques to other scal-
ing methods might seem reasonable. However, broader application
may not be appropriate simply because these have been developed
specifically for paired comparison applications and are not necessar-
ily correct for others. More work needs to be done before any univer-
sality can be claimed for these bias reduction estimators.
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Chapter 10

Indirect Interval
Scales-Category Scaling
Methods

, Category scaling is probably the most widely known of all scaling
methods. Anyone who has attended school is all too familiar with
letter grades describing academic performance, with “A” standing
for excellent work, “B” being the grade for good work, and so on. (I
always wondered what happened to the letter grade “E?” Perhaps it
was never used because it might be confused with “excellent.”)

! Category scaling is popular for two principal reasons. First, data col-
lection is simple. Second, when adjectives are used for category
labels, scale meaning is easily understood. Tt has remained popular
in the social sciences, but use has waned somewhat in psychophysics.
The one notable exception to this trend has been the Recommenda-
tion ITU-R BT.500-7 (1995), Methodology for the Subjeclive Assess-
ment of the Quality of Television Pictures. This international
recommendation (standard) provides several category techniques for
scaling the quality of television images.

The discussion of category scaling in this chapter will focus on two
well-established methods. One data analysis method, called
Equal-Appearing Intervals, behaves like an ordinal scale, which
limits its usefulness for Image Quality Circle applications. The
method of Successive Categories or Intervals combined with
Torgerson’s Law of Categorical Judgment, on the other hand, is a
true interval method.

10.1 Equal-Appearing Intervals

_ The general category data collection method requires the observer to
f place samples in categories of equal-appearing intervals.
‘ Equal-appearing is equivalent to saying the categories are of equal
width, except of course for the end categories. In practice, the
; assumption of equal-width intervals is somewhat tenuous. Catego-
{ ries are labeled with names like “good,” “better.” and “best,” or with

just numbers (for example 1 to 5), or simply a rank ordering. Data is
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collected as a matrix, K, with the n rows being the samples and the
m~+1 columns the categories. Each element of the data matrix is the
number of times the sample (row) was placed in the category (col-
umn). These basic methods are reminiscent of ordinal scaling
described earlier in Chapter 6. As with ordinal scaling, this method
of data collection does not directly yvield an interval scale without
additional assumptions or models.

At first glance, the equal-appearing intervals data collection method
seems straightforward. However, observers tend to use each cate-
gory equally often, independent of the amount of the “ness” in the
samples (Gescheider, 1985; Guilford, 1954). This results in scale dis-
tortion, because the underlying assumption is that the categories
have equal “width” on the “ness” dimension. Experienced observers
can put samples in equal interval categories under certain condi-
tions. Bartleson (1984), for instance, gives an example of equal inter-
val category scaling of the colorfulness of color chips.

The number of categories available to the observer is a key consider-
ation in equal interval scaling. The practice suggested by Bartleson
(1984) and Meilgaard, et. al. (1991) is to have an odd number of cate-
gory adjectives (points), usually from five to eleven. In a study of the
quality of projected photographic transparencies, Bartleson and
Woodbury (1965) found optimum relative precision of judgments and
category utilization with eleven categories when experienced observ-
ers were used. Typically, highly skilled observers are more effective
at using many categories than “average” or moderately skilled
observers (Bartleson and Woodbury, 1965).

Average human human observers typically distinguish only about
seven different categories (Miller, 1956; Norwich, 1981), so addi-
tional categories may contribute very little “scale information.”
Many categories require the observer to make fine intervals of dis-
crimination among the categories, while a smaller number does not.
Since having many categories does not necessarily increase the “res-
olution” of the scale, study designers should strive to keep the num-
ber of categories in the range of five to eleven.

10.1.1 Category Labels

Adjectives are often used instead of numbers to label each category.
If an interval scale is required, then these labels should be perceived
by the observer as having equal intervals on the “ness” dimension. A
“quantitative” adjective sequence suggested by Bartleson (1984) for a
nine-point category scale of increasing amounts of “ness,” is as fol-
lows:

. Least imaginable “ness”
. Very little “ness”

. Mildly “ness”

. Moderately “ness”

. “Ness”

. Moderately highly “ness”
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7. Highly “ness”
8. Very highly “ness”
9. Highest imaginable “ness”

Note the symmetry of the adjectives around the midpoint. This helps
to keep the category intervals approximately the same.

Sometimes a scale that has a center point of indifference is required.
Jones (1960) and Meilgaard, et. al. (1991) offer a nine-point “liking”
scale, which in some respects is similar to Bartleson’s scale above,

and is symmetrical about the neutral point of “Neither like nor dis-
like.”

. Like extremely

. Like very much

. Like moderately

. Like slightly

. Neither like nor dislike
. Dislike slightly

. Dislike moderately

. Dislike very much

. Dislike extremely

QN = 2 DD
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Again there is the symmetry in the adjectives used, which helps to
keep the scale symmetric about the neutral or indifference point.

An adaptation of this approach can be a sequence of categories with
only the extremes labeled, or the extremes plus a neutral center
point labeled (Meilgaard, et. al., 1991). Labeling the extremes and
the center point should be done with care. Bartleson and Woodbury
(1965) showed, in an image quality study, that three points break the
scale into two regions, generating an overall distorted scale.

An interesting variant of the quantitative category scales described
above is that recommended by the ITU (Recommendation ITU-R
BT.500-7, 1995) which has been widely applied in the imaging field.
The specific focus of this qualitative adjectival scale is the evaluation
of the quality of television pictures, and it comprises two recommen-
dations. One recommendation is a five-category qualitative scale of
image quality, with categories going from:

5. Excellent
4. Good

3. Fair

2. Poor

1. Bad

For scale generation purposes, the adjectives are assigned the point
values preceding the adjective; e.g., an “excellent” quality picture
gets five points, and a “bad” quality picture gets 1 point.

The second recommended scale is an impairment category scale.
Here the assumption is that the scale starts from some high or
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reference-quality level and, because of various television system
impairment factors, the quality is degraded. The levels of impair-
ment comprise a five-category qualitative scale with the following
categories of impairment descriptors:

5. Imperceptible

4. Perceptible, but not annoying
3. Slightly annoying

2. Annoying

1. Very annoying

The recommended analysis of the category scaled data assumes that
the categories of the quality and impairment scales have equal inter-
vals. This implies that the psychological, or “ness,” distance between
the impairment categories of “Very annoying” and “Annoying” is the
same as the distance between “Imperceptible” and “Perceptible, but
not annoying.” However, adjectives used in ITU-R BT500.7 have
recelved criticism from several sources for not having equal inter-
vals. Zwick (1984), and Jones and McManus (1986) used a graphical
rating scale method to assess the equal-interval properties of the
five-category quality scale. The observers in the Jones et. al. study
were from several geographic areas of the U.S. and Italy. The results
from both studies show that the intervals described by the five image
quality adjectives are not at all uniform. Further, the “poor” and
“bad” categories are almost the same, according to Jones, et al (1986).
In a similar study of the impairment categories, Zwick (1984) found
that they are not of uniform category width. Inexperienced observ-
ers, in particular, had difficulty in using them.

If one assumes an underlying interval scale, it is important that the
choice of adjectives reflects equal intervals in the minds of observers.
In a study of text print quality where the observers used a four-cate-
gory scale of print quality-draft quality, near-letter quality, letter
quality, and typeset quality-Engeldrum (1991) showed that the
width of these quality categories is not equal; with near-letter qual-
ity being wider than letter quality.

Caution is strongly advised when using arbitrary category names
combined with an analysis technique that implies or assumes an
equal width between the category labels. For equal-appearing inter-
vals, one should be cautious about straying from the recommended
categories described earlier.

Adjectives to be used as labels for categories can, in fact, be tested
using Torgerson’s Law of Categorical Judgment. The procedure
yields both the sample scale values and category boundaries on the
same scale. The method can also be used to compute the widths or
equal-interval properties of categories, and a statistical test of the
Law, described later, can be performed following the data analysis.
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10.1.2 Observer Instructions

Category scaling requires the observer to place each sample into a
category or pile. Usually, the categories have adjectives or numbers
as labels. An instruction prototype for scaling a series of colored
papers for colorfulness (Bartleson, 1984) appears below. It should be
adapted by changing the word “papers” to the appropriate descrip-
tion of the samples.

“You will be shown [presented] each sample of a series of
colored papers. We would like to know how (‘...ness’) you think
each paper is. Please express your opinion on a scale of
numbers from 1 to 9 where 1 represents a complete lack of
(‘...ness’) and 9 represents the most (*...ness”) you can imagine.
Use numbers between 1 and 9 to represent equal intervals of
(‘...ness’). [OPTION: For example, you might think of the scale
in the following way-(categories are enumerated here).] The
difference in the ('...ness’) between the numbers 3 and 4 is the
same as the difference between categories 7 and 8. You may
not use fractions or decimals; you must use integers. The
integers should be from 1 to 9. No larger or smaller integers
may be used.”

Note the definition of equal intervals for the difference between the
numbers or adjectival categories. The samples are, by implication,
presented one by one, but this is not a requirement. See Chapter 3
for a complete discussion on presentation modes.

The instructions can be altered to ask the observer to sort a set of
samples into a series of categories, designated either by numbers or
adjectives. For example:

“You will be shown [presented] each of a series of colored
papers. We would like to know how ('...ness’) you think each
paper is. Please express your opinion by placing the colored
paper under the number [on a table or work space]. The
numbers range from 1 to 9 where 1 represents a complete lack
of (...ness’) and 9 represents the most (*...ness’} you can
imagine. Use numbers between 1 and 9 to represent equal
intervals of (..ness’). [OPTION: For example, you might
think of the scale in the following way-(categories are
enumerated here).] The difference in the ('...ness’) between
the numbers 3 and 4 is the same as the difference between
categories 7 and 8. You may not place the sample between the
number, and you must use the designated numbers. No larger
or smaller integers may be used.”

A recommended option is to use one of the nine-level quantitative
adjectival category scales described above. This will reduce the scal-
ing difficulty for inexperienced observers, and it will go a long way to
ensure that the intervals are approximately equal.
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10.1.3 Equal-Appearing Intervals Scale Generation

When observers can construct equal intervals, the computed scale
can be assumed to be an interval scale. Data analysis requires the
assignment of arbitrary values, or weights, to the categories to com-
pute an average category value for each sample. Usually the first
category is given the value 7, the second 2, and so forth, up to m+I
categories. The scale value consists of the average category of each
sample and can be calculated by equation (10.1).

The elements of the row vector in equation (10.1} are the weights
assigned to each category. Equation (10.1) computes the weighted
row sum and divides the result by the number of observers, o/, yield-
ing the average category for each stimulus or sample. If all observers
do not judge all samples then the division by «J must be altered. In
general the divisor is the row sum of each sample. The vector AvgCat
has length n, the number of image samples.

Using the equal-appearing intervals category scaling method is not
highly recommended. It survives because it is extremely simple, but
the scale is only ordinal at best, and is influenced by all sorts of fac-
tors that have a tendency to lead to unequal intervals. Equal-appear-
ing intervals may be used as a fall-back method when statistical
tests reveal that the category scaling data, described in the next sec-
tions, do not fit the underlying models.

10.2 Torgerson’s Law of Categorical Judgment

A data analysis procedure that addresses the issues raised by the
equal-appearing intervals method is Torgerson’s Law of Categorical
Judgment, more widely known as successive intervals scaling
(Adams and Messick, 1958). Torgerson unified many of the
then-existing methods of category judgment with his Law of Cate-
gorical Judgment (Torgerson, 1958). Its development parallels
Thurstone’s Law of Comparative Judgment. The Law of Categorical
Judgment has a similar formulation, but the data reduction is some-
what more complex. We quote Torgerson’s (1958) description of the
underlying framework regarding the Law of Categorical Judgment:

“A psychological continuum of the attribute of interest is
postulated. Each time a stimulus is presented to an
observer, it brings about some sort of a discriminal process
that has a value on this continuum [‘ness’ dimension]. Owing
to various and sundry factors, upon repeated presentation,
the stimulus is not always associated with a particular
value, but may be associated with one higher or lower on the
continuum. It is postulated that the values associated with
any given stimulus project a normal [Gaussian] distribution
on the continuum. Different stimuli have different means
[scale values] and different standard deviations [discriminal
dispersions].”

