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Outliers 
 

These notes draw heavily from several sources, including Fox’s Regression Diagnostics; Pindyck and Rubinfeld; 
Statistics for Social Data Analysis, by George Bohrnstedt and David Knoke, 1982; Norusis’s SPSS 11 chapter 22 on 
“Analyzing residuals;” Hamilton’s chapter on “Robust regression.” Also some of the text is either copied verbatim 
or adapted from the Stata 12 manual. I’m hitting highlights here, but the readings include lots of other good 
suggestions and details. 

Description of the problem. One problem with least squares occurs when there are one or 
more large deviations, i.e. cases whose values differ substantially from the other observations. 
These points are called outliers. You should be worried about outliers because (a) extreme values 
of observed variables can distort estimates of regression coefficients, (b) they may reflect coding 
errors in the data, e.g. the decimal point is misplaced; or you have failed to declare some values 
as missing (c) they may be a result of model misspecification – variables have been omitted that 
would account for the outlier; or, the outlier belongs to a different population than the one you 
want to study. 

 

Detecting Outliers using Stata 
As is often the case with Stata, instead of a few big commands with several options, we execute 
several smaller commands instead. How useful different approaches are may depend, in part, on 
whether you are analyzing a few dozen cases, or several thousand. We’ll take a closer look at the 
data used in the following regression: 
 
. use http://www3.nd.edu/~rwilliam/stats2/statafiles/outliers.dta, clear 
. reg dv iv 
 
      Source |       SS       df       MS              Number of obs =      40 
-------------+------------------------------           F(  1,    38) =   11.29 
       Model |  3220.79618     1  3220.79618           Prob > F      =  0.0018 
    Residual |  10844.1543    38  285.372482           R-squared     =  0.2290 
-------------+------------------------------           Adj R-squared =  0.2087 
       Total |  14064.9505    39  360.639757           Root MSE      =  16.893 
 
------------------------------------------------------------------------------ 
          dv |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          iv |   .6686151   .1990218     3.36   0.002     .2657166    1.071514 
       _cons |   3.727621   2.772329     1.34   0.187    -1.884665    9.339907 
------------------------------------------------------------------------------ 
 

If you knew the data very well, you might already see something that makes you suspicious. 
Given that you don’t, here are some things to check out. 
 
Descriptive statistics. It is always a good idea to start with descriptive statistics of your data. 
Besides the built-in command summarize, the user-written commands fre and extremes 
can be helpful here. (To save space I am only printing out a few of the frequencies.) 
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. * Basic descriptive stats 

. fre dv iv, tabulate(3) 
 
dv 
--------------------------------------------------------------- 
                  |      Freq.    Percent      Valid       Cum. 
------------------+-------------------------------------------- 
Valid   -20.44946 |          1       2.50       2.50       2.50 
        -19.62192 |          1       2.50       2.50       5.00 
        -17.21676 |          1       2.50       2.50       7.50 
        :         |          :          :          :          : 
        16.84143  |          1       2.50       2.50      95.00 
        19.36333  |          1       2.50       2.50      97.50 
        99        |          1       2.50       2.50     100.00 
        Total     |         40     100.00     100.00            
--------------------------------------------------------------- 
 
iv 
--------------------------------------------------------------- 
                  |      Freq.    Percent      Valid       Cum. 
------------------+-------------------------------------------- 
Valid   -35.74697 |          1       2.50       2.50       2.50 
        -35.24309 |          1       2.50       2.50       5.00 
        -21.73665 |          1       2.50       2.50       7.50 
        :         |          :          :          :          : 
        17.97275  |          1       2.50       2.50      95.00 
        18.77257  |          1       2.50       2.50      97.50 
        22.44931  |          1       2.50       2.50     100.00 
        Total     |         40     100.00     100.00            
--------------------------------------------------------------- 
 
. sum dv iv 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
          dv |        40    1.232763    18.99052  -20.44946         99 
          iv |        40   -3.731381    13.59168  -35.74697   22.44931 

 
Both the frequencies and the summary statistics indicate that dv has a maximum value of 99, 
which is much higher than the other values of dv. No values immediately stick out for iv.  
 
Nick Cox’s extremes command provides perhaps an easier way of identifying the cases with 
the most extreme high and low values. 
 
. extremes dv iv 
 
  +------------------------------+ 
  | obs:          dv          iv | 
  |------------------------------| 
  |   5.   -20.44946   -19.22762 | 
  |   7.   -19.62192   -35.24309 | 
  |   8.   -17.21676   -18.83887 | 
  |  38.   -16.34352   -8.757764 | 
  |  16.   -13.33637    1.862242 | 
  +------------------------------+ 
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  +----------------------------+ 
  |  32.   14.51918   9.434002 | 
  |  36.   15.22688   10.65133 | 
  |  13.   16.84143   22.44931 | 
  |  22.   19.36333   3.484266 | 
  |   9.         99   6.599043 | 
  +----------------------------+ 
 
Notice the format of the command and the layout of the output. You could just specify one 
variable, and it would give you the extreme values for it. If you specify two or more variables, it 
will give you the extreme values of the first variable, and the values of the other variables for 
those same cases. This can be useful for determining if the extreme values really are that 
extreme, given the values of the other variables. We see that case 9 seems very different from the 
rest of the cases and has a very suspicious value of 99. You can repeat the process for other 
variables in the analysis (in this case nothing obvious stands out for iv). 
 
