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AN ITERATED NESTED LEAST-SQUARES ALGORITHM FOR FITTING MULTIPLE 
DATA SETS 

 
Stephen D. Voran1 

 

A multiple data set fitting problem often arises in conjunction with the 
development of objective estimators of perceived audio or video quality.  In such 
development work, we often seek the best linear relationship between a set of 
objective audio or video quality estimation parameters and a set of subjective 
audio or video quality scores.  In order to find the most robust and reliable 
relationship, we prefer to perform a least-squares fit using as many audio or video 
data points as possible.  This motivates us to combine scores from different 
subjective tests.  Unfortunately, scores from different subjective tests or data sets 
can differ in significant ways due to differing test procedures, environments, 
languages, and other sources. We develop a solution to this multiple data set 
fitting problem: the iterated nested least-squares (INLS) algorithm.  This 
algorithm iterates between two least-squares steps.  One step attempts to 
homogenize heterogeneous data sets through the use of a single first-order 
correction for all of the data points in each data set.   The other least-squares step 
solves for the appropriate linear combination of the parameters, across all data 
sets.  We also offer example INLS algorithm results using simulation data and 
data from telephone-bandwidth speech quality tests.  For convenience we have 
written this memorandum in the language of objective estimation of perceived 
audio and video quality but the results are completely general and can be used to 
fit other types of data sets as well. 

 

Key words: audio quality estimation, data set fitting, least-squares fitting, linear regression,  
  meta-analysis, speech quality estimation, video quality estimation 

 

1. INTRODUCTION 

Least-squares fits are often used to relate various types of experimental data.  A very common 
situation involves relating a set of independent variables (or experiment control parameters) to a 
dependent variable (or experiment outcome).  More generally though, one can use least-squares 
fitting to find relationships between multiple measurements of events.  An interesting and unique 
multiple measurements problem (or multiple data set fitting problem) often arises in conjunction 
with the development of objective estimators of perceived audio or video quality.  Examples of 

                                                      
1 The author is with the Institute for Telecommunication Sciences, National Telecommunications and 
Information Administration, U.S. Department of Commerce, Boulder, CO 80305. 
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recent work in these areas can be found in [1]-[10].  In this type of development work, we often 
seek the best linear relationship between a set of r objective audio or video quality estimation 
parameters (parameters) and a set of subjective audio or video quality scores (scores).  The 
parameters are objectively computed from audio or video signals with the goal of quantifying the 
perceptually relevant components of audio or video signal distortion.  The scores are gathered 
through subjective tests where human subjects hear or see audio or video signals and then 
provide their opinions of audio or video quality on some scale.  See [11] for examples of 
subjective test procedures and scales for telephone-bandwidth speech signals. 

 

When r parameters are available for n audio or video data points, we form r column vectors pi, 
i=1 to r, and each column vector has length n.  Thus pi contains the values of the ith parameter for 
the n data points.  We then build the n by r parameter matrix 

 

 [ ].1 2 r=P p , p ,..., p  (1) 
 

We also arrange the n corresponding scores into the length n column vector s.  We can then solve 
the least-squares problem 

 ˆ≈ =s s Pw  (2) 
 
to find the set of weights w that describe the linear relationship between the parameters and 
score.  Once this relationship has been determined to our satisfaction, we can use objectively 
computed parameters and w to estimate the subjective scores in situations where no subjective 
scores are available. 

 

In order to find the most robust and reliable relationship, we would like the least-squares fit (2) 
to use as many audio or video data points as possible (i.e., we would like to maximize n).  This 
motivates us to combine scores from different subjective tests.  Unfortunately, the scores from 
different subjective tests can differ in ways that may not be known.  These differences may stem 
from differing test procedures, differing test environments, cultural and language differences, 
and even different test scales.  In an attempt to homogenize these heterogeneous scores and bring 
them all to a common scale, we may elect to allow a single first-order correction for all of the 
scores in each subjective test, 

 

 ,a b= +s s 1  (3) 
  

where s  and s  are the original and corrected score vectors and 1 is a column vector of ones.  
We refer to the scores and corresponding parameters from m different subjective tests as 
different data sets.  Thus we describe the process of combining scores from different tests as a 
multiple data set fitting problem.  This multiple data set fitting scenario is fully described in 
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Figure 1.  Given the scenario described in Figure 1 we must identify appropriate values for 
{ }m

iia 1= , { }m
iib 1= , and w.  Solving for these quantities is the topic of this memorandum. 