(10.2)

[ 2 2
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10.2 Torgerson’s Law of Categorical Judgmehf 129

This is essentially the framework for Thurstone’s Law of Compara-
tive Judgment, to which Torgerson added the following assumptions
for his Law of Categorical Judgment:

1) The psychological continuum (the “ness” dimension) of
the observer can be divided into a specified number of
ordered categories or steps.

2) Owing to various factors, a given category boundary
may not necessarily always be found at a particular
point on the continuum. Rather, it is assumed that
the category boundary follows a normal distribution
of positions on the continuum. Each category bound-
ary may have a different location (mean) and differ-
ent dispersion (standard deviation).

3) The observer judges a given stimulus to be below a
given category boundary whenever the value of the
stimulus on the continuum is less than that of the cat-
egory boundary.

Thurstone’s Law of Comparative Judgment is formulated in terms of
the scale difference between the samples. With Torgerson’s Law of
Categorical Judgment, the difference is between the sample scale
value and the category boundary. The formal model of Torgerson’s
Law of Categorical Judgment is given by equation (10.2), where t, =
mean location of the upper gth category boundary, S; = scale value of
the jth sample, z;, = unit normal deviate corresponding to the propor-
tion of times stimulus ; is sorted below category boundary g, o.= the
dispersion (standard deviation) of the gth category boundary, o; = the
dispersion (standard deviation) of the jth sample, p,; = the correlation
between the momentary positions of the category boundary g and
stimulus j, m~+1 = number of categories, and n =number of samples.

An axiomatic formulation and generalization of successive intervals
scaling can be found in Adams and Messick (1958).

Again we have a situation where the number of unknowns exceeds
the number of knowns and some assumptions must be made to sim-
plify the application of the law. The sets of assumptions leading to
viable solutions are what Torgerson called Classes and Conditions.

10.2.1 Classes and Conditions

Torgerson (1958) provided an array of experimental situations that
he called Classes and Conditions. His three Classes refer to replica-
tions of the category scaling process over trials, over individuals, or
over a combination of individuals and trials. The formal models for
the various Classes are identical, so we will only consider the Condi-
tions A, B, C and D. The set of simplifying assumptions (Conditions)
is made with respect to the variance (standard deviation) and corre-
lation terms in equation (10.2).
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Table 10.1 summarizes the assumptions and applicable model for
the four conditions. In this table, CI, C2, C3, k1, k2, and r are all con-
stants.

Table 10.1 Torgerson’s Four Conditions of the Law of Categorical Judgement

Correlation

Condition CoblEeient Variances Model Equation
A 40,0,=CL 6l 2oL t, =8, =z,0% +6% -2 00,
6’y =C2 t,— S, =zjg\f(52; +C2
B pjg =0 9 )
G =0 t,—-8 =2,0a;
6% =C3 t, -5, :zfg\f?52;+C'3-
c P =0 2 ]
O'g = tk _Sj :ngbg
;=kLG, =R2  t S, =z R+ R2 - 2rklk2
D P =T - - i
0;,=05,=0 t, -8, =z,

Of the four Conditions in Table 10.1, only Conditions B, C and D
have wide practical application. Both Condition B and C are formally
equivalent, the difference being the interchange of the stimuli and
category dispersion. Condition B assumes that each category bound-
ary has a constant discriminal dispersion and that the correlation is
zero. In the general case, g; (in Table 10.1) is only proportional to the
sample discriminal dispersion because of the additive constant-cate-
gory-boundary standard deviation, C2. All the solutions described in
this chapter make the implicit assumption that the category bound-
aries are fixed and therefore C2 = 0. Then the solution for g; is
equated to o;, the sample discriminal dispersion.

Condition C assumes that the sample dispersions are fixed, and that
the category boundaries vary. The constant b, of Condition C is now
proportional to the category standard deviation. Generally, the sam-
ple standard deviations are assumed constant = C3, but practical
solutions only estimate a value that is proportional to the category
standard deviation. Thus, estimating the category standard devia-
tion independently 1s not practically possible. This would require the
assumption of zero discriminal dispersion for the samples, an
assumption that is unrealistic,

Condition D makes the minimum assumptions regarding the cate-
gory and sample variances, and in this sense it is the equivalent of
Thurstone’s Case V of the Law of Comparative Judgment. The
assumption for Condition D is that all the terms under the square
root sign are constant and equal to 1.0. This is equivalent to assum-
ing all the discriminal dispersions and correlations are constant,
independent of category or sample. These assumptions make Condi-
tion D amenable to simple techniques for determining the scale val-
ues, but at the cost of not being able to estimate the sample disper-
sion or standard deviation.

Proportion

o
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T T - e

"Ness" Scale

Figure 10.1 The top half of the figure illustrates the

discriminal dispersion of the samples, the sample
mean values, S's, the discriminal dispersions and

he category boundaries, 1's. The lower half shows

the proportion of times the first sample appeared,
?eiow each category boundary. After Gulliksen
1954),
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Before going into the methods of data analysis, a remark is in order
about using the Law of Categorical Judgment. This law, like
Thurstone’s Law of Comparative Judgment, hinges on the confusion
by observers in placing a sample in a category. If there is no confu-
sion about a sample, all the judges place the sample in the same cate-
gory. When this happens, some of these methods will not yield a
solution., Therefore, to compute the widths of adjectival categories,
there must be sufficient confusion among the categories. Confusion is
assured if a given sample finds itself in all of the categories at least
once, but achieving this goal depends on the range of the “ness” in the
samples and the nature of the specific categories. If this ideal is not
reached (the usual case), then an incomplete matrix results, and
more sophisticated analysis methods must be used. Many remarks
on incomplete proportion matrices discussed in Chapter 9 apply here.

Jones (1960) provides some evidence that, when using the Law of
Categorical Judgment, the scale is stable over the changes in the
number of categories, over changes in observers, and over the “ness”
distribution in the sample. A substantial body of literature seems to
cast doubt on this conclusion, but almost all of the reports used the
assumption of equal appearing intervals-an untested assumption.
Parducci and Wedell (1986) proposed a model that accounts for the
average category rating as a function of the number of categories,
samples, and other factors.

10.2.2 Data Analysis

The four Conditions, or simplifying assumptions, of Torgerson’s Law
of Categorical Judgment allow for varying degrees of analysis from
the simplest Condition D to the more complex Conditions B and C.

Observer data for analysis via the Law of Categorical Judgment
starts with an n by m+I data matrix. This data matrix is a frequency
matrix K, where the data elements, &, are the number of times
stimulus j (row) was put in category g (column).

Figure 10.1 illustrates the model parameter relationships. The top
part of the figure shows the distributions of the sample judgments
along the “ness” axis or dimension. The means of the distributions
shown by the S’s denote the sample scale value with the ¢’s denoting
the discriminal dispersions for each sample. Vertical solid lines in
the figure represent the category boundaries, denoted by the ¢’s.
There are only m boundaries, but m+1 categories. The lower half of
the figure shows the cumulated proportions of the first sample that
depicts the proportion of time the sample was placed in a category
below each category boundary, ¢, {s...t,,. In this example, the sample
appeared in four categories whose boundaries are t; to t,.

The next analysis step forms the cumulative frequency matrix, @,
which is a matrix of cumulative row sums of the frequencies of the K
matrix. This operation computes the number of times each sample
appears below each category boundary, and is analogous to comput-
ing the definite integral of an empirical probability density function.
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This operation is represented by a matrix multiplication of K with a
special matrix, C. The (m+1)} by {m+I) matrix C has 1's on its diago-
nal and I’s in all elements above the diagonal and 0’s below the diag-
onal. This is shown in equation (10.3).

In summation notation we can also perform the cumulation (definite
integral) using equation (10.4).

The next step is to calculate the n by m proportion matrix, P. We do
this by dividing each row element of the ® matrix by the value of the
last column of @ according to equation (10.5).

After this calculation, the last column of P will have values of 1.0 for
every row, and is dropped from the matrix. The resulting matrix Pis
n by m in size. A consequence of dropping the last column is that the
first and last category are open-ended intervals; we can determine
neither the lower boundary of the initial category nor the upper
boundary of the final category.

The final preparatory step before the calculations for scale values is
the conversion of the proportions in the P matrix into a Z matrix
whose elements are the unit standard normal deviates of the propor-
tions. This is the same procedure we used in the paired comparison
example. It is the common matrix used in the solution of Conditions
D, C, and B. To obtain the z-values, z;, the inverse of equation (10.6),
the definition of the standard unit normal, is needed for each p;, of
equation (10.5).

Although the usual transformation function from proportion to
z-value is the Gaussian, or normal, the same set of transforma-
tions that can be used in the Law of Comparative Judgment is
applicable here. The solutions described here are valid for any of
the transformations described in Chapter 9, Table 9.1 (Adams and
Messick, 19568).

10.2.2.1 Condition D Solution-Complete Matrix

Condition D, the simplest case, assumes that the correlation coeffi-
cients and the discriminal dispersions of both the samples and the
categories are constant. This assumption means that all the ele-
ments under the square root sign in equation (10.2) are constant and
sum to one (See Table 10.1). If there are no zeros and ones in the pro-
portion matrix, P, it is a complete matrix, and the following least
squares solution applies (Torgerson, 1958). The vector of m category
boundaries, £, is simply the column averages of the Z matrix. In
matrix notation, we have the column averages given by equation
(10.7) or in summation notation given by equation (10.8).

A vector of scale values, S, can be determined by subtracting the row
averages from the overall mean of the n by m Z matrix. In matrix for-
malism we have equation (10.9) for the vector S of n scale values.

(10.10)

(10.11)

(10.12)

(10.13)

(10.14)

1 _Slﬁ

B

t - S,

t, -8,

t,-S,

k8
0

S; =

t, —SJ. =z

T o R S

y:(XTX)_]XTz*

1
: '222;'3 ’"Zzﬁg

10.2 Torgerson's Law of Categorical Judgment 133

T

1 1

1 1

(10.9) A1)zl 11| —nz| 1
Iy g i

1

m m

A clearer formulation of the scale values is in summation notation
mn <% given by equation (10.10).

MathCad® sheet 1cajdl.mcd provides an example of calculating
scale values and category boundaries for Condition D of Torgerson’s
Law of Categorical Judgment.

10.2.1.2 Condition D Solution-Incomplete Matrix

In the more usual category scaling situation, the P matrix will have
g 1’s and 0’s as some of its elements, due to a lack of confusion (or pres-
ence of a consensus) among observers. This method is modeled after
the least squares technique outlined by Morrisey (1955) and
Gulliksen (1956) for paired comparisons data analysis, and is a solu-
tion to equation (10.11).

)
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The solution is motivated by the observation that equation (10.11) is
a linear equation with two unknowns (the category boundary and
S, sample scale value) and one known (the corresponding z-value). As
S, an example: for three categories and four samples, equation (10.11)
S; can be written in matrix form as shown in equation (10.12).
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The last row in the matrix forces the sum of the scale values to be
equal to zero, which is acceptable for an interval scale. Equation
(10.12) can be written in a more compact form using matrix notation
as equation (10.13) by substituting the z-values according to (10.11)
for the column vector of boundary-scale value differences in equation
(10.12).

For a full or complete proportion matrix, 2¥*is a (mn+1) by I vector, X
is (mn+1) by (m+n), and y is a (mn+1) by I vector. When the propor-
tion matrix P is incomplete, the procedure is to eliminate the rows in
X that correspond to these 0 or 1 proportions. This reduces the num-
ber of rows in the X matrix by the number of 0 or 1 elements in the P
matrix. Selution of equation (10.13) is via least squares according to
equation (10.14).

