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This paper reviews the basic background knowledge necessary to design effective no-

reference (NR) quality estimators (QEs) for images and video. We describe a three-stage

framework for NR QE that encompasses the range of potential use scenarios for the NR

QE and allows knowledge of the human visual system to be incorporated throughout.

We survey the measurement stage of the framework, considering methods that rely on

bitstream, pixels, or both. By exploring both the accuracy requirements of potential uses

as well as evaluation criteria to stress-test a QE, we set the stage for our community to

make substantial future improvements to the challenging problem of NR quality

estimation.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Quality estimators (QE) for images and video have been
the topics of numerous recent and not-so-recent surveys
[1–4]. This paper approaches the topic by providing a
survey of what the authors consider to be basic back-
ground knowledge for the design of an effective QE. While
a plethora of terms have been used in conjunction with
quality to describe quality estimation and quality estima-
tors (e.g., analysis, assessment, evaluation, measurement,
metric, among others), we selected the verb estimate to
reflect the statistical nature of the ground-truth subjective
scores which a quality estimator strives to predict.

The goal of a QE is to characterize the quality of a test
image or video, v¼ vtest , which is typically the output of a
system. If Qsubjð�Þ is the measured, perceived quality as
estimated using an appropriate subjective experiment,
then an ideal objective QE produces objective scores Qobjð�Þ

which perfectly predict subjective scores Qsubjð�Þ for all
inputs. This is clearly challenging, as it requires not only
ll rights reserved.

an).
that the QE be accurate for a wide range of input content
and processing types, but also that the QE take into
account a variety of environmental viewing conditions
and a variety of viewers with disparate experience,
expectations, and involvement.

To tackle this challenge, QE designers have taken a
number of approaches to restrict the problem. One
approach, taken by full-reference (FR) quality estimation,
measures the quality of the test image or video vtest

relative to that of a reference vref . A distorted image or
video vtest is written as the sum of an original vref plus
distortions d

vtest ¼ vref þd: ð1Þ

FR QEs have the original signal vref given as a priori

information, so they are able to compute d exactly.
However, a distortion as defined above is not necessarily
visible. Therefore, the mere presence of d does not imply
that subjective quality is degraded. FR QEs that use
models of the human visual system (HVS) attempt to
partition the distortions into those that are visible and
those that are nonvisible as

vtest ¼ vref þðdnonvisibleþdvisibleÞ, ð2Þ

www.elsevier.com/locate/image
dx.doi.org/10.1016/j.image.2010.05.009
mailto:amy@research.att.com
dx.doi.org/10.1016/j.image.2010.05.009


S.S. Hemami, A.R. Reibman / Signal Processing: Image Communication 25 (2010) 469–481470
using experimental evidence of HVS sensory mechanisms.
In FR QEs, the original signal is considered to be a mask,
and the goal is to determine how the mask affects the
distortions that are introduced by the processing chain.

In practice, however, FR algorithms are only applicable
when both vtest and vref can be made available at the same
physical location. In addition, one fundamental assump-
tion of most FR QEs is that the original vref has maximum
quality. This assumption may be violated when vref

represents the image or video prior to an enhancement
algorithm (e.g., edge enhancement), or even prior to
applying high-rate quantization, which may have a
denoising effect.

In contrast, in no-reference (NR) quality estimation,
neither vref nor d is available. As such, NR QEs are the
most broadly applicable type of QE, and are the focus of
this paper. Without either vref or d, NR QEs must
distinguish the visible distortions from the rest of the
signal:

vtest ¼ ðvref þdnonvisibleÞþdvisible: ð3Þ

Thus, designers of NR QEs face additional challenges
beyond those mentioned above. Using limited input
information, NR QE must be able to distinguish signal
from visible distortion, when varied processing (e.g.,
encoding, transmission) introduces different artifacts

(e.g., blocking or blurring), into a wide range of source
content. Further, they must achieve this despite the fact
that many desired signals may ‘‘look’’ very similar to
typical artifacts.

In this paper, we delineate three approaches that have
been effectively used in the design of NR QEs to address
these challenges. First, a NR QE can restrict the domain of
the problem based on the desired use of the QE. Instead of
striving for perfect accuracy, QEs can be designed for the
more realistic performance goal: to achieve the required

accuracy for its application over the set of input content and
artifacts for which it was designed. Second, using knowl-
edge of the expected processing and the expected signals,
sophisticated signal and artifact models can be developed
to improve NR QE design. Third, NR QEs gather as many
sources of information as possible in addition to vtest ,
including assumptions about the processing and informa-
tion about the bitstream.

In addition, it is paramount for NR QE to incorporate as
much information about the human visual system (HVS)
as possible. A complete model of the human is not
possible; for example, feelings or emotions evoked by
content are extremely difficult to predict and quantify,
and aesthetics are also highly observer-dependent [5–8].
However, substantial modeling of the human observer has
been performed by various communities, including
psychology, vision, and photography, and this large body
of work should inform QE design. While FR QEs have
focused on including low-level psychophysics, NR quality
estimation provides the opportunity to include work
rooted in the photographic community, which is inher-
ently no-reference.

