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ABSTRACT

We present some results on studying the visibility and aanog of packet loss artifacts in isolation of other digitéifacts.

1. INTRODUCTION

In modern digital imaging systems, the quality of the vist@itent can undergo a drastic decrease due to impairmeérmdun
ced during capture, transmission, storage, and/or disptayell as by any signal processing algorithm that may béexpio
the content along the way (e.g., compression.). Impairs@r defined as visible defects (flaws) and can be decompused i
a set of perceptual features called artifacts [1, 2, 3]. 8aible to detect artifacts and improve the quality of the alisontent
prior to its delivery to the user is therefore crucial to emesagood quality of experience. At the basis of such a quatityrol
mechanism, is an (automated) visual quality assessmetensys

The most accurate way to determine the quality of a video isdilyg psychophysical experiments with human subjects [3].
Unfortunately, these are very expensive, time-consumimherd to incorporate into a design process or an automadity
of service control. Therefore, there is a great need foraibbje quality metrics, i.e., algorithms that can predicual quality
as perceived by human observers. Quality metrics that aeaigible differences between a test and a reference sigkaig
into account aspects of the human visual system (HVS), lysuabe the best performance [4, 5], but are often computatip
expensive and therefore hardly applicable in real-timeaexis. Alternatives to these metrics are artifact metvidsch estimate
the strength of individual artifacts and, then, combinedhéact strengths to obtain an overall annoyance or quaiibdel.
The assumption here is that, instead of trying to detect atichate the strength of an ‘unknown’ impairment that cassi$
a combination of artifacts, it is easier to detect individardifact signals and estimate their strength because wewktheir
appearance and the type of process which generates then8[®]7

Artifact metrics have the advantage of being simple and roessarily requiring the reference signal. Also, they aan b
useful for post-processing algorithms, providing infotima about which artifacts need to be mitigated. One disathge of
artifact metrics is that their design requires a good urtdeding of the perceptual characteristics of each artifAcsecond
disadvantage is that the artifact metrics need to be cordhimen overall quality estimate [8, 9]. Therefore, in order t
design good artifact metrics it is important to find a modedtttiescribes how the individual artifact measurementaiéig
strengths) can be combined to provide the overall annoyangeality. Unfortunately, little work has been done on sind
and characterizing the individual artifacts [10, 11, 12], B3 pointed out by Moorthy and Bovik in a recent paper [14e W
believe that an extensive study of the most relevant atsifacstill necessary, since until today we still do not hawgoad
understanding of how artifacts depend on the physical ptigseof the video and how they combine to produce the overall
annoyance.

In a previous work, the visibility, annoyance, and intei@ttof blockiness, ringing, noisiness, and blurriness dreirt
relation with spatial content was studied [15, 16]. In thaper, we extend this work to include temporal artifacts.drtipular,
we study the transmission artifact “packet loss”. With tlealgf understanding the main psychophysical charadiesist the
“packet loss” artifact, we generate “packet loss” artifawith diffent strengths, durations, and spatial and tinsrithutions
in the videos. Then, we perform two psychophysical expemisthat measure the visibility, annoyance, and strengthesfe
artifacts. We also compare our results to studies that healei@ed packet loss artifacts in highly compressed videes
containing a mixture of digital artifacts).

This paper is divided as follows. In Section 2 we describealyorithms used to generate the “packet loss” artifacts.
In Section 3, we describe the psychophysical experimenthadetogy used in both experiments, which includes the tyfpe o



equipment used in the test, the tasks, and choice of theagseaces. ADD SECTION OF DISCUSSION. Finally, in Section
5 we give the conclusions.

2. GENERATION OF PACKET LOSSARTIFACTS

In the video transmission over IP networks, the networkalzlity and the lack of service guarantees represent a flierige.
Transmission errors may occur due to network congestiompatidloss. Typical impairments caused by these errors aiekgi
loss”, jitter, and delays. Typically, for block-based videompression schemes (e.g. MPEG-1/2/4, H-261/2/3/4sexmnive
macroblocks in a frame are transmitted as a slice in a sirgfl@ark packet. Therefore, the loss of network packets tesul
a loss of macroblocks. Because the compression processesradot of spatial and temporal redundancies from therwalgi
video, and because of the use of motion-compensated tehgpediction, a single loss of a packet can affect many sulsetq
frames. As the name suggests, “packet loss” artifacts argeckby a complete loss of the packet being transmitted.