The first m elements of the solution vector ¥ are the category bound-
aries, and the remaining n elements are the scale values.

A few remarks about the solution given by equation (10.14) are in
order. First, this is a general solution for Condition D, and can be
used instead of equations (10.7-10.10). Secondly, a limit exists for the
number of missing or 0 and 1 elements allowed before there is no
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solution, according to equation (10.14). Specifically, the number of average of the scale values assumes the customary value of zero, and
rows in X must be at least (m+n+1). the discriminal dispersions sum to n.
The details of this Condition D incomplete matrix method can be An example of this Condition B solution with a complete matrix is
found in MathCad® sheet 1cajdil.mad. illustrated in the 1cajcl.mcd MathCad® sheet.
10.2.2.3 Condition B and C Solutions—-Complete Matrix The s_econd le_ast squares solution 1s for Conditipn B with a qomplete
matrix (Gulliksen 1954). This method essentially determines the
Coniitions B and 0 ae Sudiler T borrs of soluton, Donditens T eigenvalues and vectors of the rqw«normallzed covariance matrix of
assumes that the category boundary discriminal dispersions are con- the Z matrix, and uses the first eigenvector to compute th_e
stant, while Condition C assumes the sample dispersions are fixed. A fhscnmn_lal dls;:_iers%ons and th_e sca_le values. Since the data analysis
solution for one is formally the same as the other, providing the is complicated, it will be described in steps.
discriminal di i f th 1 : interch d with th - .
1SCITMINAL CHSPETSIONS o Lhe Samp es{ are INlerciangea wi - 1) Compute the row means, avg;, and row standard devi-
egories. The solution of Condition C would yield the scale values, the ations. sd- of the Z matri
category boundaries, and the category dispersions. However, the use 9) Stan d7ar dg’ze o o oo tr)'(- b T
of Condition C 1s not common, so we will focus only on Condition B, S e Rwmee senite 1] E z .suthrac mgn d divide
Also, the usual assumption of fixed category boundaries requires the thi d" o & et E e dend zln . e;_row Ecli = 251]
category discriminal dispersion to be zero. Then the estimate of a; in th;: n:aféin; T{ns N jtzlzh:r 0 e‘vt)a lzn’ Slésarcl)n ?:?18
Table 10.1 1s identical to the standard deviation of the sample stan- " P TOWS, or samples,
dard deviation or discriminal dispersions same scale units; zero mean and unit standard
P ) deviation.
Two solutions for Condition B, with a complete matrix, are presented 2 ES(;;T )lilse) thprelakin metng, O,y 2 inumoeror
here. The first 1s a straightforward algebraic solution, and the second 1) Decolr)n Oée TLIr T .y e—
18 a more sophisticated approach that requires the singular value . é)VD S P SIS * ]g g 1980 IéVD
decomposition of the proportion matrix (10.21) tion ( ). (See, for SRR & GHnE. Lo )
' decomposes the C matrix into its underlying struc-
; ; : ; ture according to equation (10.21).
The simplest solution to Condition B for computing the scale values, Both I and 5 of ecclluation ((10 21)) are orthogonal and
(10.15) b8, 2 the discriminal dispersions, and the category boundaries follows i Hiagonal matds with th;—:‘ singulsrvalaesonihe
Torgerson (1958). It is an approximation that does not have any least diagonal. This is not unlike finding the eigenvectors
squares properties. The formal model is Condition B, where the sam- g5 eigeﬁvalu i 5PE HAtEe Ti THE: Tor Some maie
le discriminal dispersion and the assumed constants are incorpo- . . ) ; :
10.16 1 77 Eated A coiqtant . in equation (10.15) p ces, SVD gives the eigenvectors and eigenvalues
(10.16) avg = e [1 (s PR ; y B 4 SRR directly (Weller and Romney, 1990).
; : . N . . -D,U,, 5) Compute the discriminal dispersions of the samples, a
S_tartmg with the Z' matrix of the transformed cumulative propor- (10.22) d =—"= column vector d;, from the SVD matrix U and the sin-
(10.17) . = 1 iz tions, the first step is computing the row means and row standard sd ~'n gular values, D, according to equation (10.22).
' b e TE deviations according to the equations 10.16-10.18. Row means are \ T cihies siosils. s Hast eolunamn of he msthx U is
f,r}llven in matrix notation by e:quatu)r::1 (110.16). II_1 surilénla\;lon notation multiplied by the negative of the first sin-gul.ar value,
e row averages, avg), are computed by equation (10.17). | -D, ;, and divided by the row standard deviation times
- the square root of the number of samples, or the num-
1 < - For the estimate of the discriminal dispersions a;, use the reciprocal - 0? Fows i,
(10.18) sd; = V’;Z(zjg —avg f) of the row standard deviation. The standard deviation of each row, 6) The scale value vector, S, can be recovered by using
) sdj, can be computed using equation (10.18). (10.23 S; =—d;avg, equation (10.23). Each scale value is calculated by
taking the element-by-element product of the
) The sample discri.milnal dispersions are just the reciprocals of the discriminal dispersion vector, d, and the row means
(10.19) ;= 1 Fig row standard deviations, @; = 1/sd;. Category upper boundaries, tg, . of the Z matrix.
¢ nidl|sd, are computed by calculating the weighted column (category) average (10.24) t, ==V, ,vn 7) Finally, the vector of category boundaries, ¢, can be
o_f the Z mﬁltrix. The Weights(aée ‘;};e row (or sample) standard devia- determined from the following equation (10.24).
tions, as shown in equation (10.19).
) The category boundary vector is just the negative of the first column
(10.20) S - 1e g o] avs; Finally, the scale v'al'ues can be computed as the differgnce of the row of V, multiplied by the square root of the number of samples or stim-
TomE "t | sd, (sample) means divided by the row standard deviations, from the uli. This completes the method. An example is illustrated in the

average categoly values (equation 10.20). With this method the MathCad® sheet 1cajc2.med.
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10.2.2.4 Condition B and C Solutions-Incomplete Matrix

The most prevalent category scaling data analysis situation is Condi-
tion B or C, with an incomplete frequency data matrix. The litera-
ture offers some solution options, but most of the widely used
methods are approximations. However, two least squares methods
have been described—one by Diederich, Messick and Tucker (1957),
which we call the DMT method, and another by Bock (1957). There is
a small difference between the two methods. The DMT method esti-
mates the conventional category boundaries, while Bock’s method
estimates the median, or the middle category position. A discussion
of the DMT method follows.

The DMT solution, which provides the category boundaries by mini-

mizing the mean-squared-error, €, is given by equation (10.25); here

w; is an arbitrary weight chosen so that w;, = 0 when the proportion

matrix value equals 1 or 0, and @; is the standard deviation or

discriminal dispersion of the scale value, S;. This is an iterative

o i method that vields a weighted least squares solution to the category

e= 2 Z w, (S itz —t g) C boundaries, the sample scale values, and the discriminal dispersions

E

J=1 &1 for each sample.

The DMT method contends with the incomplete matrix by using a
weighting function for the unity and zero values in the proportion
matrix that is identically zero. No specific weighting procedures for
the non-zero proportion values are suggested by DMT. The
MathCad® implementation uses a weighting related to the variance
of the proportion, the so-called Miiller-Urban weights (Bock and
Jones, 1968). A complete description of the DMT iterative method of
solution will not be given here. A note of caution is in order, though.
The Law of Categorical Judgment, like Thurstone’s Law of Compar-
ative Judgment, is a “confusion” scaling method. It needs confusion
among the observers for the model to be useful. As a minimum, there
must be non-zero frequencies of each sample in at least three catego-
ries. If only two categories contain frequency data, the method will
produce a fatal error.

This general solution is given in the MathCad® sheet 1cajg.mcd as
a program, or subroutine, called DMT. Raw data is a frequency
matrix with columns equal to the number of categories and the rows
equal to the number of samples. Matrix elements are the number of
times the sample, in the row, is put in the category associated with
the column.

10.3 Test of the Law of Categorical Judgment

There are basically two Conditions, B and D, that generally apply to
category scaling. A useful question to answer is which condition
“better” fits the experimental proportions. This suggests a statistical
test of the difference in proportions like Mosteller's (1951c) test for
the Law of Comparative Judgment in Chapter 9.

, kp,i.g—l)._(l:;,,g
Gy o (-2,

e‘i{.’ :Sinwl[Q(pj-ﬁ _pJ-t-f"l)il]

L e —

10.3 Test of the Law of Categorical Judgment 137

Torgerson (1958) suggested that the average absolute difference in
the proportions be used as an “index of agreement.” Yet a statistical
test of the average absolute difference was not provided. Guilford
(1954) proposed the use of Mosteller’s (1951c) chi-square test, but
Torgerson objected to this application of the test because, while
cumulating the proportions across the categories, the proportions
lose their assumed statistical independence. Bock (1968) proposed
the chi-square goodness-of-fit test with a modification that addressed
Torgerson’s main objection. The modification is to compute the dif-
ferences in the cumulative proportions for adjacent categories, which
vields the individual proportions for each sample category. This dif-
ferencing is equivalent to differentiating the cumulative probability
function. It “undoes” the proportion cumulation of equations (10.4)
and (10.5).

Bock’s chi-square test statistic, which is in the tradition of a good-
ness-of-fit test on the number of responses, is given in equation
(10.26), where p;, = the empirical cumulative proportion of the Jih
sample in the gt category, P';, = the cumulative proportions from
either Condition B or DD, and «/; = the number of observers scaling the
jt sample. Note that this chi-square test statistic is the classical
goodness-of-fit test on the frequencies, and is subject to the usual
limitations if «J; < 5 (Sachs,1984).

_Pj,.g—l)]Ji }2 B [(pj_l —‘le.l) J; ]2 5 {[(l—pj,m ) - (1 it )]J;}:

The model proportions to be used in equation (10.26) are calculated
from the estimates of the scale value, the discriminal dispersions,
and the category boundaries, depending on the Condition. For the
Condition D model, the theoretical proportions are calculated from
equation (10.27), where the primes indicate model estimates.

When testing Condition D using equation (10.26), the degrees of free-
dom for determining the critical chi-square value are df = n(in-2)+1.

For Condition B, model equation (10.28) is used for calculating the
theoretical proportions.

The degrees of freedom for this chi-square test, according to Bock
and Jones (1968), are df = (n-1)(m-3). This implies that at least two
samples and four categories are needed for application of the test.

Using Mosteller’s test is also possible (Chapter 9) with the differenc-
ing modification given by equation (10.26). The angular transforma-
tion is used to convert proportions, which are binomially distributed,
to normally distributed random variables that more closely approxi-
mate the underlying assumptions of the chi-square test. The trans-
formation of the proportions is now performed on the difference of
the cumulated proportions, and is given in equation (10.29).
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., . ) , Equation (10.30) gives the formula for computing the chi-square test
(10.30) x* =Y., 2.(0,,-9.,) +J.(8,,-67,) statistic. The degrees of freedom are the same as for equation (10.26)
=l g2 . and depend on whether the model of equation (10.27) or (10.28) ig

+ J (e e:‘.nhl )" used.

J.m+l

These two chi-square tests will give different numerical values for
the same data. They are two different estimators of the chi-square
test statistic. In both cases the test statistic will increase in accuracy
as the number of observers increases. Preference should be given to
the computation of chi-square based on equation (10.30). Tt should be
less affected by small numbers of frequencies in the K matrix and
more sensitive to deviations in small proportions. This test is
included in the MathCad® worksheet in file 1cajg.med.

10.3.1 Diagnostics

The chi-square values, computed via either equation (10.26) or
(10.30) for each proportion, can be used for diagnostics in the case
where the model fails. The model fails if the computed chi-square
value exceeds the critical value. If the chi-square values for each
sample are summed across the categories (the row sums), they can
be compared to the approximate expected value. Ignoring the
degrees of freedom lost to the categories, the expected chi-square
value is approximately the number of categories minus one—m-+1-2
= m-1 (Bock and Jones, 1968). Samples with larger-than-expected
values are the samples that do not fit the appropriate model of the
Law of Categorical Judgment. One cause is they do not fit the under-
lying distribution describing the discriminal dispersion, for some
reason.

