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P
erceptual quality metrics are widely deployed in 
image and video processing systems. These metrics 
aim to emulate the integral mechanisms of the 
human visual system (HVS) to correlate well with 
visual perception of quality. One integral property of 

the HVS is, however, often neglected: visual attention (VA) [1]. 
The essential mechanisms associated with VA consist mainly of 
higher cognitive processing, deployed to reduce the complexity 
of scene analysis. For this purpose, a subset of the visual infor-
mation is selected by shifting the focus of attention across the 
visual scene to the most relevant objects. By neglecting VA, 
perceptual quality models inherently assume that all objects 
draw the attention of the viewer to the same degree. This 

applies to both the natural scene content as well as possibly 
induced distortions. However, suprathreshold distortions can 
be a strong attractor of VA and as a result, have a severe impact 
on the perceived quality. Identifying the perceptual influence of 
distortions relative to the natural content can thus be expected 
to enhance the prediction performance of perceptual quality 
 metrics. The potential benefit of integrating VA information 
into image and video quality models has recently been recog-
nized by a number of research groups [2]–[20]. The conclu-
sions drawn from these works are somewhat controversial and 
give rise to many open questions. The goals of this article are 
therefore to shed some light onto this immature research field 
and to provide guidance for further advances. Toward these 
goals, we first discuss VA concepts that are relevant in the con-
text of quality perception. We then review recent advances in 
research on integrating VA into quality assessment and 
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 highlight the main findings. Finally, we discuss major chal-
lenges and suggest potential solutions and future directions. 

VISUAL ATTENTION
The human eye faces an abundant amount of visual information 
at any instant in time. Several mechanisms in early vision and 
higher cognitive layers are therefore deployed to reduce the 
complexity of scene analysis. 

RETINAL SAMPLING AND EYE MOVEMENTS
Nonuniform sampling is deployed on the retina with a high 
sampling density in the fovea and rapidly diminishing density 
with increasing eccentricity. Hence, high-accuracy processing is 
limited to the central focus point, the fovea, and the peripheral 
visual field is perceived with lower accuracy. 

A visual scene is gradually inspected by shifting the focus 
point using rapid, saccadic eye movements to fixate on the most 
relevant information in any context. Visual perception is active 
only during fixations and is largely suppressed during saccades 
[21]. Even though visual scene sampling is dominated by fixa-
tions, the scene is perceived as a continuous visual world. 
Fixations on moving objects are enabled through smooth pur-
suit eye movements, during which high acuity processing is 
performed for object speeds of up to approximately two degrees 
of visual angle per second [22]. 

VISUAL ATTENTION MECHANISMS
VA is thought to have evolved as a result of the limited overall 
resources available in the HVS [23]. Visual stimuli are therefore 
constantly competing for these resources and the most relevant 
stimuli in a given context are favored over the less relevant ones. 
The quality and acuity of the attended stimulus is enhanced 
through increased gain and contrast sensitivity, accompanied by 
a widespread baseline-activity reduction and noise suppression in 
the remaining visual field [24]. The decision which stimuli are 
favored is influenced by a number of different mechanisms. 

OVERT VERSUS COVERT ATTENTION 
Eye movements do not necessarily reflect exactly what human 
observers are attending to [25]. Overt VA relates to the act of 
directing the eyes to a stimulus whereas covert VA is related to 
a mental shift of attention. Covert attention precedes eye 
movements [26] and during fixation, it can be deployed to mul-
tiple locations simultaneously. Hence, covert VA allows us to 
efficiently monitor the visual scene and guide our eye move-
ments. It is even possible to pursue one target while attending 
another target with only little effect on the pursuit [27]. Overt 
and covert VA are strongly interlinked and thus, eye tracking 
experiments are widely used to measure overt VA of human 
observers to gain insights into the attentive behavior. 

SPATIAL, FEATURE-BASED, 
AND OBJECT-BASED ATTENTION 
VA is strongly influenced by three cues that are deployed simul-
taneously in a mutually optimal way; spatial location, low-level 

features, and objects [23]. Overt spatial attention is accompa-
nied by eye movements whereas covert spatial attention can be 
deployed in the peripheral visual field and is thus not directly 
observable. Feature-based attention is largely independent of 
location and is affected by low-level features that are visually 
salient, including color, motion, orientation, and size [25]. It is 
active simultaneously throughout the visual field and is thus 
instrumental in improving detection performance of relevant 
stimuli. Object-based attention is guided by higher-level fea-
tures, such as object structures as well as semantic information 
and contextual effects. Context plays a particularly important 
role in the decision process as to which object is considered 
more relevant than others [26]. 