Graphic techniques. Particularly when the sample is small, graphic techniques can be helpful. 
First, we can use the scatter command to plot the dv and the iv. 
 
. scatter dv iv 
 

 
 
Note the outlying case in the upper right.  
 
After we have run the regression, we have several post-estimation commands than can help us 
identify outliers. According to the Stata 12 Manual, “One of the most useful diagnostic graphs is 
provided by lvr2plot (leverage-versus-residual-squared plot), a graph of leverage against the 
(normalized) residuals squared.” (The mlabel option made the graph messier, but by labeling the 
dots it is easier to see where the problems are.) 
 
. gen id = _n 
. lvr2plot, mlabel(id) 
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The Stata 12 manual says “The lines on the chart show the average values of leverage and the 
(normalized) residuals squared. Points above the horizontal line have higher-than-average 
leverage; points to the right of the vertical line have larger-than-average residuals.”  
 
The graph shows us that case 9 has a very large residual (i.e. the difference between the 
predicted and observed value for case 9 is exceptionally large) but it doesn’t have much leverage. 
(We’ll explain what we mean by leverage shortly.) Cases in the upper right of the graph (if there 
were any) would be especially important because they would be high leverage and large 
residuals. If you see a group of outliers together you may wish to check to see what, if anything, 
they share in common. 
 
Residual Statistics. We can also compute a variety of residual statistics. Basically, we use the 
predict command to compute the measures we want, and then run the summary statistics on 
them. I’ll show a few examples; typing help regress will show you other options.  
 
CAUTION: In general, predict calculates the requested statistic for all observations possible,       
whether they were used in fitting the model or not. This can be quite handy at times. But, if your 
regression was not run on all the cases, e.g. you were analyzing a subsample, you might want to 
modify the following commands to something like  
predict stdresid if e(sample), rstandard. The if parameter will limit the 
computations to the cases used by the previous regression. 
 
. * Residual statistics 
. * Discrepancy measures 
. * Standardized residuals -- values more extreme than 3 may be a problem 
. predict stdresid, rstandard 
. * Studentized residual 
. predict rstudent, rstudent 
 
. * leverage measure 
. * leverage (or hat) identifies cases that can have a large effect on the 
. * fitted model even if the corresponding residual is small 
. * When the leverage > 2k/n then there is high leverage 
. * Maybe use 3k/n when N is small 
. predict leverage, leverage 
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. * Influence measures 

. * DFBetas -- SPSS calls these SDBETAS -- values larger than 1  

. * or > 2/ sqrt(N) (about .316 in this case) are a problem 

. . dfbeta 
                       _dfbeta_1: dfbeta(iv) 
. * Get Cook's Distance measure -- values greater than 4/N may cause concern 
. predict cooksd, cooksd 
 
. sum 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
          dv |        40    1.232763    18.99052  -20.44946         99 
          iv |        40   -3.731381    13.59168  -35.74697   22.44931 
          id |        40        20.5    11.69045          1         40 
    stdresid |        40    .0007058      1.0076   -1.10009   5.488952 
    rstudent |        40    .1617825    1.960709  -1.103228   11.90047 
-------------+-------------------------------------------------------- 
   _dfbeta_1 |        40    .0190428    .2449757  -.1998377   1.478083 
      cooksd |        40    .0208666      .09811   .0000153   .6246131 
    leverage |        40         .05    .0336828   .0250226   .1672696 
 

Why does Stata offer so many residual statistics??? Different statistics tell you different things 
about the outliers, and one statistic may catch problems that are missed by another. 

• Some statistics measure discrepancy, i.e. the difference between the predicted Y and the 
observed Y.  

• But, some outliers will have relatively little influence on the regression line. An extreme 
value of y that is paired with an average value of X will have less effect than an extreme 
value of Y that is paired with a non-average value of X. An observation with an extreme 
value on a predictor variable (or with extreme values on multiple Xs) is called a point with 
high leverage. Some residual statistics therefore measure leverage. 

• Fox gives the useful formula Influence on Coefficients = Leverage x Discrepancy. By this he 
means that outlying values on Y will have the greatest impact when (a) their corresponding X 
values are further away from the mean of X, and (b) the Y value is out of line with the rest of 
the Y values, i.e. it does not fall on the same line that the other cases do. We will discuss this 
more later in the handout. Some residual statistics therefore measure influence. 

 
To explain a few of the statistics presented by Stata:  
 
Discrepancy Measures. According to the Stata 12 Manual, “Standardized and Studentized 
residuals are attempts to adjust residuals for their standard errors… In general, Studentized 
residuals are preferable to standardized residuals for purposes of outlier identification.  

• Studentized residuals can be interpreted as the t statistic for testing the significance of a 
dummy variable equal to 1 in the observation in question and 0 elsewhere (Belsley, Kuh, 
and Welsch 1980). Such a dummy variable would effectively absorb the observation and 
so remove its influence in determining the other coefficients in the model.” Values of 3 or 
greater (or -3 or less) may be problematic.  
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Leverage Measure. The leverage option (which can also be called hat) calculates the Hosmer and 
Lemeshow leverage or the diagonal element of the hat matrix (so named because its computation 
involves y_hat).   