To confirm whether the judgments fit the assumed underlying distri-
bution, particularly for the samples with chi-square values that
exceed the expected value, the actual z-values of the sample can be
plotted against the model z-values. If all is well, the line should be
straight. Lack of straightness suggests a different observer distribu-
tion, and reviewing the sample(s) would be prudent to see if there are
unanticipated “nesses” affecting the observers judgments.

This chapter concludes interval scale methods. In Stevens’ scale clas-
sification system there is still another scale type to consider: the
ratio scale. This is the topic of the next chapter.

Chapter 11

Ratio Scaling

Previous chapters have described methods of ordinal and interval
scale generation using various data collection and analysis methods.
In this chapter we cover the last of Stevens’ scaling categories, ratio
scales. Scale values of ratio scales are a linear function of the
“nesses,” modified only by an undetermined multiplier. The arbi-
trary additive constant that is part of an interval scale is zero with a
ratio scale.

Stanley Smith Stevens, a pioneer in the development and use of ratio
scaling methods in psychophysics, also proposed a power function as
a description of human sensory processes. For example, brightness is
a power function of luminance, with an exponent of about one third.
Over many years, Stevens determined the power functions for quite
a diverse array of sensory attributes or “nesses,” ranging from loud-
ness and brightness to vibration, visual length, and thermal pain
(Stevens, 1975). Both the ratio scaling method and the sensory
power law model initially stirred controversy. However, ratio scaling
methods are now accepted and widely used.

Although Stevens was a notable proponent of ratio scales, he was not
the first to use them. One of the earliest applications of the ratio scal-
ing method was the respacing of the Munsell colors by Newhall
(1939). Newhall credits Richardson (1929) with originating the ratio
scaling method. Panek and Stevens (1966), Indow and Stevens
(1966), Bartleson (1984, 1979), Tyrell et. al. (1990, 1993), Luo et. al.
(1991) describe some imaging and color applications of ratio scaling.
A recent summary of the status of ratio scaling is given in
Bolanowski and Gescheider (1991). Lodge (1981) provides a sum-
mary of ratio scaling applications for such diverse “nesses” as the
prestige of occupations, social status, strength of religious attitudes,
moral judgments, importance of political office, and other areas of
social opinion research. (See also Wegener, 1982))

11.1 Ratio Scaling Methods

Ratio scale generation has evolved along two paths: magnitude esti-
mation and magnitude production (Stevens, 1957).
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Magnitude estimation requires the observers to give a numerical
response in proportion to how they perceive the strength of the
“ness.” Observers respond with a number for a stimulus expressed ag
a ratio compared to a reference stimulus. For example, if the
observer chooses a number, say 10, for a darkness reference sample,
the observer is instructed to give a number that is twice as much as
the reference for a sample that has twice as much darkness. The key
notion underlying ratio scaling is that the numeric responses by the
observers should represent the ratio of the strength of the “ness” in
the sample to the strength of the “ness” in the reference.

The technique traditionally used a “ness” or image quality reference
assigned a value by the scaling administrator. This number assigned
to the reference is called the modulus, and is related to the multiplier
of the scale. The current practice in psychophysics, though, is to let
the observer assign the modulus to the reference (Gescheider, 1997;
Bolanowski and Gescheider, 1991).

Magnitude production is the inverse of magnitude estimation. Here
the observer is given a number and is asked to adjust a “ness” to cor-
respond to the number. Right now this technique has limited appli-
cability in imaging because of the difficulty of adjusting “nesses”
within images. With greater understanding of image quality and its
components, and Inevitable increases in computational power, mag-
nitude production will assume a greater role in the future.

Several variations of the magnitude estimation method exist. An
interesting and controversial variant proposed by Zwislocki and
Goodman (1980) is a method called absolute scaling. Absolute scaling
is essentially conventional ratio scaling without a reference or
modulus—observers are free to choose their own numbers. The con-
cept of absolute scaling is to accept that observers will respond with
numbers on some absolute basis. To an extent, the Image Quality
Circle also accepts the idea that observers can judge image quality
on some absolute basis. Since the only operational difference
between absolute scaling and magnitude estimation is modulus
assignment, we will not distinguish this variation from the
well-established magnitude estimation in the following descriptions.
The focus of this chapter is on the magnitude estimation method of
ratio scaling.

11.2 Ratio Scaling Considerations

Ratio scaling, like interval scaling methods, has several inherent
sources of variability (Stevens, 1961). Four important sources are: 1)
observer training, 2) observer calibration, 3) reference standard and
modulus setting, and 4) observers’ use of numbers. These sources of
data variability are amenable to various forms of correction that can
be employed to improve the quality of the ratio scale. This section
provides useful techniques for coping with these sources of
variability.
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11.2.1 Observer Training

The idea of ratio scaling is straightforward, and can be performed by
children as young as six years old (Zwislocki and Goodman, 1980).
Without some observer training however, the scales generated have
substantial variance (e.g., Zwislocki and Goodman, 1980, 1983;
Lodge, 1981; Bartleson, 1979, 1984).

One contributing factor to this scale variance is the observers’ experi-
ence with judging ratios. Training, which in some situations provides
the only observer experience, is essential if low-variance “ness”
scales are to be determined.

Training can be extensive if the judgment task, or “ness,” is complex.
If observers have experience or are familiar with the “ness” to be
scaled, then basic training should suffice. A common form of “train-
ing” in simple ratio judgment tasks is simply to discard the
responses of the initial trials. Conceptually, the observer is being
trained by performing the actual judgment task. Pilot studies, dis-
cussed 1n Chapter 3, are helpful in determining the necessary
amount of observer training. Of course, if there is high confidence in
an observer’s ability to make consistent ratio judgments, then train-
ing may not be necessary at all.

11.2.2 Observer Calibration

In ratio scaling the usual scale “currency” is the number scale, but
Stevens (1975) put forth the possibility that something other than
numbers could serve as a scale reference. This idea suggests the
possibility that observers can be calibrated. A strong motivation for
observer calibration is the empirical observation that observers do
not use number responses as expected (Baird, Lewis and Romer,
1970). Baird’s Number Preference Model (1997) will be explored in
detail later in this chapter.

One effective calibration and training technique is ratio scaling of
line lengths (Stevens, 1975). The idea is to first determine the “ness”™
scale in terms of numerical responses by the observers, and then to
transform all the “ness” numbers to line “lengthness.” Numerous
experiments have shown that, averaged over a population, observers’
perceptions of “lengthness,” over short distances, bears a one-to-one
relationship to the physical length (e.g., Stevens and Guirao, 1963;
Zwislocki, 1983). This calibration process references the observer's
numerical responses to the scale of line length, thus “calibrating out”
the observer’s use of numbers. This calibration idea is quite similar
to the response transformation (sensory-response law) of Shepard
(1981) and Berglund’s (1991) master scaling.

Two useful results come from this line-length scaling exercise. First,
it gives the observer experience in generating ratios, and secondly,
the test administrator has a calibration of the observer’s use of num-
bers (Zwislocki, 1983) or his sensory-response function.
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A typical line-length calibration procedure is to have each observer
estimate the ratios of a series of lines printed on a card (Lodge, 1981;
Stevens, 1975). A total of about 10 lines with a maximum length
ratio of about 100:1 is usually adequate (Stevens, 1966). In the train-
ing exercise, the first line on the card (the reference) is assigned a
numbe (the modulus) by the observer. Next, the observer is asked to
assign numbers to the other line lengths in proportion to the ratio of
these line lengths to the reference line length. Each observer will
then generate pairs of x-y data, consisting of line-length ratio esti-
mates and actual physical line lengths.

The observers’ calibration curve can be determined by plotting the
magnitude estimate of line length versus the physical line length.
Underlying the calibration of line length is Stevens’ Power Law. Sim-
ply stated, Stevens’ Power Law, in this context, states that the num-
ber response scale, S, is related to the line length, L, raised to some
power, B. Equation (11.1) is a formal statement of what is widely
known as Stevens’ Law.

In equation (11.1) the constant a is the observer’s modulus, or overall
multiplying factor, that varies among observers and scaling situa-
tions. The exponent, P, is a parameter that characterizes the
observer’s use of numbers. If an observer used numbers “correctly,”
and the empirical observation that the perceived line length is equal
to the physical line length is true, then p = 1 (Baird, 1970). Since it is
assumed that the observer’s perception of length is proportional to
the physical length, then the exponent, B, must be associated with
the observer’s use of numbers.

The simplest method to estimate the two parameters in equation
(11.1) is by a least squares fit. Taking the logarithms of equation
(11.1) transforms it to a linear equation in the logarithms of the
numerical line-length estimates and the logarithm of the physical
line length (Gescheider, 1997). At this point an ordinary least
squares fit routine can be used. This empirical “calibration” curve
for each observer provides a means of referencing the observer’s
number response to line length or distance.

This “calibration” function is an example of a scaling method Stevens
(1975) pioneered, called cross-modality matching. In cross-modality
matching, the observer uses one response modality, say the intensity
of sound, to match the intensity of light. In this calibration example,
the modalities are numbers and physical line length.

Using the line-length calibration data for each observer, the number
responses to a “ness” can be referenced to line length, L. The calibra-
tion equation is given by equation (11.2). Here o, and f; are the
parameters for the number-line length power function, equation
(11.1), for the i*» observer, and ness is the number response of the
observer when judging a “ness.”

The major purpose of this calibration strategy is to reduce the vari-
ance in the ratio scale estimates of any “ness” by accommodating

?———_—_
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each observer's different use of numbers. Equation (11.2) puts each
“ness” scale on a common reference, literally line length or distance.

Individual observers exhibit a tendency to use numbers in the same
way in similar scaling studies (Bartleson, 1978). If an individual’s
calibration curve is available, then it can be applied to subsequent
scaling studies.

Another method for reducing the variance of the scale value normal-
izes the variance on an observer-by-observer basis. It is not a calibra-
tion method in the sense described here, but it accomplishes a
similar objective. A detailed description will be provided later in sec-
tion 11.5.2.

11.2.3 Reference Standard and Modulus Setting

The magnitude of each observer’s response scale is a consequence of
the choice of reference number or modulus selected for the reference
sample.

Typically there are two choices for the selection of a number for the
reference stimuli. The first choice is the selection by the scaling
study administrator, and the second is to let the observer select it.
Letting the study administrator select the modulus and the refer-
ence has been shown to affect both parameters of Stevens’ power law
in classical psychophysical experiments (Gescheider, 1985). The
present recommended practice for assigning a number, the modulus,
to the reference sample is to let the observers select their own num-
ber. Yet this is no panacea. Suppose, for example, that the true
response scale, R, is related to the i observer’s response scale, R;, by
a constant, o, thus, R; = a; R,. If o; varies randomly from observer to
observer, its effect will be to increase the range of responses and
therefore increase the variance of the calculated sample scale values.

An important rule for reference stimuli selection 1s to avoid samples
that may be at the ends of the “ness” scale-samples with the smallest
or largest amount of the “ness.” Some mid to low value is suggested.
However, there is a bit of circularity in this suggestion because the
study administrator generally does not know the scale values. A sim-
ple procedure is to rank-order the samples and select one for a refer-
ence based on its position in the middle of the ranking. Stevens
(1975) has suggested that only in the initial stages of the scaling do
the observers pay attention to a reference. As the scaling study pro-
ceeds the reference has little influence on the observer’s response.

11.2.4 Observers’ Use of Numbers

Two significant issues arise with observers’ use of numbers in ratio
scaling. The first is the specific number set, and the second is the
range of nhumbers used by observers.