BOTTOM-UP AND TOP-DOWN MECHANISMS 
VA is guided by two main mechanisms: bottom-up and top-
down. The former is reflexive, signal driven, and independent of 
a particular task. Bottom-up attention is fast, short lasting 
(transient), and performed in a preattentive manner across the 
visual field. It is driven involuntarily as a response to certain 
low-level features that are experienced as visually salient and 
distinct from the background. Motion, and in particular sudden 
temporal changes, are known to be dominant features in 
dynamic visual scenes [28], [29]. Motion increases the process-
ing cost of visual perception and as a result of limited process-
ing power in the HVS, considerably reduces visual sensitivity. 
This phenomenon, referred to as motion suppression [30], hap-
pens mainly in low-attentional areas when motion is different to 
that in high-attentional areas. 

Top-down attention, on the other hand, is driven by higher-
level cognitive factors and external influences, such as, seman-
tic information, contextual effects, viewing task, and personal 
preference, expectations, experience and emotions. Top-down 
attention is slower, longer lasting (sustained), and unlike bot-
tom-up attention, it requires a voluntary effort to shift the gaze. 
Top-down attention is considered to have a modulatory effect on 
bottom-up attention [31]. This is illustrated with regard to 
Figure 1. When shown this image, the attention of different 
observers would be driven to different pencils (bottom-up). 
However, if given the search task to identify the light blue pen-
cil, the attention would be drawn to the pencil in the bottom 

[FIG1] Illustration of the modulatory effect of top-down 
attention on bottom-up attention (image “coloring pencils” 
courtesy of [32]).
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right corner. It is, however, 
extremely difficult for observers 
to ignore transient cues and 
hence, bottom-up attention is 
highly dominant in situations 
where there is a sudden onset of 
a visual stimulus. This phenome-
non occurs independent of the 
task and is referred to as atten-
tional capture. 

COMPUTATIONAL VISUAL ATTENTION MODELING
Computational VA models aim to predict the gaze locations of 
human observers. Current models are inspired by early works 
such as the feature integration theory by Treisman and Gelade 
[33], guided search by Wolfe et al. [34], or neural-based archi-
tecture by Koch and Ullman [35]. The latter model especially 
constituted a theoretical basis for biologically plausible models 
incorporating low-level characteristics of the HVS known to 
contribute to VA, such as multiple-scale processing, contrast 
sensitivity, and center-surround processing. A recent trend in 
computational saliency modeling is the development of statisti-
cal [36], information theoretic [37], and Bayesian approaches 
[26], [28], [38]. A main strength of these models is a strong 
mathematical foundation. 

BOTTOM-UP MODELING 
The majority of models focus on bottom-up mechanisms to pre-
dict visually salient locations [37]–[42]. Common traits of these 
models are a feature extraction stage followed by a not yet well-
understood pooling into a final conspicuity map. Different fea-
ture combination strategies were investigated in [43]. The best 
tradeoff between prediction performance and generalization was 
achieved by nonlinear competition between salient locations 
followed by summation. An interesting additive feature 
 integration method is proposed in [44]. In addition to the con-
tribution of individual features, coupling factors were derived 
from psychophysical evidence to account for complex interac-
tions between features. 

A recent study [45] compared the saliency prediction perfor-
mance of 13 bottom-up models. It was found that the maximum 
rather than the average predicted saliency correlates consider-
ably better with human saliency recordings. Two models based 
on multiple-scale contrast-based processing were found to per-
form best in predicting visual saliency. Despite these findings, it 
is to date not fully understood how different feature dimensions 
contribute to overall visual saliency. None of the 13 tested mod-
els, for instance, accounts for momentary eye fixations and 
thus, variations in visual resolution on the retina. Taking into 
account whether a target can be identified from distractors in 
peripheral vision (known as crowding effect [46]) is of great 
concern in visual search tasks though. 

Peripheral vision is highly sensitive to temporal activities 
[47], thus enhancing detection and perception of temporal 
changes across the visual field. Motion is therefore among the 

most dominant features to 
attract attention and thus needs 
to be an integral feature of any 
VA model in the context of 
dynamic visual scenes [29], [36], 
[48]–[50]. The models in [48] 
and [49] compute spatial and 
temporal features independently 
and fuse them in a pooling stage. 
Assuming that spatial and 
motion cues are not separable, 

the nonparametric models in [50] and [36] outperform earlier 
models by computing spatiotemporal features based on the 
phase-spectrum and spatiotemporal local steering kernels, 
respectively. A biologically inspired spatiotemporal saliency 
model based on a center-surround framework is proposed in 
[29]. The incorporation of spatiotemporal aspects into VA mod-
els is still an open issue, primarily since human perception of 
dynamic scenes lacks a theoretical foundation, as is available for 
still images. From a computational modeling viewpoint, one 
major challenge is to account for the various combinations of 
static to dynamic egomotion and scene motion in natural video 
sequences. 