“Packet loss” artifacts are visually characterized by thespnce of rectangular areas distributed over the videnesa
whose content differs from the surrounding areas. Theibiity and annoyance depend heavily on how the video stream
been coded, how it has been mapped into flows and packetiaédylaat type of error concealment algorithm is being used.
In the literature, there is a considerable amount of workhenwisibility of the packet-loss, as summarized by Bowdbsl
[17]. Some literature also investigated the effect of sadraacteristics on the visibility of packet loss [18]. Soshalies have
attempted to address the visibility and annoyance of pdokstartifact [19, 20].

In most studies, packet loss artifacts are generated byngaparameters of compression algorithms (codec typeatbitr
etc.) and digital transmissions (loss rate, channel madel). As a consequence, the generated videos contain essigmn
artifacts (e.g., blockiness, blurriness, and ringing)ides the packet loss artifactsn [19], the authors show that the an-
noyance of packet lossartifactsis correlated with their length (propagation throughout frames) and with the severity of
thelosses (PSNR), whereastheir visibility seems not to berelated to thelength of the lossitself, but rather to the overall
degradation of the video. However, these results are based on the subjective evaluation of degraded versions of a single
video content and both visibility and annoyance are not analyzed in relation to the spatial and temporal characteristics
of thevideo. Furthermore, alossisconsidered visibleif it generatesa drop in visual quality; whereasit might be argued
that a loss might be visible and yet not gener ate annoyance (and quality lossas a consequence). The study in [20] relates
the visibility of packet loss artifacts to the percentages of dices lost, the type of frames where the loss happened (1, B
or P), the duration of the loss and the amount of motion in the video. Unfortunately, the analysisis not extended to the
annoyance of visible artifacts.

The overall goal of this reasearch is to study and charaet¢hie most relevant artifacts present in digitally comgeds
and transmitted videos. More specifically, we want to obtagood understanding of the characteristics of variouwviddal
artifacts, their mutual interference, and their interfexe with the content of the image material. With this goal,use the
specifications for an adjustable video reference systemildétin ITU-T Recommendation P.930 [21]. This system gatex
synthetic artifacts that look like “real” artifacts, yeteasimpler, purer, and easier to describe. Therefore, itoHdvantages
for experimental research on video quality because it makmsssible to control the amplitude, distribution, and taie of
different types of artifacts making it possible to study tlifgerent types of artifacts. According to the ITU-T Recommaation
P.930, the created artifacts must be relatively pure,yeasijusted, and must be combined to match the appearancenreal
pairments. Also, the algorithms for generating them muswek defined in a way that the artifacts can be easily repreduc
Previous studies on the matter show that the the artifactt producgpsychometri@andannoyancdunctions that are similar
to those of real artifacts [12].

To generate test sequences with several levels of “packst frtifacts with different strengths, durations, andtispa
and time positions, we used the reference H.264 codec. Tid a&erting additional artifacts (such as ringing, blng; and
blockiness) we compressed the original videos with highm@ssion rates, generating videos with Peak Signal to NRasi®
(PSNR) well above 70dB. To vary the strength of the artifattdifferent spatial and time distributions, we randomljetkd
packets from the coded video bitstream. The percentagdetiedepackets varied from 0.5% to 9. To vary the time inteofal
the introduced artifacts, we varied the frame interval lsethe I-frames. Three frame intervals were used: 4, 8,2nd 1

Seven high definition videos with spatial resolution 1928x750fps) were used in the experiment. The videos were all
eight seconds long and were chosen with the goal of gengratiliverse content, as can be seen in Fig. 1. To have an idea of
the spatial and temporal content of the videos, in Fig. 2 veevsh graph of the spatial and temporal measures of the oligina
[22]. In summary, we had the following parameters for theegipent:

e 7 originals;

e 3time durations (Frame intervals: M = 4, 8 or 12);



¢ 4 artifact strengths (percentage of deleted packets vaoed0.5% to 9%)

At total, we had for each origindl x 3 = 12 parameters, generating x 7 = 91 test sequences.

