ADVANCED THEORY OF STATISTICS

1. Distribution Theory
2. Estimation

3+ Tests of Hypotheses

Lectures delivered by D+ G. Chapman
(Stat 611-612)
1958-1959
North Carolina State‘College

Notes recorded by R. C, Taeuber

Institute of Statistics

Mimeo Series No. 241

! g . = September, 1959 S

1
[l

ERCR NS

‘&35, Yodnaiil. L



@

I.

II,

ITI.

v,

- il -

TABLE OF CONTENTS

PRELIMINARIES

Concepts of set theory « « +
Probability measure .« « o ¢ o
Distribution function (Th. 1)

Density function (def. 8) . .
Random variable (def, 9) « « &
Conditional distribution . . .
Functions of random variables

Transformations .« o« o o o o o
Rieman -~ Stieljes Integrals .

. ® & o - [ ] [ ] L4 *
. o s & s & » . »
* o & 8 o & - @
L d * o L ] - [ ] - L] L]

L J L 4 - L] - - L] » [ ]

® & & & ® & © o o

* B % o o s & o @

- - - L ] [ ) - - - [ ]

¢ & ¢ o » @
L T T S )
¢ o & 2 e @
¢ » s 2 3 0
o o e 0 o 0
e & o o o @
¢ ¢ o 0 o o
¢« @ o o + @
¢ ® & e ° @

o o & o o * s s o

PROPERTIES OF UNIVARIATE DISTRIBUTIONS == CHARACTERISTIC FUNCTIONS

Standard distributions . . ¢ o c 0 6 & 8 & »
Expectation and moments <« s o o o ¢ ¢ o o o
Tehebycheff *s Inequality (Th. 8 + corollary)
Characteristic functions « o s o ¢ « o o o o

Cumulant generating functions (def. 17)

Inversion theorem for characteristic functions
Central Limit Theorem (The 14) o ¢ o o o » o s

Laplace Transform .« ¢ o« c o o ¢ o o o
Fourier Transform . o e ¢ o & © & 8 o
Derived distributions (from Normal) .

CONVERGENCE

Convergence of distributions . s s »
Convergence in probability (def. 18)
Weak law of large numbers (Th, 16) . .
A Convergence Theorem (Ths 18) o o o &
Convergence almost everywhere (def, 20)
Strong law of large numbers (Th. 20) .
Obther types of convergence «+ ¢« » o o o

POINT ESTIMATION

L]
]
.
.

L ]
®

- o [ ] L] - L ] L]

© o ® ¢ 0 © o

L

L] e = * [ J - <

(

® @& ©°© o © o @

5 @ & © e

® s+ o & PN)e e @ a5 o
~

e« o 9 0 o ©® ¢ 2 ® o

e 06 0o ® & & 0 o 0 »

The 1

L 3 [ ] o° -«

© 0o ® o © o o
> ®» ¢ o o o©o ¢
o 0 a3 o © e
9 0 & & & e o
% o ® o © @ @
e o © * ® o @

PreliminarieS o+ a2 o o ¢ ¢ o ¢ o ¢ o 063 2 ¢ o 6.6 5 o 0 o »
Ways to formulate the problem of obtaining best estimates

Restricting the class of estimates

* L] . - ] L L] . L 4 *

Optimum properties in the 1arge « « ¢« o ¢ » o ¢ 0 o o ¢
Dealing only with large sample (asymptotic)

Methods of Estimation
Method of moments ¢« o 0o ¢ 06 0 & o

]

Method of least squares « o o o o o

Gauss=Markov Theorem (The 21)
Maximum Likelihood Estimates . &

.
]
]

Single parameter estimation (Th,

Multiparameter estimation (Th. 23

22
)

)

L]
*
L
[
L
*

properties

o & * o . o
o © 6 D e e
* ® o ° *» o
® © o @ s ¢
® o ¢ O e »

? &6 2 o * 9

o % @& % e o o ® @ 9 O ® @ 9 & o o

(]

4 o ® o o o

] * @ [ ] L] L 4 [ ] ® L ]

*® & o L ] * o [ ] * L] L ] 5 ® ® s o ®* o

® © o © 9 o

55

56
58

61

61
n
65
70



- iii =

Unbiased Estimation

Information Theorem (Cramer=Rao) {(The 2L) ¢« o o ¢ s o o « o 76
Multiparameter extension of Cramer=Rac (The 25) » « « « o s+ 80
Summary of usages and properties of Mele€s o o o ¢ o ¢ o o o « » 85
SUff:LCient statistics (def. 31) o & ¢ o o * 6 86 @ 0 0 o & o @ 86
Improving unbiased estimates (Th, 26) v e s s s s e e s 88
Complete sufficient statistics (Th. 27) e e v s e e e e s 92
Non=parametric estimation (MeVeUe€o) o« o o ¢ ¢ s o o s ¢« « 95

X =e8timation o s o o s o 0 6 0 0 0 6 4 c c o s 6 e s e e e e e 98
Maximum likelihood estimabion o« o o ¢ ¢ o ¢ ¢ o ¢ o 2 ¢ » o 102
Minimum X2 G e 8 5 8 e s e 8 a s 0 0 0 e s e 0 e e s e 102
Modified minimum X2 e o o o % s s 00 e o5 8 s 0 a0 s e 103
Transformed minimum X2 o o 6 o 04 s o s o009 s o o 103
SummaI‘Yoo,ooaooacoooooceoQoeooo'oolO).L
EXamMpleS o« o o.0 o 6 o ¢ ¢ 6 6 6 6 ¢ 60 v 65 06 4 0 0 8 0 105
Minimax estimation o ¢ « o ¢ o o o o ¢ o ¢ o o o ¢« o s 0o o ¢ o 108
Wolfowitz's minimum distance estimation + « ¢ o o ¢ o o o« o ¢ o 110

V. TESTING OF HYPOTHESES -~ DISTRIBUTION FREE TESTS
Basic Concep'bs S & & 5 e 0o D & &6 % & & % & * o s B B & 0 s 0 @ B 113
Distribution free tests « o« o ¢ 0 o e o .« o o ® o o o o o & © 115
. One sample teSt8 4 4 ¢ 4 ¢ 0 0 5 8 6 4« 8 0 6 s s s o 8 0660 s e LLT
Probabili‘by transformation « o« o o ¢ o o ¢ o 0 o ¢ o2 00 0 s s 121
Tests for one sample ProblemMs o o o o s ¢ » o » ¢ s o o o o o o 121
Convergence of sample distribution funct:.on (Tho 31) o o s o o o 124
Approaches to combining probabilities . o e o ¢ o o o ¢ 4 o & o 129
Two sample tEST8 o 5 o5 o o ¢ ¢ o ¢ 8 0 ¢ 2 ¢ 0 000 60 e e o 133
Pitman's theorem on asymptotic relative efficiency (Th. 32) .+ o 140
k-sample testsS ¢ ¢ 0 ¢ o 9O o & O ¢ @ © O © & O ® @ 0 @ O © @ @ l,-l-é
VI, PARAMETRIC TESTS == POWER

Op’olmum tests o o 06 0o 6 06 00 060 5 8 0 0 o 4 0 06 @ ¢ 0 ¢ o 1)48
Probability ratio test (Neymn-Pearson) (Th. 33) ¢ o s o s 1L9
UeMePe U, test (The 35) e °© & 3 3 € ¢ 8 & 2 & 0 ® & 0 @ 9 O 156
Invariant tests . 6 & & & 8 ® O % B & & & 8 3 0O 0 8 0 & € & ® @ 161
Distribution of non=central t (T) o « s ¢ o s s ¢ s ¢ o » 0 ¢ o 163
Tests for variances s+ o « o « ¢« « o s ¢ ¢ & 0 o ¢ 0o s 0 o e v @ 168
Summry of normal testsS + ¢ ¢ o ¢ &6 o 5 o @ © & & & & 6 0 ¢ O 169
Maximum likelihood ratio tests . ® v 2 ¢ @ O 0 & @ e e » o & 8 0 173
General Linear HypotheSiS . « o« o o 6 o 6 ¢ o 0 o o o 2 0 ¢ ¢ o 175
Pover of analysis of variance test o o o o ¢ ¢ ¢ v 2 « ¢ ¢ o+ o 182
Multiple Comparisons ® ¢ o 06 ¢ & 5 &6 0 2 & & 5 0 ® ¢ & 0 0 O & 186
Tukey!'s Procedure o ¢« o c o o 6 0 o o o s 9 ¢ 8 @ b & 186
Scheffe's test for all linear contrasts (Th. 38) o o 0 s o 187
X-teStSoe...e.ooooeoooeooeocqcooooo 191

. Powerofasimplexz-testeo.o.o.....o..-.u 191
OneSidedxz-test.e.aoo......e..e,‘... 192




-i'v‘-

xa-»test of composite hypothesSes « o o ¢ s s ¢ ¢ o o

Asymptotic power of the xz-test- (The 39) v o o o o
Other approaches to testing hypotheses ¢« o ¢ ¢ o o o o o

VII. MISCELLANEOUSS

CONFIDENCE REGIONS

Correspondence of confidence regions and tests (Th, LO)
Confidence interval for the ratio of two Mme@NS « « o o

List of Theorems

¢ 0 ¢ & ¢ 5 & & 6 3 @ & © 2 © © QO @ O O & 6 & o

LiS’bOfDefinitionSooaonuoooooo’ooaunuaouo

List of Problems

® 6 & & ¢ O & O ¥ O 0 & O & & » & 2 O & Y & 0

o @

193

194
197

199
200

202
204
206



CHAPTER I » PRELIMINARIES

Is Preliminariess
Sets A collection of points in R, (Euclidian kedimensional space) = S
Def. y Sl + 82 is the set of points in either or both sets,

Sl + 82 is the set of points in both 81 and 82’

if §, is contained in 5, (Sl < Sz) then S, = 8, is the st of

points in 32 but not in Sl N

Exereise 1/ Show that Sl +8, =8, + Sl
$8; = 85
There is also the obvious extension of these definitions of set addition and multi-
plication to 3 or more sets.
®
2 Sn s the set of points in at least one of the S
nel n
o
l‘ ‘ Sn = the set of points common to all the Sn
nel .

3t

8" 1is defined as the complement of & and is the same as Rk - S

# # %
Lemms. 1/ (Sl * 82) = 35
Proofe Let e denote '"is an element of*®

X e (Sl + SP)* means that x is not a member of eii;her's1 or 8, ,

iceo X £ 8, x£5,,

therefore x ¢ Sl*, X e 8.2*

since x is common to both Sl*, 82*_9 xe Sl* 82* o



To complete the proof
xeSl*Sg* :::}xesl*andxesa*
= xésl andxisz
‘.':_7::[(514-82)

3
:=§xs(81+82),

Exercise 2/ Show that 32 - Sl - 8281*,
° 2
Exercise g/ In R2 define Sl = {x,y M x2 +y° £ l}
i.e. the set of points x,y subject to the restriction x2 + y2 1
{x,y 3 |xlg o8, lyl< 08}

S3 =[xy i x= 0}

Represent graphically § + Sy sl* Sp5 558,8) 3152 - 5,554

Defs 2/ If §,C5,€8; 0 o o o o (an exploding family)

©
We defines lim Sn =2 Sn
n—yw nsl

And if 813 823 S3 o o o o o (a nested family)

We definegd ) ' Sn
n-»co n=1

Such sequences of sets are called monotone sets.

Exercise U/

(a) Show that the closed interval in R, {x,y: Jxl< 1, }y[,‘..-l may be represented
as an infihite product of a set of open intervalss

Angl 8 = {x,yﬁ lxl < 1+ §, v]< 1+§:

(v) Show that the open interval in R2 {x,yc |x]< 1, /y/ <1 can be represented
as an infinite sum of closed intervalsd



«3e-
Anse 8 = {x,yﬁ [xl< 1= %‘, )y)gl-— %

Probability 1s generally thought of in terms of sets, which is why we study seots.
Def, 3/ Borel Sets == the family of sets which can be obtained from the family of
intervals in Rk by a finite or enumerable sequence of operation

of set addition;, multiplivation, or complementation are called
Borel Sets,

The word multiplication could be deleted, since multiplication can be pere
formed by complementation; esgos

(Sl + Sz)* - Sl* 32* (sl* + sz*)* - S‘L 52 (S*)*

Defe L/ A(S) is an additive set function if
1/ for each Borel Set A(S) is a real number, and
2/ if 8, Syy o o o are a sequence of disjoint sets

)] 0
A @s) = 2 als),
ne]j

n=1"

= J

Examples) =~ area is a set function B @"’ 5

ws in Rl A(S) = Jf(}:} dx Al(S) = 5& dx

1

Defe 5/ P(S) is a probability measure on R, if

1/ P is an additive set function
2/ P is non~negative

3/ B(R) = 1

@ will denote the empty set which contains no points, i.e. = Rk*g g+ Rk = Rk °

Ex, 5/ P(f) = 0

Ex, 6/ if §) €8, then P(8 ) < P(S,)

LemnaZ/P(Sli-Sz-!-eoo) sP(sh_L)n»P(se)m@.

Problem 1: FProve lecrma 2.
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Lemma 3/ ng },i& Sn) = ng"o“o P(Sn) if S . is a monotone sequence,

PrOOf: ch-.Slcsacs,oooo.
- Define? s{ = §

= 5-5

S, = 83-52

S'

- N

etee.

W

These sets »51:1 are disjoint; also 2 S = 2 S;

0

P(1lim S = P 28
(n-wo n) r(xfnln)

%
= P(S 8

ns=1 n

0
= 2 P (Sx;) the additive property of P
nel '

= P(S)+P(S) +P(S) +e oo

= P(Sl)*P(Szﬂsl)"‘P(SB"Sz> © o o
- B8
wP (Sl) + P(Sa)

- ¥ Sz)e:cf(SB ‘

= P (Sn) after n steps
= lin P(S )
: n-»0

Case 2: 51382‘:8 o o @« © o

Problem 2/ Prove lemma 3 for case 2.

Def,s 6/ Associated with any probability measure P(S) on B'.L there is a point function
F(x) defined by

F(x) = P(= 00, x),
F(x) is called a distribution function == dof,



GS.

Theorem 1/ Any distribution function, F(x), has the following propertiesd
l. It is a monotone, non-decreasing sequence.
2. Flew)=0)F (+ 0) = 4L
3. F(x) is continuous on the right.

Proof: 1/ For X, < X, we have to show that F(xl) $F(x2)
F(xl) = P(= 00, xl) F(xa) e P(~ 00, x,)
The interval (= oo, xl) < the interval (- o, xz)
From exercise 6 we have that P(Il) < P(Iz)
Therefore F(xl) < F(x2)
2/a/ If we define G as the interval (- @, = n) n<l,2,3,00000

ThenGlDszGB O o & O »

Gelin G = g (the empty set)
xig _F&n) = l%rp_)mP(Gn) = P(nl;_}iglo G,) From lemma 3

= P(G) = P(f) = O
b/ Follows in a similar fashion by defining G = (- @, n)

3/  Pick a point a = for this point we want to show
lim P(x) = F(a),
x—>a
x>a

Consider a nested sequence sn—->0, &, > o,

Then 15{.;\‘{;(0051 + &) = F(a) is the property to be shoun,
If we define H = (= 0, a+ en) n=1,2,350c000

lim H =H= terval (- o0, a)
n->m

lin P(E ) = P(Lim H ) = P(H) lemma 3

Therefore lri!.n_;g'o( a+ en) = F(a)



Problem 3/ Show that
F(a) = lj.ﬁx _E;(g) + P {[a']} Wl:xere [a] is the set whose only point
x<a is a,
Or in familiar terms F(a) = F(x = 0) + Pr(x = a)
Where F(x « 0) is the
limit from the left,

Theorem 2/ To any point function F(x) satisfying properties 1,2, and 3 of theorem
1, there corresponds a probability measure P(S) defined for all Borel
Sets such that for any interval (= o0, x)

P(~ @, x) = P(x),
Proof omitted = see Cramer p. 53 referring to p. 22,

Theorem 3/ A distribution function F(x) has at most a countable number of dise
continuities,

Proofd Let v,be the number of points of discontinuity with a jump > %
then vns_ n which is what we have to show,

Suppose the contrary holds, i.e. vV, > s

Then if we let Sn be the set of such discontinuities, we have

1= P(Rl) > P(Sn) > %1 (n) 2 1 which is a contradiction,

[o4] Q0
Therefore, the total number of discontinuities = 2 v < E n

nel B 1
[0

where 2 n 1is the sum of the integers which is a countable sum,
1
Notation$

[ ] square brackets =~ means the end point is not included in the interval ==
i.e,, an open interval,

( ) round brackets == mean the end points are included in the interval, i.e.,
a closed interval,

(a, b] is the interval a to b, including a but not b,

Defs 7¢ In Ry to each probability measure P(S) there corresponds a unique distributic
function

F(x) = F(x;, Xpy0 o o5 %)

= P { interval (-m,-w,..-;xl,xz,..o,xk)]
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The interval is the set of points in Rk

~-0< X =< x

i 131’29500,k

i

Theorem L3 F(x:L s Xps o 5 0y xk) has the following propertiess

1, It is continuous from the right in each variable

2, F(-co,xz,p..,xk)-F(xl,-oo,XB,..o,xk)Be.a=0
F(*oo, 0y o 0 oy +oo)~l

30 & F(al, 8oy ¢ o o ak)> 0 gee p. 79 Cramer

i.8s, the P measure of any interval is non-negative,

Conversely if F(_xls Xpy o o o xk) has these properties, then there is a unique

P-measure defined by
' MI) = F(xl.v Xps e o oy xk)’

That iS,rI is the interval [‘ Wy =00, ¢ o o; xl, x2, o o oy xk>0

X, (al, a, + hzz}‘

-3

(a; + by, &) ¢ hy)
I

(as g) h,,
a P(al+ q a2)

|

-

In R2
P(I) = F(al +h, e, h2) - F(al, a, + h2) - F(al + hl’ a2) + F(al, az)

= A2 F(al: 3-2)



w 8w

P(I')‘HF(al-e-hlg 52~%h9a3+h3)

"F(ays @ + hyy a3 + hg) = Flay # by, 8y, 23 + by)
-F(al * hl’ a, + hyp aB)
+F(a1; 2y 83 * hB) + F(ﬂlo a, + hy, a3) + F(al *h; ay a3)
-F(a.l, Bps a.3)
= &y Flayy 8y 83)
The proof of theorem L is by analogy with the linear case (theozfem 1),
F(xl, @,y 00 65 +00) = P Cam,xl) )
=Ty (m)
= the marginal distribution of X

(similarly for other dimensions)
Def , 8: .