We begin this paper by describing a three-stage
framework for quality estimation in Section 2, which
includes measurement, pooling, and mapping to quality.
Because NR QEs need only be as accurate as the
application for which they are designed, we next describe
in Section 3 a range of applications of NR QE, including
algorithm optimization, benchmarking, and outage detec-
tion. Each application has different requirements for the
set of input content V and the set of artifacts A over which
it must be accurate. Section 4 briefly describes the variety
of artifacts that may be introduced by different proces-
sing. Next, since models of human vision and perception
should be integrated at all three proposed stages of a NR
QE, in Section 5 we discuss three levels of human-based
models, including subjective quality evaluation for the
final crucial stage. However, since most of the attention to
date has focused on the first measurement stage, we
provide in Section 6 a brief survey of current approaches
to measurements for NR quality estimation. We discuss
appropriate performance evaluation for QEs in Section 7,
and provide concluding thoughts in Section 8.
2. A framework for no-reference quality estimation

A generic no reference quality estimator consists of
three steps: measure, pool, and map to quality. In this
framework, the input and the corresponding quality
estimate can correspond to an entire video, several
frames, a single image, or a segment of an image. Input
data to the system consists of one or more sources of
actual or estimated information, depending on the quality
estimation application. The input includes
�
 the pixels corresponding to vtest;

�
 the bitstream corresponding to vtest , including packet

headers and data encoding parameters (e.g., quantizer
step sizes, picture types);

�
 assumptions about the statistics of the original signal

vref or the class of signals V; and

�
 assumptions about the distortions and/or artifacts in

vtest .
Note that vtest itself is not necessary; some techniques
perform NR quality estimation without considering the
actual pixel data.

Furthermore, since NR QEs attempt to estimate
perceived quality as measured by an appropriate sub-
jective experiment, models of and information about
human perception, preferences, and ground-truth quality
scores should be incorporated into each of the three
components. Each of these issues will be discussed in
greater detail in Section 5; here, we simply indicate which
issues are appropriate for each component.

Measuring computes physical quantities (we will refer
to them as features) using the input. Selection of specific
quantities to compute can be guided by the previously
mentioned assumptions as well as the ultimate applica-
tion of the quality estimator. Both perception models and
preference models can be incorporated into the measure-
ment. An example of the former is identifying the
presence of known artifacts and estimation of the
visibility threshold for those artifacts, while an example
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of the latter is edge sharpness. Multiple measurements
can be computed.

Pooling combines the possibly linearized measure-
ments over an appropriate subset of space and/or time
for the QE. For example, in an individual image, spatially
local pooling over frequency and orientation results in a
spatial map of responses. Subsequent pooling over space
produces a single response estimate. In video, pooling can
be performed over combinations of spatial frequency,
orientation, space, and time. As described in Section 3, the
subset of space and/or time will be defined by the
application of the QE.

The pooling step includes an optional linearization
process that consists of a nonlinear mapping for each
measurement to rescale or renormalize the values to an
appropriate scale (e.g., the same dynamic range or just-
noticeable-differences (JNDs)) prior to pooling.

The pooling mechanism should be motivated by the
measurements and known properties of human observers.
Interactions among artifacts and between artifacts and the
image itself should be accounted for in pooling, using
characterizations of masking in human vision (cf. Section 5).

Linear pooling can be appropriate when the individual
measurements satisfy the assumptions required by linear
regression. Minkowski summation is more general and is
motivated by additivity in low-level vision; its use
requires selection of an appropriate exponent which
should be based on measurements. Temporal pooling
combines multiple frames into a score for each relevant
time scale. The pooling may be linear, Minkowski
summation, or a maximum-type operator, with the goal
of incorporating both temporal masking and temporal
summation. Statistical learning techniques can also been
applied to combine measurements, but these require
appropriate analysis to provide insight into whether all
measurements are truly contributing and are in fact
behaving as desired.

The last component, mapping to quality, applies a
nonlinearity to map the output of the pooling component
into an estimate of perceived quality. If the output of the
pooling element is already linear, this stage may not be
necessary. The exact form of the nonlinearity should be
dictated by a best-fit of the output of the pooling
component to ground-truth subjective data. As such,
assumptions regarding the ‘‘best’’ and ‘‘worst’’ expected
qualities in a system are implicitly included in the QE
through the training data. It is extremely important that
the training data be appropriate for the measurements
and for the application (cf. Section 7 on evaluation of QEs).

This final component is required because even when
the previous two components are typically sufficiently
accurate to provide monotonicity and approximate rank-
order preservation, they may still not accurately map to
true quality scores (e.g., one end of the scale is often
inappropriately compressed or expanded).
3. Use scenarios for quality estimators

Before content is finally displayed to a viewer or
customer, it may undergo a wide variety of different types
of processing, by different algorithms in different sub-
systems, many introducing distinct artifacts. In addition, it
may pass from one owner to another; different companies
may be responsible for different stages of the processing
or different stages of the delivery. Quality estimation is
appropriate whenever content is passed from one owner
or entity, one piece of hardware, or one algorithm to
another. However, a QE that is useful for one application
may not be appropriate for another. In this section, we
discuss and differentiate a variety of applications.

Each application is characterized by several aspects:
the set V of sources (i.e., undistorted images or videos),
the set A of artifacts for which the QE must be accu-
rate, the degree of accuracy required, and (for video) the
time scale at which quality values are required.

Algorithm optimization in processing employs QEs in a
closed-loop during compression or other processing
algorithms, to maximize quality of the output. Such QEs
can be either FR (e.g., in compression, in which the
original is obviously available) or NR (e.g., for enhance-
ment at the decoder, or for transcoding applications in the
network).

In such ‘‘in the loop’’ applications, the set A is limited
to known artifacts resulting from the processing algo-
rithm. The QE must correctly reflect increases or
decreases in these known artifacts for a single source at
a time, and hence the set V contains only one undistorted
source. If the QE incorrectly characterizes quality in-
creases or decreases, then incorrect decisions may be
made during optimization that will result in worse visual
quality than without optimization.

A QE for algorithm optimization may or may not
contain a real-time requirement, depending on the
application. Real-time video encoding clearly imposes
both causality as well as computational restrictions on a
QE, while image or off-line video processing does not.