 

  

 
 

Figure 1.  Block diagram showing multiple data set fitting scenario. 
  

In the following we develop our solution to this multiple data set fitting problem: the iterated 
nested least-squares (INLS) algorithm.  We provide a full algorithmic description, and we offer 
example simulation data and example data from telephone-bandwidth speech quality tests.  We 
also describe a variant algorithm, the anchored iterated nested least-squares (AINLS) algorithm.  
Throughout this memorandum we use the language of objective estimation of perceived audio 
and video quality, often referring to parameters and scores.  We use this language because it 
seems more readable than a more generic terminology, but we note that the results are 
completely general and can be applied to any type of data that requires fitting according to 
Figure 1.  We also note that when one uses the procedure of Figure 1 to relate multiple 
realizations of a single experiment, the result might be considered to be a simple form of meta-
analysis [12]. 
 

 

b2 a2 
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2. ALGORITHM DEVELOPMENT 

2.1 Preliminaries 

We are seeking a linear relationship between a set of r parameters and a subjective score.  We 
have n data points and would like to use all of them in a least-squares fit between the scores and 
the parameters.  The scores come from m different data sets and the ith data set has ni data points: 

 

 
1

.
m

i
i

n n
=

=∑  (4) 

 

The scores from the m data sets are not homogeneous.  To homogenize the scores, we allow a 
single first-order correction for all of the scores in each data set: 

 

 , 1to ,i i i ia b i m= + =s s 1  (5) 
  

where 1 is a column vector of ni ones.  

 

We combine the corrected scores into a single n by 1 vector s  for notational convenience: 

 

 T T T T T, , ,..., .1 2 3 m =  s s s s s  (6) 
 

We also have n values from each of r parameters.  These n values correspond to the n scores.  
We form the n by r+1 parameter matrix P, where columns 1 through r contain parameters, and 
column r+1 holds the constant value 1: 

 

 .1 2 r=   P p , p , ..., p ,1  (7) 
 

The r+1 by 1 weight vector w allows us to form a linear combination of the columns of P with 
the goal of approximating s : 
 

 ˆ ,≈ =s s Pw  (8) 
 

where 
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 T T T T Tˆ ˆ ˆ ˆ ˆ, , ,..., .1 2 3 m =  s s s s s  (9) 
 

Finally, we introduce the n by n diagonal cost matrix C.  C contains entries 0 < cj,  j =1 to n.  
This cost matrix allows us to shape the fitting errors.  For example, we can force smaller errors 
where we have higher confidence in the data, if we are willing to accept larger errors where we 
have less confidence in the data.  The next three subsections provide other necessary background 
development that leads to the INLS algorithm. 

 

2.2 Conventional Least-Squares is Not Sufficient 

If { }m
iia 1= and { }m

iib 1=  were known, we could calculate s  using (5) and (6) and then find the cost-
weighted least squares solution to (8): 

 ( ) ( ) 12 T 2 T 2ˆmin .
−

− ⇒ =
w

C s s w P C P P C s  (10) 

 

On the other hand, if w were known, we could calculate ŝ  using (8) and then solve the m cost-
weighted least-squares problems for { }m

iia 1= and{ }m
iib 1= .  Let 

 

 , ,i i=   S s 1  (11) 
 

then the m cost-weighted least-squares problems and solutions are  

 

 ( )
2

1T 2 T 2
,

ˆ ˆmin , 1 to .
i i

i i
i i i i i i

a b i i

a a
i m

b b
−    

− ⇒ = =         
C s S S C S S C s  (12) 

 

In practice, neither w nor { }m
iia 1= and { }m

iib 1= are known a priori.  Further, the two least squares 
problems do not combine into a single least-squares problem.  One way to find a solution for 
w,{ }m

iia 1= , and { }m
iib 1=  is to iterate between (10) and (12).  This is the basis for the iterated nested 

least-squares algorithms. 
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2.3 Apportioning the Fitting Error 