Specific Number Set. It has been recognized (Baird, 1975, 1997) that
observers do not use the complete continuum of numbers when
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responding. Their responses are often limited to single digits from a
base of 5 or 10 (Baird, 1997). If a scale of 1 to 100 is to be used, one
can rely on certain numbers being mentioned frequently: 1, 2, 3, 4, 5,
6,7, 8,9, 10, 15, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90, 100. According
to Baird’'s Number Preference Model (Baird, 1997), the preferred
number, PN, is given by equation (11.3), where k is an integer from 1
to B-1, Bis the base of the number, 5 or 10, and n 1s an integer, 0, 1,
2, ..etc. Some numbers appear in both base systems, e.g., 10 = 2x51
and 1x10!, so the above equation does not define a unique set.

The Number Preference Model as applied to ratio scaling has a sig-
nificant implication regarding data analysis. The continuum of scale
values 18 clustered, or quantized, around the set of preferred num-
bers. Responses used by observers are not, as is widely assumed, a
continuum of numbers, but rather a set of discrete values. Please
refer to Baird (1975) to review the wider theoretical implications of
the Number Preference Model.

We must understand the implications of working with quantized
data to avoid unintended consequences. Using discrete numbers as a
representation of the number continuum is similar to the represen-
tation of numbers in a digital computer. The conversion from contin-
uous or analog data to finite-bit digital data is performed by a
quantizer or digitizer. Quantizing is a many-to-one mapping. A
range of numbers around the quantized value is assigned one num-
ber. For example, an integer-rounding quantizer “maps” the continu-
ous number interval from 1.50 to 2.50 into the integer 2. Note that
we observed the quantization of the proportions in all the previous
(interval) scaling methods, for a completely different reason, so it is
not a phenomenon associated only with ratio scaling.

A linear quantizer will produce constant differences in the output for
constant differences in the input. However, linear quantizers are not
the only type, particularly in imaging and audio applications. In such
applications, there are unequal differences between input and out-
put. Very often the relationship between an input of continuous data
and the quantized output numbers is logarithmic.

Under the Number Preference Model, the spacing between the
response numbers, the quantization, 1s not uniform. In other words,
the differences between the quantized values are not constant. One
way to visualize this i1s to think of quantization in terms of a map-
ping, or transformation, from the “ness” or stimulus dimension to the
response (number) dimension. When the mapping is a straight line,
the output is the number continuum. The map for quantized data
looks like a flight of stairs, and a nonuniform quantizer looks like a
set of stairs where the tread height varies as the horizontal distance
increases.

The nonlinear quantization implied by the Number Preference
Model becomes a practical consideration when any statistical analy-
gis is performed on the observers’ responses. If the Number Prefer-
ence Model holds, then the assumption of normally distributed
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random variables as the underlying probability density of the ratio
scale responses is not justified. Any tests using statistics that have
normality as the underlying assumptions are likely to be suspect.
Specifically, this means that conclusions from the usual t-tests,
F-tests and Analysis of Variance may be in error.

Baird, Lewis and Romer (1970) give a brief analysis of the ratio scale
mean and standard deviation using discrete number response with
an underlying normal distribution. They conclude that if the stan-
dard deviation is at least half the quantization interval, then the
errors in computing these parameters are tolerably small.

Range of Numbers Used. Another concern is the range of numbers
used as a response by observers. With the assumption that Stevens’
Power Law describes the relationship between the sample “ness”
value and the observer response, equation (11.1), the choice of the
number range that any given observer will use in a scaling study
strongly influences the exponent, p. For a fixed “ness” range, the
exponent varies directly with the range of numbers the observer uses
for ratio responses. For example, if one observer uses the numbers
one to ten to describe a fixed “ness” range and another observer uses
the range one to one thousand, then the computed exponents will dif-
fer by a ratio of two-the difference in the logarithms of the number
response range.

Each observer’s data can be adjusted for the observer’s use of num-
bers. The hine calibration procedure described in section 11.2.2 is one
adjustment method. Another method will be described in section
11.5.

11.2.5 Observer Instructions

Stanley Smith Stevens (1975), the developer of the ratio scaling
method, proposed a simple set of observer instructions widely used in
many ratio scaling studies. Upon presentation of a sample, the
observer’s task is to respond with a number that is in proportion to
the “ness” relative to the first sample. “In proportion” means the
observer is to reply with a ratio. The prototype below is similar to
that used by Tyrell, et. al. (1990).

“You will be presented with a series of stimuli (samples) in
irregular order. Your task is to tell how much of the ("...ness’)
they seem to have by assigning numbers to them. Call the
first sample (stimulus) any number that seems appropriate
to you. Then assign successive numbers so they reflect your
subjective impression of ("...ness’) relative to the first sample.
If the sample appears to have twice the (‘...ness’) as the first
sample, assign a number twice as large. Similarly, if the
sample has a (*...ness’) only half of the first sample, assign a
number one-half the first sample. There is no limit to the
range of numbers that you may use. You may use whole
numbers, decimals, or fractions. Try to make each number
match the amount of the (...ness’) as you perceive it”
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When using this prototype, replace the parenthetical word “..ness”
with the actual “ness” of interest. The words used in the observer
instructions are usually presented in the study report methodology
sections as the word definition of the scale.

11.3 Ratio Scaling Data Collection

The usual ratio scaling procedure is first to present a sample to an
observer, and ask that the observer to respond with a number to rep-
resent the strength or amount of the “ness” in the sample. This sam-
ple will serve as the observer’s reference. The number he or she
responds with is that observer’s modulus.

Further samples are presented to the observer, usually one at a time,
and the observer is asked to respond with a number that represents
the ratio of the “ness” in the present sample to the reference “ness.”
The numerical response of the observer is recorded for each sample.

Data is recorded in a matrix where each column represents a sam-
ple and each row represents an observer. This results in a «/ by N
matrix, RN, with the rows i = I to J, and the columns, j = I to N.
This is the basic ratio scale data matrix from which the scale val-
ues are generated.

11.4 Scale Generation

The standard procedure for computing the scale values, S;, 1s to take
the geometric mean of the columns of RN, assuming there are no
response values of zero (Stevens, 1975; Bartleson, 1984). The ratio-
nale for using the geometric mean is to make an estimate of the scale
value that is not excessively influenced by large values. The tradi-
tional arithmetic mean would be biased by large values that occur
because each observer uses his or her own response constant, o n
equation (11.1).

If one assumes that the responses are statistically distributed
according to a log-normal probability density, then the geometric
mean is an unbiased estimate of the expected scale value. The geo-
metric mean is the J% root of the product of all Jf responses and 1s cal-
culated according to equation (11.4).

A more convenient computational method is to take the logarithms
of the elements of RN and compute the average of the column sum
and then exponentiate the result. The following equations (11.5 and
11.6) in summation form give results identical to using equation
(11.4).

In keeping with our matrix vector notation, we can rewrite equations
(11.5 and11.6) as equation (11.7). Note that in equation (11.7) LRN
is the logarithm of RN, element-by-element, S is a vector of scale val-
ues, and the exponentiation is taken element-by-element. This equa-
tion may be more convenient for scale value calculation in some
circumstances.

1,
Sj =|:1i[(RNij +c):lJ —c
i=1

var(S,) = S, var[ln(Sj)]

(11.10) var[ln(S}.)] = 31;1— i[ln(RNij ) —In(S; )]
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11.4.1 Zero Responses

A fundamental property of a ratio scale is that it has an absolute
zero. In practical scaling situations, one does not expect to encounter
an attribute with zero value, but there are exceptions. One notewor-
thy exception is the scaling of colorfulness of colored patches
(Bartleson, 1985). If an observer is presented with a gray patch, the
response will probably be zero as the ratio. Of course, the instruc-
tions to the observer could prohibit a zero response, but that may
place an artificial constraint and a potential source of scale bias.

If there is a zero response in any column of the data matrix, RN, the
geometric mean is necessarily zero. This, in effect, throws away all
the data for that sample. Solutions to this problem include using the
median or the mode of each column of RN as the estimate of the scale
value. Of the two, the median is more widely used (Marks, 1974).

An alternative method of computing the geometric mean of data with
zero number response is based on the geometric mean inequality of
Hoehn and Niven (1985). The procedure is to first add a small con-
stant, ¢, to each observer’s response. Next, compute the geometric
mean using any of the equations (11.4-1 1.6) and subtract the con-
stant from this result. The computation is given by equation (11.8).

An appropriate value of ¢ should be small, say 0.001, otherwise it can
seriously affect the computed value if there are several zero
responses. Equation (11.8) gives a positively biased estimate of the
“tyue” geometric mean that depends on the selection of c. No studies
seem available that give any guidance for its selection.

11.4.2 Scale Standard Deviation

In practical applications, knowledge of the scale variance 1s a prereq-
uisite for statistical testing. The geometric mean 1s used as the esti-
mate of the scale value. To find the scale variance, an estimator of
the geometric mean variance is needed.

Alf and Grossberg (1979) provide a general approximation for esti-
mating the variance of the scale value. This variance approximation,
which makes no assumption about the statistical distribution of the
observers’ responses, is given by equation (11.9).

A simple procedure for calculating the variance of the logarithm,
var{In(S; )], is to use the standard formulas except that the numeri-
cal responses are first converted to logarithms. Equation (11.10)
gives the details of the computation.

Again, we have computational difficulty with zero responses since
the logarithm of zero is infinite. One solution is to substitute the
average scale value for a zero response value in the RN matrix.
Although quite usable, this solution tends to underestimate the vari-
ance of the scale value, particularly if there are many zero responses.
An alternative possibility is to ignore the zero responses and reduce
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the <J-1 factor in equation (11.10) by the number of zero responses: The adjustment process begins by determining the a0 and al coef-
that is make J-I equal to the number of non-zero values. ficients for each observer, using least squares linear fitting proce- | |

MathCad® sheet ratiol .mcd is an example of scale value and scale
variance calculations.

11.5 Correcting for Observer Modulus and Exponent

Adjustment for the observer’s choice of modulus in ratio scaling is
not particularly common in the field of psychophysics. The most
likely reason is that most psychophysicists are interested in the
exponent of Stevens’ Power Law, equation (11.1), which describes
the sensory transducer characteristics. However, for the reasons put
forth in previous sections of this chapter, the next sections deseribe
methods for correcting the scaling responses for the individual
observer’'s modulus and scale range.

11.5.1 Observer Modulus Correction

In(RN)=a0, +al, In(S;)

LRN’=[al] '[LRN -a0]

dures on the logarithms of the numerical responses. The
independent variable is the geometric mean of all observers’
responses for the jt sample, S; from equation (11.4). Equation
(11.14) defines the linear relationship for adjusting the response
from observer, i, and sample, j.

Once the a0; and al; coefficients are determined for each observer, by
linear least squares fits, equation (11.14) can be inverted to calculate
an adjusted observer response matrix, LRN' according to equation
(11.15).

In equation (11.15) a! is a J by </ diagonal matrix of each observer’s
al coefficient, and a0 is a J by I column vector of a0 coefficients
determined from the least squares fits to equation (11.14). These
coefficients are subtracted from each column of the matrix LRN.
Once the matrix LRN' is computed, the scale values can be com-

puted using equations (11.5-11.7). | |

Lane et. al. (1961 d the follow1 ] 1 N S : ‘
an @ ( )aaabdl thedo lo,wmg modululs Hpustment tgchmql_le, After applying this normalization, variability due to the observer’'s
which estimates each observer’s modulus, either as a multiplicative hoi £ tiodul d b ange, p, has been ‘
factor or as an addition of a logarithm. choice of modulus, o, and number response rabse, v,

removed. The principal benefit is the reduction of the response vari-

- i & _hl_\__ 1) First calculate the grand geometric mean, GM, for all ance for each sample.
(11.11) GM = H RN samples and observers’ responses according to equa- .. '
==t ' tion (11.11). This method of scale computation is illustrated in MathCad® sheet
9) Calculate the geometric mean for each observer’s ratio.med.
1 responses using equation (11.12). This is the geomet- .
A e ric mean over all samples for each observer 11.6 Confidence Intervals and Number of Observers
(11.12) GM, =|[] BN, : )

i i 3) Compute the scale values from the response matrix by .
correcting each observer’'s response according to The distribution, or histogram, of the uncorrected observers’ numeri-
equation (11.13). cal responses does not have a widely accepted underlying theoretical

J CM } probability density function. The usual assumption is that the
(11.13) S, = H RN i = This procedure will only correct for the observer’s choice of modulus, numeric responses follow a lognormal probability density function
i1 GM and will not change their individual exponents. (Marks, 1974; Stevens, 1966). However, some data do not support

this assumption (Luce and Mo, 1965). Green and Luce (1974)
explored the possibility of using a gamma function, but this probabil-
ity density function did not fit all observers’ data equally well. The
probability density function describing observers’ responses in ratio
scaling is still an open theoretical issue.