If F is continuous and differentiable in all variables, then

BkF = f(xl, x2, o e o xk)
&l’ &(2, e o oy &k

is the density function of X, Xp, o o o5 Xy

Exercise 7:

S~

In R, ’ Fx, y) =0 if x <0 or y<£0

=—-(-x—-§-12— for O0<x <1

O<y=<l
=] for x>1, y>1
Can this be a distribution function in R,y?
How can the definitions be completed?



Solution == consider the marginal distribution of x

Py (x) = F(x, + @) 2 F(x, 1) = £3=

o+1)_1
Fo0) = 53

But in fact F(0, 0) = 0
F(0, y) = 0 for all y
Fl (0) =0

Therefore there is a contradiction. F cannot be a proper distribution
function.

If F(x, y) is a proper distribution function, then the two marginal

distributions
Fl(x) = P(x, + )
Fz(y) = F(+ 00, y) must be proper and in this case
they break down,
Problem Ls If we define f£(x, y) =x + ¥y 0sx%41

0syxl
= 0 elsewhere

Find F(x, v), Fl(x)§ and F2(Y)
Show that F(x, y) satisfies the properties of a distribution function.



10 =
Def, 9c Random Variable
¥e assume we have experiments which yield a vector valued ast of observations
X= (Xl, X2, ° o op Xk) with the propertiess

1. For each Borel set S in R, there is a probability measure P(S) which is
the probability that the whole vector _X' falls in the set in S

( P(S) is non-negative, additive, and P(Rk) = l), Cramer p. 1l52-4
' axioms 1 and 2

2, If }-l’ o o ey _{(n are random variables in Rkl, sz, s o oy Rkn

then the combined vector (X;, X5s o o o5 X ) is also a random variable
ian1+k2+k3 veo *kn'

Conditional Distribution

(X ¥ ) are random variables in R

kl.'? sz"

Let S and T be setsinR.kl, sz'

Def, 10¢ If P( X belongs to S)>0, then we define conditional probability

Y¥cT|X<cs) = chxTc Xc8) .

We show that P( Y« T , X €S ) does satisfy the requirements of a probability
measure

l- It is non-negative since P( YcT, XcS ) is nonenegative.
2= It is additive since P( Y& T, X < 8) is additive in R .
2

P(YCTll Xcs)+ ¥ Yer,| xas)-P(Ych+T2lXCS)

3. MY¥<R, X €8) P(Xcs)

P(X <8) P(X <8)

If P(YCT)> 0 we could also define

P(XcSIYcT) » W



e ll -
. In familiar terminology what we are saying is that

pr(a | B) = BB or Pr(a, B) = mea f ) Pr(e),
If we have the corresponding distribution functions

F(x, ¥); By(x) = F(x, + ©); and Fy(y) = F(+ 0, y) then:

Def, 11l: X and Y are independent random varigbles if the joint distribution
function F(x, y) factors into Fl(x) Fz(y) "

See p, 160 Cramer -- he goes first to
probability measures; then to d.f.

notation

== Capital Qatin letters used for ventom variables in general.
-= Small latin letters used for observations or specific values of the
random variables,

Pr(X £x) = F(x)

Def, 1l -« extension?

In the case of n random variables, ’1’ X2, o o oy Xn thess are independent if
F(xl" x2, e o ¢y xn) » Fl(xl) Fa(xa) 2 o5 Fn(xn) P

Note: Three variables may be pairwise independen'b, but may not be (mutually)
independent == see the example on p. 162 of Cramer,

If density functions exist, then Xl, ng ° o ey Yh independent means that
f(xl)s X2, 2 o oy xn) = fl(xl) fz(xz) e o o fn(xn).

Notes The fact that the density functions factor does not necessarily mean
independence since dependence may be brought in through the limits.

y
€sge X and Y are distributed uniformly on OAB B
£(xy y) = 2 |
0<x<l AN
O<y=x ‘ /// // .
S A

Exercise 82 Find F(x, y); Fl(x); and Fz(y).
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' Functions of Random Variabless

g is a Borel measurable function if for each Borel set S, there is a set S?
such that

xeS8! = g(z)es

y=g(x)
is also a Borel set, €080 /<‘

8 /\/‘ N

AN
S~ b =

ol St ¢ St

A notation sometimes used is that S! = g (S) == that S' is the inverse image of

S under the mapping g.

Now consider Y = g(X) where X is a random variable.

Pr(y< S) = Pr(x <81) == P(S')

Therefore, any Borel measureable function, ¥ = g(X) of a random variable, X, is
itself a random variable.

-1
Priy € 8) = [ g™4(8)]
. This extends readily to k dimensions.

Transformationse

We have X and Y which are random variables with distribution function F(x, y) and
a density function £(x, y).

Let « = g (X, T) B = F,(X, T)

Where ¢l and ;252 are 1 to 1 with £, B are continuous, differentiable;
and the Jacobian of the transformation is non-vanishing..

20X oX
o« 2B
Jd =
Y DY
r- K 2B |
We then have the inverse functions = \]’l (#y B)
Y \1/2 (<, B)

The density function f£(a, b) of the random variables «, B is

" f[\f’l(as b); \rg(a’ b).] lJ'
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However under the transformation the limits of the variables will be changed and
these have to be worked out in each individual case.
. (See Anderson and Bancroft .)

Problem 55 X, Y are uniformly and independently distributed on (0, 1).
Find the distribution of Z = XY and =2 1n XY,

Example: For X, Y as in problem 5, find the distribution function of Z = X + ¥,

Solutione Consider also W=X e« Y ¥

{
Consider the joint distribution of (2, W) (0, 1) 1 1)

@
ZrW_y Z-W vy 0 1,0)

Density of 2, W= £(x, y) IJ, = ] =

The limits of Z2 and W are dependent
Ze=eX+7Y

WoXaX

If Z = 2, then W takes on values from (0 = z) thru O to z ~ 0, so that

for 2 =2 =1 =g < WL 2
® £(z,W) = u—%‘z— with Limits =2 < W < +2

z<l

Since we started with only 2, and Wartificially! added W to get a solution, we must
now get the marginal distribution of 2 (this being what we desire).

F,(z) = f}a] dw = f,dwu%w]

2
2
F(z) = [F(t)d’o- -g-- 0<z41

0



- ll =

Z=1,1 If X =z > 1, then ¢ takes on values from
0 (z2~1)=1l t0l=(2z2~=1) or from (a=2) to (2-2)
i e
2=z
£2,(z) = x de = 2«2z
1 =z
z%2
z 273
F(z) = -]2'— + j(z-z) dz = -%—- -(-Z—EE'-)—J
1 ‘1

2 2
1 _ _(2-z) 1 (2-2)
5 + 1= =5

2
=1-...§3:2.‘El.. 1<3 €2

£(z) =z 0<cz<1l
See p. 245, 6 in Cramer
lb l fr -
F(z) £(z)
density
Lr D.F ir
? oo 2
4 . 2 ! z
1 2 1 2
Joint density of %, W = -é- PEES!
f(29 W’) -z <w<2
- 5 1242

Zw2 Rwsl2~2
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. If the transformation is not 1 to 1 (that is J = 0) then the usual devi. s to avoid
the difficulties that may arise is to divide Rk into regions in each of which

the transformation is 1 to 1, and then work separately in each region,

1.8, consider in Rl Y= X2 We sheuld consider 2 separate
cases,

<0 Cranme
X320 Pe 1§7

Riemann-Stieltjes Integrale

Let F(x) be a duf., with at most a finite number of discontinuities in (ayb) and
let g(x) be a continuous function, then we can define

b
Cramer
j g(x) dF(x) as follows? Po Tl=TL

a

Divide (a, b) into n sub=-intervals X5 Xps ¢ o o5 % of length <A

® Let § = % [inf g(X)] (F (%) = F("i~1)]

— AE L oxy gsEey

. . n -
5; - 2 Sup g (X)] [F(xi) - F(xi'-l)]
Ll a g ey

§ <T, but as n-—30m, A—H0 8, is increasing, ’S';' is decreasing

———
———

They can be shown to have a common limite

So the common limit is called the R«~S integral,

: +00, b
Also define { g(x) dF(x) = lim g g(x) ar(x)
8~ =00 ,
=0 b — +00 ’

provided the limit exists

® b
and in general g(x) dF(x) has all the usual properties of the familiar Riemann
integral,
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. If F(x) hes density £(x) which is continuous except at a finite number of points,

then . )
F(xi) - F(xi-l) '-ﬁ(” ) (xi Lo xi-l) xi_l < X <x,i

b b '
lim S = (g(x) dr(x) = fg(x)_f;_(x) dx = ordinary Riemann integral,

a a

If F(x) has only jumps at X5 Xpy o o o, X and elsewhere is constant

b
J g(x) aF(x) = g(x;) Prx = xi'}

a
z the jump

If g(x) is continuous then this limit (the R~S Integral) exists. Also, if g(x)
has at most a finite number of discontinuit_ies and so does F(x) and they don't

coincide, then the R=S integral exists.

X is a discrete random variable if there exists a countable set of
po:ints,xl, Xpy 0 0 o3 X, with Pr(X = %) = p andz(p)ul

2 n i i A
Eelsewhere F(x) is constant, i.e. Fi(x) = 0].
1

T

a =t

Defq 12:

|
]

' b
for such a discrete random variable, the R=~S integral reduces to a sum

. b .
f 8(x) F(x) = Lin 2 gxy") [FGxy) = Plxy 1) ]

® )
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'
where the x;. are points of division of (a, b) and x;_ is an intermediate

point in the ith interval

= lim 2 g(xi) 1
n 0o

- 2 g(xi) P; summed over the set of points x,

in (a, b) == the points where
there is some probability.

Def. 132 X is a continuous random variable if F(x) is continuous and has a
derivative f(x) continuous except at a countable number of points.

re .
F(x,) = Flx, ) = £0x;, ) [ % < xi-lz (the theorem of the mean)

LR |
X $F X

b
| |
f o) are) = 3m 3 oGa)) [pxy) - F(xi_l]
a

= lim 2 g(x‘) f(x,“) A
Wargs R TR

b
e |g(x) £f(x) ax

We can extend this definition to k-dimensions readily by writings

' b : _

g(xl’ 666§ xk) .. F(xl, bioy xk)
- 1y ecey X4,

= 1dim 2 g(X{, coey xl:f) [&( F(xl,eun_;xk)

n-3co

For a def. of Ak see po 8 .
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If F(X), Xp5 » o o, %, ) is continuous and the density £(x,, Xy o o o, xk)

exists and is continuous, then

b
fg(xl, o0 oy Xy) dxl.c. Xy F(Xys o o 05 %) =

a

b1 Dy
yo o 5 g(xl, o e 9y xk) f(xl, 6 o oy xk) d-?‘:lo 9 ‘dﬁ(
% '

X
In Ry J d F(x) = F(x) = F(~ c0) = F(x)
00 )

b
J dF(x) = F(b) - F(a)

a

s I We let b—2> + 00, a~yw=

idF(x) =1

and this extends easily to the k-dimensional case, so that we haveg

+00
dxle o kaF(xl, oo es Xy) =1
«g0
Consider k = 2, and the marginal distributions
+00
Fl(xl) = F(xl, + ) = dez(xl, x2)
D
b

a
a-— =~
b=+
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= lim [Fl(xP b) = Fl(x19 a)]

a=> =00
b‘—} +00

= Filx, v @) = Fy(x, <o)
w l(x’ + OO) w
This also extends readily to Rk
Flm) = Flaps + @y 00 0y + @)
(o]
= fdng x39 3 @ X xk F(xl, x2’ ¢ o e xk)
-w~ .
with xl _held fixed,

If the density function exists;, then this reduces to a k-l integral

+0 +Co

fx) - 5 gf("l'xz"”’”xk)d’-‘a’“"d’-‘k
=00 o« 00 )
Problem 6%
if X5 o o oy X, have independent, uniform on (0, 1),distributions,

show that 3 : ' 2
2 2 in Xi has a ¥ distribution with 2n d.f.
1

and indicate the statistical application of this.
sees Snedecor c¢h, 9 '
Fisher == about p. 100
Anderson + Bancroft -~ last chapter of section 1
From problem 5b 5 _ 5 1nXY = -2lni+-21n¥

 or is the sum of 2 x2

with 2 dof. each
References on int.egrais‘é |
== Cramer pp. 39-40

== Sokolnikoff -- Advanced Calculus =« ch. }
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Chapter II
. Properties of Univariate Distributionsy Characteristic Functions
Standard Distributionss
A, Trivial or point mass (discrete)
PrfX=a] =1 F(x) = 0 x<a
F(x) =1 x>a
B, Uniform (contimous)
F(x) =0 x <0
F(x) = x 0=x<1
F(x) = 1 x>l
C., Binomial (discrete)
n
Pr[Xak] =(k)Pk(l‘-'P)n.k k=152, coos 0O<p<l

n o
Eo k)pk @ - p)™* = [@-p) + p]n =11

n
n
k%)(k )pk 1- p)n"’k €1 is anidentity inp, n

D. Poisson (discrete)

s k
Pr[Xak]=e')‘Z‘-; k=1, 2, s00y @ A>0
ke
00 fes)
=\ .k 2N k -\ A
Ee_z‘n-=e E}q- =2 g e =13
k=0 ki k=0 k!

E. Negative binomial (discrete)
r+k=-1
r k
Pl‘X=k]=(r_l )P(l“P) k=1, 2y soey @
: 0£Lp<l
r is an integer
Examples Draw from an urn with proportion p of red balls, with replacement, until

. we get r reds out, The random variable in this situation is the mumber of
non-reds drawn in the processy to have k black balls means that in the
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first r + k = 1 trials, we got r = 1 reds and k blacks, and then on
the last trial got a redy the probability of this is

@ ( r+k-1) N

=]

This is what is referred to as inverse sampling in that the number of
defectives is specified rather than specifying the sample size which
is then scrutinized for the mmber of defectives,

F. Normal distribution (contimous)

- Lzmp)?