We can think of both the scores s and the combined parameters ŝ  as noisy or errored 
measurements of some true (but unknowable) underlying global mean perceived audio or video 
quality value.  The scores have errors in them because they are estimated means based on a finite 
(and often rather small) sample.  The combined parameters have errors because they are only 
estimators of the true underlying perceived audio or video quality.  We would like our multiple 
data set fitting algorithm to acknowledge that both s and ŝ  are errored.  In other words, we 
would like to apportion the least-squares residual to both sources rather than to just one source or 

the other.  Toward that end we define parameter error vectors { } 1i

m

i=pε and score error vectors 

{ } 1i

m

i=sε : 

 ( ) ˆ , 1 to .
i ii i s i i pa b i mε ε+ + = + =s 1 s  (13) 

 

In [13] we develop several techniques for finding { }m
iia 1=  and { }m

iib 1=  while constraining the cost-
weighted error power ratio 

 

 

2

2
2 , 1to .i

i

i
i

i

r i m= =
s

p

C ε

C ε
 (14) 

 

In (14) Ci refers to the ni by ni diagonal cost matrix taken from the appropriate portion of the n by 
n cost matrix C.  Further, Ci must be scaled so that its squared diagonal entries sum to one:  

 

 2

1
1.

in

jj
j

c
=

=∑  (15) 

 

The cost-weighted error power ratio 20 ir<  allows us to distribute the total fitting error between 
the score error isε  and the parameter error ipε  in accordance with any prior knowledge we 
might have of the two error processes. 

 

In this memorandum we use the Direct Estimation (DE) Algorithm to find { }m
iia 1=  and { }m

iib 1=  
subject to the constraints of (14).  The algorithm is fully described in [13].  For the ith data set the 
algorithm yields 
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2

2 2 2 2

2

ˆ ˆ ˆ ˆ
4

ˆ ˆ ˆ ˆ
, 0,

2
0, 0,

i i i

i

i

r r r
a

r

ρ

ρ
ρ

ρ

    − + − +         =  ≠
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y x y x
x y x y  (16) 

 

and 

 

 ,i y i xb m a m= −  (17) 
where 

 

( ) ( )
2 2

1 1

T

ˆ ˆ ˆ, ,

ˆ, , and

ˆ ˆ
.

ˆ ˆ

i i

i i x i i y

n n

x jj j y jj j
j j

m m

m c s m c s

ρ

= =

= − = −

= =

=

∑ ∑

x C s y C s

x y
x y

1 1

 (18) 

 

 

In (18) we use js  and ˆ js  to denote the scalar components of the vectors is  and îs  respectively, 
and cjj to denote the diagonal scalar components of the matrix Ci.  In the following we use the 
notation ( )ˆ[ , ] DE , , ,i i i i i ia b r= s s C  to refer to the entire operation of the DE algorithm as 
described in (15), (16), (17), and (18).  Since Ci must be normalized to satisfy (15), the DE 
algorithm can weight the data points within a data set, but it cannot weight the data points 
between data sets.  Weighting between data sets is accomplished in a different step of the iterated 
nested least-squares algorithm described below. 

2.4 Removing Excess Degrees of Freedom 

As defined so far, our problem has two excess degrees of freedom (one scaling and one shifting) 
and this precludes a unique solution.  This situation is easily remedied by constraining aj=1, bj=0 
for some value of 1 ≤ j ≤ m.  This means that for the jth data set, the first-order correction to the 
data is null.  Thus the multiple data set fitting algorithm will transform all other data to the scale 
of the jth data set.  For this reason we refer to the jth data set as the reference data set.   For 
simplicity, and without loss of generality, we will assume j=1, so that the first data set is the 
reference data set.  The constraints a1=1, b1=0 can be enforced by shifting and scaling w,{ }m

iia 1= , 

and { }m
iib 1= at each iteration of the multiple data set fitting algorithm: 
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( )

( )

/ , 1 to ,
/ ,

/ , 1 to ,

/ , 1 to .

i i 1

r+1 r+1 1 1

i i 1 1

i i 1

w w a i r
w w b a

b b b a i m

a a a i m

= =

= −

= − =

= =

 (19) 