11.5.2 Group Means Scale Normalization

If each observer has been “calibrated” using the line length estima-
tion procedure described in section 11.2.2, then equation (1 1.2) can

be used to put each observer’s number response on the scale of Iine Assuming the numerical responses follow lognormal probability den-

Ma{x)a ] i .
length. 11.16) ) 1 & (0) # } sity function given by equation (11.16), the mean and variance of the
(11.16 py)=—"7— 1 1 1 iven by equations (11.17 and 11.18). In
. ; o .. . . & 9 sample scale values are given by eq : : 18).
In those srcuatm’ns where no Lahbra'tmn is available and adJustplept yﬁ\/ m these equations 4 = mean of the logarithms SF the chasryered
for the observer’s number-use rule is desired, a common practice y>0,6>0,—eo< <0

responses, equation (11.5), and o7 = the variance of logs, equation

the imaging field is to adjust each observer’s response to the geomet- (11.9 and 11.10)

ric mean of the group response (e.g., Bartleson, 1979; Tyrell et. al.,
1990; Luo et. al., 1991; Tyrell et. al. 1993). This 1s not a calibration

Compare equations (11.6) and (1 1.17), and note that the geometric

rocedure. Rather, it i 7 iza- ; ; . :
Sion e eaih okluﬂ;;ivfr’r; gzelszgfatebl,t er(;ntEdt}? seale ngr}fn ahz;n ) — [PEG.Z'} mean is a biased estimate of the scale value if the observer
of e R ) . ormafized to the geometne me (11.17) S, =e response distribution is lognormal. This bias occurs because the

geometric mean estimated by equation (11.5) does not include the
variance factor that appears in the exponent of (11.17). The
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conclusion to be drawn is that the usual formula for the geometric
mean, equation (11.5), may underestimate the scale value if the
variance, o/, is not small.

Also, from equation (11.18), note that the variance in the scale value
varies with the square of the geometric mean and the variance of the
response logarithms. If the variance of the logs is small, g < I, a
series expansion of the exponent in equation (11.18) reveals that the
variance of the scale value is equal to equation (11.9).

With the assumption that the logarithms of the response values are
normally distributed (lognormal), we can use all of the statistics
appropriate for normal Gaussian distributions. Specifically, we can
compute the (1-¢) confidence interval of the mean scale value, S; (Alf
and Grossberg, 1979). Straightforwardly we have equation (11.19),
where t,,/s,) = the critical t-value for a/2 and v degrees of freedom =
J-1, and o7 = the estimate of the variance of logs and J = the number
of observers comprising the geometric mean. Note that the factor in
the exponent in the second equation of (11.19) multiplies the scale
value estimate.

Using the right-hand equality of equation (11.19), one can deter-
mine the number of observers, ./, needed to achieve some frac-
tional precision, F, in the scale estimate. For example, if there is a
requirement for a +0.10 (+10%) precision in the scale value, then F
= 1.10. Setting the factor equal to the right-hand-side of (1 1.19)
and solving for the number of observers, </, yields equation (11.20).
In this equation, o; = the estimate of the standard deviation of
logs, and ¢ = the critical t-value. Strictly speaking ¢ depends on JJ,
but a t-value of about two can be used for practical applications.
The largest estimated value of the standard deviation should be
used when applying equation (11.20).

Although equation (11.20) is based on the lognormal assumption of
observer response, lacking another theoretical alternative, one can-
not go too far wrong by using it in practical situations. When there
are doubts, the safest course is to err on the side of increasing the
number of observers.

11.7 Relationship to Other Interval Scales

The interval scaling methods described in the previous chapters can
be expected to give equivalent results under comparable scaling con-
ditions. For a specific set of samples, an interval scale generated
using category methods will be linearly related to a scale using the
graphical rating scale method (Engeldrum, 1991), or to a paired com-
parison with Thurstone’s Case V (Woodbury and Bartleson, 1962).
Extensive experience by many workers using the interval scaling
methods described in this book supports this expectation.

Mathematically, ratio scales do not have the additive constant of an
interval, so one might reasonably assume that interval category
scales are linearly related to ratio scales. Unfortunately, there 1s a
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large body of experimental evidence that shows this is generally not
true (Stevens, 1975). Typically, a power function describes the rela-
tionship between the ratio scale, as the independent variable, and
the equal-appearing intervals category scale, as the dependent vari-
able. Empirically, the exponent is 1.00 or less, often around 0.50, but
the theoretical issue is not so clear. Baird (1997) has shown that the
exponent based on the Preferred Number Model ig about 0.44. Tyrell,
et. al. (1990), using successive interval category scaling and ratio
scaling of graininess, found that the power was 0.66. Bartleson
(1984) advocated the square root, power of 0.50, as an approximation
when lacking specific knowledge of the two scales. Baird (1975) offers
a theoretical explanation for these discrepancies that is based on
observers’ use of numbers.

Overwhelmingly, the comparisons between ratio and category scales
reported in the literature assume equal difference between catego-
ries and use the mean category as the scale value. Sufficient experi-
mental results exist to cast doubt on this equal-intervals
assumption. Giving useful generalizations about similarities
between the two scaling methods is therefore difficult.

Always, the safest method of analysis would be to use the appropri-
ate solution to the Law of Categorical Judgment described in Chap-
ter 10 to find the category widths and see if, in fact, they are equal.

The key point is not to expect a linear relationship between ratio
scales and interval scales for the same set of samples. The general
rule states that it will be a nonlinear relationship.
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Chapter 12 »

Selecting the Best Method ||

No single best scaling method exists, although some methods are ‘ \
more popular than others. This chapter describes a logical procedure
to select an appropriate scaling method based on three factors: ‘ '

1) Confusion in the sample set. ' ‘
2) The number of samples to be scaled. |
3) Observer effort. ‘

In establishing these factors, the emphasis is on the observers’ judg-
ment and on the data collection parts of the scaling process, not the
effort for data analysis, which is small in contrast.

12.1 Sample Set Confusion \

One major distinguishing feature of the scaling methods covered in
this book is whether or not the method requires confusion among the |
samples. The presence of confusion in a sample set is not necessarily
easy to decide, especially without a pilot study or some scaling expe-
rience with the “ness” or image quality level in question. Confusion

in a set of samples is clearly a matter of degree.

All of the confusion methods described in this book are tolerant to
various levels of agreement among observers, as typically evidenced
by zeros or ones on a proportion matrix. (The zero-one proportion or
incomplete-matrix problem is discussed in Chapter 9.) Typically,
extreme samples have no confusion, and there is complete agree-
ment among observers. Adjacent samples have some confusion. The
number of filled elements required in the proportion matrix depends
on the data analysis method. An absolute minimum number of filled
matrix elements should equal the humber of parameters to be esti-
mated. This criterion is what practically establishes the successful
application of a confusion method.

Still, how does one go about getting an idea of the confusion in a set
of samples? One general method would be to perform a pilot scaling
study with a few observers, using the graphical rating scale method
from Chapter 7. One could determine, from the scale values and the
standard deviations, if there is any overlap in the observers’ judg-
ments for adjacent samples on the “ness” scale. Some form of
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statistical multiple-comparison procedure could be applied to the

scale values and standard deviation data. Good sources of multi-

ple-comparison procedures are Klockars and Sax (1986) and Start

Toothaker (1993). The obvious criticism to this pilot-study approach N

is the fact that after the graphical rating scale study, one already has ' - E—

the scale values! However, this is only a macro-view. If the goal is to | Confusion EConfusion
determine just-noticable-differences, then the results of the graphi- L ]

T =

. - - N
cal rating scale study are only a starting point. | _ \ , 1
| »10 Samples <10 Samples > 10 Samples <10 Samples

A simpler and probably quicker approach is a simple ranking of the - = N E—

samples. Samples that consistently receive the same rank are not ] W ,

confused with other samples, either adjacent or surrounding. Sam- | Low Effort | | High Effort [ Low Effort | | High Effort Low Effort | | High Effort| | Low Effort | ’Egh Effort

ples ranked in at least three different rank orders are probably suffi- £ ‘ ! _

ciently confused. Category-LCaJ ‘» Threshold, JND % Category-LCaJ Paired | Graphical Ragl;r\;vith Graphical | Ragl;:ith
CO"_EE:!I:IISOH Rating Scale (ordinal) Rating Scale (ordinal)

Confusion can be reasonably assumed if the “ness” range is small, Rank+Propartion | Subgroup PC Rank+Proportion - Rank (ordinal) Rank (ordinal)

but this is not foolproof. Determining the confusion of a set of sam- H " L

ples can be difficult without subjecting the samples to observer judg- Ratio — Ratio

ments, or invoking experience.

12.2 Numbers of Samples Figure 12.1 Flow chart for selecting the appropriate scaling method. Knowledge of the sample set confusion, sample numbers

and the amount of effort to impose on the observers is required. In this figure LCal = Law of Categerical Judment, PC = paired

The number of samples is directly proportional to the amount of time comparison, and LCJ = Law of Comparative Judgment. See text for details.

the observers’ judgments will consume, and therefore to the length of

the scaling study. A constant tradeoff exists between the desire to The number of observer judgments required for n samples for

have large sample numbers (to address the concerns outlined in paired-comparison methods is n(n-1}/2. For ten samples, the num-

Chapter 3) and acceptable resources (time, money, and access to ber of comparisons is forty-five, which iz a reasonable maximum.

observers) for the scaling study. For selecting a scaling method, ten Using overlapping sample subgroups can reduce the overall number

samples have been adopted as the criterion. Although this value is of judgments required, but it increases scaling study complexity both

arbitrary, it is a reasonable midpoint in the typical range of sample in terms of administration and data analysis. If k subgroups of m

numbers, samples each are used, then a total of km(m-1)/2 judgments are
needed. This compares with a total of km(km-1)/2 for a complete

In practice, the time for an observer to scale a set of n samples is lim- paired-comparison experiment, a significant reduction. However,

ited. Fatigue-both physical and psychological-boredom, and a host using subgroups usually means that each of the subgroup scales will

of other factors start to be of concern if the scaling takes too much be combined into one complete scale, so at least two samples must

time. The governing rule concerning time is this: the shorter the appear in adjacent subgroups causing a slight reduction in efficiency.

better. Again, there are no standards in this area, but an hour is the

recommended maximum amount of time one can ask of an observer. Some ordinal ranking techniques described in Chapter 6 are equiva-

Of course, one hour is not an ironclad rule. It depends on the task. lent to computer sorting methods. One of these methods is the bubble
sort requiring, on average, a total of n? judgments, far more than the

If the scaling task must take more than an hour, consider offering n(n-1)/2 required for paired comparison. Observers have far more

some form of incentive or reward to maintain ohserver interest and intelligence than computers, so enforcing any particular sorting algo-

motivation. Better yet, divide the scaling study into segments con- rithm can substantially increase observer effort. If the most efficient

ducted on sequential days or add rest periods. sorting algorithms are used, the observers’ effort can be reduced to a
minimum of nlogs«n), but this advantage can only be realized for

12.3 Observer Effort more than six samples.

Observer effort is defined to be the number of judgments required of 12.4 Scaling Method Selection

an observer when scaling n image samples. Generally, observers pro-

vide one judgment for each sample, except paired comparisons and A process for selecting an appropriate scaling method is illustrated

the sorting steps used in ranking. The minimum effort is n, assum- in Figure 12.1. To use the method one needs to know if the sample

ing each observer judges all samples. set is sufficiently confused, what the number of samples is in the set,

and the amount of observer effort you are willing to impose.
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Chapter 12 Selecting the Best Method

To use the flow diagram (or binary tree) in Figure 12.1, the first deci-
sion regards the confusion level of the sample set. If there is suffi-
cient confusion then go to the box labeled “Confusion.” Otherwise go
to the “No Confusion” box. The sample size next determines the
selection: greater than or fewer than 10 samples. Finally, a decision
on observer effort (‘Low” or “High”) is needed. This is a qualitative
judgment that directly relates to the time allotted for the scaling
study.