£(x) = 1 e 2 o >0

oo

-® < U £00
- £ X<
Problem 7¢ FProve that

®

Pikwl )
r k
> o P (1=-p) =1
k=0 v L

i.e«y, is an identity inr, p

‘ Hints is in the mame = express (a+b)™in an infinite series,

Def, 1hs If X is a random variable with distribution F(x) and if I g(x) dr(x)

exists, then we define the expectation of g(X) as

Efg(i)] - ? g(x) dF(x)
-®

‘this being the R = S integral,
®

if X is contimuous E [g(x)] = f g(x) £(x) dx
=&

-®
if X is discrete . E [g(X)J -2 g(x,) p,
v=0
Problem 84 Given F(x) =0 x <0
= 1/2 x X =0
-1.2 j +2/2
I 2n G e db x>0

(This is a censored normal distribution == i.e., all the negative
. values are concentrated at the origin)
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Fﬁds B(X)

Def. 15, If E [ X = E(X)]" exists it is defined to be the k™

is denoted p,ke

central moment and

1f B(X)¥ exists it is defined as the k¥

denoted "k°

moment about the origin, and is

Exercise 95 Find E(X) for each of the standard distributions.
Theorem Ss E [ g(X) + h(Y)j = E[g(X)] +E Ch(Y)]
Proofgs Let F(x, y) be the joint d.f. of X, ¥ and F, and F, the marginal d.f,

£ [e0 + )] = [{ (et n(y) Ja, F(x3) = Eg(x)dmk“(xgy) %(y)dmwx,y)

=fg(x)dxF1(x) +fh(y)dy Fo(y) = E [g(X)] +E [h(Y)]
Theorem 6: If X, Y are independent random variables, then

5 [e(x) n(©)] = E[g(xi}E[h(x)]

Proofs See Cramer, p. 173,

Corollarys If X and Y are independent random variables, then

Var(X « Y) = Var(X) + Var(Y)

Momentss % = E(X) = mean
by = E(X « p,)z = variance
My = B(X ~ u?
b, = E(X = u)h’
etc,

for the normal distribution =~ N(0O, 1)

mx? /2

e

2%
2
X" /2
B(x*) = == Zxke x/, &

2n

£(xs 0, 1) =

all odd moments (k odd) = 0 by a "symmetry" argument,
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2 1 o L2
E(X®) = J x" e dx = 1 from integration by parts
loe] .

Bl = 3
or in general 5

® X /2
E(in)= L fxzne dx =1+ 3¢5+ .40z (2n=1)
{en

2n =00
which can be shown by induction.

Theorem 7§ Let 4, = 1, 43 493 ese be the moments of a distribution funchbion
F(x), 1.e0,

= tj X 4 F(x)

e ® k
r
then if for some r>Q, E :-k-;-- converges absolutely then F(x) is the
k=0 ko

only distribution with these moments,
Proofs See Cramer, p. 176.
Examples N(O, 1)

"‘2k+l =0

4y = M =1 03¢5¢,4s (2k = 1)

2k=l(y.1)!

k
§ '(k__f_ag (2 - 1)! =X

i since odd terms drop out.
k=0 k! k=0 2° (k~1)! (2k)!

o o]

. 2.k i k
. D ") =E;§‘LL

k=0 k=l (1.1)1 .2
ovk X x

aE%—(%) m::wE?-c—=ex
k! , 0 k

= exponential series

-r? /2
= e

T

s

P T s -
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. E “k converges absolutely for all r, therefore the only distribution
& o

k=0 k! with these moments is the d.f. with the density
-l -x2/2
£(xX) = == o i,0,, the normal
2n

Problem 93 Find the moments of the uniform distribut:.on and show that this is the
only d.f,. with these moments,

Theorem 83 (Tchebycheff!'s)

If g(X) is a nonw-negative function of X then for every K>0
Pr[g(x) k] € EEK(X ]
0
Proofs E[g(X)] = USg(x) dF(x)
Let S be the set of values of X where g(X) =K

P [g(X)} K] f(x) ar(x) since the smallest value of g(X) in S is K

K de(x) =K rr[g(n)y K]
eor [pmp] < Bla ]
K

Corollarys The above (th. 8) converts readily into the more familiar form

P [)x - wlzko]eiy

Proofs (See p. 182 in Cramer) setting

g(X) = (X - H)a K= 120? E[g(x)‘} - o
2
e[ (X - w2k 0)2_] < o7
S ko

taking the square root of the left hand side
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Pe[lX = uf>k o]<%

Iheorem s If X 1is a sequence of binomial random variables with parameters n, p,
then given any >0, §>0 there exists an n, such that for n>n,

e((X/n-pl 3] <6

(which says that if you take larger and larger samples, then the observed
ratio X/n approaches the true value)

Xn = mumber of successes in n independent trials with a probability of
success in each trial = p

oz(xn/n) = np(%-p) = R(1=p) < %ﬁ

Proof's c§ = np(lep)
n n n

From corollary to theorem 8

Pr lic-g-pl?kcr]<%
n Tk

i | RER) - o n=E——§-—(l')
Hence if n is chosen this large, from the corollary to theorem 8 the stated

probability inequality follows.

Notes Theorem 9 could be rewritten

X
1 (1~
Prﬂ—g-p{>e]<~—-——§ ne=
n - S lne 8 &
5 = p(1=p) < 1
2 < 2
nes bn ¢
Characteristic Functionss
¥ ixt
Def, 165 Characteristic functions ¢X(t) = ‘q!e dF(x)

or since emb = cos xt + 1 sin xt

¢x(t) = Oof cos xt dF(x) + i 3 sin xt dF(x)
o -
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the successive derivatives of ¢ (t) when evaluated at t = 0 yield the moments of
F(x) except for a factor of a power of "i",

Lgw)=g' @)= | ixe U ap(x)
dt ® :

g' (o) = :.fxeodF(x)siu

g (t) = g (1x)? &*** ar(x)

¢" (0) = 5.2 3x2 aF(x) = i2-<2

in general

¢ (0) = i¥ B(EF) = iF_

the moment generating function operates in the same manner; except it does not include
the factor "i", and is therefore not as general in application,

| %t D xt
MOF = M(t) = E (e*%) = S e*® dF(x) 4if this integral exists
«Q0

and operates by evaluating successive derivatives with respect to t at t = 0

Lemmas if E(X ) exists, then ¢k (t) exists and is contimuous. The converse is
also true,

Exampless

1, Trivial distributions Pr 5( = a] = ]

m 2 - [ ]
g (t) = felm dF(x) = 62%% x 1 = o12P

2, Binomials

n
N itk/n k nwlk
g (¢) E" e (k) p (1-p)

-2 ( ,’:)(peit)k @-p)** . [peﬁ' + (l-p)] n
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[

k

N 3. Poissons # (t) = 2 ottk g=A A
) k=0 X

.S G o1tk

k!
it
= oM gh®

it

A (e™” «1)

= e
L. Normal (0, 1)s
® ) 2 - xa = 2itx
g (t) = —=— feltxe'x/zdxa-}— e dx
J2n = Jen
J _f oo s (18)? (i;)a
e

1

52 enmm—

n

setting y = x = i'b*

{ A ey
= ———— dy e
A

R

(Note the term in curly brackets is the integral of a normal density and equals one)
|

# The validity of this complex transformation has to be justified, See Problem 1l,

¢ dx

If X is N(O, 1)

g (t) = e"t2/2
g ) =~ 2
7 ) - 2 P
g () =-1
E(x%) =i% 4 =1
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Problem 10 Prove

® 2
. Je""/z dx = 1
\/211 .

Problem 1lls Show that

2 2
e et UE X /2 dx = e "f// 2
J-En— =0

without using the transformai;ion used in class

Hints e %® = cos tx +1 sin tx

Theorem 102
iBt '
Pigap (®) =" Fy (40)
;herg X is a random variable with a d.f. F(x) é.nd a characteristic function
(t

. Proof's Y = AX + B where A, B are constants

¢ (t) = E(emr [ 1t (AX + B)]

- g (P GitB) | it p(ata8),
¥ ¢X (At)

1Bt
e #y(at)

if X is N(O, 1) then Y = 0 X + @ is N(u, 02)
py(t) = g (o 4)

oL el

Def, 178 The cumulant generating function, K(t), is defined to bes
K(t) = 1n P(t)
- Examples For Y which is Ny, o°)
® 22

K(t) = ity = -2--
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Notet For further discussion of cumlants see Cramer or Kendall.

. Noteg

Originally cumulants = semi-invariants (British school name =
Scandanavian school name) =~ however, semieinvariants have been
extended so that now cumulants are a special case,

Theorem 112 If le X2, coegy Xn are independent ranc}om variables, then

n
g () = ¢ (%)
zx i==l X

(the c.f. of a sum = the product of the individual c,f.)
Proof s '

. [,e(itE Xi)]_ . [ 1% eitx2 i-tx;x ]

cee &

= E[ itleE [:it ]neo E[ itXn] by independence

= ;¢(tf.¢(ﬁ;ouv g(t) = 1] g (¢)
¥ Xl : ,;sz ST Xn - i=1 X

. Example? L‘.‘Xi are NID (p,l, o, ), then the c.f, of ¥ ;Xi
o? 2 '

To justify this last step we need to show the converse of F(X)—> ¢X (t) i.e4y that
¢X(t) ~—>F(X). Therefore, we need the following lemma and thearem,

Lemmas P
-1 h<0
un & ( SBBE 4. o n=o
n +1 b>0
I~»w®
o .
Proafs  J(«, B) = J e 2'125’5"}- du 420
©
E-g = (f( e™™ cos pu du Notes Differentiation under the
2 integral can be justified,
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= —23(-—5 see tables or integrate by parts twice

f dp j—-é—-g dg3=arctan-§-+0

then J(«, 0) = "%, 0 , du = 0

ar¢ tan 0 +C =0
0+C=20
o.oC=0

J(4s B) = arc tan -E—
Let «—20, ard put B = h, then

lim J(«, h) = arc tan ¥ o depending onh + or -
XK= 0 n
= h>0

I _’%. h<0
Theorem 123 If F(x) is contirmous at 2 « h, a + h, then

T . =ita
F(a+h)nF(a-.h)==1im—3‘!- Tgi"ﬂg{‘ie g (v) dat
Tow" -

oI 1 ~itx
It g‘;d(t)ldt(w thenf(x)=§-,-t- z e g(t) dt

® itx
Notes Recall that ¢ (t) = Og e  f(x) dx Eief, 16]

Combining this with the above theorem means that given @(t) or £(x)
we can determine the other,

Proofe
T . «=ita
Define J = -1%- f E&E.EEE e @(t) dt
T «~ita @ itx
1 sin ht
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Interchanging integrals (reversing the order of integration) which can be justified
this becomes

Noteg

Notes

T . «ita itx
=_}.{. ‘j’ 15__,5._31““" e e dt (d F(x)

R lit(x - a)
(3] T e
a -3‘-'- S 15 Sl: hy [cos t(x = a) + i sin 'b(xna)] at { dr(x)
«Q0 - -
. T
The g%_n sin term is an odd function 4% =0
Th gin . . . z 2T
e - cos term is an even function %« =
@ T _
- -%’- J 2 g -s-}%-m:'- cos t(x~a) dt dF(x)

2 cos A sin B = sin (A4B) = sin (A = B)

7= ;J;__ ::{ { Tc; sin t(x-a-l-h) - gin t(x~a<h) dt}d Px)

t

now take the limit as T—>ow
using the lemma just proved, with that h = (x-a+h) here

I

|
brackets) 0] | n

|

|

a=h x=a+h
| !
For sin t(x-a+h)  x=a+h<0 - %~8+h50
For sin t(x-a~h) , x~a=h <0 Xma=h>0
. | no n b4
For x in each region both = = 5 lJ.s'l', part > ] both = V)
I
i
I n i
|2nd part = 5 |
! {
Whole integral (in }
| 0
I
|



i,8,, in the region a -« h<x<a + h

1 T2
T gin t(x = a + h) dt = S%-sint(x-a-h) dt = n

0
elsewhere = 0
a+h a=h o
There Ja f n dF(x) + f 0. dF(x) + f 0. dF(x)
n
a=h - a+h

= F(a + h) - F(a = h)

Proof of the second statement in the theorem!
(4] .
. . =ita
Fla+h)-F(a =h 1 sinht "~
(ash) —Faoh) . 1 ( SRht o7 o) at
=00

taking the limit of both sides as h—>0

@® ; ~ita
£(a) = 5= ii-_:o SO o g(s) at
® \—’“C___/g 1

therefore

('s) =ita
£(a) = 5 J e g(t)dt

Problem 128 Let X:.L (1i=1, 2, oeoy n) have a density function given by

8wl
f(x) =ax a>0 0<x4l
n
Find the density of Y = ” X X, are independent

i=) 1
(may need the result of Cramer p. 126)

Problem 13¢ Define a factorial moment

E(x[r]) =B [x(x-l) ase (xwr-tl)]
Define
@ * °° x
F(t) = og (L + t)" dF(x) as the factorial moment generating function,
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Find *
F7(t) for the binomial ard use this to get the factorial moment s,
-]t |

Problem lhs Ifg(t) = e find the density of £(x) corresponding to fo Find the
distribution of the mean of n independent variables with this d.f.

Theorem 13¢ A necessary and sufficient condition that a sequence of distribution
Tunctions F tend to F at every point of contimuity of F is that g n? the charactere
istic functlon corresponding to F , tend to a function, # (t) which is contimous at

t = 0 lor tends to a funct:.ongf(t) which is itself a characteristic funct:.on_]
Prooft Omitted =~ see Cramer p. 96-98
Thisrtheorem says, if we have Fl F2 F3 vanes P

By Bo B3 coeco @

We go fram the F, to the , == observe that the #, tend to a linit leor exampL

the normal approximation to the binomialj -= observe that the limit is itself
a characteristic function [of the normal] -~ then go to F by previously
discussed techniques,

Theorem 1lh: (Central Limit Theorem)

It Xl, X2, 3 eeces are a sequence of independently and identically distributed
random variables with a dlstrlbrutlon function F(x) with finite first ard second

moments {say mean | and variance ¢ ]thens

l-= the distribution of p =\/n ( % Exi - p,)tends, as n =>m, to the
normal distribution with mean O and variance 02

2w~ for any interval (a, b)

: 1 bf -'b2/2o
lim Prla<y <b] - e dt
n-w n J2n G 4

3== the sequence [Y nvj is asymptotically N(O, 02)

Proof: Denote the c.f, of X, as @ (%)
AN

20 - &0 -

to get the c.f, of Yn =Jn - = o

N

o o[ # 0 3
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if we expand #(t) in a Taylor series, we have
¢(t)=1+io<lt+12-<2t2/2+remainder 4 = °<2=02"‘<’2

=1 +1pbe (48 +P) 22 + R(E)

where }ﬁ_g_)_ —~3»0 as t—>0
t

i
In & (t)=n[1ne i:’% +1ln ¢(%.)]
=iﬁ-ut+nln¢(;i%)

2
= m +cr)t t
ipn t+n ln[l-»- = (ﬁ)]
2 .3 .k
Not’e: ln (l + X) = X 3%_ + % "'xﬂ (XYY
2 ,
=x«:2c-2.+R,
t
where _52'*50 as x—>0
.: 2
‘ setting x:iu\-l_n-:‘_l_-(uz-boa %+R(%)Weget
ing, (t) ==3iJn gt +n 1 w(u2+02)§2-+R(5-"-)
n Vi Jn
42 (t)

2
-.%‘.(iu-t-) +

{n
C denote this by —372

5 enn(fy) A
t Rﬂl
lim in (t) = = —-2-- since lim Y58 =0
n—o@ ¢Yn n—® %
. R(se m-) t2
. 12 lim
o . 2 n-> @
0% lim ¢Y (t) = e (\/‘>
nyo since as n-ym, 3-%-__——)0

which is the characteristic function of the normal
distribution N(O, 02)
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Notes See Cramer p., 21L=215,

The theorem says, for any given & there is some sufficiently large n(e, a, b) such

that
b, <t /20
a( e dt

Ze

Pr a(Yn<b] as
J2n o

Problem 15¢ Let X be a Poisson random variable with parameter A, Show that for any
(a, b)

lim Pr| a (b =—-—-
A0 < ‘ ] {

(»)
a. directly -~ use Sterling'!s approximation
b. by characterigtic functions see Feller ch, VII

Problem 15 ~= says that the standardized Poisson random var 1able is asymptotically
normally distributed N(O, 1) | \
-\t

Cauchy Distribution == see problem 1l =-= has no mean or variance since e is not
differentiable at the origin
b t
- 1 X 1 2
lim = —= dx = 7= In(l+x") ‘
g (v) b a( Lax 2-5 a

a—wo
= 00 w O

therefore E(x) does not exist for a Cauchy random variable, even though the distri-
bution is symmetric about the origin.

Theorem 152 (Liapounoff)

If Xl, Xps oo Xn are independent random variables with means My and variances
cri and with :
n

‘ 3
P
pi=E/Xi-si/3<co and 1lim L—-——=O
N =300
(§ 2) 3/2
%

then AX _Eu
is asymptotically N(O, 1)

"G

Proofs See Cramer p. 216-217.
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Problem 168 Define M'(t) = E(X") as the Mellin Transform
If X has densn.ty £(x) = k £ 0ex4l

then M ('tr) = m

If X has density £(x) = = K> L 1n x 0<x<1

then M'(t) = %)2

Use this to find the dens:r.ty of Y = X1X2 where the X:L are independent and have
density £(x) = k x kel

State a theorem necessary to validate this approach.

