
422 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 2, FEBRUARY 2006

An SVD-Based Grayscale Image Quality Measure
for Local and Global Assessment
Aleksandr Shnayderman, Alexander Gusev, and Ahmet M. Eskicioglu

Abstract—The important criteria used in subjective evaluation
of distorted images include the amount of distortion, the type of dis-
tortion, and the distribution of error. An ideal image quality mea-
sure should, therefore, be able to mimic the human observer. We
present a new grayscale image quality measure that can be used
as a graphical or a scalar measure to predict the distortion intro-
duced by a wide range of noise sources. Based on singular value
decomposition, it reliably measures the distortion not only within
a distortion type at different distortion levels, but also across dif-
ferent distortion types. The measure was applied to five test im-
ages (airplane, boat, goldhill, Lena, and peppers) using six types
of distortion (JPEG, JPEG 2000, Gaussian blur, Gaussian noise,
sharpening, and DC-shifting), each with five distortion levels. Its
performance is compared with PSNR and two recent measures.

Index Terms—Image quality, local error measurement, objec-
tive measures, peak signal-to-noise ratio (PSNR), singular value
decomposition (SVD), subjective evaluation.

I. INTRODUCTION

MEASUREMENT of image quality is a challenging
problem in many image processing fields from image

compression to printing. Over the past 30 years, a vast literature
has appeared with many approaches attempting to provide a
solution [1]. The image quality measures in the literature can
be classified into two groups: subjective and objective [2].
Subjective evaluation is cumbersome as the human observers
can be influenced by several critical factors including the
environmental conditions, motivation, and mood. The objective
measures include bivariate measures such as the mean-squared
error (MSE) or -norm [3]–[6], measures mimicking the
human visual system (HVS) [4], [7]–[35], and graphical mea-
sures [33], [36]–[43]. Furthermore, several papers present
comparative evaluations of a number of selected measures
for image compression [14], [16], [28], [31], [40], [44], and
for noise and blur [13], [45]. The most common objective
evaluation tool, the MSE, is very unreliable, resulting in poor
correlation with the HVS. In spite of their complicated algo-
rithms, the HVS-based objective measures do not appear to be
superior to the simple pixel-based measures like the MSE, peak
signal-to-noise ratio (PSNR), or root MSE (RMSE).
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A number of researchers point to the disadvantages of the
measures that incorporate an HVS model. Fuhrmann et al. [44]
discourage the use of metrics based on the spatial frequency
properties of the HVS as they require precise knowledge of the
viewing conditions. Franti [30] argues that the distortion mea-
sure should be independent of the factors such as the compres-
sion method used, basic image processing operations, and the
viewing distance. According to Wang and Bovik [34], although
the viewing conditions play an important role in human per-
ception of image quality, they are not fixed in most cases, and
the specific data is generally unavailable to the image analysis
system.

An ideal image quality measure should be able to describe
1) the amount of distortion, 2) the type of distortion, and
3) the distribution of error. Such a measure is expected to
provide accurate predictions of quality not only at distortion
ranges near the visual threshold but also when distortions are
significantly above the visual threshold. Undoubtedly, there is
a need for an objective measure that provides more information
than a single numerical value. Assessment of image quality is
an open problem today.

In their 1982 paper [11], Lukas and Budrikis talk about
a possible improvement in quality prediction if local rather
than global averaging procedures are used. They believe local
error measures are particularly pertinent in the case of coding
schemes that introduce distortion that is very localized in
nature. Westen et al. [24] present a perceptual error measure
(PEM) based on a multiple channel HVS for use in digital
image compression. PEM combines the responses in different
frequency bands, orientations and positions. Combination of
the responses at each position results in an image with values
that represent a local visibility of distortions. In coding ap-
plications, the authors believe, such a local measure of image
quality is probably more useful than a global one. Eude and
Mayache [31] compare four metrics to evaluate the quality of
JPEG-compressed images. They conclude by stating that as
these metrics do not take into account typical artifacts of other
compression methods, a multidimensional measure, with each
dimension being related to an artifact, would be an attractive
solution.

A recent paper [34] presents a new numerical measure for
gray scale images, called the universal image quality index
(UQI). The dynamic range of UQI is [ ,1], with the best
value achieved when , . As described
in the paper, this index models any distortion as a combination
of three different factors: loss of correlation, mean distortion,
and variance distortion. The index is computed using a sliding
window approach with a window size of 8 8, leading to a
quality map of the image. The overall quality index is the
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average of all the UQI values in the quality map. The UQI
produces unstable results when either of the terms in the
denominator is very close to zero. To avoid this problem, the
measure has been generalized to the Structural Similarity Index
(SSIM) [46]. is a special case of SSIM that can be derived
by setting and to 0. As in the case of UQI, the overall
image quality MSSIM is obtained by computing the average of
SSIM values over all windows.