Below each box labeled “Low Effort” or “High Effort” are the recom-
mended methods. Frequently they are a combination of the data col-
lection plus the data analysis method. Following the Confusion
branch in Figure 12.1, for example, one can see that with more than
ten samples in the sample set and a low-effort observer activity, one
recommendation is to use the Category data collection method com-
bined with the Law of Categorical Judgment to generate the scale
values. An alternative in these conditions is to use a Ranking plus
Proportion study, with Thurstone’s Law of Comparative Judgmendt.

The categorizations in this scaling selection method are hardly uni-
versal. Applying good judgment by the scaling study planner is also
essential in selecting the best method.

Two of the most popular confusion methods are paired comparisons
with the Law of Comparative Judgment, and category scaling with
the Law of Categorical Judgment. Both methods can be used when
confusion is not complete across all samples. Having samples widely
spaced on the “ness” dimension does not prohibit the use of these
methods, but this is generally less than optimum. The distinctive dif-
ference in these methods is the number of samples to be scaled.

For a large confused sample set, a good choice is ordinal ranking
with the conversion of the rank data into a proportion matrix.
Thurstone’s Law of Comparative Judgment can then be applied to
the proportion matrix to compute the scale values.

Threshold and just-noticeable-difference scaling studies inherently
require high effort because of the number of judgments typically
required by each observer. The actual sample number may or may
not be large, depending on the complexity of the study.

When sample sets are large, straightforward paired comparison 18
prohibitive in practice. Paired comparison is a small-sample-number
method. The maximum number of samples that can be scaled using
paired-comparison methods is largely a local decision. In practice, it
seems that paired comparison is more widely used than it probably
should be.

Paired comparisons with overlapping subgroups can also be used
effectively, but this is usually more time consuming than the graphi-
cal rating scale method. The use of subgroups accomplishes two
objectives: reducing the overall effort and assuring confusion by
using only groups of close samples.
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No-confusion methods are not particularly sensitive to sample
counts. These methods can handle 30 or more samples depending on
the mechanical details of sample presentation, viewing and data col-
lection. Presenting them to the observer one at a time may be more
appropriate for very large-size samples, because physical handling
can become bewildering for both the observer and study administra-
tor.

If the range of “nesses” in the sample set is large, then the graphical
rating scale method is a good choice. It is a highly recommended
method for initial scaling studies, because it is an easy task for
observers and the data analysis is simple. It gives a “picture” of the
sample set with a minimum of scaling effort.

Two remaining low-effort scaling methods in the no-confusion cate-
gory are ratio and rank order. Their distinction lies in the fact that
neither method yields interval scales. Rank order is strictly an ordi-
nal method, and has limited utility within the Image Quality Circle.
However it can be very useful for answering “greater-than” ques-
tions, selecting anchors, and for pre-pilot studies, among others.

Ratio scaling is not widely used in imaging applications, but it does
have the useful property of a true zero. This can raise a philosophical
issue of the interpretation of zero image quality, and perhaps this
has contributed to its disuse.

12.5 A Cautionary Note

A question closely related to “best methods” is the question of “what
to scale” No attempt has been made in this book to address this
question, but expressing a view regarding “nesses,” and image qual-
ity scaling seems appropriate at this point.

A propensity exists in product development environments to go
directly for image quality judgments, when asking for a judgment
about one or several “nesses” would be more appropriate. This is
driven by a desire to obtain a single number for image quality that
can be widely communicated. Scaling merely for image quality and
not the component “nesses” robs the development team of valuable
information about needed changes in these components. Although
this is not disastrous, it is not resource-efficient either. Largely for
this reason, scaling for image quality alone at the expense of the
“nesses” is not recommended.
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Symbols

Sample designations.

Coefficients; regression, function, etc.
Discriminal dispersions.

Function of ().

Frequency, a number.

Indices.

A function. Usually a Cumulative Density Function or a psychomet-
ric model.

Number of observers

Elements of a category frequency matrix.

Logit

1) Number category boundaries. 2) Number of categories minus 1.
Number of samples, stimuli, etc.

1) Number of threshold estimates. 2) Number of observations.
Proportion, experimental probability, of event xx.

Estimated or modified probability or proportion.

Parameter of a binomial distribution.

Probability of ().

(04/0,) - 1, a parameter equal to the ratio of two discriminal disper-
sions minus 1.

1) Number of ranks. 2) Number of “yes” or correct responses.
Estimate of standard deviation.

Scale value of sample A, etc.

The gth category boundary.

1)The jth threshold estimate. 2) Physical value of a stimulus, say
lumens.

Mean value estimate.
z-value.

The adjusted matrix for graphical rating scale. The rows, observers,
are scaled so the average value is zero and the standard deviation is
one. The rows are the observers and the columns are the samples.
Size is J by n.

Vector, solution for least squares-fit for “stitching” scale values.

Coefficient matrix for the Case IV solution of Law of Comparative
Judgment (LCJ). Size is 2n+1 by 2n
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Symbols

E

g

Matrix with all ones on and above the diagonal. Used in category
scaling data analysis.

1) General data matrix for graphical rating scale. 2) The singular
values in Singular Value Decomposition (SVD) method of category
scaling. 3) Data matrix for paried-comparison plus distance method.

1) Discriminal dispersion vector using SVD of category scaling. 2)
Vector of distances in paired-comparison plus distance method.

1) Vector of scaled z-values used in the Case TV solution of Law of
Comparitive Judgment. Size is 2n+1 by 1.

Frequency matrix from paired comparison. Rows and columns are
samples and the entry is the number of times the column was chosen
over the row. Size is n by n.

A column solution vector for Case IV. The first n rows are the scale
values and the next n rows are the discriminal dispersions. Size 1s 2n
in length.

Data matrix for ranking. Rows equal rank number and columns are
samples. The columns are histograms of the ranking for each sam-
ple. Size 1s n by n.

Category data matrix. Columns are categories and rows are samples.
Each element is the frequency that the sample was placed in the cat-
egory.

Proportion matrix in paired comparison. Size 1s n by n.

Data matrix for ranking. Rows are observers and columns are sam-
ples and the entry is the rank given the sample by the observer. Size
isJ by n.

1) The scale value difference matrix from paired-comparison. Size n
by n. 2) Scale value matrix.

Vector of category boundaries.
The u-vectors of SVD used in category scaling.
The v-vectors of SVD used in category scaling.

“Design” matrix for the LSF of the incomplete PC or category £
matrix.

Data vector

1) Solution vector of category boundaries and scale values, size is
(n+m) by 1. 2) data vector

Matrix of z-values for PC. Size is n by n.

Matrix of z-values in a category scaling that are row normalized; row
mean subtracted and divided by row standard deviation.

Vector of z-values or distances.
Vector of boundary minus scale values, z-values
1) Intercept parameter in psychometric models. 2) Alpha risk.

Slope parameter in psychometric models.

171

Small increment added to one of the discriminal dispersions in
deriving Thurstone’s Case IV.

1) Just-noticeable difference, JND. 2) Scale difference.

Error, error in estimating discriminal dispersions for Case III from
Case IV model.

Population mean.
Population standard deviation.
Population correlation coefficient.

1) Population proportion. 2) Proportion confidence limit, when used
with subscript.

Angle in radians.
Cumulative frequency matrix for category scaling.

Chi-square value.
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Index

A

absolute scaling 140
absolute threshold 53-54, 56-59, 62-64, 66, 70-75
adaptation 27
addressability 24
adjectival 125, 127, 131
adjustment 55, 62-63, 91, 145, 148-149
affective value 44
all-at-once 35
amplitude spectra 13
analysis-of-variance (ANOVA) 25
anchors 33, 88-91
angular transformation 110

See also: arcsine transformation
application-independent 9

applications 1-3, 9-10, 29, 31,38, 47, 50, 69, 71, 78, 88, 96, 110,
115, 118, 121, 123, 139, 144, 147, 150, 157

arcsine transformation 99
arithmetic mean 146
ascending sequence 59
attribute 11

badness 33

bar code 28

base 27

beauty contest 8

Best PEST 61-62
bias-correction 118

biases 20

binomial distribution 73-75, 118
border 27

brightness 37

C

calibrated 35
Casel 95
Case III 95
Case IV 95




174 Index 175

Case IV Solution 112-113

definition 3, 8, 15, 33-34, 39, 43-45, 67

Case V 95 detectability 36
Case Va 96 difference thresholds 53, 56
a 7 - .
Case VI 96 dimension 33, 43, 49-51, 85, 87-88, 94, 99-101, 103, 116, 118, 124,

categories 21

category 3, 22-23, 29, 49, 55, 61, 71, 79, 85, 105, 120, 123-137,
150-151, 1566-157

category boundary 129

category labels 124

CCT (correlated color temperture} 37, 37

chi-square 66, 68, 95, 99, 137, 138

128-129, 131, 144, 156

direct 3, 13, 15, 24, 28, 33, 43-44, 46, 50, 57-58, 67. 85, 87-89,
93-95, 98, 100, 102, 104, 106-110, 112, 114, 116-118, 120
135, 145 ’

discriminal difference 95

discriminal dispersion 54, 55, 59. 87. 94 100, 112-115
. 85, 59, 87, 94-100, -115, 118-120,
128, 130-132, 134-138 °

discriminal process 94-95, 100, 109-111, 128

choice 44 :
distance 24, 36, 45 47, 49. 5

chromatic adaptation 23 ok » 49, 50, 64, 81, 88, 90, 93, 95, 105-108, 126,

CIE 15 DMT method 136

circular triad 99

classes and conditions 129

color 14

color appearance 36

conducting the scaling study 39

confidence 1nterval 59, 66, 68, 73, 74, 149

confusion 8, 26, 30, 43 49, 56, 87, 88, 115, 118, 131, 133, 136,
153-157

constant error 66

constant stimuli 55, 63, 69, 71-72, 76

context 24-26

contrast 22

correlation 130

covariance 135

criteria 33

criterion drift 35

cross-modality matching 142

cues 39

cumulative histogram 54

Customer Perceptions 2, 11-12, 14-16, 54

Customer Quality Preference 9

customers 44

D

D Series 36
Daguerre 5

Data Analysis 72
Data Collection 71
Daylight sources 36

decreasing sequence 58

dots/inch 24
double staircase 58

E

emotional involvement 25

empirical probability distribution 54

environmental factors 37

equal-appearing intervals 85, 123-124, 126, 128, 151
error of expectation 57

error of habituation 57

experienced observers 29, 124, 126

expert observer 29

F

Farnsworth 5
F-distribution 73
feedback 40

finger error rates 68
forward models 14
frame 27

frequency-of-seeing curve 55

G

Galileo 5

Gaussian 65

Gaussian Psychometric Model 65-68
geometric mean 146

goodness 33

graphic image 26
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Index

graphical rating scale 33-34, 88-90, 106,108, 126, 150, 153,
156-157

gray masks 27

guessing 69, 70, 71, 73, 75-78
guessing rate 75

Gumbel distribution 111

H

hard copy 8

hedonic 43

hints 19

Histogram 54, 59, 80-81, 85, 149
histogram matrix 80

Human Bubble Sort 81

human observer 2, 79, 17, 30, 82, 124
Human Quick Sort 82

human visual system 14-16, 23, 36, 44
HVAC 38

|

illuminance 36

image 1-9, 11-17, 19, 23-25, 32, 43, 47, 54, 56, 67, 78-79, 123, 140
defined 1

image applications 9

image classes 25

image content 21, 24

image processing 16

image quality 1-3, 5-17, 19-20, 22-24, 26, 31-34, 39, 41, 43, 46-48,
50-51, 53, 82, 84, 90, 93, 101, 106, 116, 125-126, 140, 153,
157

absolute 9

TImage Quality Circle 2-3, 5-6, 8-17, 19, 32, 47, 54, 78-79, 123,
140, 157

image quality models 2, 8, 15-17, 79

image reproduction 77

image science 7, 13, 16

1mage size 21, 24

incidental 22

incomplete-matrix 101-102, 116,13, 133-134,136
inerement thresholds 56

indirect interval scaling 3, 87, 93, 109
instructions 31-34, 38-40, 79, 82, 84-85, 89-90, 147
integrated perception 12

integrative attributes 32

177

Internet 26

interval 3, 24, 45-49, 51, 53, 56, 58, 61, 66, 88, 73-75, 79-81,
83-85, 87-89, 91, 93-94, 97, 100-101, 105, 108, 113, 118,
123-129, 131-133, 138-140, 144-145, 150-151, 157