Product benchmarking allows purchasers and marketers
to compare the performance among different products or
components. Product marketers use benchmarking with
the goal of demonstrating superiority of their product
over others. Benchmarking is typically applied to an
individual algorithm (e.g., encoding) or a small bundle of
algorithms (e.g., decoding and error concealment),
although it could plausibly also be applied to a business
owner’s subsystem (to compare, for example, a cable TV
offering to a DSL TV offering). A desirable benchmarking
statement compares two products p1 and p2, producing
processed content p1(v) and p2(v), respectively, and may
take either the form

Qsubjðp1ðvÞÞ4T for a% of v 2 V, ð4Þ

or

Qsubjðp1ðvÞÞ4Qsubjðp2ðvÞÞþd for b% of v 2 V, ð5Þ

where T is a quality threshold. If p1 is the marketer’s
product and p2 belongs to a competitor, a marketer may
carefully select the set of sources V for which a, b, and d
are as large as possible. Selection could be content-based
(e.g., sports and action) or even specific source-based (e.g.,
Monsters Inc. and Raiders of the Lost Ark). For statements of
the form of (4) and (5), only one QE score per input is
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required regardless of sequence duration. An appropriate
QE will be accurate for heterogeneous artifacts so that it
can compare systems, for example, both with and without
deblocking.

System provisioning occurs prior to deployment, and
involves the design of an end-to-end system to achieve a
target quality. A typical problem statement seeks a set of
system parameters ffg (e.g., bit-rate, maximum packet
loss rate, server capacity, or spatial resolution or temporal
resolution) for a system s, according to

Determineffg for which QsubjðsðvÞÞ4T for a% of v 2 V,

ð6Þ

where for video, Qsubjð�Þ operates on multiple time scales.
Here, V is representative of all content that will be
handled by the system. To maximize system robustness,
both the minimum quality over short time intervals and
the average quality over longer time intervals are of
interest.

While (6) looks fairly similar to (4), several important
aspects distinguish the applications. First, a QE for system
provisioning needs only be accurate near the system
design point threshold T. Second, a QE for system
provisioning must be accurate across processing that
results in different spatial (and for video) and/or temporal
resolutions such that when resources are constrained,
bandwidth-reducing decisions are made that retain the
best perceived quality. Third, for system provisioning, the
set V is large and must be inclusive of all possible types of
content likely in the system, while product marketing
focuses on choosing a subset of sources tailored to the
product’s strengths.

Content acquisition and delivery are important for their
use in service level agreements (SLAs), which are contracts
typically between business entities. For example, for video
delivery to the home, it is common to have either implicit
or explicit contracts between consumers, service provi-
ders, content providers, and network providers. SLAs and
other legal contracts constrain the quality of both the
incoming and outgoing material.

A QE for content acquisition and content delivery

determines if either the incoming material (whether from
a camera, e.g., [9] or at the input of a large-scale content
delivery network) or the outgoing material (i.e., to
another network provider or to the viewer’s end-system)
has sufficient quality. For acquisition and delivery of
images, a QE must

Alarm when QsubjðvÞoT for more than a% of images:

ð7Þ

Video acquisition and delivery require ongoing mon-
itoring, as does outage detection, which considers sub-
stantially larger degradations including the loss of video
entirely (termed blackout). For these applications, a video
QE must

Alarm when QsubjðvÞoT more than N times in t seconds:

ð8Þ

QEs for outage detection and content acquisition must
be accurate for any content and any type of artifact,
including those that represent acquisition failures. For
example, the same end-user perception of outage occurs
either when a video server fails or when, despite correct
coding and transmission, video is received that was
captured without removing the lens cap. QEs for these
applications must minimize the instances of false alarm
and of missed detection.

Transient quality failures can be seen neither by
periodic assessment (i.e., checking once an hour) nor by
time-averaged assessment (i.e., quality averaged over an
hour). As such, the time scale at which video QE is
performed for these applications includes seconds, min-
utes, hours, and days. Accurate operation over such a large
range of time scales is challenging—while accuracy over
second or minutes can be evaluated easily in a develop-
ment environment, evaluating accuracy over hours and
days may require more sophisticated approaches.

Troubleshooting occurs after outage detection, to
pinpoint the cause of the problem, so that it can be fixed.
The objective, identifying why QsubjðvÞoT, can be ad-
dressed using a set of artifact detectors. Troubleshooting
requires artifact detectors that operate independently; a
ringing artifact should not influence the output of a noise
detector (e.g., [10]).

Summary: QEs have a wide range of applications in
both processing and transmission, differing in set V of
sources, the set A of artifacts, the degree of accuracy
required, and the time scale of operation. Designing a QE
for a particular application should consider these require-
ments. Next, we present specific artifacts and describe
how they are introduced in the processing chain.

4. Artifacts in the processing chain

The processing chain encompasses acquisition, com-
pression, transmission or storage, decoding, and display,
and artifacts can be introduced at various stages. At any
point in the chain, the content can be repurposed, which
can entail re-acquisition, re-compression, or additional
transmission. In addition, at any point an enhancement
algorithm can be applied.

Acquisition and display are inherently without refer-
ence. Compression of originals has a reference; transcod-
ing does not. Transmission or storage can result in lost or
errant packets or bits, which induce decoding errors later
in the chain; quality estimation at the decoder is also
most commonly without reference.

The interested reader is referred to the surveys of
artifacts in [11–13] for additional information and visual
examples.

4.1. Image and video acquisition and display

The two ends of the processing chain are inherently
without reference. An important aspect of both of these
operations is the treatment of color data, both its
appropriate interpretation during acquisition and its
subsequent appropriate rendering during display. As such,
many aspects of color image workflow are no-reference
quality estimation problems, and these are approached
with human-centric goals—to represent colors as they
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would have been perceived by a human observer, and to
then display colors in a perceptually pleasing manner.

During acquisition, artifacts may be introduced due to
the optical lens, the density and accuracy of the sensing
elements, or the digitization process. Blurring can be
introduced by defocus (focal blur) or due to camera or
object motion with too slow a shutter (motion blur). Noise

can be introduced in the sensing elements. Insufficient
dynamic range in A/D conversion can lead to contouring.
Insufficiently dense sampling results in aliasing, which has
a variety of artifacts including jagginess, geometric
distortions, and inhomogeneity of contrast [14] as well
as color artifacts. Failures in camera-based algorithms
including white point selection and balancing and
exposure adjustment, among others, can result in images
which inaccurately represent colors and scene brightness
as seen by a human observer.