Laplace Transforms

=gX

E[e“sx] = £(8) = ;? e f£(x) dx if f(x) =0 x<0

== exbtensive uses in differential equations

== extensive tables of the L.T, in the literature == tables for passing from
the transform to the fuction and vice versa -= see Doetschs Tables of the
Laplace Transform,.

Notes Replacing (s) by (=t) gives the m,g.f.§ or by (=it) gives the c.f,

Fourier Transform -- the mathematical name for the characteristic function

itx
= E [e :‘
We have previously noted that if X, Y are NID with means My and variances o‘i
then 2 = X +Y is normal N(p,l Ho§ 02 + 02)5

There is a converse to this "addition theorem for normal variates" to the effect
that?
if 2 = X + Y where X, Y are independent and Z is normal, then X, Y are both

normal -=~ see Cramer p, 213.

Derived Distributions (from the Normal and others):

name density n cof. E(x) o2
-1 - n
2 -x/2 2
Xy LS x' (1= 2it)-§ n en

2" r(3



) n
. 2. .2
- if Xl, voes Xn are NID(O, 1), ? Xi is X,

== it has the additive property xﬁ wn = xri + xi

Gamma
a* o X x)“'l (1 - it - A ?:z
r(n) ' a a a
x20
-~ x%l) is a special case of the gamma
== = Psarson's Type III distribution with starting point at the origin.
Student's t %?ﬂ)
(n) 1 . T 1 —— 0 n
yon B £, & -2
M@ 1+ E)7F (n>1) (n>2)
ol Lvn where X, Y are independent, X is N(0; 1), Y is xi
Y
== t with 1 d.f. is a Cauchy distribution
, m.l
o n/2 v "
F(m,n) T(E?E) (m) X z — n 2n°(m + n = 2)
g ’ n m+n ' -2 2
I3 M3 N\ (. B gy 7T " m(n-2)" (neh)
n 4
x>0

= if X, Y are independent, X is xﬁ, Y is xi, then F = -%é-!;—

Fisherts z is defined by F = e2z see Cramer p, 243.

Beta
B(p>q) prg) P Q-1
o) o 1) e £ Eerery
I'p:Iq: p+a {p+a)*(pHq
0<x<l .
ZF
..puttingp=%oq=§, we get B = - nm
’ 14+ H F

-=» gee Kendall for the relation to the Binomial,
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Gamma functiont

«Q =X n=l
I'(p) = Qf e x dx n>0

I'(p) =  (p=1) I'(p~1)

if p is a positive integer I'(p) = (p-1) !

1im I(p#l) .4
p P

p>® p° e 2np

Stirling!s Formula

(o) . g

p I(p)
p-po

lim h Fixed

Problem 17¢ X and Y are NID (O, 02). Find the marginal distribution of

1. r= /% +7°

2, © =arc tan Y/X

Problem 182

Cramer p., 319 No. 10.




Chapter ITI
Convergence

Tonvergence of Distributions:

a. Central Limit Theorem {theorem 1l) :
b. Poisson distribution =~ (problem 15) «= if X is a Poisson r.v., then

- b

2
= -3.'- f e‘t /2 dt
Va;

a

1im Pr|aci=
A ~—>00 A

Proof: 1. By c.f. is straightforward =- gsee sol. to problem 15, or p. 250.

2. Direct
M«bﬁ' where P(a,b) is the above -
; K
- A A
P( a,b) )‘Za e ﬁ‘t‘ probability statement.
Let K = A + Y% x x = B2}
x
- L+ AX= K—-—-——-a-—+ 1=
'ES
Ax = .-.:.L..
b I

' Y }\)\ + XA
(a5 »=8, (n+ xfi)
uging Stirling's Formula:
nt

nne‘““(zms):; 7 =1+ 60)

where 9(5)-—3 0

as n—> o

b
Ze“)‘ NEES
a (2")1/2(l * xﬁ)}\ + xﬁ * 1/2 e-(l + xﬁ_)

b
L1 N )
Ve ;(1-:- XM (14 xxf' T(l»,x yL/2 f1+9(x)]

Uy



Ce

d.

1,0

1 . 1 -x2
Notes: 1imit - = " ., limit ——— = e
l‘?CO(l_l_ a;_z)xﬁ XA=2u—>0 (143‘{”)11'
u
X -

xVk
Limit 1p === = limit xﬁ-)&n{}u{\}

A ® (1+ _:_:_)x A
A

. L PEIE AP ]
1amit i[;c/i-uﬁ, R+ )

2
X
5T
b
(a,b) z ax(1 + 97(1) vhere Qi(x)_ﬁ 0
/\‘ : b as A —>ow
i st a_:!-_ e’ 4 /2
hence the 11% -}ooP(a’b) 1lim [iemexm sum o ; A;}

f =X /2
Note: For a similar proof for the binomial case, see J. Neymans First
_ Course in Statistics, Chapter L.

If X has the x° distribution, then

Xw=n
e ig A N(0,1) 28 n ©
Jen K

Proof: See Cramers p. 250.
If X has the Student?s distribution with n d.f., then

1«0
n

h=?

Proof: Deferred for now; a proof working with densities is given by
Crmr s Do 2500

is A N(0,1) as n S

If X has the Beta distribution with parameters p, @ then the standardized
variaste is A N(O,l) as p -] ®s q —» 00, and p/q remains finite

Note: X has mean = L

Proofs Omitted

e

S

. K
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Problem 19: X is a negative binomial r.v. (r,p)

a. Find the limiting d.f. of X as p—>1; q-0; rqg—>)\ (finite).
b. State and prove a theorem that shows that under certain conditions a
linear function of X is 4 N(0,1).

Problem 20: X,Y have a joint density £(x,y).
Define E [g(x) [ Y] a’mfm g(x) £(xly)ax
where f(x [ y) = f(x,y)/fl(y). fl(y) is the marginal density of y.
Show that E[ g(X) | = B E Ce(n)f]

Use this to find the unconditional distribution of X if XIY is B(Y,p) while
Y is Poisson (\). '

Convergance in Probability

Def, 18 A sequence of r.ve X5 Xps eews X 1s sald to converge in probability
to a r.v. X if given “&,° § there exists a number N(¢,s) such that

for n > N(¢,5) C
rf|% ~X|>e]<s

which is written &‘_P—? X u ’; " indicates converging
- ' in probability.

As a special case of this we have Xn'—‘l‘;? ¢ if given & § there exists
N such that for n > N
PrDJg,‘ - cAA7Asj< 5

Further, in this notation, theorem 9 may be written:
if Xn is a binomial r.v. with parameter n, then

2o
n P P
Theorem 16: If X.l, X2, “"Xn are a sequence of independent random variables with
means iy and %ariances ag then if
. | Zaz
T i
n
n

1 §
h =& ;(Xi““i) $ 0

then




-)j2-

Proof: By the corallary to the Tchebycheff Theorem (thm.8)
- n
1 1
rrl| EZ(Xi - )7 K %nflégﬁ

given &, s choose % = -g-< 8
. K
_ n
Nowc§:'= }-5 ;o§—>o asn —) @
n n

Put K =+ }-25 and take n sufficlently large so that

with this choice of n
n
1 .
e[| 5 Z (% - ) >e Jcs
2

. s 2 *J
If X1’X2’X3’ eseov have the same distribution, then GYn =

ando§n=§3—)0 asn —) o
so that in this particular cases X —>H
Theorem 17: (Khintchine) (Wsak Law of Large Numbers)
If X'.I.’ X2, o ..,Xn are independently and identically distributed r.v. with
mean W, then X —-P"? e

Proofs (See Cramer,; p. 253«l)

gt) = E(ei'x??)'
i3 in)t
Ale) = He )= [ge®] "
in Q%(t) = nln ¢(§) = n 1ln [1 + iu% + Rj

where %——%0 ast— 0



]j3=

T P
¢§-M(t) e ¢i()

t

Ing ~ (t) = =it +nln(l + ips=+ R)

X~y
Note: In(l+x) = x + R(x)

where %’290' as x—5 0

s -t n{ili-% + R(E) + BV

net
RUR) %
= -—E'—' + which as n——)m '!—1—?0
n t
R#(=)
so -='%B== —>0
n

hence ¢ () 21 as n—Jo»
T wp

but if @#(t) = 1 F(x) =0 x<0
=1 x 7,0
ors in other words, the limiting distribution of X = & is the
trivial d.f. which takes the value O with probability 1.
Questions

If X5 Xy Xys eees xn-—-lf/'x

Dopi

My B, vee By —=>Uu 7

2 . 3
2 2 2 2 2
Do O'l 02 0'3 s50 O'n "'——? -] 2

.., does X — 57 X dmply b-—u 2

Not necessarily,as shown by the following example.

Examples
Let Xn be defined as followss
X = n° with probability

[ =1 {2

= 0 with probability

1
i1
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2% X0
n p
E [an =0(1-%)+n2(%)=n
as n — o E[XJ——-;’ ®

P Problem 21: Let X be the r.v. defined as the length of the first run in a
series of binomial trials w a%th Pr[ success ] = p. Find the distri
bution of X, E X s and

Problem 22: Let x2 s +e0X_ be independently uniformly distributed (on 0,1
- Ic;g'(o ¥ = nin (X5 Xy +oes X ). Find the d.f. of ¥, ECY], and
Y

Find the asymptotic d.f. of nY and of -—"ia%g-l .
s LoBE) 4 w(0,2) as n — oo
b4

Theorem 18: Let X.,Xz, '"’Xn be a sequence of random variables with distribubic
funOtiOnS Fl(X), Fz(x), 'XY3) Fn(x) ‘—>F(X)- Let Yl’ Yz, ooo,Yn be
a sequence of random variables tending in probability to c.

. Define: Uy =X +Y; V,=XY; andW =X /T

a) the d.f. of U — F(x~c); and if ¢ 70
b) ‘the d.f. of v > F(x/c)
¢) the d.f. of wn——> F(xe)

Proof: All three parts are similar =- see Cramer p. 25L=5 for proof of
the third part.
Proof of the first statement (a): .
Assume x -~ ¢ is a point of contimuity of F. Let & be small so
that x = ¢c £t & is an interval of continuity.
Let sl = the set of points such that
Xn+¥n§ X3 ‘Yn-.-c’g_e
82 = the set of points such that
L+ Y <% )Yn-c\7 e
= Sl + 82 = the set of points such that
Kt Yy S



ws)) Gen

’ . < . Z . ‘
® Ksp) = Pr(% + Y, %x |1 ~c|re]|Sre[ |1 ~o)7c) uhich tends to 0 as
n-»>0, therefore we can choose n; so that n>ny implies P(Sz) 4-(35'
In Sls C - s<rY 0 + g, thus
qunc-&s)--<F(xuc~s)=P[X x-(c+s_2j4-
P(Xn"'Ynf—:x) =P(Xn='vx-Yn) .
_,__.PEXn, x »(c e)] Fn2[x c % 534 F(x =0 + &) 3
where ny is chogsen so that when n}rl2 Fn(x) - F(x)L-g in the vicinity of c.
Therefore, in Sl i
F(x =0 &) -a§<P(X + Y x)LF(x~c+ e)+%
& can be chosen so that F(x @« ¢ + &) m F(x = ¢ = e)<-§ for n ymax (nl,nz)
Noi?ing 't;hat.Pr{Unf x]a Pz{xnI + Yn_.fo= P(Sl) + P(8,), we can write:
. -5§-=-3§-~-§§F(x-c-e)~-§+O-F(x-c):‘:.

B(S,) +B(8,) = F(x = ¢) = B[ X < < x] = P(x = o)

= - - - o - L §=
F(x c+s)+3+3 F(x c) 3 %-1-3‘__‘_.5

which makes use of F(x ~ ¢ + s) «-F(xe~c)=

Wi

F(x-c-;e)~F(x-c)=~-§

‘This then reduces to - §< Pr [X ‘-‘x-] - F(x=c)<s
hence I Pr):.X xj - (% c)]‘s for n7max(n1,n2)

which is what we set out to prove in the first place.,




Theorem 19: If Xn‘—l,—? ¢ and if g(x) is a function contimuous at x = o,
g(%,) ~57 &le)
Problem 23;: Prove Theorem 19. (work with fact that g(x) is continuous)

Example of Theorem 108:

Show t, is A N(0,1)

'bfn = ’/-H-(-}Léf)- where Xy9Xps wooe 8TO independent with mean {, ver 02
)
=2
2 Z(xi_ « X)
n® Thn=1
o - 8
t = ﬁ%—iﬁl . -§— = V-E(X—O_;-&l -5-2 which is in the W_ form
- n :
- S
g = XE=u) Y a2
n c n o

X is A N(0;1) by the central limit theorem.
Hence, if we show that s
n y
=5 P71
then the statement that t is A N(0,1) follows from theorem 18(¢).

72
2 Z(xi-x) Z(Xl-u)zun(i-u)z
n

s
?a (n-el)crE - cg(nml)

Z(:~ -LL)Z S RY
- nn-T Xl?" . E%SXOM)

no

ni=l

oo

n l/nZ(Xiau)z . fia-u)aj
2 ' 2
(s} [+
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by Khintchinets theorem (No. 17) this sample mean tends to 02

ioeo, %\‘ Z(fi Ll “)2 P 50'2

therefore, the first term "“‘1;‘? 1

E%f\—)l as n —) o

hence, it remains to show that

X - u)? ._._5-) 0

()
but we know that "i‘ - U }———}.,—9 0 as n — o by Khintchine!s
thecrem (No. 17).

2
2 s

Therefore, ﬁz—%ﬁ)— -—5‘7’ 0 and -%w ~—'-“1;’9 1
a o

S,
and thus by another application of Theorem 19 -2 —%¥ 1

Note: The tn in this case iz Student?s distribution if the x are
independently and normally distributed =~ however, this is
for general tn'

Re Theorem 19, see: Mann and Wald; Annals of Math. Stat., 19433
"0n Stochastic Order Relationships" e for extending ordinary
limit properties to probability limit properties.

Misc» remarks: On the Taylor series remainder term as used in the
proofs of theorems 1l 17, and on p. 37 =~ see
Craner p. 122.

If £(x) is continuous and a derivative exists,then we can write
f(x)=f(a)+(x«-a)f?[ai-e(xa-a)j 0<e =1
= f{a) + (x ~ a){i"(a’) + f1(a+ 8(x~2a) )=~ f?(a)J
& f(a) + (x = a)f'{a) + R
" where R = (x = a) [f‘(a + X =>a)) = f'(a)j



1,8

= ﬁ - = f'[a + O(x = a)j - £1(a)
£t [a + O(x - a)j - £1(2) —ﬁO

then if ft is contimuous, as x ——> a
lim I - R, 0 ie8s9 R converges to O fagter than x = a
—a X=a
A
Remarks If there existe an A such that f g(x) dF (x) <e

«(QD '
and [wg(x)an(x) <e

for n = 1,253y 0040 then if Fn-~P-> F

-Q0
J g(x)dF (x) —F ‘[sﬁ g(x)dF(x)

=0

Ref. Gramer, Po 7).].

Questiont Under what conditions does E(tn) = 0 for all n
or does E(tn)—-ﬁ 0 asn-—— @f

(t, is defined as in the example illustrating theorem 18)

Counter=examples - .
2
Define p, = . 1 e"x/2
Vew 1= =

X_ is normal (0,1) except on the interval (1 - , 1)
and Xn = 1 with probability P,e
Then with probability (pn)n Kps Xps eees X =1

in which case t M =

0
therefore E(tn) is not defined.

Problem: ZQs

4 2
X is Poigson A\s then Y = Q{—%}-L

is asymptotically x?l y as A~ ®



Convergence Almost Everywhere:

Def. 19: A sequence of r.v., xl, XQ, ceo—>X a0, if given &, § there
exists as N such that

Pr[lxj ~ X\< e j = N, Nal, N+2, uu.,] Z 1 5

Ref .s Feller, Chapter 9.
Note: Comvergence almost everywhere ls sometimes called "strong convergence!,

Convergence in probability is sometimes called '"seak convergence',

o NSO
Examples (of a case when Xn p ¢ but Xn-—7L) ¢ a.e.)

X = O with probebility 1 - =

X_-= 1 with probability %

the X!'s are independent.
(1) To show X, P 70

HD%uO\?#] - & foranye<1

n
and %‘- can be made arbitrarily small by increasing n.

(2) Xn7[—% 0 a-:e.

PrD}g]mo)<e n=N,N+1,N+2,....]