Fig. 1. Frames of videos: (a) Joy Park, (b) Into Trees, (c) Crowd,RdnRomeo & Juliet, (e) Cactus, (f) Basketball, and (g)
Barbecue.

Fig. 2. Temporal and spatial characteristics of the videos iredlid the experiment. [GENERATE A NEW FIGURE!!]

3. PSYCHOPHYSICAL EXPERIMENT

In this section we describe the physical conditions, theegrpental methodology, and the statistical analysis nithused for
Experiments | and Il

3.1. Apparatusand Physical Conditions

The experiments were performed using a PC computer with a@agr.CD monitor of 23 inches (Sync Master XL2370HD).
The dynamic contrast of the monitor was turned off and thdreshwas set at 100 and the brightness at 50. The measured
gamma of the monitor was approximately 0.99, 0.97, 1.000a92 for luminance, red, green, and blue, respectively.robm
had the lights dimmed to avoid it to be reflected on the monitor

The experiments were run with one subject at a time. The stdjeere seated straight ahead of the monitor, centered at or
slightly below eye height for most subjects. The distande/ben the subject’s eyes and the video monitor is 3 video topni
screen heights. Three screen heights is a conservativeadstdf the viewing distance according to the ITU-T Recomaagion
BT.500 [23]. We used a chin rest to guarantee that the disthatween the subject’s eye and the monitor remained the same

Our subjects were voluntaries from the Department of Medt#ra in the Delft Univeristy, The Netherlands. Most sulgec
were graduate students of the department. They were coadidaive of most kinds of digital video defects and the ciased
terminology. No vision test was performed on the subjeaisftiey were asked to wear glasses or contact lenses if trezl/ ne
them to watch TV. In each experiment, at least 15 subjects wsed to guarantee robust results [24]. The software Regien
from Neurobehavioral Systems Inc. was used to run the exygertiand record the subjects’ data.



3.2. Experimental Methodology

A experimental (test) session was broken into the followfing stages: (1) Instructions, (2) Training, (3) PracticalB; (4)
Experimental Trials, and (5) Interview. Before starting #xperiment, the experimenter needed to make sure thecswigie
properly seated at the adequate distance. Subjects werexipéained the tasks to be performed in the experimentdsiri
They were told to disregard the content of the videos andguady the impairments they see.

In each experiment the subject was asked to perform a tagthveloinsists of entering a judgement about an impairments
seen in the video. In order to complete this task subjectdattt® have an idea of how the artifacts looked like and howasd
with no impairments (originals) compared with videos wittoag artifacts. With this goal, we includedaining session in
the experimental session which consisted of displayingtignal videos followed by examples of videos with the sgest
impairments found in the experiment. The subjects wereunttd to watch these videos carefully and assign a maxinaluev
of 100 to the worst or strongest impairments in this subset.

The initial judgements of a test subject are generally ierrdt takes time for a subject to get used to the task of jud-
ging/detecting impairments. The ITU Recommendation ssiggihat the first five to ten trials to be thrown away [23]. Im ou
methodology, instead of discarding the first trials, weudedpractice trials. Before beginning this stage, subjects were told
that this is a practice stage and that no data is being redoRksides eliminating erratic answers, the practicesthiald other
benefits. It exposed the subjects to sequences with a gogd cdimpairments and gave subjects a chance to try out tlae dat
entry procedure. They also allowed subjects to gain condielémtheir judgements. In this work, at least five practicagr
were used.

The subjective data was gathered duringdkgerimental trials. This stage was performed with the complete set of test
sequences presented in a random order. For each expergeesrtal random-ordered lists of the test sequence wereajede
The lists were used sequentially and repeated as neceS3awideos were played twice and subjects were not allowed to
go back and watch them again. Subjects were instructed tolseach video for impairments and to perform a specific task.
After each video was played, a a question about the video@ndmputer monitor. Although all subjects watched and jddge
the same test sequences, subjects in Experiment | perfadetedtionandannoyanceasks, while subjects in Experiment Il
performed astrengthtask.