Bottom-up models only perform well on visual scenes that 
do not contain any semantic information or any interesting and 
meaningful objects, which is rarely the case in natural image 
and video content. Furthermore, bottom-up models process the 
visual scene in a local-to-global manner, meaning, that local 
features are accumulated into global conspicuity maps. 
According to this strategy, the number of candidate targets can 
be high and the scanpath prediction is difficult. A more recent 
holistic approach shows that the gist of a visual scene is per-
ceived preattentively and can therefore already be integrated 
prior to the first saccade [26]. 

TOP-DOWN MODELING 
Bottom-up and top-down cues need to be fused in a meaningful 
way to obtain a single focus of attention. Several works have 
tackled the difficult task of integrating top-down information 
with bottom-up features [26], [51]–[53]. A Bayesian framework 
for contextual guidance is proposed in [26], which is based on 
parallel computation of local saliency and global context fea-
tures that enhance object and scene change detection. In visual 
search tasks, prior knowledge about the target is of particular 
importance as it strongly influences the search performance 
(see the coloring pencils example in the section “Bottom-Up 
and Top-Down Mechanisms”). Therefore, the target-relevant 
region should be excited, the target-irrelevant regions inhibited, 
or a combination thereof [54]. The performance of the well-
known bottom-up model by Itti et al. [39] was improved by tak-
ing into account top-down cues to enable visual search. The 
degree to which these mechanisms contribute to the overall 
model needs to be adaptive to the current situation, with bot-
tom-up cues dominating in exploratory (free viewing) condi-
tions and top-down cues dominating in visual search tasks. 

BOTTOM-UP MODELS ONLY 
PERFORM WELL ON VISUAL 

SCENES THAT DO NOT CONTAIN 
ANY SEMANTIC INFORMATION 

OR ANY INTERESTING AND 
MEANINGFUL OBJECTS, WHICH 

IS RARELY THE CASE IN NATURAL 
IMAGE AND VIDEO CONTENT.
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Independent of the viewing con-
ditions, neither of the two mech-
anisms should be entirely 
suppressed. 

VISUAL ATTENTION FOR 
QUALITY ASSESSMENT: 
RECENT ADVANCES
Increased awareness to the strong interaction between VA and 
quality perception led to a number of computational methods 
that integrate VA into quality metrics to potentially improve 
prediction performance. We discuss in the following the most 
common VA integration methods and review recent advances 
for image [2]–[9] and video applications [10]–[20]. 

COMMON VISUAL ATTENTION INTEGRATION METHODS
We categorize the most common VA integration methods as 
illustrated in Figure 2. In Method 1, the perceptual difference 
(PD) between a test (T) and reference stimulus (R) is evaluated 
independently from the natural scene saliency. In a pooling 
stage, the perceptual difference is then typically weighted using 
the saliency map (SM), yielding the final quality score (Q). 
Assuming that distortions alter attention, the saliency differ-
ence (SD) between the reference and distorted stimuli can be 
used instead of or in addition to the natural scene saliency. 
Models following Method 2 first segment the image or video 
frames into salient regions (S) and background (B) using natu-
ral scene saliency. The perceptual difference is then computed 
independently on these regions and combined into an overall 
quality metric using a weighted summation. 

IMAGE QUALITY ASSESSMENT
Method 1 is the most widely adopted 
approach in image quality assessment 
[2]–[7]. Despite the common integration 
method, different conclusions arise from 
these works. 

Barland et al. [2] used the Osberger VA 
model [48] and proposed a multiple-scale 
VA model for integration into no-refer-
ence (NR) blur and ringing metrics for 
JPEG2000 compressed images. The pro-
posed model yielded a superior perfor-
mance, which supports the finding in [45] 
that multiple-scale processing is benefi-
cial for VA models. Sadaka et al. [4] inte-
grated bottom-up saliency [39] into their 
sharpness metric through multiplicative 
weighting with the distortion map. The 
linear correlation coefficient (CC) was 
enhanced from CC 5 0.58 to CC 5 0.69. 
The rather low performance of the origi-
nal metric, however, provided a big mar-
gin for improvement. Moorthy et al. [5] 
incorporate bottom-up saliency [41] into 

the structural similarity (SSIM) 
index [55]. An improvement of 
CC of approximately 1–4% was 
achieved across different distor-
tions covered in the test images. 
No results are reported to vali-

date the statistical significance of 
the rather low improvements. 