. ® | ®
- T =ln<ed - Jla-gy
n=N Jj=0

=X

Notes 1l =~x « e 0 «x <1

o _ 1 @
e 7
= He . exXp ) =~ Z) ﬁ-;-:j- which series is divergent
J0 r
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therefore R[, Xn""O/<8 n=N’ N+1’ N+2, oooo.] a 0
therefore X, —4- 0 a.e.
Problem 253

If X_= O with probability 1 = ;nL

X, = 1 with probability ==-

on
then Xn\}O a.9.

Problem 26s
¢X(t) = cos ta
l. What is the d4.f, of X%
2. Is X A. N. asn— o (suitably normalized) 2
3. To waht does X converge as a—; 0%
Problem 273
X, and Y, are independent and identically distributed random
variables with means 4, 2/ and variances ci P) og. Find and

prove the asymptotic d.f. of Kn?n (suitably normalized).

Kolmogorov inequality: ILet {Xi% be 'a seguence of r.v. with means

[

p‘i', and variarnces ci,

Then rl, n
) { ;‘Xi ) 1Z pi\ 1
Pr £ K K=l,2,.u,m >1 o T
' K
()2
Examglea
X1 4] 1

L, 0 1
Pr[)xi\<x, \Xl*xz\<{2—K]>1"K'%'



e

-Kﬁ/-K k 2
<

Ky2

Theoram 203

Ir Xl, X2, X,s +os are independsnt random variables with means
3 00 i

Vo2

and variances o'i, then, if /, ai/:i.2 converges

- 1
XE}’] o Er]‘é 0 Qo

or we say that X obeys the gtrong law of large numbers
n

where B = %L by
1

Proof of Theorem 20:

Let Aj be the event that for some n in the interval 25"14n < 2"j

{ ‘in - unIP e (violating the definition of convergence a.e.)



Pr[A

|28,

9

P

<= Pr

- w[lx

- Pr[}g('in- ug))?nJ
|
/

-52a

- p.n ’>; for some nJ

Z(Xn - unj > 25"15]

| Ly

ingerting the lower bound

onn

< Pr

K

7

Z M2 Z /2

from the Kelmogorov ineguality:

(X + X)) = (h+u,

(Z 05)1/2

hence for the event A

(o + 22

-

gJ=1
letting k = e

K3

&

"12 y1/2

seo0sec]

and inserting the uppe
bound of n in the :
summation



Interchanging the order of summation

e F 2T
= = % Z 23
& gy 3 2

2j5>1
1
y . o7
Note that 5T = since it is a geometric series,
IR 5
2474 2
03] 02 w 0-2
Z2 L W i B R %
2 o3 2 g5 47

Now this sum is finite by hypothesis == hence Z PrYAj]
J

converges and we can choogse N so that

00
Z Fr [AJ—J < 5
J=1

hence definition 19 for convergence a.e. is satisfied,

Corollary: (to theorem 20)

wraseRcEtcapeTsETaly

If Xi are independent and identically distribu‘bed (i =2 152y350000.) With

mean {4 and variance 02 then
T—>u a.e.

Proof: 1is immediate sincez = O‘ZZ -];2 which converges, i.e. £ @,
i

p‘l\" =

Other Tmes of Gonvergenc s

“ 1. Convefgence in the mean

ldm. X =X 4flm E %-x]2~<lo
n—; o

Note: 1l.ieme = 1limit in the mean
Implies convergence in probability but not convergence .a.¢.

Ref: Cramer -~ Annals of Math. Stat. 1947.
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2. law of the iterated logarithm

Ref.s Fellers Chapter 8

3. St. Petersburg paradox

X = 2% with probability -}:5 nm 19253 e0es

Cee

Ref .2

Toss a coin until heads comes up

Noéooe:

2
n
1 2

= 1

== count the total mumber of

tosses required ( = n) == bank pays 2" to the player,

o 00
E(x)=Z2n.ZnL=§1= ®

n=l

for a fair game, the ° entry fee should be equal to the expected

gaing therefore, this game presents a problem in the determinat:

of the "fair'! entry fes.

Fellers p. 235=7 ~- he shows
T
Pr - 1 >&]<6
nlnn

that iss;the game Ybeccmes fair" if theg entry fee 'is n ln n.
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CHAPIER IV

ESTIMATION (Point)e

Ref; E, L. Lehman, "Notes on the Theory of Estimation®, U. of Cal, Bookstore
Cramer «= cho 32=3

P(x, ©) == a family of distributions
X, © may be vector valued, in which case they will be denoted X, @

xaRk

@ el =~ parameter space

Examples 1: if Xl, X2, Y Xn are NID(p, 62) then

ﬂ consists of all possible u
and all positive o e T

+00

+@0

2s F(x) Fs7 the family of all continuous distributions
L) is then the space of all continuous dof.

== this is the non~parametric case @
-~ might wish to estimate EF(x) = S x dF(x)

=00

provided that we add the restriction that EF(X) <o

Estimate of g(8) is some function of X from R, to {2 which in some sense comes

close to g(o)

Or in the "general decision theory" point of view (Wald)

an estimate of g(©) is a decision function d(X) and we have associated with

each decision function a loss function W [d(_x_), 9_] with W=20
whenever d(X) = g(o) '

The choice of loss function is arbitrary, bubt we frequently choose

v [aw,e] = (a@ - e®)]?

Def, 20, Risk Function is defined as
R, @) = & {¥ [a@, ¢]} -

wla@, e :] dF(x, ©)

g8



Examples Xys Xy 0 0 0y X are NID(us 1)

@) = %

R(d*, p) = EX - p.)2 =

S

A Vbest! estimate might be defined as one which minimizes R(d, @) with respect to
d uwniformly in 9.

R(d, ©) < R(d™, 6) for all © with d" any other estimator.

consider the estimate d(x) of g(@) defined as d(x) = g(QO) R(d, Go) = 0

Hence a wiformly (supposedly) minimum risk estimate can be found only if there
exists a d(x) such that R [d(x), & |= 0
An example would be similar to asking which is better for estimating time == a
stopped clock which is right twice a day, or one that runs five minutes slow.
Since a uniformly best estimate 1is virtually impossible to find, we want to
consider alternative

_WAYS to formulate the problem of obtaining best estimatess:.

I, by restricting the class of estimates
_1o unbiased estimates :

Def. 213 d(X) is unbiased if E[d(X) |= g{o)

d(X) is a minimum variance unbiased estimate (mov.u.e.) if
E [d(l_(_) - g(@)]z is minimized over wnbiased estimates d
2, invariant estimates
Let h(X) be the transformation of a real line into itself which induces

a transformation h on parameterspace. If d[h(X)7 = E[d(X)] then
d(X) is invariant under this transformation.

Example; family of dof. with E(X) <oo
Problem is to estimate E(X)
h(x) = ax + b h[E(X)]) = aEX) +b

An estimate (X) of  is invariant if d [h(X)] = & [a(x)]
d(aX + b) = ad(X) +b

Therefore X is an invariant estimate of p under this
transformation.

Note that d(X) = #, is not invariant.
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3. Begt lincer unbiased estimates (b.l.u.e.)
Def. 22: Estimates of g(@) which are unbiased, linear in the X; and which among
such estimates have minimum variance are b Jdeuee.

Problem 28, Xl, oy o o oy Xn are independent random variables with mean p and
and vafiance 02
show that X is the belou.e, of u,
Problem 29¢ Xy5 Xps o o ey X are NID (uy 02)
wla), o] = vla®) -] if a@ >w
= e[d(x) - u] if d®) < u

a, d(X) =X find R(X, u, o)
(notes the a?swer depends on the loss function constants only,
not u

bs d(X) =X +a ~- show how to determine & such that R(d,uy0)
is minimized

[notei the answer involves #(z) which is defined as
2
2
& )
A

Comment on this problem:

An orthogonal transformation

-= i8 a rotation or reflection

-~ ¥ = Ax where A is orthogonal

we |d] =1
3. 32

== For yi"axl+aizx2+°°°+ainnj§1ala 1’2&131:3 0 1k

In general if d(X) is a function of T(Xl, Xp5 ¢ o oy Xn)
R(d, ©) = E[W(4, ¢)]

- jo., f W [1(x), © | & (x)
/
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Making the transformation y = T(x)
y =
» n=l functions independent of the first one

-]

ya

Then

R [d(T): Q] y [T(x), deF (yl (eoo g dF(Y235 YB.v voey yn)

e
marginal distribubion 'C conditional distribubion
of y; = T(x) of Vps cees ¥y
given ¥y 1

gw [, 0 Jor(sy)
- jH(T(x), e] aF [7(x)]

II. Optimum Properties in the Large

1., Bayes Estimates

Def, 23s If © has a known "a priori® distribution H(®) then the Bayes estimate

of g(©) is that d(e) which minimizes

gR(d, ©) dH(e) with respect to d(x)
Examples X is B(n, p) and p is uniform on (0, 1)

-
Let W [d(X), Q] = @(X) - p] 2 and minimize this with respect to 4

R(d Q) = 2 Ei(x) - pj2 (;) px(l - p)n-x

x =0

Average risk = risk function averaged with respect to p
1

- § R(d, ©) dp
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n 2
- a%(x) - 2pd( T P s - P
< j[ (x px)+p]x,n_x4p p) p

1
Note: 5 p?(1 - p)® dp = -(-:‘f:g%yy
0

Using this evaluation on each part separately we have

n
- E 42 (x) 2 xi(n-x)! _ 2d(x)n! (x+1)1(n-x)
xd(n-x)! * (n+l)¢ (x)i(n-x)? * (n+2)!

n! (x+2)1(n-x)1 :l

x=0

xd(n-x)d ° - -(n+3)!
2d(x)(x+1) (x+1)(x+2)
):m-l - Bt @) (0 2) (n+3)
2
2d 1 +], +l +2 1
oL a2(x) - 2 (:;)(x+ ) (x ) )é———;’;ﬁ {2:2) ]

r
2
« x+l x+1 n+lex
0 {d(x) - n+2} *ae? (n+2)(n+3)% ]

BV

1 N

'%'I-' "ar—-
% %

This is certainly minimized with respect to d(x) if each term in the first summation
is zero == i.e, if

a(x) = X‘%

Problem 300 if d(X) = = find B(d, p) as a function of p and also

1

average R S R(d; p) dp
0

— if p is uniformly distributed on (0, 1)
—~ B(d, p) = E[a(x) - p]°
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. 2. Minimax Estimate

Def. 24 d(X) is a minimax estimate if d(X) minimizes supgR(d, ©) in comparison
to any other estimate d*(x)

R(e) i.e., we get the min (with reSpect to d) of the max (with respect
" to0 ©) of R(d, @)
dy -~ or we take the inf (d) sup (©) of R(d, @)

ﬁl\ \ | 4 (x) is minimax estimate since it

R e
/ \ (dl’ ) has a minimum maximum point

R(d,, ©)

4]
3, - Constant Risk Estimates

Def, 25¢ A constant risk estimate is one for which R(d, ©) is constant with
respect to €

Problem 3l. Find a constant risk estimate among linear estimates of p if X is B(n,p)

AII -- By dealing only with large sample (asymptotic) properties of estimates

Def., 26. Consistent Estimates «= d.n(}_{_) is consistent ift
d (X )“";9 )
(it does not necessarily follow that E(dn) ~—3>»0 or that c‘?(dﬁ 0)

Problem 32! If E(d_)—>® and oz(dn)—;o then d (X) is consistent,
(these are the sufficient conditions for consistency)

Def, 27, Best Asymptdtically Normal Estimates (BoA.NeEo) == d(X) is a B.A.N,
estimate if;
dna-E(dn)

1. W‘- is Ae N(O, 1)

2, if dz is any other A, N. estimate, then

lim oA <
n—--)oo o (dn) -~



METHODS OF ESTIMATION

A& = Mathods of:Mments (K. Pearson)

—————

e 1 92,“@ ’ Qk == gquate the first k sample moments to k population
moments (expressed as functions of 91, 92,“., Qk). Solve these equations for
Ql, 92,.,. s ek and these are the moment estimates,

example.: Xl, X5s o o o5 X are NID(u, 021)

first population moment =

second population moment = 02
n
then T = L = - o ("n" being the divisor used

by K. Pearson)

note, This method yields poor estimates in many cases -- has very few optimum
properties

B == Method of Least Squares (Gauss =- Markov)

let & = (Xl’ ng ] [ ] 0, Xn) be a I'oVe Witlh E(g) = Ag 2 = (gl, 02’ 00.’ g )

a eco 84,

oll ].'s i.es, both X and @ are column vectors
A=l * 354n

anl cee ans Asis of rank s
or we have E(X,) =§ a, .® 1212, 6000

i jel i3 3 ,
also 0',2 =8 02 i,6., the covariances = 0
(X.,X.) ij o=es

Def, 28, 9* is a least squares estimate of @ if G* minimizes

= - - - 2
(X-49)" (X - 49) E (R = 8,30 =« o o =3, 0)

Theorem 21 (Gauss ~= Markov)

With the given conditions on Xl, XZ’ Y X the least squares estimate
G is a best linear unbiased estimate (bo-ouoea) of 9,
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Proof Theorem 21: ref; Placket; Biometrika, 1949, p. 458
Lehman \
we first show that . . ' '
6 =C"4A X where C = A A C =C since it is

symetric

1

-1 !
if we write @ =C ~ A X + y then we are trying to minimize

with respect to y, §= (X ~40)'(X -~ 49)

=@-acta'x-ap" @-acta't-ay)

1 1

A" @eacta'xye@-actta'y sy
- )" @-acta'Y ¢ ap Gy

now the cross-product terms equal zero

= (X - AC™

' U P ' '
Gogs =~ XAy +XA(CT) AAy=wX Ay +XAy=0

1

since (G-l)' = C" C=4'A

L) ‘ L]
cHa'saclo=1
similarly the second cross-product also = O
hence § is minimized with respect to y if (Ax)'(AX_) is minimized which will

happen if Ay = O since A has maximum rank s +this will happen only if y=0

n
or writing E =i§l (Xi - ailgl R aijej -5 6 0™ aises)z

formally minimizing i in the usual fashion by differentiating with respect to

theG‘j n
BE -22 (x e e 8)=0
‘S'e—j '“ialaij 17841 Fp 700 0 T84T s e 0 =8y S ) F

j = l, 23 ¢« v og S
solving these equations
% n n
a.x.s(Eaa)9+co.+(2aa)G

or A'X=(a'a)0
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1

To show that 8° so defined (ices, = €1 4'X) is BoLoUEe

consider a linear estimate B_ X

E(Bk]=e¢ BE[X] =0 BA9=9 thus BAelI

note that ¢°BB 18 the covariance matrix of BX == the elements in the

diagonal are the variances of the estimates & ~- we thus wish to mini-
mize these diagonal elements (by proper choice of B) subject to the
restriction that BA = I
B-cl'y B-cta) =8 - -cta's' « ol (0L
. - -
using the relationships that BA=I AA=C C =0 or (CF)' = ¢t

(8=c"1a'y(B-c"ta")' =B’ -« (c™)' = cL 4+t o' -t

thus BB =Cte (B-cla') B-ctay'

- o $ -
minimization will ocour if (B =C7A') =0 orifB=c"a' (9 =cla'y)

hence 9_* are B.LoUsE.

examples if X,, X5, o o oy X are uncorrelated with E(X;) = p and

commen variance o° then the least squares estimate of pis X

1
1
let A= : here s = 1 (we have a lxn matrix of l's)
1 C=AA=n c"ln;ll-
# -l ! 1
“.“C AE “K(l,l’no:,l) xl
X2 n
» =':-Lﬁ le"z
° i=1
x

Problem 33: E(Xi) = 4 b B ti i= l, 2, s 0o os N

n

ti are known constants and assume E b

=0
li

find bel.u.e. of <, B using theorem 21,
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Aiken extended this result in 1934 to the case where the X, are correlated and
we know the correlation matrix V (up to an arbitrary multiplier) ~-
belouseo are also least squares estimates which are obtained by minimizing
(x-4'9)' viE-4'y
ref: Flackett: Biometrika, 1949, p.L5!
Ce Maximum Likelihood Estimates (ref. Cramer ch. 33)
Def., 29: Likelihood function
L= f(xl, Xy5 00 05 X5 @) if the X's are continuous

= p(Xl, Xys o 0 05 Xy ©) where the p's are discrete probabilities
if the X's are discrete

if the xi are continuous, independent, and identically distributed

n n
L= , ! f(xi, @) or lnls= 2 1n f(Xi, e)
1
1

. Def, 30: A Maximum Likelihood Estimate (MeL.E.) is that value of § (denoted é)
which maximizes the function L (or ln L)

It my happeh (from the third case in def. 29) that 6\ is the solution
of the set of equations -

in L
Bgi = Q i“l, 2, ceoy B g‘ (le 923 oooy gn)

Regularity conditions needed in the maximum likelihood derivations (ref: Cramer
| 500~504)
le The Xl are continuous, independent, and identically distributed.