• Univariate or multivariate X outliers are high-leverage observations.  
• Leverage is bounded by two limits: 1/n and 1. The closer the leverage is to unity, the 

more leverage the value has.  
• When the leverage > 2k/n then there is high leverage. For small samples you may want to 

use 3k/n. Others say a point with leverage greater than (2k+2)/n should be carefully 
examined. Here k is the number of predictors and n is the number of observations. In this 
case we might be worried about cases with leverage values of 2/40 (.05) or 3/40 (.075) or 
4/40 (.10). 

 
Influence Measures. DFBETA shows how much a coefficient would change if that case were 
dropped from the data.  

• According to the Stata 12 manual, “DFBETAs are perhaps the most direct influence 
measure of interest to model builders. DFBETAs focus on one coefficient and measure 
the difference between the regression coefficient when the ith observation is included and 
excluded, the difference being scaled by the estimated standard error of the coefficient. 
Belsley, Kuh, and Welsch (1980, 28) suggest observations with dfbetas > 2/Sqrt(N) 
should be checked as deserving special attention, but it is also common practice to use 1 
(Bollen and Jackman 1990, 267), meaning that the observation shifted the estimate at 
least one standard error.”  

• In this example we would look for a dfbeta > .316 or else > 1.) Note that the larger the 
sample, the harder it is for any one case to affect the regression coefficients.  

 
Cook’s distance is another way of measuring influence. According to the Stata 12 Manual, 
“Cook’s distance measures the aggregate change in the estimated coefficients when each 
observation is left out of the estimation. Values of Cook’s distance that are greater than 4/N (in 
this case, 4/40 = .10) may be problematic.  
 
The statistics show us that at least one standardized and studentized residual is much larger than 
3, at least one of the dfbetas is larger than 2/sqrt(40) (which means that deletion of that case 
would cause a substantial change in the parameter estimates), and that at least one Cook’s 
distance is much larger than 4/N = .10. Again using the extremes command, it is pretty 
obvious case 9 is our biggest problem.  
 
. extremes stdresid rstudent _dfbeta_1 cooksd leverage 
 
  +----------------------------------------------------------------+ 
  | obs:    stdresid    rstudent   _dfbeta_1     cooksd   leverage | 
  |----------------------------------------------------------------| 
  |  16.    -1.10009   -1.103228   -.0737939   .0182921   .0293429 | 
  |  11.   -.9054657   -.9032696   -.1315701   .0194316   .0452566 | 
  |  38.   -.8537651   -.8506546    .0511074   .0106943   .0285067 | 
  |  39.   -.7236397    -.719026   -.0640732   .0088459   .0326813 | 
  |  25.   -.7062296    -.701494     .028504   .0068167   .0266071 | 
  +----------------------------------------------------------------+ 
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  +--------------------------------------------------------------+ 
  |  29.   .4976577    .492674    .0094423   .0032218    .025358 | 
  |  40.    .519945   .5148928   -.0183424   .0036419   .0262358 | 
  |  22.   .8006765   .7968211    .0688563    .010674   .0322267 | 
  |   1.   .8894223   .8869218   -.1324265   .0191859   .0462622 | 
  |   9.   5.488952   11.90047    1.478083   .6246131   .0398124 | 
  +--------------------------------------------------------------+ 

 
NOTE: To be thorough, we should probably run the extremes command specifying the other 
residual measures first as well; the cases that are the most extreme on stdresid won’t necessarily 
be the most extreme on other measures. 
 
Sidelight: Importance of Leverage 
As previously pointed out, Fox says that Influence on Coefficients = Leverage * Discrepancy. 
Among other things, this means that outliers on Y that are paired with average values of X will 
have less influence on parameter estimates than outliers on Y that are paired with above or 
below-average values on X. In the current example, the value of iv for case 9 is 6.599043; the 
average value of the other 39 cases is -3.996264. So, the iv value for case 9 is above average, but 
not extremely so (the highest value for iv is 22.44931). Let’s see what happens to the regression 
estimates as we make case 9 more and more of an outlier on dv: 
 
. * Case 9: dv = 999 
. replace dv = 999 in 9 
(1 real change made) 
 
. reg dv iv 
 
      Source |       SS       df       MS              Number of obs =      40 
-------------+------------------------------           F(  1,    38) =    1.10 
       Model |   27651.582     1   27651.582           Prob > F      =  0.3001 
    Residual |  952144.395    38  25056.4315           R-squared     =  0.0282 
-------------+------------------------------           Adj R-squared =  0.0026 
       Total |  979795.977    39  25122.9738           Root MSE      =  158.29 
 
------------------------------------------------------------------------------ 
          dv |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          iv |   1.959091   1.864894     1.05   0.300     -1.81619    5.734372 
       _cons |   31.04288   25.97755     1.19   0.239    -21.54593    83.63169 
------------------------------------------------------------------------------ 
 
. * Case 9: dv = 9999 
. replace dv = 9999 in 9 
(1 real change made) 
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. reg dv iv 
 
      Source |       SS       df       MS              Number of obs =      40 
-------------+------------------------------           F(  1,    38) =    0.63 
       Model |  1591744.43     1  1591744.43           Prob > F      =  0.4321 
    Residual |  95917861.8    38  2524154.26           R-squared     =  0.0163 
-------------+------------------------------           Adj R-squared = -0.0096 
       Total |  97509606.2    39  2500246.31           Root MSE      =  1588.8 
 
------------------------------------------------------------------------------ 
          dv |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          iv |   14.86385    18.7177     0.79   0.432    -23.02816    52.75586 
       _cons |   304.1954   260.7334     1.17   0.251    -223.6316    832.0225 
------------------------------------------------------------------------------ 

 
As we see, the more extreme the outlier is, the more the regression estimates are affected. 
 