Artifacts caused by the display are difficult to measure
but can be estimated if appropriate display parameters
are known. Such artifacts include LCD motion blur,
overscan, and potential interlacing artifacts when inter-
laced video is displayed on progressive monitors. Inaccu-
rate display characterization can cause problems in both
tone mapping and gamut mapping, in which brightness
and colors of the content are mapped to those of the
display.
4.2. Encoding and decoding

Compression with block-based coders (JPEG, MPEG-2,
H.261, H.263, H.264) can introduce a number of artifacts.
Blocking appears at deterministic locations and is caused
by heavy quantization of the transform coefficients.
Mosquito noise is temporal shimmering caused by time-
varying blockiness. False edges, also called motion-
compensated edge artifacts (MCEA), are the result of
blocking artifacts that move away from the block
boundaries due to motion compensation process [15].
Flatness [16] is a lack of resolution in fine detail.

Wavelet-based coders (including JPEG-2000) introduce
a different set of artifacts, including blurring, ringing, and
aliasing. Both wavelet and block-based coders may skip
frames during compression, making video appear jerky.

Perfectly received data undergoes no decoder-induced
artifacts. If bits or packets are damaged or lost in
transmission or storage, artifacts introduced at the
decoder are very dependent on the encoding strategy,
the decoder design, and error concealment strategies. For
JPEG and JPEG-2000 images, decoding artifacts can
include DC shift caused by DPCM decoding errors,
horizontal or vertical shifts of image data within an
image, and loss of detail.

For motion-compensated video, artifacts can include
motion jerkiness resulting from dropped frames, indivi-
dual frames exhibiting concealment distortions, conceal-
ment distortions which propagate over time, ‘‘missing’’
blocks displayed as solid colors, and propagation of such
missing blocks over time. Hardware faults may also occur
in video decoders, introducing a range of artifacts
considered in [17,18].
4.3. Repurposing and enhancement

The most frequent type of repurposing is displaying at
low resolution (for example, on a mobile device) content
that was acquired at higher resolution. Scalable coding
implicitly establishes a framework for repurposing;
selective discard of scalably coded bitstreams during
transmission is simply repurposing.

Processing for repurposing includes spatial resampling,
temporal resampling and frame-rate conversion, re-
compression or transcoding. Thus, repurposing may
introduce some artifacts already discussed. Additional
examples include interlace artifacts in video frames
treated as still images and a variety of artifacts that occur
when converting video from high-definition (HD) to
standard-definition (SD) or vice versa (incorrect aspect
ratios, frame truncation, or color artifacts).

Digital video that has been reacquired from analog
video or film can exhibit some unique artifacts. Demodu-
lated analog NTSC or PAL video may have ‘‘rainbow’’
effects [19] where color artifacts appear in regions of high
luminance spatial frequency, or luminance artifacts
appear where colors are saturated. Analog multipath
transmission can result in ghosting. Film degradation
introduces a wide variety of artifacts [20] including flicker,
a fluctuation of picture brightness.

Operator or equipment error during repurposing can
cause additional artifacts after decoding, such as the two
fields of a frame being presented in the wrong order.
Visually, the entire frame appears to have interlacing
artifacts.

Enhancement may also introduce artifacts that were
not present previously. Sharpening can cause ringing;
deblocking and denoising can cause blurriness; de-
interlacing can cause ghosting or motion artifacts.

5. Modeling humans in quality estimator design

Because NR quality estimation attempts to estimate
perceived quality by a human observer, models of and
information about human perception, preferences, and
ground-truth quality scores should all be incorporated
into a NR QE. This data includes
�
 low-level psychophysical models, which can be used to
estimate dvisible;

�
 measured sensitivities to particular artifacts, which

can also be used to estimate dvisible;

�
 known preferences for ‘‘perceptually pleasing con-

tent,’’ including that on colorfulness, sharpness, de-
grees of blurring, addition of noise; and

�
 ground-truth subjective quality scores associated with

a database of training content.

This section first reviews fundamentals of low-level
vision as they are applicable to quality estimation. Here,
psychophysical experiments measure responses of the
human visual system to simple stimuli such as sinusoids
or spatially correlated bandlimited noise. The results
provide a characterization of vision which can be applied
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in a ‘‘bottom-up’’ manner to complex stimuli such as
processed images and video. Low-level vision is most
commonly used in FR QEs, but is also clearly relevant to
NR QEs.

Several alternative ‘‘top-down’’ approaches are next
reviewed. Responses are measured to stimuli that consist
of natural images or video processed to include one or
more synthetic or actual artifacts. We include the study of
preferences in this approach, which is rooted in the
photographic community and is inherently no-reference.

This section concludes with a brief discussion on
ground-truth data which is used for both training and
validation of any QE.

5.1. Low-level vision

Low-level vision is generally thought to perform a
multichannel decomposition, where bandlimited chan-
nels process spatial frequency, temporal frequency, and
color. With respect to quality estimation, not only are the
responses of each channel relevant, but so are intra- and
inter-channel interactions. The former permit an estima-
tion of the HVS’s response to bandlimited, simple stimuli,
while the latter (more commonly known as masking)
permit an estimation of its response to compound stimuli
such as images and video. Masking is a general term that
refers to the perceptual phenomenon in which the
presence of masking signal (the masker) reduces a
subject’s ability to detect a given signal (the target). With
respect to quality estimation, an estimate of masking is
essential to separate distortions into visible distortions
and those distortions that are masked (i.e., hidden) by the
source.