We will assume firet that @ 18 a scalar.
bln i‘(Xi, 9) '
B is a function of Xi and hence is a random variable,
e

we assume that

2.

k

B 1ln f(Xi, e)
D6

3. Ll is an interval and R (the true value of ©) is an interior point

® . Bk 1n £(X;, ©)

’ B % < Fk(xi) which is integrable over (- o, 00)
4]

exists for k=1, 2, 3
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E [FB(xi)] £M for all © = 1,60, it is bounded

2
e

Theorem 22! If £, satisfy the regularity conditions, and if L, or 1ln L, has
- a unigque maximum, then

1~ +the maximum likelihood estimate 3 is the solution of the equation

dinlk
2 °

A
2« @ is consistent

=0

3-\Vn (G - 8,) is asymptotically normal with mean O and variance ——-—-——-——-—T
21n fi
E
} e

‘Proof; 1= since %‘%—E is continuous with a continuous derivative, if

1n L(a ? 1n £(X,, 9)) has a n'm::mmm;B,al;1 L. 0 at this max.

2== t0 show that é is consistent

£, = £(X;, ©)

g dlaf, (32 In £, 7 o o) 3 1n fi] (6-0)?
*-—-—-g---—- =35 + , G - +
a , 9 Q.—.Qo ag Je=g°

_ )
.)e=eo.+ e(0-8,)

summing each term on both sides of the equality, dividing by n, and doing
some substituting

2
1dinL _1 Blnfi) . n{}lnfi ) (6,2
» 28 i§i 28 9=QO+H:§1 W%Q (6-6,) ‘““EF’(Xi)-—-—-——-

the term in the third derivative is replaced by the term in
regularity condition La =~ and multiplied by the factor z(0Osz<l)
to restobe the equality

this equation can be written,

1 9lnlL (e-0,)°
Z -5 =B, + By (8-9) +3B—p

SN Omm Pew Tmm e S G G TR MR G GEe Gme SER Wy BXh IR GGE Ber SN IO GEN JEe GF Al VN Gn CERN ARS She e G feap SMP Bew GRS Eam AR B



®
., note that we have: S f(xi, e) dxi =1 Ll]

from which we can showe

| | £(x;5 ©)
39 £(x;, 0) dx; =0 = yé-'g-—é’#——- dx; =0 >

gﬂ_]:.._)_-g-é—)f(xi,e)dx =0 @X

therefored | 3ln £, .
) E {——S—é——} a [h]
also, differentiating a second time we have;
2 7
3-5-5 if(xi, Q) d.xi =0 [2]
2
® y £(x,, ©)
or 3 1;'2_______ = 0
Jo
¥ins, NELEA Ty 1 2y
st - | e e o st | S e 5 e® oy
- -0

o 2 2
) 1 1 Lo oyl L 0%y e 0) L ax
é {f(xi, ) 27 (xi’; 2,% (79— "y ®

| L « 0 by [2] above

- ast) e (59 s

Blnfi]z 2
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B2 In £ (x;, ©) s dln £ (xi’ o) 2

SAm A W GWE Gue MR MmN YEL Wen MM B SRS G WD Gmy HD BN D WT UEE WD G AN G @M AR Guu MG GO WP GEN P SR AT G A AR TN GER SmA @A W e

Bo-——-————-——}o

Let § = the set of points where

|B,| <& B <3 |B,| < ou.

We can find an n; given &, &, such that Pr[S])l - & .

In S the right hand side (r.h,s.) of the Taylor series expansion is to be
considered.

Consider: © = Qo + §
« 1l
roho8Se = BO + BlO + é‘% B2 &

€PL+ M)~ 3K 6 letting z = 1

2
So that, if 6 < éTli{Tmf the rohes: <. O .

Considering: o = 90 =8

1 2
r.h.8, = BO B Bl 6 + ‘2' 2 525
>-62+51? 6% me? = -(m+1)6% + 1 1%
2 2
>0 °
Z 0 for the same 6<m)-
Hence, in S; which occurs with probability >» (1 = 6)) 3313 L . 0O has a

root in the interval (Qo - 8, 9, + 6) and 1n L has a maximum

in the interval (at thevroot)..
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‘ ,G\ is then the maximum likelihood estimate and the solution of the equation

1 9nlk 1l A 2 _
n- 38 °B0+Bl(6"go)+§ZB2(g"go) 0.

which yields A Bo
Bl+§- BZ(Q - 90>

Multiplying both sides by kJ n
Bo" n

wh‘

(6~6,) kVn == g
0
k§ 2° o

. n
We know thats s o1 S "alnfil
o n
o

;1 99
o}

Din £

- vsl-ke[ 2] - £

° >,
therefore is A.No(0, 1)
k

B —5—> k2 B, <M (i.e., it is bounded)
A e 0
€ - T
Thus, by the relationships we have just stated; and by use of theorem 18

A
k{n (8- 8,) is A.N.(0, 1)

1l 1

A
° =
Or's \]F(g a» go) is A:.N. 09 ;‘2" [aln fi 2,
) ) -
> °

Example. f£(x) = a &~ X9 0

Find the m.l.es. of a, and its asymptotic distribution.

n
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n
InL = n ln(a) = aE x4
kIR

n
BlnL n
Sa "5° %"1'0
therefore Q = B = 4

We can easily verify that E(x) = % ;s B(x) =

by the method of moments.

1
Variance = B e s g
Bln fi 2 l/a2

Hence: \[n (]j -~ a) is A N(0O, a2)
X

is 4 N(0, 1) .

or

Jo G =a)
a

Problem 343 £(x) = a® e"a‘2x x>0
~= find the msl.e, of a and its asymptotic distribution,
- verify_that the same result could be obtained by a Téylor Series
expansion.
Problem 353 | X, is Poisson A (1=1,2) ¢ o oy n)
== f£ind the myl.e, of A and its asymptotic distribution.
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Problem 36: X is uniform on the interval (0, a).
~= Find the molec. of a E’xot by differentiating] (&,

= Correct it for bias and find the asymptotic distribution of the
unbiased estimate (Q-Qa)

-= Another unbiased estimate is a° = 2 % o

Compare the actual wariances of Q"; & .

Notes a')‘~ is a moment estimate == for another comparison of the method of moments
with the method of maximum likelihood, see Cramer p, 505.

Notec The moloe, is invariant und;e‘r single valued functional transformations i.e.,
the m.l.e., of g(o) is g(8).

cr2

/n) and g{d) is continucus with continuous first

Remarkes If dn(X) is A N(u,
| and second derivatives and the first derivative # 0 at x=p

then Jn [gfa) - e(w) ] ds 4. N(O, (6" W & .
Proofs by use of a Taylor series expansiong

. b (Aew®
ga,(0] = 6w + &' [ap-u] v &'

From which we can ge_t

ﬁ&;(d); g ) EE - uz o EEN @) gy

‘?f_" S S
\——“‘W'/

Hence by use of theorem 18 ———p——> 0
J'rré (dz - g(y_)] is A N(O, 1) .
o g (w

e CEE mes N MG AR Ghw RS G G M M SR NS GEM GE T MM WG MR A M WM WS G MENe e GEe G WS G MRe b Wi e S GMe  Weu  MEm SO Me e e

Multiparameter casel

Theorem 23: Under generalized regularity conditions of theorem 22, if
_—— t
8 (Gl, Oy o o 55 Qn), then for sufficiently large n and with
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probability 1 - &, the mol.eo of @ is given as the solution
of the equations

éalgL = Q 1”1,23004235

and furthers ;, /\g, o o oy 6: has asymptotically a joint normal

distribution with means el, 92, e o ey GS and variance-covariance

matrix V- , ) ,
() st - (Gt
where Ve=ewn : : :
[l

This is the so=-called 1nforraamon matrix used in
multiparameter estimation,

8ketch of part of the proof.

s
_1 2L _1 D 1LI 1S o oy Xt
°=% ~56, "1 1]0 n? Q)BGJQiL

+ second and higher degree terme i = 1, 2;e40, 8

(Notes; 1ln L terms can be replaced by 2 Inf; enla fi terms, )
. v
From theorem 22. InL = 2 1ln f(xi, ®)

E(%lg (2 ‘:Blnf o

Lins, pELEN
- B = B
éeéj 2°;

We also need a set of covariance termsg

élnfi . (3mri> Sln £,

3 J k 993 ggk

which follows in a manner similar to the derivation of the variance
expression in theorem 22,
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Now we can writes

B > 0
LG 1n f(x., ©)
b = l“. 2 B i
k n 1 o Qj gk g°

The maximum likelihood equations can be written (ignoring the second degree terms
in the expansions):

A
- B, =B (8- e°) in matrix form or completely
‘ 1 A 0
written out asi = By = (8 = 0]) by * o s o+ (8, = 6) by,
L] ]
] ]

AY (o] A 0
~Bgo = (8 = 81) by * e 0o+ (85 =06 by
B _—T_> B [BJ (i.e,, each element b,jk replaced by Eﬁajk] )
For large n? B [E(B)] "% —>1

-8, = B [£(8) ]~ [E(®)] @-¢) = [E(B)j(é‘ - )
ors (6 - e°§= -EE(B)}"J‘ B, o
[E(B)] = V and is non-singular.

’
Variance-covariance matrix of © - €° = E(B) -1 ( var=cov B°]€E(B)j'l}

- vt v vl
vl

Example of the information matrix used in the multiparameter estimation:

b
£(x; a, b) = -—im o™ Lb=1 x>0 a>0 byo

r n

lnL=nblna-plnF(b)~a?xim(bul)ihn

s . 2%
defining ¥ = =




in .
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13nL_b =
19lnk

A

From the first equation a =

Nflo- g:{
G4

+

L'?“

o

Substituting this in the second equation we gete -

/ [
lni = Fy(b) + S'cL = 0 defining szb)- %{%} - -%-5 ( /"))
lnb-Fz(b)-lni-iL" -

Notes Pearson has compiled tables for F, (b) which he ~called the
di-gamma function
Thus we hgve3
2 .
b
g"gl% =n (= =)
a

a

2

2
d InL Bnl;bz -hﬂ(b:} =n (-Fz' (b))

Db

o

ol L

‘b
-

a

1 ?

1 !
IV{= n [-l- 3-5 Fa(b) - -:'? ] notes F2(b) is called the tri=-gamma

The asymptotic variances or covariances are ’c.hus°

A F (b) Fa(b) a2
of a =

/vl o n [tF,(b) = 1]

A
Ofg,‘bﬂlal' a

[v]  n[bFy () - 1]




' A p/al b

£ b = - ,
° (vl n[or) - 1]

Ji (B ~b) VA (4 = a) thus have a joint normal asymptotic distribution with
means O and variance~covariance matrix:

2 T
a Fz(b) a
] [
b Fz(b) - 1 b FZ(b) » 1

a b
1 ¥
bFy(b) =1 bFy(b) =1

(3

E" (X had E)z
2a o ¢ 20‘2

~we Find the meleeo of . and 02 and find the information matrix,

Exercises f£(x; u, 02) =

n
E (x‘i - 5;-)2
A A2 - 1
== The molses of p and o~ are x,

n

N
o ﬁg 0'2 are independent, therefore the covariance terms in the information
matrix are = 0

Problem 375 £(x) -32: o-ix=u| - 00 <X <O

Note? This is the so-called Laplace distribution.
It is an example of finite theory =~ the m.l.,e, is not a minimum-
variance estimate for any finite sample slze.

&) Find the mol.e., of u (based on n independent observations).

Does it satisfy the conditions of theorem 227 why not?

b) Is X an unbiased estimate of p? find a° o

X

Problem 385 ¥ is Poisson \. |
We have a single observation.
¥ is Poisson WU o

Find the mo,loeo. of >\ s W and also their information matrix,



u?Sm’

Check that the same results are obtained by expanding f:.\ in a Taylor series
about 4, hence this result 1s asymptotic as A —_—. 00

BA —>® o
' X, 4
Problem 39 -é-:-"- is xi s a—-.;-‘ls- is xf X, ¥ are independent
o a>0 b>0
i= 192,eo¢9m J= 1,2,9..0,11

Find the melse. of a, b and also the asymptotic variance~covariance
matrix,
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D, UNBIASED ESTIMATIONa

Theorem 243 Information Theorem (Cramer-Rao)

If d(¥) is a regular estimate of & and E [d(X)] =0 + b (8) (where b(.,é) is a
possible bias factor) then

2 ,

?

oﬁ > [l rb (9)] for all n
-~ n k2

where

]

2 -

d1n £ LI
k2 = [ lg‘é(X)] = o B [L—-T—; £)
_Blnf

== the equality holds if and only if d(X) is a linear function of 3%

Regularity conditions for the Information Theorems

l, © is a scalar in open interval,

Xl’ Xos coay Xn are independently and identically distrituted with density

£(X, )
2, %—'- exists for almost all x (the set where %% does not exist must not depend
on 9).

(Note: Problem 36 where f£(x) = % (i.e, uniform on (0, &) ) would be an
exception to this condition),
‘3, gf(x, 8) dx can be differentlatedunder the integral sign with respsct to 6,

Lo jd(x) f(x, 8) dx can be differentiated under the integral sign with respect
to 9.

5, 0<k’<c o
Proofs From the proof of theorem 22 we remember that

d1ng | N2 e > 1n £\° .2
E(-—-g—’gl——-);o -E(—%——g——>= E(-—-S-g-—)-k

e

. Differentiating both sides of this equation, we get

Sd(x) Z %g F(x)dx =1 +D ()
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2)6

Din £(x)
The correlation coefficient of 5(%) = -—5-5-"—"——- and d) €1

t
which can also be wrltten E |d(Z) B 11 f] =1 +b (8)

E[ s dak) J)°
2 2 -
“ax) %)

Note: E (S(z)] E[a(x)]| term vanishes since E[S(z) | =0

2y fisv'e)J?

d 7 o
T@)
now
< 2
ln f(} )
2( = E E =n k2
1 ae
therefore

2 [+b (9) ] @ _Ll+b(e)]2
d(X) ’e) in £{X)
— ST
Since r2 1 if and only if the random variables are l:mearly related it follows

tr(1at the equality in this result holds if and only if d(x) is a linear function of
5(2.

Example s X.], ps couy X are NID(u, © ), 0'2 known,

Find the C=R lower bound for the variance of unbiased estimates of .

E(Xi-u)z
1 """2’7"‘"
. a

L =
(2 n cr)n:2 °

E(xi - u)2

In L=K = ~—-—E-E-
o

dmL E(Xi-u)
e 2
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-33.,211_1:.“»
Du &
2 1
kg-z-

[«]

2
Hence any regular unbiased estimate d(X) of w must satisfy og 4 g_ﬁ_
but o = -g-— hence X is a minimum variance unbiased estimate (Mm.V.u.e.),

~

Example (Discrete): Binomial

x is B(n, p) == find the C~R lower bound for the unﬁiased estimates of p.

L (: )Px Q- p)n“x

InL=K+xlnp+(n=x) In(lep) g,ww wek
“ - N
- N X N
ng - % B -;'-1:% Too= _,«.' Ze) \~—\0 = H0%) -0
""—-—5—321“ =% o+ X n (X hr} -

\

P (1=p)®  p(1=p) e
é(-0)
Hence 02 2 P-Q:Pl but 02 = B-@-':BZ so that X is m.v.u.e, = (-0
' d n (E) n n oo
n %}
Notes Recall that the C-R bound is achieved if 'and only if dQC_) is a linear function
of —E-M— - if 9 is not a linear function of ?121 £

P >0
the C-R lower bound.