 

2.5 The Iterated Nested Least-Squares (INLS) Algorithm 

We are now equipped to return to the original problem of fitting parameters and scores.  We 
select initial values of { }m

iia 2= and { }m
iib 2=  using prior knowledge of the subjective testing scales 

used in the m data sets.  One simple and intuitive rule for selecting these initial values of ai and bi 
is that the resulting first order correction should map the endpoints of the subjective test scale 
used in the ith data set to the endpoints of the subjective test scale used in the reference data set.  
Once this initialization is completed, the INLS algorithm has three major steps per iteration.  
First it solves the least squares problem given in (8) yielding w.  Next it uses the DE algorithm to 
find { }m

iia 1= and { }m
iib 1= consistent with (13) and (14).  Finally the normalization procedure given in 

(19) is applied.  These three steps are repeated until convergence criteria on one or more of 
{ }m

iia 1= , { }m
iib 1=  or  w  are satisfied.  We offer no mathematical proof that this iterative approach 

will always converge, but we do note that in each of our actual applications it has always 
converged.   

 

The INLS algorithm for fitting multiple data sets is summarized below.  When necessary, the 
notation developed so far is augmented with an iteration number.  For example, ( )i js  is the 
value of is  in the jth iteration of the algorithm. 

___________________________________ 

Inputs:  

 { }1
m

is , score vectors 

 P, parameter matrix 

 C, cost matrix 

 { }1
m

ir , cost-weighted error power ratios 

 { } { }mii
m
ii ba 11 )0(~,)0(~

== , initial data set correction factors 

 

Local Variables: 
 i, data set number 

 j, iteration number 
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 { } { }1 1
( ) , ( )

mm
i ii i

a j b j
= = , current data set correction factors 

 ( )jw , current parameter weights before normalization step 

 ( )jw , current parameter weights after normalization step 

 ( )i js , current corrected score vectors, per data set 

 ( )js , current corrected score vectors, all data sets 

 ˆ ( )i js , current parameter-based approximations to corrected score vectors, per data set 

 ˆ( )js , current parameter-based approximations to corrected score vectors, all data sets 

 Extract the m per data-set cost matrices { } 1
m

i i=C  from C and normalize each per data-set 

 cost matrix so that the squared diagonal entries sum to one:  2

1
1

in

jj
j

c
=

=∑   

Algorithm: 
j=0 

While convergence criteria on w , and/or { }m
iia 2

~
= , and/or { }m

iib 2
~

= are not satisfied 

  j=j+1 

 mijbjaj iiii to1,)1(~)1(~)(~ =−+−= 1ss  

 T T T T T( ) ( ) , ( ) , ( ) , ... , ( )1 2 3 mj j j j j =  s s s s s  

 ( ) 1
( ) ( )j j

−
= T 2 T 2w P C P P C s  

 ˆ( ) ( )j j=s Pw  

 Extract ( ){ } 1
ˆ m
i i

j
=

s  from ˆ( )js , consistent with      

 T T T T Tˆ ˆ ˆ ˆ ˆ( ) ( ) , ( ) , ( ) , ... , ( )1 2 3 mj j j j j =  s s s s s  

 ( ),ˆ[ ( ), ( )] , ( ), , 1 toi i i i i ia j b j DE j r i m= =s s C  

 
( )1 1

1

( ) ( ) ( ) / ( ) , 1 to

( ) ( ) / ( ) , 1 to
i i

i i

b j b j b j a j i m

a j a j a j i m

= − =

= =  

 ( )
( ) ( ) / ( ) , 1 to

( ) ( ) ( ) / ( )
i i 1

r+1 r+1 1 1

w j w j a j i r

w j w j b j a j

= =

= −  
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End 

( ) ( ) ( ) , 1 toi i i ij a j b j i m= + =s s 1  

 
 

Outputs: 

 { } { }mii
m
ii jbja 11 )(~,)(~

== , final data set correction factors 

 ( )js , corrected score vector 

 ( )jw , parameter weights 

 ˆ( )js , parameter-based approximation to corrected score vector 

___________________________________ 

 