Let’s now see what happens when we change case 9 so that it has the mean value on iv, and we 
make it more and more of an outlier on iv: 
 
. * Make case 9 exactly average on iv 
. replace iv = -3.996264 in 9 
(1 real change made) 
 
. * Make dv = 99 
. replace dv = 99 in 9 
(1 real change made) 
 
. reg dv iv 
 
      Source |       SS       df       MS              Number of obs =      40 
-------------+------------------------------           F(  1,    38) =    6.35 
       Model |  2015.14588     1  2015.14588           Prob > F      =  0.0160 
    Residual |  12049.8046    38  317.100122           R-squared     =  0.1433 
-------------+------------------------------           Adj R-squared =  0.1207 
       Total |  14064.9505    39  360.639757           Root MSE      =  17.807 
 
------------------------------------------------------------------------------ 
          dv |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          iv |   .5329324   .2114059     2.52   0.016     .1049635    .9609012 
       _cons |   3.362501     2.9396     1.14   0.260    -2.588407     9.31341 
------------------------------------------------------------------------------ 
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. * Make dv = 999 

. replace dv = 999 in 9 
(1 real change made) 
 
. reg dv iv 
 
      Source |       SS       df       MS              Number of obs =      40 
-------------+------------------------------           F(  1,    38) =    0.08 
       Model |  2015.14579     1  2015.14579           Prob > F      =  0.7811 
    Residual |  977780.831    38  25731.0745           R-squared     =  0.0021 
-------------+------------------------------           Adj R-squared = -0.0242 
       Total |  979795.977    39  25122.9738           Root MSE      =  160.41 
 
------------------------------------------------------------------------------ 
          dv |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          iv |   .5329324   1.904355     0.28   0.781    -3.322232    4.388097 
       _cons |    25.8625   26.48006     0.98   0.335    -27.74358    79.46858 
------------------------------------------------------------------------------ 
 
. * Make dv = 9999 
. replace dv = 9999 in 9 
(1 real change made) 
 
. reg dv iv 
 
      Source |       SS       df       MS              Number of obs =      40 
-------------+------------------------------           F(  1,    38) =    0.00 
       Model |  2015.14489     1  2015.14489           Prob > F      =  0.9778 
    Residual |  97507591.1    38  2565989.24           R-squared     =  0.0000 
-------------+------------------------------           Adj R-squared = -0.0263 
       Total |  97509606.2    39  2500246.31           Root MSE      =  1601.9 
 
------------------------------------------------------------------------------ 
          dv |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          iv |   .5329322   19.01719     0.03   0.978    -37.96535    39.03121 
       _cons |   250.8625   264.4341     0.95   0.349    -284.4563    786.1813 
------------------------------------------------------------------------------ 

 
As you see, the slope coefficient barely changes at all, although the intercept, t-values, and 
various other statistics do. Since, in these examples, case 9 has an average value on iv, it has no 
leverage and hence virtually no effect on the slope estimate.  
 
If you are curious as to why this is – recall that the formula for the bivariate slope coefficient is 
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So if, for a specific case, xi = mean of x, that case adds 0 to both the numerator and the denominator 
of the above formula – no matter what yi equals for that case. Hence, you can plug in whatever 
values you want for y for that case (or bigger and bigger values, like I did) and it will have no effect 
on the slope coefficient. Conversely, the more xi differs from the mean of x, the more impact that 
case can have on the slope coefficient. 
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Dealing with outliers (Both Stata and SPSS) 
• First, check to make sure there are no coding errors. Has an extra zero been added to the 

outlying case? 

• Make sure missing data coding is correct. For example, if you have a variable whose coding 
runs from 0 to 7 with an MD code of 99, and you have failed to tell SPSS that 99 is an MD 
code (or have not recoded 99 to . in Stata), the regression estimates will be way, way off. I’ve 
seen this produce extremely high correlations, when both the IVs and DVs were not being 
properly treated as missing. 

• Run the regression both with and without the outlying cases. If the results are substantially 
different, this should be noted. You should either explain why some cases were deleted, or 
present both sets of analyses. 

• You might reasonably decide that the outlying case does not fall within the population of 
interest that you want to study, and can justify excluding it that way. 

• Large outliers might be accounted for by adding more explanatory variables. Naturally, you 
prefer to explain the values of cases, rather than just discard them. 

• Sometimes a transformation of a variable may be warranted, e.g. take the log of the variable. 