ﬁhen@ will not achieve

Problem 402 Find the C-R lower bound for the unbiased estimates of the Poisson
parameter A based on independent cbservations Xl’ o5 aeey Xna

Examples Negative Binomial (Ref, Lehman Ch, 2, p. 2-21, 22)

L = Pr(x) = pqx i.e., sample until a single success occurs

InL=1lap+xi1n (1 = p)

Bln L
op

-

1~p

ko 1o
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2
S CEwr R

2 ,
”E{_};__l_r}z]-;;], 1 +* 1 = 1 = nk2

32 | p° pp)  p° (1-p)

thus cg ;'pa 1 «-9p)

To find the M.L.E, of p¢

dmi .1 _%x .. 2.1
5P p "I * PTIX

=« it can be shown that this estimate of p is biased,
Can we find an unbiased estimate? TYes == by solving the equation E Ei(X)] = Do
To do this we observe Xg O 1 2 3 cos NI eooceo

2
.Frobsg P na ra pC}.B oeapqn covco

E [d(x)j = d(0)p + d(1)pq + d(2)pq2 + cop + d(n)pqn + ¢00 B P
' 2 n
or dO +d1q +d2q * om0 "'dnq + s0o00 8 1

If this power series is to be an identity in q we can equate the coefficients on the
lef£t and on the right

d°=l d1=0 d2=0 cates

The unbiased estimate is thus p =1 if x =0
=0 if x21

i.6., the decision as to the status of the whole lot is based on the first
observation,

This is unbiased, but scees
(this example is used to show why we dontt always want an unbiased estimate)

02* = pq}'pz q (the C-R lower bound) =~ thus the C=R lower bound can't be met

p

~since this estimate is the only unbiased estimate by the uniqueness of power
serieg,
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To find an unbiased estimator we can try to solve the equation

L0>)
£ d(x) £(x,@) dx =6 for the contimous case.

or

2 d(n) pn(e) =g for the discrete case,

These equations, however, are in general rather messy and difficult to handle,

Problem 4ls f(x) =k &1 0<x<1 k30

1, Find the C«~R lower bound.
2, Is it attained by the M,L.E»?

Mulbtiparameter extension of the Information (C~R) Theorem

We have f(e_ff 91, 92, voog ek)o

Assume the same regularity conditions as for Theorem 2l in all the ots,

Denote 5, .ol E[s, s.] =
i 591 %3 ij

_ — — 2 o ’
. 0 ./\_ is non-singular
Q o

Moo Mg
E [Si] =0 as in theorems 22, 24
Let d(X) be an unbiased estimate of 6,
so that (d(?_c') f(?_{j 91, 92, ccoy ek) dgi = 91‘
By differentiation with respect to él
Efa sl,] =1 .
‘ By differentiation with respect to o 3

pfas;] =0
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Theorem 253 Under the regularity conditions stated

2 t -l
adl zh '/\" I1 where I,;_ = (1, 05 soey O) k components

or

9 N

\V
4
g

My e

[ T )
¢ o o

)‘kl con )'kk

k
Proof$ Observe that E [dl - Ql - E a Si] 2 >0 where the a's are arbitrary
l -

constants to be determined.
-
E[dl - 91] 2 =2 B [(dl r-el) E a, Si] + E [23‘1 511220
From the above relationships this becomes

k k
2
%, - 28, +i§‘i Ei aiajEfsisj']; 0

which then becomes

k k
031 = 2 8 = i%. J% a‘:ia.j )‘ij for all real 815 80y vcoy By o

Call the right hand side of this inequality g&’(g_ )

We wish to maximize (i) with respect to é_ to get the best possible statement about
the bound of the variance,

K
2 .
Pla) = 2o - Ei Rt ?‘E 285 My




k
2f ., S
e T2 - 2 - 2 a. A = 0
® e M 2 %M
or k
Efa ij -
2P E
v 2w 28 )\ -2 a. \..=20
aai i ,j“l% J id
or
Ea )\.ij = 5-“2, 3, oﬁe,k

Hence the equations in a to maximize ?9(3) are

Ead >‘1.J

J=l

Ea i=2,3,ooogk

j=1 J }‘13

’ where ag is a maximizing value of a j;,% _
' How, multiply the it’h equation by az and add all the equations.
The left hand side of the sum so obtained is

E Ea A= 2:13'5‘3)‘13

i=1 g 9 i =1

[N

The right hand side is a .

Hence (a) = 2 al-2al = al
ﬁx 2 1739 %3
Therefore
/1
c:‘;l; ag wheres /\_go = Il = 9
1 =
6]
al
2® = /\ I,
1 AL
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or, as stated in the theorems App  cen Mgy

Y e 6

°re bk

=l
2 ?
061211 -/\.

o Q >

soe Mg

a 1 L
Remembers A, = E [sis jj 5, = <5t

ab -ax b=l
Examples f£(x) = ——— e x x>0
. I(v)

== the generalized Gamma or Pearsonfs Type III
== 3, b are the unknown parameters

. Find the lower bound for the variance of the unbiased estimate of a.
InL=nlna=n InT(b) - ax + n(b=l) 1n x

oIn L -

S FF— =% -*
Sza.%.l,g.}i. =n1naa-n§-5~[1nr(b)] +nnx

denote -}# [ln I‘(b)]= Fz(b)

1n L nh

)\11=E[S J-g- DaZ.- =;§

e [] - - S5 <m0

b

E[S S2] ga‘a% lg
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b -3
;'2' a
VAR
1 ¥
-z Fz(b)
| 2 1
2 Fy () &R0 _ 2
A 7 T T 1 .
a7 bF,(b) n[ b Fy(b) = 1] n[b-—r—-- :z
n(—=— =) Fpl
a a
Notes See the example for Theorem 23. K )
Notes We started the proof with E[d) -8, = 3 a, 8, | > 0.

1=l

k
The strict inequality will hold unless fdl - 91 - E a; Si is essentially
constant, 1

Thereforet If the multiparameter' C=R lower bound is attained, dl is a linear
k
function of E a, S,
jop 11

and, as before, the M.L.E. (corrected for bias if necessary) attains the
lower bound (IF there is any estimate that attains that lower bound).

Problem l2s X s oesy X, are negative binomial

r+x=-1

Pr[X=x}’(r.1 P q" p+q=1 x =0y 1y 25 encce

Find the C~R lower bounds for the unbiased estimates of p
l, If r is known

2 If r is unknown
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. Problem 42 (b): Show that if X ’ A 1s Poisson { A ) and A is distributed
: with density

b
£( ) - L - )‘b-l
® °

then X dis negative binomial, Identify functions of a, b with p,r

Summary on usages re Mel.e..

We have the following criteria for estimates,
1. Efficiency (Cramer) -~ attains the C~R lower bound.

2. (Asymptotic) Efficiency (Fisher) == (n) (variance) ——-——)-3-'-5 in the limit.
k

3. Minimum variance unbiased estimates.

Lh. Best asymptotic normal (b.a.n.) =-- among A.N. estimates, no other has a
smaller asymptotic variance.

. Properties of m.l.e.
1, If there is an efficient (Cramer) estimate (i.e., if the estimate is a

linear function of E_laﬁé!:. )then the moLl.6. is efficient (Cramer).

2, If the meleee is efficient (Cramer) and unbiased it is m.v.u.e. Other
m.l.ee may or may not be meveuo.ee

-3, Under the general regularity cbnditions, the m.l.e. is asymptotically
efficient (Fisher).

Lbs Among the class of unbiased estimates, then the m.l.e. are b.a.n., otherwise
(icesy if the m.l.e, are biased) we can not say that the m.l.s. are necessar

beaen,
refs Le Cam, Univ, of Calif. Publications in Statistics;

Vol, I, No, 11’ 1953

~= The class of efficient (Cramer) estimates is contained in the class of MeVolle€y wm
which is the real reason we are interested in attaining the C-R lower bound.

- 1, 2 are finite results, i.e. for any n.
== 3, i are finite (asymptotic) results -- for large n only.
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== Let X be a random variable with density £(x, 8), © efl.
== P(X) is a statistic, 1.0, a function of the random variable (X).

== Assume that the conditional dof, of X, given T = t, exists.

Def, 31c T(E) is a sufficient statistic for @ if the distribution of X given
T =t 4is (mathematically) independent of 6, that is, if in

£(x, 0) = g(T, 8) h(x|T)
h 1is independent of &

Eramples.

Noe 1 == suppose X5 Xos o o oy X are N(wy 1)

2y - w?

£f(x, p) = 1 e
T W P
2
1N.2 : n
- e '2'?2555; euExiem'%
(Ve )? |

n
T(x) = Exi-ni
1

L

n(® - )2
e 2 e 2 '

1

(Vam )P

X is thus sufficient for u o

f(}_s w) =

~= distribution of x'?t is N(%, 1)

e
!%x :
: 1
2(x) = &) @pn G2l am e
X) = € $ n n
- (2;: R hrﬁi °
i

g(T, ) n(x| T)

n\

No. 2 == Poisson; £(xyp Xps o 0 05 X)) =€
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Ry ]
zxi is Poisson (nl\); given Exi, the individual observations are

amdtinomial and T =§xi = n X is sufficient for X\,

Noe 3 == Normal - A{Xﬂ)z |

1
f 8
@) (ma)n ° 20°
2(1:. -i)z o 2
(ma)n 2 ¢ 20

t

n
Here sufficient statistics for y, o are % M 2 (:xi - 5)2 >
1

Problem 432 Find sufficient statistics (if any) for the parameters of the following

distributions;
a~- Gamma £(x) = B gm3X -1 x>0
[(b)
kel
b== power £f(x) =k x 0<£x €1
- 1 =1 bel <
c Beta f£(x) m x (1 = x) O£x<l
de~ Cauchy f(x) = ‘}1 < L ”2‘)
14(x =)
é== neg. binomial p(x) = ;f; l) P gF X=0,1, 25 cence

f~= normal means « + j by t, known

2 2
variance o

-—————-——————-—_--————-—«-—.—-——-—-——-———u——-———-—————

Lemmae for any real number ¢

E[X-c]?> ET'{Ex(XLT) . (ﬂz



Y.
Proof: E [XZ‘ t] Z [E(X ’ 1;)]2 where t is any particular value of the

statistic T.
E[1]= E,[E (x|D)]

[ ]=gfe ®m] > 5 [EED]

replacing X by (X = ¢) we get
Efx - cf; By [E (X - of T)]2
> B[, (X[1) - o]

Remark: the equality holds only if X is a function of T
since the equality holds at step 1 if Xjt is a constant.
Theorem 260 Let X have density £(x, ).
Let T be a sufficient statistic for 6.
If d(X) is any unbiased estimate of g(8), 1*Jhenq"(T) = Ex[d(g)lT]

2 2

is an unbiased estimate of g(9) and cr\?J < oy with the equality holding

only if \f’(T) d(x).

Proof{ Since T is sufficient then the distribution of d(X)|T is independent
of @ and hence

Y(T) = Ex(fi(g-)'ﬂ is independent of 8.

RS [y ]~ ET{Ein(Jg)lT]} - 5[a@] = e@)

2= In the result of the lemma put d(X) =X g(8) =c
then it follows immediately that

og - E[d(:s) - g(@)]g > ET[Y(T) ~ g(_e_)]2
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‘ Examples:
1-- Binomial X, is B(1, p) 121, 2 60 o0sn
n
f(xls Xpp » o o xn) = px(l - p)n"K where X = ? Xy

(since £(x) is ordered, the coefficient
term is omitted)

X is a sufficient statistic for p.

E(Xl) = p S that X; isan unbiased estimate of pa.

2
o, = p(l = p)
x

Define \{J (X) = E[X [X] ~= by the theorem \’/(X) will be unbiased and have
1 smaller variance.

Xl e ], if suceess on trial 1
= 0 if failure on trial 1

in n trials we have X successes

P;-[xl = success, X] = X/n

Pr{xlsolqu--’é

Fr [Xl =1fx] = x
therefore \//(X). ) E[Xllx:l ) %;-

2- |
Problem Lh: Negative binomial? r known

show that 1. X is sufficient for p,
2, (1= Xl) is an unbiased estimate of p,

ngbes Xi =1 if failure on trial
= () otherwise

x = X,

Z = max(X;, Xp5 o o oy X ) dis sufficient for 6.

rind E[x)|x],

Example No, 3¢ Uniform distribution on (0, 8)

EX;]= %  so that 2X, is an unbiased estimate of O.

\V (2) = E[2x;|2] will be wibiased and have smaller variance.
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proofs If Xi is one of the observations less than Z then Xi is
uniform on (0, 2),
then E[ex;|x,<2] =2(%) =2z
If X, is the maximm (i.e., = 2) then E[2K,|Z | = 22,

Thuse
e Nne l l = l 2
E[ZXilZJ= Sz +z2 =(le)Z+E2

= (L+d)z=(2id)g

Given that X 1is a Poisson random variable,

estimate e'”"‘~ (1,80, estimate the probability of getting a zero observation).
s how

2%
«an () T

T

Given X P X, ¢ o o X .
28 1 $ .
1 r P(Xl, 3 ¢ 09 Xn) = g

n
we know that T =§Xi is sufficient for A and
i

(see example No. 2 on p. 86 )

p (1) = ™™ ——15-(?}”)1

(also X is mol.e. for A and e is meloe, of e~M ) .

What is an unbiased estimate of o M 29

Let n, = the number of zeros among Xl’ X2-" Y Xn.

E[%Q] =e™ = PfX=0]
A

so that ﬁ-Q is an unbiased estimate of e\,

=}

Define the estimate of e N

P s3]

Leto Yiﬂl 1i‘Xi=O

=0 if X, >0

n

then n =§Y.
0 1, i



To show that YJ(T) = (1= % ' is unbiased!

@
T
z [V ] =T§o (1-1)7 & .-_l-(;""

=§ 18 [(l - %’i%(nkﬂz PR Y L NN
T,

_Problem 483 Find the variance of \P/() = (1 - T

Compare it with the C.Rs lower bound for unbiased estimates of e-)".

W M AN BEr G BEe Ga mAm IR Mme GRS EG W AEG Ghe AN e WM AR WAS GEn GEP M MR Ame EN WS s AME WD e YEm Me e BOY  Sen we e GEG sam A W

Sufficient statistics are not unique §

Example 1ls Poisson T= EXi is sufficient, but %;- = X is equally good.
Example 24 Xl, Xz, e o oy Xn are N(M, l)
E (X-l'“)a Exg':'zuﬁ%xi“n 9'2
£x) = (2" o TTITTT & (i) e z
N en v 2n :

Exﬁ s X are sufficient for p, however EX? is not necessary and
gives no more information about y than does X

2

(Xi = )

l )n st 2

e
Va2rn o 20’

Example 3% £(x5 W, o) = (



or also T, = hiA

- 92 -

‘ 2
Tl-X TZE(xi-i)

T2 = Exg == this set gives the same infor.
mation (need %o combine them

to estimate o)

Example Lo Same as No. 3, but p 1is known,

then T = E(Xi - u.)2 is sufficient for %,

2

-G Mme R0 M S e gun e Gy s e (i “on @GNS Gun S WA W D Gre GER WM MER GEm SmE e EwR AUS GRS wem

Remarks (aimed at problem L3, but holds in general)

The Molsec is a function of the sufficient statistic(s)

since L = g(T, ¢) n(X, T)
InL=1ng+1lnh

d1n L 1 2eg 2IBL .o gine it is
= g oy se- -0 29 |
2 g:i. ' 8{L, 9} agi i independent of 8

The solution of this equation (which gives the m.l.e.) obviously
depends only on T»

Def, 32; A sufficient statistic :is called complete if
B[h(D)] 5,0 implies B(T) = 0, 5, denotes identically

equal in ©

i.e, Sh(g) f(?_, 2) d?_ ;Q (0]

Theorem 27:

Proofe

If ‘T is a complete sufficient statistic and d4(T) is an unbiased
estimate of g(®) then d(T) is an essentially unique minimum
variance unbiased estimate (m.veuoes)e

Let dl(T) be any other unbiased estimate of g(@), then we know that

5 famy] = g®)
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Bly @] =@

thus by subtraction Ee[d(T) - dl(T)J = 0 forall @
The completeness of T implies that d(T) = dl(T) = 0 (sece def, 32)
or that d(T) = 4, (T).
Further -« let d?(_}g) be any other unbiasgd estimator., We know from theorem 26
that E d?(z(_! T)] k//('.l‘) is unbiased and 0'2\? < 0‘2, with the equality
'holding only if d4' is a function of T
But, by the first part of the proof W (T) = d&(T),

Hence, if we start with an unbiased estimator not a function of T, we can improve
it, If we start with an unbiased estimator that is a function of T, it is d(T).
This is the contention of the theorem.