In our applications, the INLS algorithm has always converged in fewer than twenty iterations.  A 
typical convergence criterion would be that between two iterations, the largest relative 
magnitude change in any of { }m

iia 2
~

= ,  { }m

iib 2
~

= , or any component of w  must be less than some 
threshold: 

 

 
( ) ( )

( )
( ) ( )

( )
( ) ( )

( )
11 1

max max , max , max .
1 11

i ii i i i

i i ii ii

b j b ja j a j w j w j

a j w jb j

     − −− − − −      < ∆     − − −      
(20) 

  

The INLS algorithm may seem somewhat indirect when it comes to enforcing the constraints 
a1=1, b1=0.  A seemingly more direct approach would be to select a1=1, b1=0 for the initial 
values, and never apply the DE algorithm to the scores from the reference data set.  This 
variation of the INLS algorithm eliminates the need for the normalization steps described in (19).  
This variation leaves the scores from the reference data set anchored at their original location, so 
we call this the anchored iterated nested least-squares (AINLS) algorithm.  This algorithm 
converges much more slowly than the INLS algorithm.  When skipping the DE step on the 
scores from the reference data set, direct information about the relationship between the 
reference data set scores and the parameters is ignored.  This information is apparently extracted 
indirectly and less efficiently through the scores of the remaining m-1 data sets, leading to slower 
convergence.  Further, in data sets using simulated scores and parameters, we have found the 
INLS algorithm is much more likely to converge to results closer to the known correct values of 

{ }m
iia 2

~
= ,  { }m

iib 2
~

= , and w  than the AINLS algorithm.  Thus we will not discuss the AINLS 
algorithm any further in this memorandum. 

ˆ( ) ( )j j=s Pw
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3. EXAMPLE ALGORITHM RESULTS 

3.1 Simulated Data Results 

In Figures 2-6 we show the operation of the INLS algorithm on simulated scores and parameters.   
This simulation includes r=3 parameters and m=3 data sets.  Each data set contains ni=40 data 
points for a total of n=120 data points.   We simulated parameters by limiting uniformly 
distributed random variables to appropriate ranges and simulated the corresponding scores by 
linearly combining parameters and adding Gaussian noise.  Thus we know that the “right 
answers” for this simulation are 2.02a = , 0.93a = , 1.02b =− , 0.73b =− , and 

T0.2 0.4 0.8 0.4=   w .  Since the noise was added only to the scores, we set 2 10ir =  for all 
three data sets to reflect this limiting case.  We use uniform cost-weighting on all data sets: 

 

 
1 .
40i 40×40=C I  (21) 

 

Figures 2-4 are scatter plots of the corrected scores s  vs. the parameter-based approximations to 
corrected scores ŝ .  In these figures, the data points from data set 1 (the reference data set) are in 
blue, those from data set 2 are green, and those from data set 3 are in red.  Figure 2 shows the 
relationship between the scores and ŝ  before the INLS algorithm has been started.  We calculate 
this initial value of ŝ  using (2).  Note that each set of scores shows a correlation to ŝ , yet the 
data points of data sets 2 and 3 do not align with the data points of data set 1.  Figure 3 shows 
these same relationships after one iteration of the INLS algorithm, and Figure 4 shows these 
relationships after two iterations.  Note that the three groups of data points now align well. The 
relationship shown in Figure 4 does not change significantly with further iterations of the INLS 
algorithm.  The evolutions of , , , , and2 3 2 3a a b b w  are shown in Figure 5.  Each of these 
converges to a value at or near the known “right answers.”  Finally, Figure 6 shows how the root 
mean-squared error (RMSE) between s  and ŝ  decreases as the INLS algorithm iterates.  We 
define RMSE as 

 

 
21 ˆ .RMSE

n
= −s s  (22) 

 

From these figures it is clear that in this example, the INLS algorithm does virtually all of the 
fitting that it will ever do in the first two algorithm iterations. 
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Figure 2. Simulated data input to INLS algorithm; each color represents one data set. 

 

Figure 3. Data of Figure 2 after one iteration of INLS algorithm. 
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Figure 4. Data of Figure 2 after two iterations of INLS algorithm. 