The detection task consisted of detecting a spatially amgdeally localized impairment in a five-second video se@een
In the experimental trials, after each test sequence ieglahe question “Did you see a defect or an impairment?” agake
in the computer monitor. The subject was supposed to chobyss'aor ‘no’ answer. The annoyance task consisted of giving
a numerical judgement of how annoying/bad the detectedimmeat was. The most annoying videos in the training stage
should be assigned a value of ‘100’. The subject was ingdutt enter a positive numerical value indicating how anngyi
the impairment is after each test sequence is played. Amsctab annoying as the worst impairments in the trainingestag
should be given ‘100’, half as annoying ‘50, ten percent@asaying ‘10’, and so forth. Although the subjects were asked
enter annoyance values in the range of ‘0’ to ‘100’, they wele that values greater than 100 can be assigned if thel the
impairment was worse than the most annoying impairmentsdrraining stage.

The annoyance task was always performed together with tieetiten task. The dialog box initially assumed that a defect
has been seen. If a defect had not been seen, the subjecbhitr'sed the mouse for choosing ‘No’ for ‘no defect'. If a def
had been seen, the subject simply started typing in the amueyvalue. When the subject was finished entering datdyeshe/
hit ‘return’ to play the next video. The program did not moveunless either ‘No’ or a valid annoyance value was entered.
Annoyance values less than zero were not accepted, butdlyeaon did not impose any upper limit on the annoyance values.
Non-numbers were also rejected. While the data was beimgeshtthe computer started to load the next video sequerits. A
the value had been accepted and the video had completeddpdu next video was shown.

The strength task consisted of asking the subjects for amagst of how strong or visible a set of artifacts were in the
detected impairment. As mentioned earlier, this type df tagjuired that subjects be taught how each artifact looked |
Therefore, in the training stage subjects were shown a ssmqiences illustrating the set of artifacts being measurethe
trials, after the video was played, the subject was askedtr @ number in a scale with range from ‘0’ to ‘100’ corresgiog
to the strength of that artifact or feature. If no impairngntre seen, subjects were instructed not to enter any niantdgust
click ‘Next’ to go on to the next trial.

After the trials were complete, the test subjects were askéslv questions before they leave. These questions gather
interesting information that could not be gathered durlrgéxperiment. Nevertheless, they represented the sshjecteral
impression of the set of test sequences and could not beiatexbavith specific sequences. However they were useful in
guiding the design of future experiments.



3.3. Statistical Analysis Methods

The logarithm of the total squared error (TSE) is used as tijective metric in the statistical analysis of the psychggtal
experiment. The TSE is given by:

TSE =YY > (YV(i,j, k) — Xo(i, 5. k))*, (1)
E i g

whereY is the impaired video and,, is the original video;j andj are the spatial coordinates, ah@orresponds to the frame
number.

To analyze the subjects’ answers to detection tasks, wecbrstert the ‘yes/no’ answers to binary scores. The ‘yes’ is
saved as ‘1’, while ‘no’ is saved as ‘0’. Probability of Detiea (P,..) of an impairment is estimated by counting the number
of subjects who detect this impairment and dividing by thaltoumber of subjects. Using the probability of detectiaed
we can estimate thasibility detection thresholdf impairments. The probability as a function of the log()$sychometric
function is fitted using the Weibull function, which has an S-shapdlar to the experimental data and is defined as:

Pet () =1 — 20570, @)

whereP,.; (z) is the probability of detection; is thelog(T'SE) of the sequenceyr is the sensitivity, and is a constant that
determines the steepness of the function. The 50% detdbtieshold in logarithmic error energyy, is given byl /S.

For annoyance and strength tasks, the judgements giveretsutfjects to each test sequence are called subjectivesscore
This data is first processed by calculating thean observer scof@OS) by averaging the scores over all observers for each
test sequence:

_ 1 &

MOS =58 = —- ; S(i), ©)
whereS (i) is the score reported by tlieh subject, and. is the total number of subjects. Depending on the task, th&Md
represent different subjective magnitudes and will be rhaoeordingly. For annoyance tasks, the MOS is called MAVdMe
Annoyance Value) since the subjective scores in this cagesmond to ‘annoyance’ scores. For strength tasks, the MOS
called MSV (Mean Strength Value) since, in this case, theyespond to ‘strength’ scores.