Gkioulekas et al. [6] adopt the surprise model in [28] for 
images and incorporate it into SSIM through weighted summa-
tion. The authors found that their surprise model improves 
SSIM considerably more than the bottom-up model in [39]. It 
was further found that maximum local saliency provides superi-
or results than averaged local saliency, which is in line with 
findings in [45], [56]. The improvements to the original SSIM 
index of approximately 1% in CC are marginal though. 

Instead of using a VA model, Ninassi et al. [3] integrated fixa-
tion density maps (FDM) from quality-task eye tracking into 
SSIM and the mean absolute distance (MAD) metric. On the 
contrary to the other works, no improvements were found in 
the context of JPEG and JPEG2000 distorted images. 

A comprehensive study on incorporating task-free and quali-
ty-task eye tracking data into quality metrics (SSIM, visual 
information fidelity (VIF) [57] criterion, peak signal-to-noise 
ratio (PSNR), generalized block edge impairment metric 
(GBIM) [58]) has recently been published by Liu et al. [7]. 
Statistically significant improvements were found for all met-
rics, with a superior performance in the case of task-free eye 
tracking data. The improvement was shown to be larger for 
images with distinct salient locations, as compared to images 
that have widely spread saliency. It was further concluded that 
background distortions should not be neglected, in particular in 
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[FIG2] Common methods of integrating VA into quality metrics: (a) Method 1 and (b) 
Method 2.

IN VISUAL SEARCH TASKS, PRIOR 
KNOWLEDGE ABOUT THE TARGET IS 
OF PARTICULAR IMPORTANCE AS IT 
STRONGLY INFLUENCES THE SEARCH 
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visual scenes where distortion visibility in the background is 
considerably higher than in the salient region. 

The suitability of Method 2 for VA integration was evaluated 
in [8], [9]. Larson et al. [8] segmented images into primary 
regions-of-interest (ROI), secondary ROI, and background based 
on task-free and quality-task eye tracking data. Five quality met-
rics [SSIM, VIF, PSNR, visual signal-to-noise ratio (VSNR) [59], 
and weighted signal-to-noise ratio (WSNR)] were computed 
independently on these regions and combined using a weighted 
summation. All metrics received highest weights for the prima-
ry ROI, apart from VSNR, which favored the secondary ROI. 
Superior improvement is reported with task-free rather than 
the quality-task eye tracking data. Unlike in [7], no improve-
ments were found to be significant. 

Engelke et al. [9] proposed an optimization framework for 
ROI-based image quality metrics in the context of wireless 
imaging distortions. Significant improvements were found for 
SSIM, VIF, and PSNR, which are believed to be due to the local-
ized nature of the distortions. Unlike with global distortions 
that were considered in previous works [3], [5], [8], the impact 
of the distortion location inside or outside the ROI has a more 
significant impact. In line with [8], however, it was also found 
that VSNR received a higher weight for the background, which 
emphasizes the sensitivity of saliency integration to the distor-
tion measure used. 

VIDEO QUALITY ASSESSMENT
Due to the dynamic changes of the visual scene in video applica-
tions, it is usually impossible to observe all details within every 
frame. Our gaze is mainly driven to follow the most salient 
regions, unlike with images, where sufficiently long viewing 
times also allow to analyze the background regions. Distortions 
that occur outside the most salient areas are therefore assumed 
to have a lower impact on the overall quality and VA concepts 
can be expected to have a higher impact in video as compared to 
image applications. The strong attentional guidance due to 
motion cues and temporal changes plays an essential role and 
has been implemented in many VA integration methods, as dis-
cussed in the following. 

Cavallaro et al. [10] integrated a low-level feature-based 
(motion, color) quality metric with extraction of semantic infor-
mation by means of face segmentation. Independent quality 
assessment in the faces and the background, followed by a pool-
ing stage, led to considerable improvements. 

Lu et al. [11] modulate the distortion maps of just-notice-
able-difference (JND) models as well as PSNR and SSIM using 
an original VA model based on bottom-up (color, texture, 
motion) and top-down (faces, skin color) cues. The model 
accounts for absolute and relative motion as well as motion sup-
pression. All features are pooled using the model in [44]. The 
JND and quality models were strongly improved. 