Measures that require both the original (reference) image
and the distorted image are called “full-reference” methods
while those that do not require the original image are called
“no-reference” methods. The relevant literature includes several
transform-based approaches for developing an image quality
measure.

• Discrete Wavelet Transformation [33], [47]: A full-refer-
ence measure [33] based on integer wavelet transforma-
tion presents a graphical representation of image distor-
tion using relative wavelet subband energy. The proposed
measure can also be represented as a single numerical
value by computing a weighted sum of the subband
values. The distortion types for grayscale images are blur,
noise, and lossy compression (JPEG, wavelet, and vector
quantization). A more recent wavelet-based full-ref-
erence distortion measure [47] utilizes linear-phase
wavelets (namely, biorthogonal Daubechies 9/7 and
cubic spline wavelets). The measure is tested with three
types of degradation: Gaussian noise, JPEG compression,
and a grid pattern.

• Fast Fourier Transform [48]: A no-reference scalar mea-
sure that estimates horizontal and vertical blocking arti-
facts in images. The overall blockiness of the distorted
image is given by the arithmetic mean of the two esti-
mates. JPEG compressed grayscale images are used to test
the measure. Because of the computational requirements
of the FFT, a pixel domain approach was also proposed
[49].

• Discrete Cosine Transform (DCT)[50]: A no-reference
scalar measure that defines a new block across any two ad-
jacent blocks in horizontal and vertical directions. Com-
putations on these overlap blocks result in a map of ar-
tifact visibility for the whole image. The set of values in
the map can be combined to have a numerical value pre-
dicting the overall image quality. The proposed measure
is applied to JPEG compressed grayscale images.

In this paper, we explore the feasibility of singular value
decomposition (SVD) in developing a new measure that can
express the quality of distorted images either graphically [as
a two-dimensional (2-D) measure] or numerically (as a scalar
measure) both near and above the visual threshold. Our exper-
iments show that the SVD-based measure outperforms PSNR,
UQI and MSSIM (two state-of-the-art metrics), consistently
measuring the distortion both across different distortion types,
and within a given distortion type at different distortion levels.

II. NEW SVD-BASED MEASURE

Every real matrix can be decomposed into a product of
three matrices , where and are orthogonal ma-

trices, , , and . The
diagonal entries of are called the singular values of , the
columns of are called the left singular vectors of , and the
columns of are called the right singular vectors of . This de-
composition is known as the SVD of [51]. It is one of the most
useful tools of linear algebra with several applications to mul-
timedia including image compression [52] and watermarking
[53]–[55].

We will restrict our description to gray scale images although
generalization to color images is possible. A common approach
used for color images is to separate the luminance information
(luminance channel ) from the color information (two chromi-
nance channels and ), and use the luminance layer only [46].

Every gray scale image can be considered to be a matrix with
an integer number corresponding to each pixel. If the SVD is
applied to the full images, we obtain a global measure whereas
if a smaller block (e.g., 8 8) is used, we compute the local
error in that block. An alternative for the global measure is to
obtain the local errors in smaller blocks, and average them in a
certain way.

A. Graphical Measure

The proposed graphical measure is a bivariate measure that
computes the distance between the singular values of the orig-
inal image block and the singular values of the distorted image
block

where is the singular values of the original block, is the
singular values of the distorted block, and is the block size.
If the image size is , we have blocks. The set
of distances, when displayed in a graph, represents a “distortion
map.” The block size used in our experiments is 8 8 for two
reasons: It is a common block size in JPEG compression and
other image processing applications, and more importantly, both
UQI and MSSIM use a window size of 8 8.

We applied the measure to five 512 512 grayscale images
given in Fig. 1. The distortion types, the distortion levels and
the associated parameters are shown in Table I. The JPEG,
JPEG 2000, and sharpened images were created using XnView,
and the blurred and noisy images were created using Adobe
Photoshop. The DC-shifted images were obtained through pro-
gramming by shifting each pixel by the indicated amount. The
parameters in Table I for JPEG and JPEG 2000 are compres-
sion ratios whereas the parameters for Gaussian blur, Gaussian
noise, and sharpening are obtained from the respective image
processing tools (XnView for Windows Version 1.70 and
Adobe Photoshop 7.0).