We also calculate the sample standard deviation of the score

1/2
1 & N o2
STD = <Z~Z(S(z) -5) ) : (4)

and the internal standard error&f

STD = ——. 5
VI ©)
This is under the assumption that the scores are indeperifleatonfidence interval for the ‘true’ MOS of a test sequesce
givenbyS + t; ./ ST D wherety, ,/» corresponds to the Student t coefficient.
With the MAVs data, we can estimate the mid-annoyance valdé&® MAV, as a function of the log(TSEpfnoyance
function), is fitted with the standard logistic function:

(Ymaz — Ymin)
1+exp (—@) ’ ©

Y = Ymin +
n

wherey is the predicted annoyance and= log(T'SE). The parameter,, .. andy...,, establish the limits of the annoyance
value range. The paramete{mid-annoyance value) translates the curve inathdirection and the parametgrcontrols the
steepness of the curve.

4. DATA ANALYSIS

4.1. Experiment |: Visbility and Annoyance

A total of 16 subjects performed the annoyance and detetgisk in Experiment I. In Fig. 3, the average values for the
probability of detection £;.;) and mean annoyance values (MAV) are depicted for everymodwriginals. From Fig. 3.(a),



we can notice that the average valuedf; were generaly high, indicating that subjects were able teaienost artifacts in
the videos. It is also possible to see that, for the videosk'Bay’, ‘Crowd Run’, and ‘Romeo & Juliet’, the average vadue
of Py, are slightly smaller than for the other videos. From Fig.bB.(otice that the average values of MAV have a larger
variation than than the averadgg.;. Notice also that the videos ‘Into Trees’ and ‘Barbecue’ et highest scores, while the
videos ‘Romeo & Juliet’ and ‘Cactus’ got the lowest scores.

To take a closer look, in Figure 4 we depict tRg., values for each of the videos. Theaxis in the graphs corresponds to
the Mean Squared Error (MSE) corresponding to the four faattstrengths, while thg axis corresponds to the probability of
detection f,.;). The different curves in the graphs correspond to the ufft frame intervals between the | frames (M = 4,
8, or 12). Each curve, therefore, correspondstesagroupwhich consists of 4 artifact strengths, 1 frame intervalrigioal.
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Fig. 3. Experiment |: Average values for the probability of deiect P,.;) and mean annoyance values (MAV).

Notice from the graphs in Figures 4 (b) and (c) (videos ‘Inte€l and ‘Barbecue’) thaP,.; has all values equal to one,
which means that all subjects reported seeing impairmerat fiest cases. It is worth pointing out that these two ssgnhlich
showed the highest averadg.;, present large smooth regions (sky) that make impairmesigeto detect. Videos like ‘Park
Joy’, ‘Cactus’, and ‘Basketball’ (Figures 4 (a), (e), an)) tfave values ofP;.; that grow (and saturate) very fast as the MSE
increases. For the videos ‘Romeo and Juliet’ and ‘Crowd REigures 4 (c) and (d)), on the other hand, have curve’;gf
that increase at a slower rate. This indicates that for teesaes it is harder to detect the artifacts. The video ‘Roameb
Juliet’, although it is a video with small spatial and termgd@ctivity, it is relatively dark and has a very clear cehtfattention
(the couple in the middle of the scene). All of this, makesaitder to spot the artifacts. In the case of ‘Crowd Run’, thia i
video with lots of spatial (crowd) and temporal activity amot a lot of camera movement. Therefore, it is again not easy t
spot packet loss impairments.

One of the goals of this experiment was to understand how dhéesnt (originals), the artifacts (packet loss), and their
characteristics affect the probability of detectidfy ;). Unfortunately, many of the test groups had very high, and we were
only able to calculate the 50% detection threshold for 5 ¢h@t1) test groups: ‘Joy Park’ with M = 4, ‘Crowd Run’ with M =
4, ‘Crowd Run’ with M = 8, ‘Romeo & Juliet with M = 4, and ‘Romeo &uliet with M = 8. Because most of the,.; values
were equal to ‘1’, it is hard to fit a valid model fdty.,.