You et al. [12] integrate top-down cues (faces and text) with 
the bottom-up model in [39]. Different weighting schemes are 
tested for VA integration into SSIM and PSNR. Improvements 
were found only for PSNR but not for SSIM, and it is concluded 
that SSIM is unsuitable for VA integration. Considering the 
finding in [7] it may be that this conclusion arises from unsuit-
able pooling that neglects distortions in the background of the 
visual scene. In [16], the same group takes into account global 
quality and motion in addition to local, saliency-based quality 
analysis. This combination is found to outperform the individu-
al local and global quality measures. 

Ma et al. [13] propose a complex VA model to weight spatial 
distortions without totally neglecting background distortions. 
In addition, motion suppression is accounted for as well as ego-
motion of the camera. Integration of the model into SSIM, VIF, 
and PSNR improved performance of the metrics approximately 
8%, 5%, and 3%, respectively. 

Engelke et al. [15] conducted a quality-task eye tracking 
experiment to identify the perceived annoyance of packet 
loss distortions located either in a salient (S) or nonsalient 
(N) region. Two different distortion lengths were considered 
as well (0.4 s and 1.2 s). The mean opinion scores (MOS) pre-
sented in Figure 3 reveal that distortions located in salient 
regions are considerably more annoying than distortions in 
nonsalient regions. In fact, even the short distortions in the 
salient regions (S/0.4) received one MOS unit lower than the 
long distortions in the nonsalient region (N/1.2). Based on 
these results, a saliency awareness framework for VQM in the 
context of localized packet loss distortions was proposed 
[14]. The contemporary temporal trajectory aware VQM 
(TetraVQM) [60] and PSNR could be improved by penalizing 
the distortion measures in relation to the underlying con-
tent saliency. 

Le Meur et al. [17] integrated task-free and quality-task eye 
tracking data into an original VQM. No improvements were 
reported with either of the eye tracking data in the context of 
H.264/AVC compression distortions, which agrees with an earli-
er study of the same group on images [3]. However, as in the 
previous study, only simple spatial pooling functions have been 
considered for VA integration. In a similar study in the context 
of H.264 compression distortions, Gao et al. [18] report a 4% 
improvement in CC by integrating a spatiotemporal, bottom-up 
VA model into SSIM. However, no statistical significance analy-
sis is provided to support the validity of the results. Generally, 
the global compression distortions considered in these studies 
can be assumed to have little effect on the VA integration in 
comparison to, for instance, the localized packet loss distortions 
considered in [14]. 

R N/0.4 N/1.2 S/0.4 S/1.2
1

2

3

4

5

M
O

S

[FIG3] MOS for five different distortion classes: (R 5 reference, 
S 5 salient region, N 5 nonsalient region, 0.4 5 0.4 s distortion 
length, and 1.2 5 1.2 s distortion length).
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The study by Feng et al. [19] supports the strong impact of 
localized packet loss distortions in relation to content salien-
cy. Unlike the previously discussed works, this study analyzed 
the potential benefits of taking into account the saliency dif-
ference (SD) between the reference and distorted video (see 
Method 1 in Figure 2). The intensity, color, and orientation 
features from the bottom-up model in [39] were extended with 
a motion model and subject to a weighted summation. By 
incorporating this model into SSIM, MAD, and the mean 
squared error (MSE), correlations with subjective quality rat-
ings of up to 0.99 were achieved. Given the relatively large 
number of seven parameters in the model as compared to the 
training set of 12 sequences, the model may in fact be overfit-
ted to some degree. 

Ćulibrk et al. [20] took a different approach to the two meth-
ods depicted in Figure 2. Instead of combining an existing quali-
ty metric with a VA model, 35 different features were considered 
to train a regression tree. Only the five features that had the 
most significant impact on the metrics performance in the con-
text of MPEG-2 compression distortions were selected. It was 
found that blocking and blur artifacts were highly annoying in 
the salient regions whereas temporal distortions were annoying 
throughout the visual field. The authors concluded that back-
ground distortions should not be entirely neglected for success-
ful saliency integration into quality assessment, which supports 
the conclusions drawn in [7] for images. 

SUMMARY OF FINDINGS
From the works discussed in this section, we can summarize 
that improvement in quality prediction performance due to VA 
integration is generally superior 

1) in video rather than image applications 
2) in the case of localized rather than global distortions 
3) with task-free instead of quality-task eye tracking data 
4) if top-down cues are integrated in addition to bottom-up 
cues (thus far, usually only faces and text are considered) 
5) if motion (relative motion, motion suppression, egomo-
tion) is appropriately integrated in video applications 
6) if background distortions are not entirely suppressed but 
only relative to salient region distortions 
7) if multiple-scale analysis is included in the VA model.