We begin with the observation that an 8-bit black image of
size with pixels values equal to 0 have singular values
that are equal to 0, and a white image of size with pixels
values equal to 255 have one singular value that is equal to

255, and singular values that are equal to 0. We di-
vided the test image Lena into 8 8 blocks, and for each block
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Fig. 1. Test images.

TABLE I
DISTORTION TYPES AND LEVELS

obtained the ratio between the largest singular value and the
second largest singular value. The blocks with the largest and
smallest ratios in the whole image are given in Fig. 2. The coor-
dinates of the higher frequency block are (35,16), and the coor-
dinates of the lower frequency block are (45,64). As the range
of singular values in a given block depends on the activity level
in the block, we propose to use all the singular values in the
graphical measure.

In Fig. 3, we present the results for our graphical measure
only for Lena. Each distortion map, which provides the amount
of distortion, the type of distortion, and the distribution of error,
is obtained as a grayscale image by mapping the values to the
range [0,255]. Note that the size of a distortion map is 64 64.
We enlarged the maps to make the pixel values more visible;
the darker and lighter areas indicate the smaller and larger dif-
ferences, respectively.

Fig. 2. Lena blocks with the largest and smallest ratios.

We have the following observations based on the distortion
maps in Fig. 3.

• JPEG: As the distortion level is increased, the image be-
comes blocky (which is the major artifact for DCT-based
JPEG compression). This artifact becomes visible in the
maps starting from compression ratio 30:1, especially on
Lena’s shoulder and the wall.

• JPEG2000: As this new compression standard is based on
the wavelet transform, the images become blurry along
the edges, and in high frequency areas. As we increase the
compression ratio, the maps display how the image loses
its fidelity. When compared with JPEG, this technology is
superior especially at higher compression ratios.

• Gaussian blur: This type of distortion substantially affects
the edges and high frequency areas, resulting in seriously
blurred images. As the radius of blurring is increased, we
see high peaks in the maps along the edges, and high fre-
quency areas.

• Gaussian noise: The effect is a uniformly distributed noise
across the image which is depicted in the maps as the
amount of noise goes up. The noise is visible in high fre-
quency, low frequency, and textured areas.

• Sharpening: This type of filter makes the textured and high
frequency areas sharper and crispier. The maps show the
distortion in the affected areas. Incontrast, sharpening does
not introduce noticeable noise in the low frequency areas.

• DC-shifting: If a constant value is added to all the pixel
values, the image becomes uniformly lighter, and if a
constant value is subtracted from all the pixel values, the
image becomes uniformly darker. Because of the range
of pixel values of Lena (24–245), we subtracted values
that resulted in darker areas along the edges with a sharp
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Fig. 3. Distorted images and corresponding distortion maps.

contrast. As smaller pixel values led to smaller singular
values, our measure computed smaller differences along

those edges, resulting in “grooves” in the maps. In the
other areas, the distribution of distortion is uniform.
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B. Numerical Measure

The numerical measure is derived from the graphical mea-
sure. It computes the global error expressed as a single numer-
ical value depending on the distortion type

where represents the mid point of the sorted , is the
image size, and is the block size. We will compare its per-
formance with commonly used PSNR, and two state-of-the-art
quality metrics, UQI and MSSIM.

Each test image was distorted by six types of noise at five
levels, resulting in 30 distorted images. High quality print-outs
of each set of distorted images were subjectively evaluated by
approximately 15 observers. The printer was a Hewlett-Packard
printer with model number “hp color Laserjet 4600dn.” The
8-2/16” 8-2/16” images were printed on 8.5” 11” white
paper with basis weight 20 lb and brightness 84. In this
experiment, the observers were chosen among the undergrad-
uate/graduate students and professors from the Department of
Computer and Information Science at Brooklyn College. About
half of the observers were familiar with image processing, and
the others only had computer science background. They were
asked to rate the images using a 50-point scale in two ways:
Within a given distortion type (i.e, rating of the five distorted
images), and across six distortion types (i.e., rating of the six
distorted images for each distortion level). For each test image,
we displayed the 30 distorted images (six distortion types
and five distortion levels) with the original image, and asked
the observers to rate them. As the proposed measure is not
HVS-based, no viewing distance was imposed on the observers
in the experiment. Grade 1 was assigned to the best image, and
grade 50 was assigned to the worst image.

In the Video Quality Experts Group (VQEG) Phase I testing
and validation, a nonlinear mapping between the objective
model outputs and subjective quality ratings was used [56]. The
performance of the 9 proponent models was evaluated after
compensating for the nonlinearity. In this paper, we follow
the same procedure by fitting a logistic curve to establish a
nonlinear mapping. The logistic function has the form

where is a constant parameter. Fig. 4 shows the curves fitted
for all the four measures compared.