To get around this problem, we selected only the originalsvitich we were able to detect the detection thresholds (‘Joy
Park’,’Crowd Run’, and ‘Romeo & Juliet). The following fams were tested: mean squared error (MSE), frame interval (M
spatial and the temporal activity (Sl and TI). For these ogjeve fitted the following linear model with interactions:

Py =a1 - ST+ as-SI+as- M+ ay - MSE+
a2+ SI-ST+ayz-SI-M+ayq-SI- MSE+
as3 - ST M + asy - ST - MSE + asq - M - MSE+
ar23 - ST -ST - M + agss - ST - M - MSE.

This model allowed us to analyze the main effects (M, SI, 8, MISE) and the interactions among these factors. The gesult
of the significance tests are shown in Table 1. The factorsuatibn of the artifact), Sl (spatial activity), and MSEr@) had
statistically significant effectsH{ < 0.05) on the probability of detection of the originals testeds@lthe interactions between
ST:MSE and M:MSE were also found to be statistically sigaific These results are in agreement with our observatians. F
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Fig. 4. Experiment |: Probability of Detectior;.;) for all videos.

example, the highest the M value the easiest it is to detedtiifact. The same, of course, is true for the MSE. Conoegrifie
spatial activity, the higher the spatial

In Figure 5, the graphs of MAV for each original is shown. Thegher the packet loss ratio (MSE), the higher the MAV.
The graphs show three curves, each one corresponding tieeedifframe interval (M). As expected, the bigger M (4, 8 &),1
the higher the MAV. But, alhtough for M = 12 the MAV is alwayghier, the reverse is not always true, i.e. for M = 4 the MAV
are not always smaller.

For some of the videos (‘Crowd Run’ and ‘Romeo and Juliet)\i#¥/ curves for M = 4 and 8 are very similar (see Fig. 7),
i.e. subjects did not notice a difference in quality betwtmse two types of artifacts with different time intervaitice that
these two videos are the same videos for which subjects Hfiaclitty in detecting the artifacts (see Fig. 5). Notice albat,
the video ‘Barbecue’, which had probability of detectiorualto ‘1’, had annoyance scores higher than the annoyancesc
given to other videos (compare Fig.8 with Figs.6-7), Thig/nmalicate that there must be a correlation between visjtéihd
annoyance.

Figures 8-9 show the annoyance functions for all test group$ortunately, the fits of the functions were not always@oo
Columns 2 and 3 of Table 2 show the annoyance function fittargmpetersai andn ).

We also performed an ANOVA test to analyze the MAV model arntdregte the main effects and their interactions. The
factors tested were: MSE, M, Sl and TI. The results of the ARG@¥e shown on Table 3, where the statistically significant



Table 1. Experiment I: Table of the fitting of the linear model withénmactions used for testing the effects of MSE, SI, ST, M
on P,.;. Statistically significant terms{ < 0.05) are in bold.

Df | SumSg | Mean &g F value P < 0.05
ST 1 0.0306 | 0.030590| 1.320400 | 0.260605
S 1 0.2875 | 0.287520| 12.410400| 0.001540
M 1 1.0545 1.054470| 45.514800| 3.038e-07
MSE 1 0.3283 | 0.328340| 14.172300| 0.000822
ST:M 1 0.0495 | 0.049470| 2.135500 0.155463
SI:M 1 0.0000 | 0.000000| 0.000000 0.994683
ST:MSE 1 0.3543 | 0.354330| 15.294100| 0.000560
SI:MSE 1 0.0081 | 0.008130| 0.350800 0.558563
M:MSE 1 0.4406 | 0.440590| 19.017600| 0.000169
ST:M:MSE 1 0.0214 | 0.021430| 0.924900 | 0.344724
SI:M:MSE 1 0.0570 | 0.057030| 2.461500 | 0.128316
Residuals 27 0.6255 | 0.023170

Table 2. Fitting parameters for annoyance functions.
Group | Xmean | Beta | Residuals
6.74 | 0.18 0.67