Despite many common agreements, some conclusions about 
the potential benefits of VA integration for quality assessment 
are controversial. For instance, in [12] it was concluded that 
SSIM is unsuitable for saliency inclusion whereas [5], [7], and 
[9] reported particularly good improvements for SSIM. Such 
controversies are an indication of the many challenges that 
still need to be solved. Some of the major challenges are iden-
tified and discussed in the following section. 

CURRENT CHALLENGES

GROUND TRUTH SELECTION
The kind of VA ground truth incorporated into the quality met-
rics is assumed to have a strong impact on the success of the VA 

integration performance. Several aspects are of particular inter-
est in this respect. 

COMPUTATIONAL MODELS 
VERSUS PSYCHOPHYSICAL DATA 
The saliency ground truth used throughout the works discussed in 
the section “Visual Attention for Quality Assessment: Recent 
Advances” is either based on computational VA models or psycho-
physical data. The former has the advantage that it enables auto-
mated deployment in image and video processing systems. 
However, even current state-of-the-art VA models are not reliable 
predictors of human viewing behavior, often because they focus on 
bottom-up cues, neglecting important top-down cues and seman-
tic information. Psychophysical experiments, on the other hand, 
are considered to be a reliable ground truth. To avoid potential 
modeling errors due to poorly performing VA predictors, we there-
fore strongly recommend to use psychophysical data as ground 
truth. As psychophysical experiments find no deployment in real-
time applications, it is of great concern to develop VA models that 
more reliably predict human viewing behavior. 

EYE MOVEMENTS VERSUS REGIONS-OF-INTEREST 
Eye tracking data is the most common psychophysical ground 
truth. As eye movements are driven by bottom-up and top-down 
cues, it is difficult to identify to which degree low-level features 
and object-level semantics contribute to the resulting FDM. 
Furthermore, during the search for the most interesting or 
informative regions, humans do not only attend useful locations 
[22] and as such, eye tracking recordings do not provide direct 
insight into which regions are of interest. To obtain more direct 
insight into perceived interest and its interrelation with eye 
movements, we conducted an experiment in which human 
observers hand-labeled ROI in natural images [61]. The result-
ing ROI maps are compared to FDM from an eye tracking exper-
iment [62] with the aim to identify the presentation time that 
best predicts the ROI maps. The degree of similarity between 
FDM and ROI selections is quantified using the normalized 
scanpath saliency (NSS) [63], as presented in Figure 4. The sim-
ilarity gradually decreases with presentation time during eye 
tracking, which suggests that early fixations best predict the 
ROI. Similar results were reported in [64] and [65]. These find-
ings support the earlier discussion that the gist of a scene is per-
ceived preattentively and thus guides early eye movements (see 
the section “Bottom-Up Modeling”). The conclusions are expect-
ed to be highly task dependent though, since, for instance, a 
radiologist searching for breast cancer would unlikely attend 
the target with the early fixations. Similar studies are needed for 
video, as bottom-up motion cues strongly guide attention and 
thus might lead to different conclusions. 

TASK-FREE VERSUS QUALITY-TASK EYE TRACKING DATA 
Whether to use eye tracking data from task-free or quality 
assessment condition as a ground truth is still an open 
question. Viewing behavior can change considerably in a 
visual search task such as quality assessment [51], [66]. 



IEEE SIGNAL PROCESSING MAGAZINE   [56]  NOVEMBER 2011

Covert VA improves speed and accuracy on many detection, 
discrimination and localization tasks [23], for which reason 
observers are sensitized to distortions during quality assess-
ment. This is particularly true since the observer usually 
has prior knowledge about the distortions (the target). 
Models that aim to predict gaze patterns recorded under 
quality assessment task therefore need to be tuned accord-
ingly and attention to distortions needs to be excited rela-
tive to the content. 