• Remember, though, that outliers may represent important information about the relationship 
between variables. Don’t throw the outlier away without examining it first. Maybe you will 
catch a coding error. Perhaps you can explain why this case doesn’t really fall into the 
population of interest. Or, perhaps you can add IVs which will explain why this case’s values 
differ so much from the rest. 

 
Dealing with outliers (Stata) – Robust Regression Techniques 
One advantage of Stata over SPSS is that it includes so-called robust regression routines that are 
better able to handle outliers. The built-in routines are rreg and qreg, although (as noted 
below) many argue that there are user-written routines that are better. (We would, of course, still 
want to do all the things described above, but if the outliers do appear to be legitimate, these 
techniques can help.) The rreg and qreg routines work best when it is the DV that has outliers 
rather than the IVs. As Hamilton notes (Statistics With Stata, Version 8, p. 239): 

 
OLS tends to track outliers, fitting them at the expense of the rest of the sample. Over the long run, this 
leads to greater sample-to-sample variation or inefficiency when samples often contain outliers. Robust 
regression methods aim to achieve almost the efficiency of OLS with ideal data and substantially better 
than OLS efficiency in non-ideal (for example, nonnormal errors) situations….[The Stata routines] rreg 
and qreg resist the pull of outliers, giving them better than OLS efficiency in the face of nonnormal, 
heavy-tailed error distributions. 

 

To show how this works, first, let us repeat our regression results, this time excluding the 
outlying case: 

 



Outliers Page 11 
 

. reg dv iv if dv!=99 
 
      Source |       SS       df       MS              Number of obs =      39 
-------------+------------------------------           F(  1,    37) =   33.19 
       Model |  2015.14589     1  2015.14589           Prob > F      =  0.0000 
    Residual |  2246.28396    37  60.7103773           R-squared     =  0.4729 
-------------+------------------------------           Adj R-squared =  0.4586 
       Total |  4261.42986    38  112.142891           Root MSE      =  7.7917 
 
------------------------------------------------------------------------------ 
          dv |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          iv |   .5329324   .0925018     5.76   0.000     .3455059    .7203589 
       _cons |   .8556491   1.301279     0.66   0.515    -1.780992     3.49229 
------------------------------------------------------------------------------ 
 

Now, we’ll see what happens when we run Stata’s rreg (robust regression) routine with all 40 
cases: 
 
. rreg dv iv, nolog 
 
Robust regression estimates                            Number of obs =      40 
                                                       F(  1,    38) =   28.83 
                                                       Prob > F      =  0.0000 
 
------------------------------------------------------------------------------ 
          dv |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          iv |   .5352655   .0996925     5.37   0.000     .3334486    .7370824 
       _cons |   .7893176   1.388694     0.57   0.573    -2.021946    3.600581 
------------------------------------------------------------------------------ 
 
Note that we get estimates that are very similar to what we got when we used the regress 
command and dropped case 9. 
 
rreg is a bit hard to explain. Basically, it goes through an iterative procedure (as Hamilton 
notes, it uses “iteratively reweighted least squares with Huber and biweight functions tuned for 
95% Gaussian efficiency”), where the more extreme an outlier is, the less heavily it gets 
weighted in the regression calculations. Very extreme cases get dropped altogether. In this 
problem, rreg basically dropped case 9 altogether, which is why its final results looked so 
similar to the results we got when we ran a regression with case 9 excluded. 
 
Another alternative is qreg, which stands for quantile regression (you’ll also hear it referred to 
as Least Absolute Value Models or minimum L1-norm models). The most common form of 
quantile regression is median regression, where the goal is to estimate the median (rather than the 
mean) of the dependent variable, conditional on the values of the independent variables. Put 
another way, median regression finds a line through the data that minimizes the sum of the 
absolute residuals rather than the sum of the squares of the residuals as in ordinary regression 
(hence the term Least Absolute Value as opposed to Least Squares) . Medians are less affected 
by outliers than means are, so qreg can do better than regress when there are extreme 
outliers. 
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. qreg dv iv, nolog 
 
Median regression                                    Number of obs =        40 
  Raw sum of deviations 444.7982 (about -2.2611923) 
  Min sum of deviations 335.8461                     Pseudo R2     =    0.2449 
 
------------------------------------------------------------------------------ 
          dv |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          iv |   .6079845   .0891699     6.82   0.000     .4274695    .7884994 
       _cons |   1.805331   1.326887     1.36   0.182    -.8808107    4.491472 
------------------------------------------------------------------------------ 
 
As to which routine is better, and when? Well, that is a good question. In this particular case, 
rreg seems better, but all it basically did was drop the extreme case, which we could have done 
by ourselves. Had 99 been a legitimate code, qreg might have seemed the more appropriate 
choice. Hamilton also argues that when the IVs have outliers, rreg tends to do better because it 
tends to just drop such observations rather than try to fit them. 
 
Again, I would stress that either of these routines should only be used after you have checked out 
other issues, e.g. are there coding errors in the data, is missing data being handled properly, 
would the addition of some other variable to the model make the outliers not be outliers 
anymore?  
 
Advanced Discussion. But, if none of these solve the problem, here is some advice that was 
offered on Statalist when I asked about this on Jan. 30, 2004. 
 

Nicholas Cox (he wrote a couple of messages and hopefully I have combined them correctly): 
This raises the old classical trope, beaten almost to death by the late Sir Isaiah Berlin in many of his essays 
on intellectual history, that the fox knows many things, but the hedgehog knows one big thing.  
 