2 6.91 | 0.26 0.69
3 6.79 | 0.48 0.76
4 5.63 | 0.64 0.43
5 5.94 | 0.46 0.46
6

7

8

=

6.03 | 0.44 0.43
6.91 | 0.22 0.21
7.18 | 0.24 0.18
9 7.28 | 0.42 0.76
10 6.45 | 0.32 0.77
11 6.54 | 0.16 0.72
12 6.48 | 0.20 0.33
13 6.44 | 0.44 0.38
14 6.67 | 0.36 0.52
15 6.68 | 0.43 0.30
16 6.59 | 0.51 0.94
17 6.45 | 0.44 0.39
18 6.52 | 0.29 0.14
19 594 | 0.76 0.40
20 6.37 | 0.31 0.15
21 6.32 | 0.38 0.52
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Fig. 5. Experiment I: MAV for all videos.

effects are shown in boldH{ < 0.05). It can be noticed that all single factors have a signifiedfatct in determining MAV. The
model only found the following statistically significantémactions: SI*MSE and ST*SI*MSE.

Besides the most obvious factors like error energy (MSE)aatithct time interval (M), we found that spatial activitgI{
has a major impact on determining MAV. Although temporahaist (ST) has also a statistically significant effect on MAle
overall effect seems to be smaller. Further studies areeubteddetermine what other factors (luminance, contrasntbn)
affect quality.

4.2. Experiment 11
4.2.1. Strength versus Error

4.2.2. Strength versus Annoyance

5. SUMMARY AND CONCLUSIONS

We presented the description, statistical analysis, amdlasions of two psychophysical experiments. The goaldesée
experiments were to study the appearance, visibility, amtbgance of four artifacts (blockiness, blurriness, miggiand



Table 3. Anova Table for testing the effects of MSE, SI, ST, M, andladiir interactions on MAV. Statistically significant terms
(Pi0.05) are in bold.

Df | SumSg | MeanSq | Fvalue | Pr (>F)

ST 1 1576.4| 1576.4| 5.917 0.0174
Sl 1 4511.1| 4511.1| 16.933| 9.83E-005
M 1 | 11316.6| 11316.6| 42.478| 7.34E-009
M SE 1 7371.2| 7371.2| 27.669| 1.31E-006
ST:S 1 175.1 175.1| 0.657 0.42
ST:M 1 1146.7| 1146.7| 4.304 0.0415
SI:M 1 80.3 80.3| 0.302 0.5845
ST:MSE 1 417 417 1.565 0.2148
SI:MSE 1 1626 1626| 6.103 0.0158
M:MSE 1 684.9 684.9| 2571 0.1131
ST:SI:M 1 286.4 286.4| 1.075 0.3031
ST:SI:MSE 1 1608.2| 1608.2| 6.036 0.0163
ST:M:MSE 1 212.5 212.5| 0.798 0.3747
SI:M:MSE 1 6.5 6.5 0.024 0.8767
ST:SI:M:MSE | 1 134.3 134.3| 0.504 0.4799
Residuals 75| 19980.9 266.4