While a thorough review of low-level vision is beyond
the scope of this paper, this section provides a brief
overview. Readers are encouraged to further explore not
only the references in this section, but also several FR
video quality estimators which provide different design
decisions in implementing a HVS model [21–24].

5.1.1. Contrast

While digital pixels are stored as bits, luminance
(measured in candelas/meter2) represents the light en-
tering the eye, and contrast contributes to the perceived

luminance. Because perceived quality is experienced by a
viewer, any quality estimator must include the display
device in computing how the stored data is displayed to
the viewer.

Contrast is qualitatively defined as luminance change

divided by mean background luminance and can be
computed globally or locally on a natural image. Many
definitions of contrast exist (e.g., the Weber fraction,
Michelson [25], bandlimited contrast [26], local bandlim-
ited contrast [27], RMS [28]; see [27] for a review), leaving
flexibility to select the appropriate definition based on the
needs of a particular application.

5.1.2. Spatial vision

The human contrast sensitivity function (CSF) is a well-
accepted description of spatial frequency perception; the
HVS has band-pass characteristics. The multi-channel

model postulates that the CSF represents the aggregate
response of frequency- and orientation-tuned individual
channels having increasing bandwidth with increasing
frequency [29].

Current explanations of spatial masking can be divided
into four paradigms: (1) Noise masking [30]; (2) contrast

masking [31–34]; (3) entropy masking [35]; and (4)
structural masking [36].

5.1.3. Temporal vision

While spatiotemporal [37,38] or spatiovelocity [39]
responses have been measured, HVS-based QEs typically
apply a separate temporal frequency response. The HVS
can be modeled as having both transient (i.e., bandpass)
and sustained (i.e., lowpass) temporal response mechan-
isms [40–42]. For examples on how spatial and temporal
frequency responses can be combined in QEs, the reader is
directed to four examples [21–24].

Temporal summation and temporal masking have also
been measured and modeled [43,44].

5.1.4. Color vision

The eye contains three cone types with different
spectral sensitivities, colloquially known as red, green,
and blue. Opponent color theory [45] suggests and
psychological experiments have demonstrated that the
visual system has three color channels which are roughly
independently processed at a low level (e.g., [46,47]).
These channels represent achromatic vision and two
chroma channels: red-green, and blue-yellow.

While CSFs have been measured for the red-green and
blue-yellow channels [48,49], color channel sensitivity
has been substantially less studied than luma channel
sensitivity. The chrominance CSFs differ from that of
luminance in that they are low-pass rather than band-
pass, and they fall off sooner than the luminance CSF.
Temporal responses for red-green and blue-yellow have
also been measured [50].

Interactions between color and luma channels are also
not well understood, but color provides substantially
more masking of luminance than the reverse (see [51,
Chapter 7]).

5.1.5. Pooling

Estimates of responses in the spatial, temporal, and
possibly color channels must be combined, or pooled, to
provide an aggregate response estimate. A Minkowski
sum is most commonly used in modeling low-level vision.

5.2. Top-down perception

Due to the challenges associated with applying a low-
level characterization of vision to complex stimuli,
especially when no reference is available, other ap-
proaches have been explored in which the images and
video themselves are used as the stimuli. One benefit of
this approach is avoidance of explicit masking (and
sometimes pooling) models; unfortunately, the knowl-
edge gained is limited to the specific preference or artifact
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under test and can also be limited to the specific source
content used.
5.2.1. Preferences

Preferences refer to characteristics of an image or video
that can be computed by some measure and quantified as
statistical functions of large groups of observers. They
have a historical basis in photography, and are therefore
inherently no-reference. Much work in color representa-
tion and reproduction is based on human preferences,
including color scaling and color naturalness [52,53]; edge
sharpness [54], color saturation, flesh tone preferences,
and use of dynamic range [55].
5.2.2. Quantifying responses to specific artifacts and

impairments

A second ‘‘top-down’’ approach directly measures
observer responses to the artifacts likely to be encoun-
tered in a system or application, including all artifacts
mentioned in Section 4. Single artifacts may be generated
synthetically [56] in an attempt to understand their
impact in isolation. However, measuring human re-
sponses to individual artifacts does not provide informa-
tion on cross-impairment masking or on how observers
perceive two or more simultaneously presented artifacts.

While some experiments have inserted multiple
synthetic artifacts and quantified the simultaneous re-
sponse [57], it is more common for experiments to
employ stimuli produced by systems, e.g., compressed
MPEG video having undergone packet losses. Many
processing techniques create impairments that are
strongly correlated with the source content vref . Often,
such experiments are also designed to measure the
impact of the content on the response, and hence are
essentially quantifying masking. In contrast to masking
experiments for low-level vision, however, these results
are less generalizable.

As examples, responses have been measured to freeze
frames [58–60]; synthetic blockiness, blurriness, noisiness
and ringing [56,57], MPEG-2 compression impairments
localized in both space and time [61], packet loss [62] and
its visibility [63,64].

Another approach to understand human perception for
a type of processing (e.g., image scaling or JPEG compres-
sion) that creates multiple artifacts with complicated
interrelationships is to use naive viewers to label images
in terms of their perceived quality and to have expert
viewers label artifact strength [14]. A regression analysis
then determines the impact of the latter on the former.
These results are also difficult to generalize beyond the
particular experimental setup.

Lastly, some experiments vary parameter settings for
the processor, and evaluate the subjective response. Many
studies take this approach, including [65] for compression
at different bit-rates and [66,67] for packet loss impact at
different packet loss rates. It is difficult to generalize the
results of these subjective tests to other processing, to
other parameter settings, and most importantly, to
different sources in V.
5.2.3. Multidimensional scaling (MDS)

Multidimensional Scaling [68,69] is a statistical technique
for quantifying responses to multiple preferences and/or
artifacts. With an input matrix of distances between stimuli
(e.g., resulting from a perceptual experiment), it attempts
to find a coordinate system in N-dimensional space which
preserves the distances between the stimuli (N is user-
defined). However, the dimensions themselves may not be
perceptually meaningful. Examples include [70–73].
5.3. Subjective estimation of quality—ground truth data

An ideal quality estimator predicts quality estimates as
measured by an appropriate experiment with human
subjects. As such, a quality estimator must be designed
and evaluated using ground-truth subjective data gath-
ered from observers. The subjective experiment is also
critical for defining the scope of a estimator, and in
particular for understanding both appropriate and poten-
tially inappropriate uses of an estimator.