When attacked, the hedgehog has just one means of defence, although it is usually effective. -qreg- is a 
hedgehog. The fox has many different tricks. -rreg- is a fox. Its mixed strategy is an attempt to be smart in 
different ways.  
 
My experience loosely matches Richard's, certainly in terms of wanting to think that -qreg- is as good 
because of the much greater ease in explaining it. At the same time, [if you have] “well-behaved” data + a 
“few” outliers (n ~ 1) it is sensible to use robust regression as a check on standard [regression]. [But if you 
have long-tailed data] you are possibly working on inappropriate scales and should wonder about reaching 
for a transformation or, in some frameworks, a different link function. 
 
Also from Cox, as to whether outliers are more likely to be “real” or just coding mistakes: I think it 
depends, partly, on the kind of data you deal with. In fact these tribal differences among groups of 
statistical users are one of the persistently interesting features of Statalist.  
 
In geography (that's my field) the big cities, countries, rivers, storms, etc. really are big and they really are 
important, and my advice to students and colleagues hinges on the idea that most outliers are likely to be 
genuine and important. Often this means taking logarithms! Also, there's usually a story behind each outlier 
and extra information somewhere.  
 
As many people may know, the Antarctic ozone hole was only spotted belatedly because an outlier-
trapping program led to some very low values being overlooked, until someone had a closer look at the real 
data.  
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In some other fields it may be that most outliers are mistakes and/or that in terms of advancing science it's 
better strategy to ignore them. The person who reports watching 180 hours of television a week is likely to 
be confused about something or other; and short of re-interviewing or some smart way of finding out that 
they really meant 18.0 or 108, the only possible thing may be to omit that data point. 
 
Michael Blasnik: One difference between qreg and rreg is that they attempt to estimate different 
versions of the central tendency -- qreg estimates the median while rreg comes closer (in theory) to 
estimating a robust mean. The difference may be negligible in essentially symmetrical distributions, but for 
skewed distributions where the mean and median are not expected to be equal, one would expect their 
estimates to deviate systematically. If you really want to model the mean but are concerned about outliers, 
then rreg may be a better choice than qreg. If you want to model the median (or think the underlying 
distribution is fairly symmetrical), then qreg may be preferred. 
 
I usually look at both and then try to figure out any substantive differences in results, but I'm generally 
partial to the coefficient estimates from rreg (I often deal with skewed distributions where the median is 
noticeably lower than the mean). On the other hand, I sometimes find rreg's std errors estimates 
questionable. 
 

However, in a more recent exchange on January 14, 2011, rreg received considerable criticism. 
 

Nicholas Cox: I'd advise against basing anything much on -rreg-.  
 
The help file has it right: -rreg- is "one version of robust regression". When -rreg- was written the method 
seemed a good all-round flavour of robust regression, but it is doubtful whether it now looks like _the_ 
method of choice to anyone in 2011. If you ever used -rreg- for real, you'd be obliged to explain it and 
defend the choice in any serious forum. "I used robust regression" means virtually nothing. There are 
probably hundreds of ways to do robust regression (quite apart from what robustness means). "I used -rreg- 
as implemented in Stata" counts for little outside this community.  "I used robust regression as codified by 
Li (1985)" obliges you to explain why you didn't use something more recent (to fad- and fashion-followers) 
or something else that someone else fancies for some reason of their own. The literature would keep you 
busy indefinitely. Outliers could be handled in many different ways. Considering transformations on one or 
more variables is another way to do that. Wonder whether a linear structure makes sense scientifically is 
yet another.  
 

On August 22, 2010, Steve Samuels suggested some other alternatives. I can’t vouch for them 
because I haven’t used them, but they may be worth investigating further if you feel that outliers 
are a problem and no other solution seems adequate. 
 

There are few rules about outliers, but the most important one is: OLS is the worst way to detect them. 
Detection requires a robust regression program; and a good program will not "reject" all outliers, 
but will automatically downweight them. For covariates, one wants to identify not outliers per se, but those 
with high leverage. But the decision about what to do with these is not automatic; sometimes they are the 
most important points and _must_ be kept. 
 
See: "Robust regression in Stata" by Vincenzo Verardi and Christophe Croux, The Stata Journal Volume 9 
Number 3: pp. 439-453. Also available at: 
https://lirias.kuleuven.be/bitstream/123456789/202142/1/KBI_0823.pdf  
 
See also Verardi and Croux's contributed programs -mmregress- (findit) and Ben Jann's -robreg- (findit). 
These are superior to Stata's long-time built-in command -rreg-. 
 

  

https://lirias.kuleuven.be/bitstream/123456789/202142/1/KBI_0823.pdf
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Appendix: Using SPSS with Outliers 
 
SPSS also has some good routines for detecting outliers.  

• There is always the FREQUENCIES routine, of course. 
• The GRAPH command can do scatterplots of 2 variables.  
• The EXAMINE procedure includes an option for printing out the cases with the 5 lowest 

and 5 highest values.  
• The REGRESSION command can print out scatterplots (particularly good is *ZRESID 

by *ZPRED, which is a plot of the standardized residuals by the standardized predicted 
values). In addition, the regression procedure will produce output on CASEWISE 
DIAGNOSTICS, which indicate which cases are extreme outliers and/or which cases 
have the most impact on the regression estimates. This is particularly useful in that you 
see which cases stand out even after all IVs have been controlled for. 