In natural conditions, humans do not view images or video 
sequences with the aim to identify possible degradations in the 
content. Their attention is therefore not sensitized to these tar-
gets. As the ultimate goal of quality assessment is the predic-
tion of quality perception during these natural conditions, eye 
tracking data from task-free experiments might in fact be the 
more sensible choice. The validity of these presumptions is 
believed to hold particularly for static visual scenes, for images, 
and is supported by several recent studies [3], [7], [8]. It was 
found that fixations spread more into the background of the 
visual scene and thus overestimate the relative impact of dis-
tortions in the background to distortions in salient regions [7]. 
In dynamic visual scenes, on the other hand, fixation durations 
and locations were not found to be significantly different 
between task-free and quality assessment conditions [17]. This 
can be largely explained through the phenomenon of attention-
al capture due to motion and temporal changes, as discussed in 
the section “Bottom-Up and Top-Down Mechanisms.” In sum-
mary, the choice between a task-free and quality assessment 
task is potentially more crucial in image as compared to video 

quality assessment. More studies are needed to confirm these 
observations. 

IMPACT OF DISTORTIONS ON VISUAL ATTENTION
The degree to which distortions attract attention in relation to 
the underlying natural image or video content depends on 
many influencing factors, such as the natural content saliency 
and the distortion type, strength, and distribution. In general, 
distortions that are strongly salient compared to the natural 
content are expected to attract more attention and thus result 
in a stronger impact on the overall perceived quality. 

GLOBAL VERSUS LOCAL DISTORTIONS 
Spatially and spatiotemporally local distortions (e.g., due to pack-
et loss) were shown to attract attention comparably stronger than 
globally distributed distortions (e.g., due to compression) [19], 
[67], [68]. This is related to the Bayesian notion of surprise [28], 
which states that novel events resemble saliency in space and in 
time and are thus strong attention attractors. High temporal sen-
sitivity in peripheral vision further supports detection of local and 
time varying distortions. Local distortions therefore alternate 
gaze patterns relatively strong compared to global distortions. 
Recent psychophysical evidence supports this rationale. In [69], it 
was found that global compression distortions do not alter view-
ing patterns considerably while in [68] it was shown that local-
ized packet loss distortions considerably change viewing behavior. 

We studied the shift of gaze patterns during image quality 
assessment in the case of localized wireless imaging distortions. 
Figure 5(a) depicts a heat map on the undistorted “Mandrill” 
image. The distorted versions in Figure 5(b) and (c) exhibit 
strong blocking distortions and subtle ringing distortions, 
respectively. Against intuition, the subtle ringing distortions 
change the gaze pattern considerably more than the strong 
blocking distortions. Despite the stronger shift, the image in 
Figure 5(c) received a considerably higher MOS of 64 (on a scale 
from zero to 100) compared to 25 for the image in Figure 5(b). 
Covert attention shifts between reference and distorted images 
thus need to be handled with great caution, as they do not direct-
ly relate to quality perception. These observations confirm the 
earlier discussion that quality-task eye tracking data is unsuitable 
in case of images, in particular in case of localized distortions. 

DISTORTIONS IN RELATION TO 
CONTENT SALIENCY 
The alternation of viewing behavior was 
found to be strongly depending on wheth-
er distortions are appearing in salient or 
nonsalient regions [68]. This phenome-
non is illustrated for video in Figure 6. 
The area under the receiver operating 
characteristic (ROC) curve (AUC) is used 
to measure the amount of overt attention 
in the respective distortion regions 
(salient or nonsalient). As expected, the 
nonsalient regions are attended less than 

(a) (b) (c)

[FIG5] Heat maps for the image “Mandrill”: (a) reference image, (b) image with strong 
blocking artifacts, and (c) image with subtle ringing artifacts.
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the salient regions throughout 
the video sequence. Upon appear-
ance of the packet loss distortions 
(A), the gaze is shifted towards 
the distortions in the nonsalient 
region, as indicated by the rise in 
AUC in Figure 6(a). After disap-
pearance (D), the gaze shifts back to the salient region. Unlike in 
the case of images, we found that the MOS were highly correlat-
ed with the AUC in the distortion regions (CC 5 20.79). Thus, 
attention to distortions in video is indeed related to the overall 
perceived quality, even under quality-task condition. 

The attention shift, however, was not observed for all 
sequences, as indicated in Figure 6(b). The attention shift 
appears to be strongly dependent on the relative strength of 
saliency between content and distortions. The relative loca-
tion is also important as performance in visual search tasks 
deteriorates with increased eccentricity in peripheral vision 
[23]. These findings provide only indications of the complex 
interaction between content and distortion saliency. Task-free 
eye tracking experiments on distorted content are needed to 
study distortion related attention shifts under natural viewing 
conditions. 

VISUAL ATTENTION INTEGRATION
The pooling of the VA and distortion information is probably the 
most crucial step of VA integration into quality metrics. The 
psychophysiological mechanisms underlying the interaction 
between VA and quality perception are not well understood yet. 
Given the recent psychophysical findings, however, some inter-
esting directions for improved pooling methods can be derived. 