Table II displays the overall performance of the measures
using two criteria: Correlation and RMSE between MOS and
objective prediction. It can be observed that M-SVD outper-
forms all three measures. In particular, the correlation is im-
proved by approximately 10%, and the RMSE is reduced by
almost 50%, relative to the state-of-the-art metrics UQI and
MSSIM.

The real success of objective quality assessment can be deter-
mined by predicting the quality not only within a given distor-
tion type but also across different distortion types. So, we also

Fig. 4. Comparison of the scatter plots for PSNR, UQI, MSSIM, and M-SVD.
MOS is the mean opinion score, and each mark represents one distorted image.
The mapping between the distortion types and the marks is as follows: JPEG
( ), JPEG2000 (�), Gaussian blur (�), Gaussian noise ( ), sharpening (�),
and DC-shifting (+).

computed two additional sets of data in comparing the perfor-
mance of the four measures:

• CC and RMSE within each of the six distortion types;
• CC and RMSE across each of the five distortion levels.
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TABLE II
COMPARISON OF FOUR MEASURES

TABLE III
(A) CC-BASED PERFORMANCE WITHIN EACH DISTORTION TYPE.

(B) RMSE-BASED PERFORMANCE WITHIN EACH DISTORTION TYPE

TABLE IV
(A) CC-BASED PERFORMANCE ACROSS EACH DISTORTION LEVEL.

(B) RMSE-BASED PERFORMANCE ACROSS EACH DISTORTION LEVEL

The performance results are given in Tables III and IV. We ob-
serve that the performance of M-SVD is considerably more con-
sistent across distortion types and across distortion levels. The
difference is more pronounced in Table IV which represents an
extremely challenging measurement problem. Although PSNR

TABLE V
SENSITIVITY OF M-SVD TO THE BLOCK SIZE

outperforms UQI and MSSIM in general with respect to the dis-
tortion types, it displays the poorest prediction as the distortion
level is raised.

We also analyzed the sensitivity of M-SVD to the block
size. Smaller block size results in more detailed distortion
maps leading to higher correlation with subjective evaluation.
Similarly, larger block size results in coarser distortion maps
leading to lower correlation with subjective evaluation. The
overall performance of the measure for three block sizes is
given in Table V.

III. CONCLUSION

We presented a new image quality measure that can be used
graphically as a 2-D tool or numerically as a scalar metric. Our
observations regarding the proposed measure are as follows.

• The graphical measure consistently displays the type and
amount of distortion as well as the distribution of error in
all the images. In the experiments, we used a wide range of
distortion types including compression, blur, noise, sharp-
ening and shifting. Some other measures have limited
scope as they focus on a particular technology such as
image compression [24]–[26], [29]–[31], [44].

• The numerical measure is a derivation from the graph-
ical measure which is expressed as a Minkowski metric

, where , and the image compo-
nents and represent the SVD singular values of the
original and distorted images, respectively. It computes a
global estimate of the distortion in the image. The subjec-
tive evaluation shows that its overall performance is sub-
stantially more successful than those of and SSIM for
six distortion types and five distortion levels.

• Neither the graphical measure nor the numerical mea-
sure requires a simplified model of the HVS, necessi-
tating undue computations. Hence, they do not have any
assumptions concerning the viewing distance, or the dis-
tortion type.

• In some global metrics, the statistics obtained about
the impairments in a distorted image are combined
in a weighted sum to represent the average error. This
weighting is usually problematic as no systematic method
is known to determine the weights. Researchers have re-
sorted to simple addition of errors [25], Minkowski
metric with different values of [28], linear combination
of distortion factors [22], [29], [30], [33], nonlinear
combination of vertical and horizontal features [49], and
nonlinear response in different frequency bands, orien-
tations and positions [24]. These efforts may result in
different weights for different distortions or image types.
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The M-SVD, however, does not require any analysis to
compute a weighted sum in predicting the overall error.

• The SVD is of order , which makes the compu-
tations slower for larger image sizes. If the image is
segmented into smaller blocks, and the SVD is applied
to each block, the total processing time is much lower.
As we use 8 8 blocks, computational requirements are
reasonable.

• The smallest parameters in Table I correspond to distor-
tions that are barely visible, and the larger parameters
to distortions where the observer preferences start devi-
ating. Hence, the measure is able to reliably predict visual
quality not only near the visual threshold but also well
above the visual threshold.

To the best of our knowledge, such a generalized objective
metric that can be used for local and global measurements
does not exist in the current literature. We plan to continue this
research by extending the proposed measure to color images,
video sequences, and watermarked images.
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