 
SPSS Example. Following is a hypothetical example of 40 cases. I constructed the data set so 
the DV and IV would have a correlation of about .7. I then changed one of the DV values into an 
extreme outlier. Note how the first three analyses (GRAPH, EXAMINE, and REGRESSION) all 
provide means of detecting the outlier. Then, see how the results change once the outlier is 
deleted and the regression is rerun.  
Get File = 'D:\Soc63993\Spssfiles\outliers.sav'. 
 
* This program shows some of the ways SPSS can be used to identify outliers. 
* Do a scatterplot of vars to visually ID cases. 
* Note that one case is way out of line with the rest. 
 
GRAPH   /SCATTERPLOT(BIVAR)=iv WITH dv /MISSING=LISTWISE . 
 

Graph 
 
D:\Soc63993\Spssfiles\Outlier.sav 
 

__ 
 

30.0020.0010.000.00-10.00-20.00-30.00-40.00

iv

100.00

80.00

60.00

40.00

20.00

0.00

-20.00

d
v
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* Use examine procedure to id cases with extreme values on X or Y. 
* However, note that these need not be outliers on a regression line. 
* Note that Case 9 has a very extreme, and also very suspicious, value for DV. 
 
EXAMINE 
  VARIABLES=dv iv 
  /PLOT NONE 
  /STATISTICS EXTREME 
  /MISSING LISTWISE 
  /NOTOTAL. 

 
Explore 

 

 
 
* Run regression with outlier in. 
* Outlier will also show up in the plot. 
* /Casewise prints out stats that help to ID extreme outliers, if any. 
* /Scatterplot graphically helps to ID extreme outliers. 
* SPSS Regression has many other options for analyzing residuals 
* that may sometimes be useful. 

Case Processing Summary

40 100.0% 0 .0% 40 100.0%
40 100.0% 0 .0% 40 100.0%

DV
IV

N Percent N Percent N Percent
Valid Missing Total

Cases

Extreme Values

9 99.00
22 19.36
13 16.84
36 15.23
32 14.52

5 -20.45
7 -19.62
8 -17.22

38 -16.34
16 -13.34
13 22.45
35 18.77
23 17.97
10 11.15
36 10.65
21 -35.75

7 -35.24
28 -21.74
30 -19.53

5 -19.23

1
2
3
4
5
1
2
3
4
5
1
2
3
4
5
1
2
3
4
5

Highest

Lowest

Highest

Lowest

DV

IV

Case Number Value
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REGRESSION 
  /DESCRIPTIVES MEAN STDDEV CORR SIG N 
  /STATISTICS COEFF OUTS R ANOVA 
  /DEPENDENT dv 
  /METHOD=ENTER iv 
  /Casewise defaults dfbeta 
  /SCATTERPLOT=(*ZRESID ,*ZPRED ) . 

 
Regression 

 

 

 

 

 

Descriptive Statistics

1.2328 18.99052 40
-3.7314 13.59168 40

DV
IV

Mean Std. Deviation N

Correlations

1.000 .479
.479 1.000

. .001
.001 .

40 40
40 40

DV
IV
DV
IV
DV
IV

Pearson Correlation

Sig. (1-tailed)

N

DV IV

Variables Entered/Removedb

IVa . Enter
Model
1

Variables
Entered

Variables
Removed Method

All requested variables entered.a. 

Dependent Variable: DVb. 

Model Summaryb

.479a .229 .209 16.89297
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), IVa. 

Dependent Variable: DVb. 

ANOVAb

3220.796 1 3220.796 11.286 .002a

10844.154 38 285.372
14064.950 39

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), IVa. 

Dependent Variable: DVb. 
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To explain a few of the statistics presented by SPSS:  
 
Std residual and Stud Residual are slightly different ways of standardizing the residuals; values 
of 3 or greater (or -3 or less) may be problematic. These items measure discrepancy but not 
necessarily how much influence the outlier has on the regression estimates. 
 
DFBETA shows how much a coefficient would change if that case were dropped from the data. 
In this case, it shows that the effect of IV would drop by .136 if case 9 were dropped. 
[CAUTION: To make things confusing, Stata uses the term dfbeta to refer to what SPSS would 
call standardized dfbetas. There are other instances where Stata and SPSS use different naming 
conventions. With a standardized dfbeta, values of 1 or larger are generally considered 

Coefficientsa

3.728 2.772 1.345 .187
.669 .199 .479 3.360 .002

(Constant)
IV

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardi
zed

Coefficien
ts

t Sig.

Dependent Variable: DVa. 

Casewise Diagnosticsa

5.379 99.00 8.1398 90.8602 2.872 .136
Case Number
9

Std. Residual DV
Predicted

Value Residual (Constant) IV
DFBETA

Dependent Variable: DVa. 