SOME GENERAL ISSUES 
The combination of model parameters is often done in an ad 
hoc manner, using simple, Minkowski-like pooling functions. 
The pooling step typically introduces additional parameters to 
the model and thus, allows for the designer to better fit the 
model to the data. A theoretical foundation about pooling 
methods is needed to comprehend to what degree the improve-
ment is due to saliency integration or due to increased degrees 
of freedom alone. 

Many studies performed are still using purely bottom-up VA 
models, even though they are known to not perform well in com-
plex natural scenes. Top-down models therefore need to be includ-
ed into the pooling stage. Additive rather than multiplicative 
pooling should be used [54], since both bottom-up and top-down 
cues influence viewing behavior in any context and should there-
fore not be suppressed entirely. 

SPATIAL POOLING 
Image distortions have perceptual impact whether they are in 
the salient region or not, especially in the context of local 
distortions. Typical pooling steps, which multiply saliency 
maps with distortion maps, often suppress background dis-
tortions entirely. Depending on the masking properties of the 

image, background distortions 
can be strong attractors of 
attention and are perceived as 
highly annoying [7]. The pool-
ing method in [13] accounts for 
background distortions and 
might constitute a good basis 

to exploit appropriate pooling of salient region and back-
ground distortions. 

SPATIOTEMPORAL POOLING 
Motion and temporal changes in video have a substantial impact 
on distortion perception. Due to motion suppression, detection 
and perception of distortions are considerably reduced in 
peripheral vision. Spatiotemporal contrast sensitivity functions 
used in video quality models should therefore be adapted in rela-
tion to the motion observed in the visual scene. Attentional cap-
ture, on the other hand, counteracts this phenomenon, causing 
easy detection of spatiotemporally local distortions in the back-
ground. Spatiotemporal distortions in the peripheral visual field 
should therefore not be entirely neglected. Taken these phe-
nomena into account conjointly constitutes a great challenge 
and requires more sophisticated spatiotemporal VA models. 
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[FIG6] AUC of two video sequences for (a) a strong and (b) a 
weak attention shift towards the distortions.
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TOWARD MORE APPROPRIATE POOLING METHODS 
In most works reviewed in the section “Visual Attention for 
Quality Assessment: Recent Advances,” perceptual distortions and 
visual saliency are evaluated independently and combined in a 
pooling stage (see Figure 2). The strong interaction between VA 
to natural content and distortions, however, might call for more 
integrated methods that take into account content and distortion 
saliency simultaneously. In addition, other image and video prop-
erties, such as masking effects, need to be accounted for conjoint-
ly. To fully understand these interactions and to develop them 
into advanced pooling techniques, theoretical foundations need 
to be established first and more psychophysical evidence is need-
ed. Some advances on bottom-up feature integration have been 
reported in the vision science community [43], [44]. The model 
in [44] takes into account feature interactions and might thus 
constitute a suitable candidate for the pooling stage. However, 
these experiments were carried out on simple stimuli and similar 
studies are needed for static and dynamic natural scene content. 

CONCLUSIONS AND FUTURE DIRECTIONS
The current state of research discussed in this article suggests 
that there is indeed a benefit of integrating VA into perceptual 
quality assessment. Most notably, VQM for the assessment of 
localized artifacts may benefit from the incorporation of VA. 
However, the existing methods are strongly engineering 
inspired and the interaction between VA and quality perception 
is often simplified. Closer collaboration between the image pro-
cessing and vision science communities is imperative to further 
enhance this immature field of research. 

The following exciting issues were outside the scope of this 
article but are worth exploring. Most of the works discussed here 
were based on full-reference quality assessment. VA models are 
designed to work without any reference and may therefore pro-
vide valuable guidance to further develop no-reference quality 
metrics. Gaze patterns from eye tracking experiments are known 
to reflect predominantly overt VA. Psychophysiological data, 
such as through electroencephalography, needs to be investigat-
ed to obtain a better understanding of covert VA to distortions in 
natural content. In the context of multimedia, VA is driven not 
only by visual cues. Auditory cues are known to be a strong 
attractor of VA and their impact on attention deployment needs 
to be explored [70]. Upcoming three-dimensional (3-D) applica-
tions constitute an exciting research direction, since additional 
3-D cues influence the attention of an observer. These applica-
tions induce their own range of distortions, each of them attract-
ing attention to a certain degree that has yet to be investigated. 
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