The performance of an estimator is limited by the
nature of the data to which it has been tuned. While many
estimators provide rank-ordered assessments that match
those of human observers on images that contain differing
amounts of a single artifact (e.g., JPEG compression) they
are not as successful at rank-ordering degraded images
from the same original that have different artifacts (e.g.,
comparing JPEG distortions with white noise). One reason
for this weakness is a lack of actual observer scores for
such comparisons and hence a lack of accurate training
data. Use of a protocol such as SAMVIQ [74], in which
observers simultaneously view and score all distorted
versions of a source, avoids this problem. Comparisons
between different distortions can also be made using the
quality ruler protocol [75].

A full discussion of the design of subjective tests for
gathering ground-truth subjective data for quality esti-
mation is beyond the scope of this paper. The reader is
referred to the VQEG committee documents which
provide excellent ‘‘case study’’ discussions of subjective
test design for three VQEG test phases [76–78], as well as
various international standards (e.g., [79,80]) and other
references [81,82].

We list below various issues for test design which
should be carefully considered prior to beginning testing:
�
 selection of a testing protocol, including use of
category (‘‘excellent,’’ ‘‘good,’’ etc.) or continuous
(non-quantized) ratings, and whether evaluations are
done with respect to a reference image/video (e.g.,
double stimulus protocols) or singly;

�
 collection of data at relevant (and potentially multiple)

time scales for video;

�
 the required number of observers, and a methodology

for determining the validity of particular observers;

�
 choice of subject matter, including use of gray-scale or

color images;

�
 environmental viewing conditions, including back-

ground and room lighting, display calibration, and
viewing distance;
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�
 observer instructions and clarity of task wording; and

�
 human subjects approval of the protocol by an

appropriate body at the researcher’s institution.

6. Overview of existing measurements for NR quality
estimators

A large body of work addresses various aspects of NR
QE design. Much of this work, however, does not in fact
estimate quality. Rather, it stops at the measurement step,
having computed a single feature, without any inclusion
of human observer data. Other works compute a single
feature and then map to quality, thus limiting the pooling
stage to spatial or temporal averaging. Nevertheless,
when considering this body of work, substantial
progress has been made toward developing solutions
to the first step of the framework for NR QE described
in Section 2. Therefore, in this section we briefly
review some of the literature studying this measurement
step.
6.1. Direct estimation of mean-squared error

We begin with a class of NR QEs whose measurement
stage attempts to separate vtest into vref and distortions, d,
statistically. While many of these types of NR QEs to date
only consider this first stage, we also describe two
examples where HVS models or subjective data are
incorporated into subsequent processing.

The first methods in this class of NR QE were designed
to predict the Mean-Squared-Error (MSE) caused by
block-based compression like MPEG-2 [83–87], JPEG
[87,88], or H.264 [89,90,87,91,92]. With the exception of
[84], which uses the decoded pixels vtest , these techniques
use information only from the received bitstream. The
basic approach is to model the DCT coefficients using a
Laplacian distribution, and estimate the Laplacian para-
meter for each of the 8 �8 coefficients. However, this has
been extended to generalized Gaussian [90] and Cauchy
distributions [91,92] as well.

These techniques have the common drawback that
they only obtain an MSE estimate for each 8 �8 block;
they are unable to predict neighboring pixel differences
and hence be extended to estimate artifacts like blocki-
ness. In addition, the accuracy of the estimated MSE for
each of these methods is lower when the bit-rate is
smaller, due to the presence of more coefficients quan-
tized to zero. To improve the accuracy for low bit-rates,
[91,88] rely on training data to obtain improved estimates
of the coefficient distributions.

There are also several attempts to design NR QE to
predict the Mean-Squared-Error (MSE) caused by packet

loss errors. Bitstream-only approaches are designed in
[93,94] for motion-compensated video compression with
packet loss. Content-specific information is extracted
from the parsed bitstream, to estimate local means,
variances, and correlations. Together with extracted
motion vectors, these are combined using a Gauss–
Markov model to estimate initial MSE. Motion-compen-
sated error propagation is incorporated into the overall
estimate of MSE. In [95], both vtest and information
extracted from its bitstream are combined to estimate
MSE due to packet loss for H.264. The initial error is
estimated by separately considering the impact of missing
motion vectors and missing prediction errors. Finally, [96]
estimates the MSE due to packet losses in motion-
JPEG2000.

Noise estimation approaches estimate MSE using two
basic methods [97]. The first is to smooth vtest and define
any difference between vtest and its smoothed version to
be noise [97,98]. The second is to identify smooth areas in
vtest and assume that any variation within those smooth
areas is noise [99–102].

The strategy of estimating MSE is motivated by a desire
to statistically estimate the distortion d in Eq. (1).
Unfortunately, most contributions in this area are limited
in that they only estimate MSE; they do not further partition
the estimated MSE into dvisible and dnonvisible. However,
Brand~ao and Queluz [88] also incorporate their estimated
error into a HVS-based NR QE relying on Watson’s DCT-
based perceptual model [103]. Whereas [103] uses the
actual quantization error computed in a FR framework, [88]
uses the NR estimated quantization error. In addition, the
results of [93] were later incorporated by Kanumuri et al.
[63] into a NR estimator of the visibility of packet losses,
whose pooling step uses subjective data for training.