Interval of uncertainty 56

Interval Scale 3, 123-124, 126,128, 130, 132, 134, 136, 138,
150-151

ITU-R BT.500-7 123

J

JND (just noticeable difference) 53-54, 56, 60

judge 3, 44, 93, 95, 97, 99-100, 105, 109, 112, 119, 126, 130

judgement task 31

L

labeling 28

Law of Categorical Judgement 128

Law of Comparative Judgement 41

limits 55-60, 62-63, 74-75, 93, 116,123

linear probability models 64

line-length calibration 142

Logistic Psychometric Model 66

logistic regression 64

logit 64

log-normal 146

luminance 36

lux 37

M

magnitude estimation 139-140

magnitude production 139-140

many-to-one 15

market research 11

market studies 6

mask 27

MathCad 3-4, 62, 66, 68, 86, 92, 98, 105, 108, 115, 120, 133-136,
138, 148-149

MathCad sheets

grsl.mcd 92

jndgl.mcd 66
jndll.med 68
leajel.med 135
leaje2.med 135
lcajdl.med 133
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Index

leajdil.med 134
leajg.med 136, 138
ordscall.mcd 80
pel.med 98, 100
pc2.med 118
pedist.med 108
pcivl.med 115
rnk2pro.med 105
ratio.mecd 149
ratiol.med 148
matrix problems 115, 117
MDS 50
measurement 44
measurement scales 43-44, 46, 48, 50
mechanical abrasions 27
medical imaging 8
metathetic continua 48

meter 7

method 3-4, 23, 29, 34-35, 39-41, 45, 49, 54-55, 58, 61-63, 65,
69-71, 75, 77, 79-80, 82-85, 88-91, 93, 101-103, 105, 109, 112,
116-118, 120, 126, 143-146, 149, 155-157

three-alternative-forced-choice 72
two-alternative-forced-choice 72
method of adjustment 55, 62-63
method of constant stimuli 55, 63, 68-69, 71-72, 75
absolute threshold 63
triangle or three-sample method 72
just-noticeable difference 63
method of limits 55-60, 62-63, 75
error of habituation 57
absolute threshold 57
considerations 60
data analysis 59
just-noticeable difference 59
microdensitometers 6
minimum variance unbiased estimators 118
mode of appearance 26
modulation transfer 13
modulus 140
modulus setting 140
mounting 27
multidimensional 7

multidimensional scaling 50

multidiscipline 7
multiple-stimuli presentation 35
multivariate 14

Munsell 38

myths 1

N

ness 12, 25

Nesses 2, 11, 22
brightness 12
chroma 12
chromaness 15
colorfulness 12
contrastness 27
graininess 12
hue 12
hueness 12
lightness 12,15
sharpness 12
textureness 33
tone reproduction 12

Niepce b

noise 38

nominal 3, 38, 45-46, 48-49

normalization of observers 91

number of observers 26, 30, 54, 57, 62-64, 67-68, 70-71, 73-76,
80-81, 84-85, 94, 99, 100, 104, 110-111, 116, 118-120, 128,
137-138, 149-150

Number Preference Model 144

number of samples 28, 35, 40, 82, 89, 98-102, 113-114, 129,
135-136, 153-156

o

objective 12
objective image evaluation 6
objects 44

observer 29-31, 33-35, 38, 41, 46, b5, 74-75, 79-80, 83, 89, 116,
127, 131, 140-141, 143, 145, 148-149, 153-155

type and number 29
observer calibration 140
observer effort 154
observer instructions 31-34, 79, 83-84, 89, 127, 145-146
observer motivation 38

observer training 140

179
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observer’s criterion 35

observers’ use of numbers 140

opacity 27

optics 5

ordinal 3, 45-49, 79, 81, 83, 85-86, 93, 123-124, 128, 139, 155-157
overlay 10

P

paired comparison 32, 55, 69, 71, 83-84, 93, 102-103, 105-106,
114-115, 118, 120, 132, 150, 154-156

plus category 105
plus distance 106
parameter estimation 67, 77
partition 87
percept 11
perceptibility 36
perceptual attribute 12
PEST 61
Physical Image Parameter 10, 12, 54
physical measurement 6
physics 14
pilot studies 40
pixels 24
point of subjective equality 56
portrait 25
Power Law 142, 145, 148
predict 10
preference 31
preference question 30
preparation 26
presentation mode 35
probability distribution 54
probit 64
process 9
proportion matrix 97

proportions 55-57 ,64-68, 73-77, 94-100, 103, 109, 111, 116-121,
131-134, 136-138, 144

prothetic continua 48

PSE (point of subjective equalty) 56
psychological comfort 38
psychological continuum 43
psychological dimension 43
psychological objects 44
psychometric curve 55
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psychometric model 54

basic bata analysis 64
psychometric scaling 2, 17
psychometrician 44
psychometrics 7
psychophysics 55
purposeful 22

Q

Quality 1-17, 19, 32, 47, 54, 78-79, 123, 140
definitions 8

quality assurance 16

quality meters 10

quantized 144

quantizer 144
QUEST 61

R

random and independent 21

random variable 94

range and distribution 21

range of numbers 143

rank order 79-83, 101-104, 123, 154, 157
ranking 79-80, 89, 101, 103-105, 143, 154-156
ranking data to a proportion matrix 103

ratio 3, 5-7, 13, 15, 20-21, 25, 28, 31, 36-37, 44-50, 61, 66-67, 70,
80, 89, 93, 95-96, 103, 107, 112, 115, 124-125, 138-151, 157

ratio scale 47, 139
reference stimuli 143
respondents 44
retail sales 35

ruler 89

S

sample (stimuli) selection 20-21, 23, 25
sample identification 28

sample illumination 36

sample preparation 26-27

sample size 28

samples 28, 35, 37, 44, 63, 87, 114, 138, 154
sampling frequency 24

scale difference 95

scale merging 101
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scale of image quality 9
scale type 49

scale value 3-4, 9, 19-20, 23-25, 29-31, 34-38, 41, 44, 47, 50,
53-54, 69, 73, 80-81, 86-89, 91-102, 106-109, 112-120, 126,
128-137, 143-144, 146-151, 153-154, 156

scales 3, 43-44, 46-50, 85, 150-151
interval scale 47
nominal scales 46
ordinal scale 46

ratio scale 47

scaling 1, 3-4, 19-20, 22, 24, 26, 28-30, 32-34, 36, 38-40, 43, 50-51,
85, 87-88, 90, 92-94, 98, 100, 102, 104-106, 108-110, 112, 114,
116, 118, 120, 123-124, 126, 128, 130, 132, 134, 136, 138-1486,
148, 150, 155, 157

scaling administrator 32

scaling experiment 44

scaling study 19

scaling study plan 20

scene dependence 24

scripts 39

gensory continuum 43

sequence 35

short cut 16

signal detection theory 78

Singular Value Decomposition 135

size 12, 24, 28, 37, 40, 46, 60-61, 64, 80, 132, 156-157
soft copy 8

sort 49, 71, 81-83, 102-103, 127, 129, 154-155
space 4, 37, 49-50, 57, 62, 69-70, 77, 82-83, 87, 101, 105, 118
spatial configuration 25

spatial details 36

spatial frequency 15

spatial structure 6, 15

specific number set 143

spectral 15

spectral power distribution 36

spectral radiance 14

Sputnik 6

staircase method 58

standard deviation 31, 56, 59-61, 87, 91-92, 94-96, 100, 108, 112,
119, 128-130, 134-136, 145-147, 150, 153

step interval 61

step size 61

Stevens 44

Stevens’ Power Law 148
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stimuli 44

stimulus errors 29
stimulus objects 44
stimulus threshold 56
stratified 22

subgroups 101
subjective image evaluation 1,7
subjects 44

substrate 27

successive categories 123
surround 27

surround effect 27

SVD 135

System Models 13

T

Talbot 5

task instructions 32

Technology Variables 6, 9

test of the Law of Comparative Judgement 98
theory of signal detection 78

Thurstone 41

Thurstone’s Law of Comparative Judgement 87

time 4, 7, 12-13, 25, 28-29, 33, 35, 37-38, 40, 43-44, 58, 63-64, 69,
71, 74, 77, 81, 84, 89, 94-95, 97, 103, 107, 117, 119, 125, 129,
131, 135, 154, 156-157

Torgerson 128
transformation function 132
trial 58

tungsten lamps 37

U

unsophisticated cbservers 29
up-and-down 58

v

variance 25, 29, 60-61, 68, 89, 91-92, 95-69, 98, 105, 108-109, 112,
114, 116, 118-122, 129-130, 135-136, 141-145, 147-150

variations 9, 77, 81, 140
viewing booth 38
viewling conditions 37
viewing distance 24,36
viewing Samples 35,37
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Visual Algorithms 14

visual references 34 C D_R OM I n stru Cti o n S

W

Weibull 68 License Agreement

white point 27

The CD-ROM on the back cover includes software that illustrate the
methods described in this book. General information on each
MathCad® sheet is contained in the appropriate chapter in
z Psychometric Scaling: A Toolkit for Imaging Systems Development.

Wiener spectra 13

zero point 48
If you open the CD-ROM package, you are agreeing to be bound by

147 < " ;i
Zero Responses the following terms and conditions. If you do not agree with the fol-

z-value 65-66, 75, 95, 97-98, 100, 114-121, 132-133, 138 lowing, do not open the CD-ROM package and promptly return the
Zworykin 5 book and CD-ROM to Imcotek Press, P.O. Box 17, Winchester, MA
01890.

All of the software on the CD-ROM is copyrighted material. The
author and publisher retain all rights. You may use this software on
one computer. One copy may be made for backup purposes. Making
copies for any other purpose violates the United States copyright
laws. THE SOFTWARE IS OFFERED AS IS, WITHOUT ANY
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING WITHOUT LIMITATION, IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. NEITHER THE AUTHOR NOR PUBLISHER
WARRANTS THAT FUNCTIONS CONTAINED IN THE
SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT
THE SOFTWARE WILL BE ERROR FREE. Neither the author or
publisher assumes any liability whatsoever arising from the use of or
inability to use the software. This product is not designed for use in
or with life support devices and the author or publisher make no rep-
resentations to the contrary. Life support devices are those devices
which are used to measure, diagnose, or evaluate the tissue, systems
or functions of the human body; or other devices employed to support
or sustain life or good health.

Using the CD-ROM

The MathCad® sheets are in individual files. If you do not have a
copy of MathCad®, you can obtain an evaluation copy from
MathSoft.

1) Insert the CD-ROM in your computer’s CD-ROM drive.

2) Click the CD-ROM drive to display the drive contents.

3) Click the file “readme.htm.” This should start your browser and
the “readme.htm” page will be displayed in the browser window. Fol-

low the instructions on the page to obtain the MathCad® evaluation
software and install the files.
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