Residuals Statisticsa

-20.1733 18.7376 1.2328 9.08760 40
-2.356 1.926 .000 1.000 40

2.67222 6.90899 3.63283 1.04815 40

-21.6857 18.9965 1.2077 9.22506 40
-18.3091 90.8602 .0000 16.67499 40

-1.084 5.379 .000 .987 40
-1.100 5.489 .001 1.008 40

-18.8626 94.6275 .0251 17.37645 40
-1.103 11.900 .162 1.961 40

.001 5.549 .975 1.314 40

.000 .625 .021 .098 40

.000 .142 .025 .034 40

Predicted Value
Std. Predicted Value
Standard Error of
Predicted Value
Adjusted Predicted Value
Residual
Std. Residual
Stud. Residual
Deleted Residual
Stud. Deleted Residual
Mahal. Distance
Cook's Distance
Centered Leverage Value

Minimum Maximum Mean Std. Deviation N

Dependent Variable: DVa. 
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important; others recommend that standardized dfbetas > 2/Sqrt(N) should be checked. The latter 
may be more reasonable, since the larger the sample, the harder it is for any one case to affect the 
coefficients, even if it is an extreme outlier.] 
 
Cook’s distance is another way of measuring influence. Values of Cook’s distance that are 
greater than 4/N (in this case, 4/40 = .10) may be problematic.  
 
From the above, we see that we have some very large standardized residuals and a large value for 
Cook’s distance; further, we see that case 9 in particular is a problem (the fact that it was printed 
in the casewise diagnostics means it has a standardized residual of at least 3.) 
 
Charts 

 
* Get rid of the outlying case. 
 
USE ALL. 
COMPUTE filter_$=(dv < 99). 
VARIABLE LABEL filter_$ 'dv < 99 (FILTER)'. 
VALUE LABELS filter_$  0 'Not Selected' 1 'Selected'. 
FORMAT filter_$ (f1.0). 
FILTER BY filter_$. 
EXECUTE . 
 
* Rerun the regression without the outlier.  Note changes in 
* the correlation and in the coefficients.  Now that the weird case is gone, 
* the slope goes down because the regression line doesn't need to try to 
* reach the outlier.  Also note that "Casewise diagnostics" 
* does not show up anymore because there are no extreme outliers left. 
 
REGRESSION 
  /DESCRIPTIVES MEAN STDDEV CORR SIG N 
  /STATISTICS COEFF OUTS R ANOVA 
  /DEPENDENT dv 
  /METHOD=ENTER iv 
  /Casewise 

Scatterplot

Dependent Variable: DV

Regression Standardized Predicted Value
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 /SCATTERPLOT=(*ZRESID ,*ZPRED ) . 

 
Regression 

 

 

 

 

 

Descriptive Statistics

-1.2741 10.58975 39
-3.9963 13.66436 39

DV
IV

Mean Std. Deviation N

Correlations

1.000 .688
.688 1.000

. .000
.000 .

39 39
39 39

DV
IV
DV
IV
DV
IV

Pearson Correlation

Sig. (1-tailed)

N

DV IV

Variables Entered/Removedb

IVa . Enter
Model
1

Variables
Entered

Variables
Removed Method

All requested variables entered.a. 

Dependent Variable: DVb. 

Model Summaryb

.688a .473 .459 7.79169
Model
1

R R Square
Adjusted
R Square

Std. Error of
the Estimate

Predictors: (Constant), IVa. 

Dependent Variable: DVb. 

ANOVAb

2015.146 1 2015.146 33.193 .000a

2246.284 37 60.710
4261.430 38

Regression
Residual
Total

Model
1

Sum of
Squares df Mean Square F Sig.

Predictors: (Constant), IVa. 

Dependent Variable: DVb. 
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Charts 

 
 
Having dropped the problematic case, we see that all is pretty much well now. 
 

Coefficientsa

.856 1.301 .658 .515

.533 .093 .688 5.761 .000
(Constant)
IV

Model
1

B Std. Error

Unstandardized
Coefficients

Beta

Standardi
zed

Coefficien
ts

t Sig.

Dependent Variable: DVa. 

Residuals Statisticsa

-18.1951 12.8196 -1.2741 7.28218 39
-2.324 1.935 .000 1.000 39

1.24920 3.19102 1.69670 .49064 39

-19.3137 12.2492 -1.3109 7.30290 39
-15.1845 16.6508 .0000 7.68848 39

-1.949 2.137 .000 .987 39
-1.979 2.174 .002 1.008 39

-15.6618 17.2284 .0368 8.02534 39
-2.065 2.296 .004 1.029 39

.002 5.399 .974 1.306 39

.000 .099 .022 .025 39

.000 .142 .026 .034 39

Predicted Value
Std. Predicted Value
Standard Error of
Predicted Value
Adjusted Predicted Value
Residual
Std. Residual
Stud. Residual
Deleted Residual
Stud. Deleted Residual
Mahal. Distance
Cook's Distance
Centered Leverage Value

Minimum Maximum Mean Std. Deviation N

Dependent Variable: DVa. 

Scatterplot

Dependent Variable: DV

Regression Standardized Predicted Value

210-1-2-3

R
eg

re
ss

io
n 

St
an

da
rd

iz
ed

 R
es

id
ua

l

3

2

1

0

-1

-2


	Outliers
	Sidelight: Importance of Leverage
	Dealing with outliers (Both Stata and SPSS)