6.2. Feature-based approaches

Two strategies have been used to design features to be
extracted in the measurement step. Both strategies
assume that the statistics of vtest differ from those of vref

and use features extracted from vtest to evaluate model
compliance. The first strategy is to develop a model for the
specific artifacts that may contribute to dvisible, focusing on
those artifacts introduced by the processing chain. As
such, NR measurements designed using this strategy may
generalize to different classes of content V, but they are
unlikely to be able to characterize quality degradations
caused by different artifacts. This approach will fail if V
contains vref that mimic the artifacts (for example,
periodic structure of vertical edges near block bound-
aries).

The second strategy is to model specific signal
attributes that characterize vref . The goal is then to find
violations of the signal model. This strategy focuses on a
specific class of V (for example, scenes without man-made
structures, or scenes with consistent lighting), and is
likely to be effective for a variety of artifact types. This
approach will fail if the added distortions do not cause
vtest to violate the signal model.

Artifact and signal models can be developed in either
the spatial and the transform domain, where the latter
includes DCT, wavelet, and polynomial transforms. Com-
plementary features extracted from each domain can be
combined to improve overall QE accuracy.

6.2.1. Spatial artifacts due to compression

Many blockiness features have been surveyed in
[104,15]. Among the NR QE that consider some perceptual
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masking, [105–107] compute a local gradient, [108]
estimates the power of an ideal blocking signal using
the FFT, [109,110] explore features of the DCT, and [111]
apply the first three coefficients of a polynomial trans-
form. Most blockiness detectors assume the grid-location
is known; [112] detects the grid in case the image has
been resized or cropped, and [15] considers motion-
compensated edge artifacts, which result when block
edges are motion-compensated away from block bound-
aries.

A detailed overview of 13 QEs that measure blurriness

(or sharpness) of images is presented in [113], which
introduces the notion of just noticeable blur. Many
approaches measure physical attributes of the edge
profile, including acutance [114], horizontal and vertical
edge extent [115,113,116], and diagonal edge extent
[117]. Using polynomial transforms, [118] designs a
multiscale blur estimation algorithm to estimate the
spread of a Gaussian blurring kernel. A similar goal was
addressed in [119] using spatial gradients for both lines
and edges. Blur has also been measured using features in
the DCT domain [120,121] and using the phase of the
Fourier transform [122]. A combined spatial and fre-
quency domain approach is presented in [123], where
features about the edge profile are combined with the
local frequency spectrum around image edges.

With the exception of [98], which operates in the
frequency domain, ringing features are typically extracted
from the pixel domain. Oguz et al. [124] compute the
variance of pixels in regions near strong edges to
characterize ringing. Visible ringing regions are detected
in smooth regions near edges in [125], which also
incorporates luminance masking. To increase the accuracy
of edge localization, [126,127] apply a bilateral filter,
before computing a ringing annoyance score which is a
nonlinear function of the local variance of ringing
artifacts.

Blockiness, blurriness, and ringing features have also
been combined with other features, including bitstream
features [128,129] and edge gradient and luminance
masking features [130].

Sheikh et al. [131] characterize artifacts for JPEG-2000
by exploring deviations from a signal model. Using a
recent model of wavelet coefficients for ‘‘natural scenes’’
[132], they calibrate deviations of this model in the
presence of JPEG-2000 compression against human
quality ratings.
6.2.2. Features for other spatial artifacts

A variety of other spatial artifacts have been consid-
ered. Chang et al. [19] design a detector for rainbow

artifacts using features that extract information about
both high-frequency luminance and chrominance compo-
nents. A method to identify aliasing energy in vtest that
contributes to visible jagginess dvisible has recently been
presented [133] for integer downsampling. This method is
only capable of identifying aliasing energy near strong
directional edges that is not masked by the edge. Color

features have been defined by [134,52,135], including
others.
6.2.3. Temporal features

The simplest approach to quality estimation for video
is to average the estimated quality of individual video
frames. However, this approach ignores many known
properties of temporal vision, as discussed in Section
5.1.3. More accurate QEs consider both additional tem-
poral features and nonlinear temporal pooling.

The temporal consistency (or its opposite, temporal
variability) of luminance levels measures the impact of
flicker and blackout artifacts. While flicker-removal algo-
rithms [136,137,20] use sophisticated models that include
motion, their performance is often evaluated using only
intensity mean and variance. A no-reference flicker-score
was proposed in [138] with the goal of reducing flicker in
H.264 encoded videos.

Frame freezes can be identified using several methods
that differ based on the type of input information
available. If the bitstream is available, frame freezes can
be detected using picture time-stamps of received frames,
and if only the pixels vtest are available, frame freezes may
be detected using inter-frame correlation [139]. The
duration and regularity of the frame freezes, as well as
the intensity of the fluidity break, are incorporated in NR
QE for frame freezes [139–142]. A dropping severity
indicator, a scene boundary detector, and a motion
activity estimator are combined in [142] to design a NR
QE that accounts for the perceptual impact of local quality
fluctuations.

Strategies for NR QE given packet loss depend heavily
on the type of available inputs. Those NR QE that rely
solely on bitstream parameters [143,144,3] are most
widely applicable, but they rely on the strong assumption
that all packet losses have equivalent perceptual impact.
Packet loss rate (PLR) [143,144], quantizer step size
[143] and bit-rate and frame-rate [144] have all been
incorporated.

Those NR QE that can parse the video bitstream using a
variable-length decoder (but do not use vtest) can obtain
precise information about the location, spatial extent, and
temporal extent of the packet loss artifacts [93], but must
estimate the strength of the resulting error. A NR model of
visibility of packet losses [63] also considers motion
predictability, spatial motion smoothness, and the esti-
mated MSE due to packet loss [93]. These methods must
rely on assumptions about the error concealment strategy
of the decoder.