Table 4. Experiment II: Fitting parameters for strength (impainf)eurve.
Group | Xmean | Beta | Residuals
1 6.77 | 0.33 0.61
6.86 | 0.29 0.14
6.83 | 0.53 0.24
5.73 0.5 0.43
5.92 0.6 0.84
5.79 | 0.67 0.46
7.03 | 0.35 0.83
7.1 0.28 0.65
7.19 | 0.39 0.8
10 6.15 | 0.39 1.34
11 6.45 | 0.27 0.09
12 6.3 0.29 0.34
13 6.35 | 0.48 0.35
14 6.77 | 0.61 0.11
15 6.57 | 0.39 0.46
16 6.28 | 0.38 0.22
17 6.26 | 0.51 0.86
18 6.35 | 0.57 0.79
19 5.84 | 0.46 0.46
20 6.3 0.3 0.77
21 6.26 | 0.34 0.76
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Table 5. Experiment II: Fitting Parameters for MSV versus MAV.
Group a b c d err r t value | Pvalue
1 1.040| -5.580 | 0.000 | 0.000 | 8.260 | 0.940| 3.950 0.060
2 0.980| -2.850 | 0.000 | 0.000 | 9.910 | 0.940| 3.800 0.060
3 1.110| -2.840 | 0.000 | 0.000 | 8.940 | 0.900| 2.900 0.100
4 0.790| 14.680| 0.000 | 0.000 | 8.240 | 0.880| 2.610 0.120
5 1.180| -8.120 | 0.000 | 0.000 | 3.920 | 0.980| 6.800 0.020
6 1.420| -33.260| 0.000 | 0.000 | 5.490 | 0.960| 4.790 0.040
7 0.810| -0.510 | 0.000 | 0.000 | 6.240 | 0.850| 2.260 0.150
8 0.780| -2.670 | 0.000 | 0.000 | 0.720 | 1.000| 29.610 | 0.000
9 0.730| 5.350 | 0.000 | 0.000 | 16.240| 0.320| 0.480 0.680
10 0.560| -2.030 | 0.000 | 0.000 | 9.000 | 0.780| 1.750 0.220
11 1.050| -12.920| 0.000 | 0.000 | 4.530 | 0.990| 8.570 0.010
12 1.270| -29.400| 0.000 | 0.000 | 11.400| 0.930| 3.490 0.070
13 0.980| -3.980 | 0.000 | 0.000 | 3.040 | 0.990| 8.250 0.010
14 1.460| -18.150| 0.000 | 0.000 | 4.810 | 0.970| 6.000 0.030
15 0.860| 0.890 | 0.000 | 0.000 | 8.230 | 0.920| 3.260 0.080
16 0.620| 5.630 | 0.000 | 0.000 | 11.140| 0.710| 1.420 0.290
17 1.040| -10.920| 0.000 | 0.000 | 8.250 | 0.920| 3.320 0.080
18 1.460| -34.980| 0.000 | 0.000 | 10.160| 0.940| 3.870 0.060
19 0.610| 15.900| 0.000 | 0.000 | 3.540 | 0.970| 5.430 0.030
20 0.900| 1.070 | 0.000 | 0.000 | 6.580 | 0.970| 5.310 0.030
21 0.880| 4.590 | 0.000 | 0.000 | 14.240| 0.710| 1.440 0.290
AllLin | 1.000| -5.120 | 0.000 | 0.000 | 68.390| 0.870| 16.260 | 0.000
AllQuad | 0.000| 0.790 | -1.630| 0.000 | 67.700| 0.880| 16.480| 0.000
AllCubic | 0.000| 0.010 | 0.610 | -0.030| 67.650| 0.880| 16.500| 0.000
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Fig. 6. Experiment Il - Impairment curves for test groups (a) 1,Zbjc) 3, (d) 4, (e) 5, (f) 6, (g) 7, (h) 8, (i) 9, (j) 10, (k) 11,
and (I) 12.

noisiness) commonly found in digital videos and to undedtaow these artifacts combine and interact to produce tvera
annoyance. The results showed that when the artifact signede presented alone at a high strength, subjects werdoable
correctly identify them. At low strengths, on the other hapither artifacts were reported. Annoyance increased wath the
number of artifacts and their strength. The noisy artifegals seemed to decrease the perceived strength of thesotifiects,
while blurry artifact signals seemed to increase them.

Annoyance models were created by combining the artifacgpdual strengths (MSV) using a Minkowski model, a weigh-
ted Minkowski model, a linear model, and a linear model wittefactions. A comparison between the Minkowski metric
and the linear model showed that there is no statisticatdiffce between these two models. Performing an ANOVA test, w
found that, besides the group (content), all types of attagnal strengths had a significant effect on MAV. The ANQal8o
indicated that there are interactions among some of thfaetrsignal strengths and the group.
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Fig. 7. Experiment Il - Impairment curves for test groups (a) 13,14, (c) 15, (d) 16, (e) 17, (f) 18, (g) 19, (h) 20, (i) 21.
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Fig. 9. Experiment Il - Linear fitting curves for test groups (a) (18,14, (c) 15, (d) 16, (e) 17, (f) 18, (g) 19, (h) 20, (i) 21.
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