 

Figure 5. Evolution of values as INLS algorithm iterates on data of Figure 2. 
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Figure 6. Evolution of RMSE as INLS algorithm iterates on data of Figure 2. 
 

3.2 Actual Data Results 

In Figures 7-11 we show the operation of the INLS algorithm on actual scores and parameters.   
We use r=13 parameters taken from a measuring normalizing block algorithm for estimating 
telephone-bandwidth speech quality [3].  We have included m=3 data sets.  In each data set, the 
subjective test was an absolute category rating test that used the five-point mean opinion score 
scale [11].  Together these data sets contain over 3000 data points and the resulting scatter plots 
are not readable.  For demonstration purposes here we have randomly selected ni=40 data points 
from each data set for a total of n=120 data points.   Since we have no prior knowledge of 
relative error sources in this data, we choose to assume that the parameter error and the score 
error are equal and thus we set r2=1 for all three data sets.  We use uniform cost-weighting on all 
data sets as given in (21). 

 

Figures 7-9 are scatter plots of the corrected scores s  vs. the parameter-based approximations to 
the corrected scores ŝ .  These figures use the same color coding as the previous set of figures.  
Figure 7 shows the relationship between the scores and ŝ  before the INLS algorithm has been 
started.  We calculate this initial value of ŝ  using (2).  Each set of scores shows a correlation to 
ŝ , and any further relationships are much more subtle than in the simulated data.  Careful visual 
inspection does reveal that both the green and red data points should be scaled by a scale factor 
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that is less than one.  That is, the slopes of the green and red data clouds should be reduced in 
order to best line up with the slope of the blue data cloud.  In other words, we expect 0 12a< <  
and 0 13a< < .  Further, it appears that after such scaling, the green data points should be shifted 
up by a small amount to best agree with the blue data points, and the red data points may require 
a smaller upward shift or perhaps no upward shift (i.e.,  0 13 2b b< < < ). 

 

Figure 8 shows the s  vs. ŝ  scatter plot after one iteration of the INLS algorithm, and Figure 9 
shows the same after five iterations.  Note that the three groups of data points now align better 
than before.  The relationship shown in Figure 9 does not change significantly with further 
iterations of the INLS algorithm.  The evolutions of , , , and2 3 2 3a a b b  are shown in Figure 10 
and each converges to a value consistent with our initial visual assessment.  (Since w  contains 
14 elements, plots of that vector are not easily readable and we have elected not to plot it.)  
Finally, Figure 11 shows how the root mean-squared error (RMSE) between s  and ŝ  evolves as 
the INLS algorithm iterates.  Note that the RMSE is minimized after five iterations and remains 
nearly unchanged beyond that point.  On the other hand, the values of , , , ,and2 3 2 3a a b b w  
continue to evolve until about 15 iterations have passed.  This means that the INLS algorithm has 
found a family of about ten similar solutions that are almost equally desirable in terms of RMSE.  
We have run 100 iterations on this data and have verified that the solution remains stable and 
that there is no further increase in RMSE. 

 

Figure 7. Speech quality data input to INLS algorithm; each color represents one data set. 
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Figure 8. Data of Figure 7 after one iteration of INLS algorithm. 

 

Figure 9. Data of Figure 7 after five iterations of INLS algorithm. 
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Figure 10. Evolution of values as INLS algorithm iterates on data of Figure 7. 

 

Figure 11. Evolution of RMSE as INLS algorithm iterates on data of Figure 7. 
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4. SUMMARY 

We have provided motivation for the multiple data set fitting scenario described in Figure 1.  
While our motivation comes from the development of objective estimators of perceived audio 
and video quality, our solutions are general and will apply whenever the diagram in Figure 1 
applies.  Our solutions are the INLS and AINLS algorithms, and the INLS algorithm is clearly 
the preferred algorithm.  We have presented example results for the INLS algorithm operating on 
both simulated and real data.  The INLS algorithm finds individual first-order corrections for the 
score vectors in each data set.  It also finds a single weight vector that forms a linear combination 
of the parameters across all data sets.  The INLS reduces the RMSE calculated across all data sets 
as it aligns disparate data sets with each other to form a single cluster of data. 
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