Finally, those NR QE that rely solely on the video pixels
vtest no longer rely on assumptions about error conceal-
ment, but face the challenge of estimating the location
and extent of the artifact. If a loss affects an entire frame,
it can be detected as described above for frame freezes.
Approaches that search for edges along macroblock
boundaries [145,146] assume the error does not affect
the entire frame and may fail to identify artifacts caused
by error propagation. The additional features of vertical
gradients and edges in horizontal gradients are extracted
in [147] to detect artifacts of spatial error concealment.

Hybrid methods that use both the pixels vtest and its
bitstream avoid many of the challenges of using only one
input, although they require both inputs to be available
and additional processing [3]. The effectiveness of error
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concealment is evaluated in [148] which identifies
corrupted macroblocks using bitstream information and
combines bitstream-based motion information with and
pixel-based vertical and horizontal luminance disconti-
nuities. Pixel-based features are extracted from bitstream
segments that have incorrect checksums in [149] to detect
bit-error artifacts.

7. Evaluation

Thorough evaluation of a QE can provide insight into
potential improvements, identification of specific failure
cases, and eventually more robust performance. In
contrast, inadequate evaluation can lead to false perfor-
mance claims and inevitable QE failure. Any QE should be
provided with a complete discussion of evaluation, as
described below.

7.1. Assumption and operation verification

Assumptions made at each step of the QE design
should be validated or refuted. If a measurement
evaluates violations of a signal model, it should be tested
on a wide variety of undegraded inputs vref . If a
measurement evaluates conformance with an artifact
model, it should be tested to verify not only that it does
not unwittingly measure other artifacts [10], and also that
it does not detect artifacts inside undegraded inputs.
Monotonicity of the individual measurements should be
verified. For example, blockiness should increase as
quantization increases. The pooling step should be tested
to verify correct operation across multiple artifacts. NR
QEs which rely on restricted inputs (for example, only vtest

or only bitstream parameters) should be tested to under-
stand how the input constraints limit performance.

Operation should be evaluated using synthetic inputs
(or so-called ‘‘toy examples’’). Such inputs allow a QE to
be stressed in carefully controlled directions. Artifacts can
be added, amplified, or spatially and temporally distrib-
uted, for example. Inputs which either violate or exactly
match the statistical signal models assumed in design can
identify whether the QE adequately estimates desired
statistical quantities.

7.2. Classical numerical measures

Evaluating the performance of QEs nearly always
begins with a quantification of the differences between
QsubjðVÞ and QobjðVÞ. Obviously, the ground truth data used
to tune and/or train the QE should not be part of the test

set. Pearson linear correlation, outlier ratio, and RMS error
quantify performance based on how well the QE predicts
individual subjective quality scores on an absolute scale.
Spearman rank-order correlation quantifies how well the
QE maintains the relative ranking of scores. These four
parameters are the most commonly used quantities (see
[77] for a discussion of these quantities, along with
several others).

While computation of these quantities over the entire
test set provides performance information, evaluation
should not stop with these simple computations. Compu-
tation of these quantities over meaningful subsets of the
test set should also be performed. Such subsets can
include classification based upon presence or absence of
specific artifacts, sources with more or less observer
variability in scores, observers, or any other subset which
is reasonable for the particular QE.

Specific examination of outliers is important, as it can
provide identification of particular failures within a QE or
evidence that a QE will fail on some percentage of
unforeseeable cases.

7.3. Resolving power and classification errors

A QE’s accuracy regarding differences between pairs of
scores in a test set Qsubjðv1Þ and Qsubjðv2Þ can be further
quantified using resolving power and classification errors.
Brill et al. define the resolving power of a QE [150], which
computes a confidence in the difference between QE
scores DQobj ¼ Qobjðv1Þ�Qobjðv2Þ and facilitates an under-
standing of whether a difference of a given size is
meaningful. Resolving power is dependent on the sub-
jective data; a QE can have different resolving powers for
different data sets.

Classification errors occur when differences in sub-
jective scores DQsubj ¼Qsubjðv1Þ�Qsubjðv2Þ and QE outputs
DQobj for two different sources disagree, in one of three
different ways [150,151]:
�
 false ties occur when jDQsubjj4g but jDQobjjog;

�
 false differences occur when jDQsubjjog but jDQobjj4g;

�
 false ranking occurs when Qsubjðv1Þ4Qsubjðv2Þ but

Qobjðv1ÞoQobjðv2Þ.

The threshold g may depend on the application (for
example, in the stopping criterion for algorithm optimiza-
tion), but it can be related to the minimum desired quality
difference, which is often the JND. (Here, we have
assumed that Qobjð�Þ and Qsubjð�Þ have been normalized to
exist on the same scale.)

7.4. Application-specific evaluation

Lastly, the QE should be evaluated in the application
for which it was designed. If a QE is designed for
algorithm optimization, it should be placed in the loop
of an actual algorithm to verify that the algorithm’s
outputs demonstrate superior quality to those generated
without the QE in the loop. Such verification requires a
subjective experiment. If a QE is designed for trouble-
shooting, it should be tested with a multi-component
system in which various components are forced to fail. QE
designed for other applications should be tested by
verifying that Eqs. (4)–(8) are correct when Qobjð�Þ is
substituted for Qsubjð�Þ.

8. Concluding thoughts

We have introduced the reader to a variety of
applications and a broad range of artifacts. We have
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described a three-stage framework for NR quality estima-
tion that provides not only the opportunity for including a
target application appropriately, but also substantial
opportunity for incorporating characteristics of humans
as viewers at multiple levels. We have provided a
generous survey of approaches, primarily to the measure-

ment stage of the framework, and have also enumerated a
variety of performance metrics for evaluation of any
proposed quality estimator.

An adoption of this framework by the community
would facilitate collaborative effort toward effective
solutions for the very challenging problem of NR quality
estimation. We believe that ‘‘the whole is greater than a
sum of the parts’’ and that through joint efforts,
substantial progress can be made toward effective no-
reference quality estimation.
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