Example No, 13 Binomial X is B(n, p) p(x) = (,’%) P (1=p)"~*

For completeness of X, which has previously been shown to be a sufficient
statistic, we need ,

n .

hx(n)x1~ - T h(X) =0,
2 B (R)F @)™ Fo == )
The left hand side is a polynomial in p of degree no

— n Nl —
Pn(p) =0 i.e. anp + an_lp + o 0 o * ao = 0

For this to be identically zero in p dimplies that all coefficients are zeroy
which means h(X) = 0 for every x =0, 15 2, ¢ o o, N,

therefore h(X) fo and X is a complete sufficient statistic,
h X .
ence H 18 MeVolc€o
Example No. 2 Poisson Xis Xps ¢ o oy X are Polsson (A)e

T = Exi is sufficient and is Poisson (ml\)e

For completeness, we must have

o ,

T :
th(T) ¢~DA _(’1%%___ -—’i‘ 0 implying h(T) = O on the integers
T =
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@ T
or Eh('l‘)%%l- % 0
Tw=0

nk)z

n
ho+tlliT*h22£—*acaao 0

>Ji|

Such a power series identically zero means each coefficient = 0 or h(T) = O,

so that T is complete =~ therefore g— is meveuces of A,

(1 ~- %)T 18 MoVelego Of M,

Example No. 3: Normal Xis Xps o » oy X ave N(u, 1)

is sufficient and is N{u, %‘1-) o

X

00 oG 2 m-z? - n 2
E (_'h(i) - Yo hE) e° 2 dx =pl |h(X) " T2 o My - dx
(27 21
B 2n
=00

2 @2
n - nx -
LB - - T —
LB . e S[h(X)e T & = o

this is a bllateral Laplace transform

By the theory of Laplace transforms (ref: Widderf's book) if the Laplace
transform = 0 didentically, then the function = 0 or

o2
nk
h(X) " = 0 which implies that h(X) = O,

therefore X is complete.
If X35 X5y o o oy X are N, 02) then by a similar argument (X, 82) are

complete for u, 62.,

Remark, Any estimafe which is wnbiased and a function of X, 52

is Meveueee

of g(uy )s
In particular, if g(u, 02) = y.2 * 0_2 = E[Xz:] s
%1- Exi is an unbiased estimate of p.2+ 020

2 2 2

2 -
\ Exa = (n‘l)s + nX 80 %Exi is mevoueee of WP + 0o

1
n i n
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' Problem L4637 Find m,v.u.e. of hp where Pr[x(kp] = p,

and Xy, Xps o o oy X are NID(p, 02)

Examples Xis Xps 0 0 oy X, ave N(u, 02)
o 30 0000 Iy pe AN((, 02)
Sufficient statistics are (%, T, sig 35)

(400 , we have four sufficient statistics for three parameters),
thus this sufficient stgtistic is not complete,

" Remark? for completeness, the sufficient statistic vector must have the same
. ; nunber of components as the parameter vector.

" Remarks for an example of what can happen by forcing the criteria of unbiasedness
on an estimate, see Lehmann p. 3=13, 1k, ‘

Non-parametric Estimation (movouoe.)

Let X5 Xps o s oy X be independent random variables with continuous d.f. F(x).

The problem is to estimate some function g(F), eegs

00
g(F) = gx dF(x) = E[X] provided E[X] < ®
-®
g(F) = 6§
h g(F) = F(x) i.e.; wé want to estimate the density function
g(F) = F(a) = Pr[Xga]
g(F) = F(b) = F(a)

) g(F) = (Xl, Xn) such that F(Xn) - F(Xl) 2 1=«
. _ (two-sided tolerance limit problem)



- 96 =
Theorem 285 If d(Xl, Xps o o oy Xn) is symmetric in X;, Xpy o o oy X and
EE:I(JS)] = g(F) +then d(X) is moveu.eo of g(F)s

Proof? Sufficient statistic is T = (§xi, Exi, 6 o sy Exg)e

Consider the n equations:

p

2
Sxt at,

¢ © @
n
These equations have at most nd solubtions,

Assume (as is true with probability 1) that all the X's are distinct w== if
Xl, X29 o o ng Xn is a solubtion, so is any permutation of the X!s,

There are nd permutations of the X's sc these give a complete set of
solutions,

Since the sufficient sitatistic may be regarded as a set of observations,
order disregarded, any function of T is symetric in X.l, XZ’ °© o sy Xne

To show completeness, we must show

Sg(T) aF(T) ‘—-.;:‘ 0 .—_% g(T) = 0 , \

an 2 V)N
95905058, )e X =01x=02% =0 o0y £

Consider the sub-family of densities 0(919

f(:'t_) - Cne"Exizn = gl Exi o 92 EXJ?_ = S50 ™= enEXXil

N 2n
- Cneaéxi w Ql’bl o 62132 = 500 = Qntn

£(x) = h(x) exp( = 05y = Ot = o 0 o = entn)

T = (tl, t29 ¢ o ey tn)

s e didem



- 97 =

' f(?_) = .f(trlj t2’ n ® oy tn) = exp(-"Ql tl - g2t2 - 5 e o ™ Qntn) 'p(tl,cootn)

where: P(bys tos o0 65 b ) is polynomial in the t's obtained
from the Jacobian =~ it does not involve the @'s and is

non-negative,
© e—E e.t
Hence, if S g(1) ed=t p(T) == 0
-m gl" 200 ’gn

by the same type of theory as in the normal case (uniqueness of the bilateral
Laplace transform) this implies

L g(I) p(T) =0 or g(I)=0 Qededo

Exam;;le 1: Estimate E(X).
¥ is symetric function of Xy, X5 o o o5 X,
‘ ' "~ further, it is unbiased so that by theorem 28 it is MoVeleCo
Example 2o Estimaté F(x).

We havey, from the sample,

1
_— underlying population dofe
sample d.%,
\-’7—-4—- The observations here are ordered
—_l , in size but not by observation
Otz }2' Ji f 2 3 order (chronological).
2w %) *a) *a ) e
n'l
F (x) = = (#x,¢x) = %1- :gl Y’i(x) where ‘7"(::) =1 if x,<x
' =0 :Lf xi>x
1 .
‘ Fn(x) == 3 \f; (x) indicates symmetry in the x's,

It then remains to show that it is wbiased, i.e., for each x: E[F (x) | = F(x)a

‘ For each fixed x +the number of x,<x 1s a binomial random variable with
parameters [ n, F(x)] =- and henc'él since the sample frequency is an unbiased
estimate of the binomial parameter, we have the required unbiasednesss -

Remark! Pn(x) —— F(x) for all x [Proof given later]
P
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Problem 47 Find the meveu.eo of Pr X‘.a] (a known)
given observations Xl, Xz, oo o9 X . " with dof. F(x)e

Problem 48 Given X, X,y aeo, X are NID(O, 02) and

S = EX?_ is sufficient for 02,
8) find the minimum risk estimate of o? among functions of the form aS.

b) is there a constant risk estimator of 02 of the form aS + b?

Fo y’-estimation

«= most generally applied to multinomial situations.
-« usSually associated with Karl Pearson,

ref? Perguson == Annals of Math, Stat, == Dec, 58

Multinomial Distribution,

Given =« @ series of trials withs

possible outcomes of each independent trial El E2 o o Ek
probabilities for a given outcomeg Py Pyosoe Py

and n experiments result ine
Vl 'V2 e 9 ® Vk

a1
with the restrictions that 2p1 “1 2 v, =D
£
v v v
Fr v 9 v 9 o 0 05V = Ne 1 2
{ 1 2 ) kj vl g V2 geoovk g Pl P2 so0 pk

[this is a Atgrmj of the multinomial expansion of (pl * Py ¥ oce * pk)n]

k

Characteristic afuhctioni

? t

¢ o ' S 1,1 t
(t t e o o t ) = ne (p e k\
Vi Vpsoees Vy 15 Yos s U V1V, Teoe VoL o..(pke J

v

t ’ t

E(Plel"'oes"'Pkek)n
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tl n

(‘Pv - v (tlsosnno)‘(Ple *p2+oo,+pk)
12 220t Tk

t
“[met+@-p)”

i,€., any one variable in a multinomial situvation is
is binomial B(n, pi)o

e 2
Momentsg E [vi] = np, crvi = npi(l - pi)

\ v'j J Qtia t’j

R M S

Asymptotic distributions?d

a) %y = === i5 A N(O, 1) a8 n—>3®,
.\,npiilu;)i) o
< & (yyemp,)? 3
b) Ez.z = E i i has a xd-distribution with k=1 dof, a8 n—@
seq T - np. ) :
i=l i=s1 i L .
(see Cramer for the transformation from k dependent to
kel independent variables)
¢c) as n-——y oo, np—>h; 1=1; 25 ¢ o o9 k=l

Vs Vos o 0 05 Vg have a limiting multi-Poisson distribution with

parameters Mo Aps 2 o oy )‘k-el‘ (V_‘v oY) o oo 3Vl are independent
| in the limit),

Examples (Homogeneity)

We have 3 sets of multinomial trials with possible outcomes El, E2, E3 N

with probabilities 6,, ©

19 Ops l1=0 = 92 for each set of trials,

1
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Therefore we have the following outcomes
o Y12 V13 n

Vo1 Vo2 Va3 ny

i1 Y 33 ny

12 Vi3 "a Ve Va3 Y "z v33] s 1n K

n L ‘1“[P11' Pia Pi3~ Pa Py Pp3 7 Pyim Pyt Py

=v°llnel + v an2 + v°3‘ln(l-91-92)+1n1{

02
Qmi _Ya_ Y3 .,
SN 5 " I%-6,
9L _ w2 3,
39, "8, -85,

These give the two equations]
(1) ( vt vC'B) 8+ vy9, = v,
() vo8 *+(v,y* v3)e, =v,

which when added together yield

(3)N91+N9= =2 N =

2= V1t V.2 v 3.
V.2
Multiplying (3) by —N-°- we get
v v +v,)
= 2 @l 02
(L) v,0 + v ,8, =7

(2) = (L) yields v 40, —Ep—22
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. s AV
Similarlys gl b “ﬁ““ o
FAY 92 (1‘92)
Tt can also be found that v( 92) = T
&
0OV(915 Op) = - ==

Problem L4L9: (Independence)
Consider one sequence of N trials that result in one of the rc events

Ell’ E12, s e oy B with probabilities p.. = p.7

i3 MY
r c
whereEpial; E'cj=l@
i=1 Je=l

Find the meloe. of Pss T and also their variances and covariances,

J

x2-e stimation: general case

Given.=8 series of n, trials, each trial resulting in one of the events Eisoee By

«=The probability of EJ. occuring on any trial in the ith

K
%pij=lo

series is p..
| pJ.J K]

«the random variable in the problem is the number of cvccurrences of each
evento

k

==t he pij are functions of @ (continuous with continuous first and second

} derivatives).
|

cxpectation is with respect to #j! o= i.e,, Eﬁrij] = n.pi'j -= the use of

i
the "i¥ subscript is a convenience, we could consider the s trials as one
big trial,
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The following methods of estimating _@_ are asymptotically equivalent, i.ee,
(i) they are consistent
(ii) they are asymptotically normal
(iii) they have equal asymptotic variances

ls maximum likelihood
2. minimum x°
3, modified minimum x°
Lo transformed minimum x2'

L. Maximum Likelihood Estimation‘:

Maximize WTT[piJ(G)] W or E § ‘J* 1n p;,(9)

isl j=l 1=l 371
k
subject to P> Ps 5 (8) =1 for each i, with respect to 6,
J=1

or actually solve the equationss

3t SE- 2]

(provided suitable regularity conditions are imposed as given in
theorems 22, 23),

2, Minimum xz

2
22 e is asymptotically distributed as x° with s(k~l) d.f,
i~ij

The method is to minimize this expression with respect to © or to solve
the equations?

2
s § E ni("i,j - nipij) BPH - 2 2 (Vi;;_" nipij) BPij - 0 [2:’
B B3Py 5 28 nipijz o8

This set of eguations could be expressed as;

2
< v, Pse =  wm P - (vy=n,p,.)° P,
33 My 28, 3.3 2.3 33 Tl 0% L
TIRETT TTRTT ETT T2 98
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? pij 1 ? —ﬁ 0

therefore the second term equals O
R = the third tewm -—p——>0 as N —>o0

Hence, equation Ez] is the same as eguation [_l] except for R and thus it is seen
that under suitable reguwlarity conditions the solutions of equation [ 27 tend in
probability to the sclutions of eguation [17J. '

3, Modified Minimm i

2

Replace p.. in the denominator of the regular minimum ¥~ equation with its
ij

estimated value, and then minimize with respect to %

| 2
2.5 (vy3 = ByPyy)
xm i Vs
J ij

subject to E pij =]l for 1i=1, 2y ¢ ¢ oy 5o
‘ J

Comparing the two xza methods

2 2 2 1 1
X = Xm © ? ? (vij = ipi,}) ( - R )

NiPs5  Vij
1 Ve ™ Dy
2 ij 171
- § z (vy. = n.p;.) <....a’.-._..m__.l> -
i ij s R 1 nipi;'vij

< (v, =np,.)°
I SRR N 5 M
i3

0,0, .V, .
ke By e

R ———>0 faster than does x° =ew-—= thorefore methods (2) and (3)
are asympioticaily equivalent,

The equations to be solved in this case arel

S Ml o meg) ORy (57
71 o0& 3
Lho Transformed Minimvm XZ
Pecall that 4f V(X =} ts ssvmobobicall . (X )~g(u)
e e as i .
8 asymptotieally normal, then W is 4N

“n
. . 2 2
and the asymptotic variance of g(xn) is o [ gf(u)_] .
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Before writing the necessary equation, write

v,
, = --%J— thus the q__.‘_J are random variables,

U FPy Byl ey

Thus the modified minimum x2 equation can be written.
2
2 ny(a44 = Pyy)
2-33 Moy
i) ij

The equivalent estimation procedure is thus to minimize

SS & (elayy) - g(g%,)]z

13 ayyetayy)]

(the numberator should be Py [g'(pij )]2 but the difference
occasioned by the modification ——>0)

for g!s which are continuous with continuous first and second derivatives, and
with g'(pij) bounded away from zero.

This method will be useful if the transformation, g/p,.(€)| is simple.
. i B N A

The equations to be solved are thuss

ppalw) ) ..

13 ayy (_'_g'(qij):[J.5

Summary.
Method (1) [MGloeo] = ig most useful if the Pyy ocan be expressed as

products, i.e., Py = pi'cj as in problem L9,

Method (2) [minimum xZJ -- most useful if Pyy can be expressed as a
sum of probabilities, i.,e,; pij =, ot Bjo
PR
Method (3) [modified x°[-= same as (2),

Method (L) [transformed x2J =~ may be most useful in some special cases,



Examples of minimum - -&2 procedures:

ls Linear Trends n, = 2

obs. grobe

11 Pp=p-4
Ya P " P
i PptPtS

Ji W
\ 9
- 105 = vz Ve
\j‘)\ Uq’)’/’/; V\7
p=3
obs. probe total
V12 Pp=l=-p+A n
Y22 Ppp =1 -p n,
v:,‘2 p32=l«-p-A n3

Problem is to estimate both p and A.

Using the modified minimum- x>

procedures

2« [oyyemy (e-0)]? [ i """] (v 21"“21512

2

-3 %‘%“ =8 ["11"“1(?“‘)] * o8 ["21‘“21’] ¥

- 1
where a, ni( T+

2
-3 5

i1 Va2

==~ a v - 1(1"‘“)] T 8 ["31 - n3(p*A)]

A1 b [+ 4]

) [731- 3(p+A)]

=)

These two equations yield the following two equations which can be solved simule

taneously for p and A 2

p Eniai + (a3n3 - alnl)l.\ = Eaivu

(a.:,,’n3 - alnl) p+ | (a]_nl + aBnB)A =

33V31- alvu

Note!: remember that this procedure is asymptotically equivalent to the mel.e, ==
therefore the asymptotic variance-covariance matrix can be found by evaluating

1_3_&2 ;A

of the asymptotio normal distribution.

2 2.2
1 aé 1 2%
2 p N 2&in:l 23p5d @

Ry = &0

2

%‘- -}ﬁ%- at the expectations since - 32— is the exponent

22
}z'a}‘é“'al“l*asna

A
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Recall a = nl( %J? + -‘-r]i‘i; E[vll] = nl(p-A) E[vlz] - nl(l-p+A)

Replacing the random varisbles in 8 by their expectations yields

1 1 1
b} P } ( =8 t Topth ) = P=4) (L=p+A
Similarly. a S, ot
2 p < p(l~p)
a S, 1
3  p” (p*d){1l=p=4)
thus the inverse of the A, V-COV matrix is
alnl '9- a.2n2 + a3n3 o alnl L 331’13
vl e .
e alnl + a3n3 alnl 33n3

2, Logistic (Bio-assay) problem (Bergson)

~-= applying greater dosages produces greater kill {or reaction)

8 = general ng 2
X1s Xps 0 o oy Xg dosages
D35 Dpy o o oy B receive dosages

Vis Vps ¢ o oy Vg die (or react)

D= Vi9 o o oy DV, survive

1 1 o (1)
p -] - . - p. ‘= -
17 e (X, 17 e (%¥x1)
le-np, v -
3o om(=Bxy) q === = proportion dying or reacting
Dy 17

1=p
i
-ln(-;;—)ﬂ a(+£3xi
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. Applying the i:J:'::msj‘?orn'xed«)(2 method to estimate «, B and using the transformation
1-x

g(x) = = In( =2 ) = In( 1% )

g_g(x) 1.:2{‘ (lﬂt)-(xz s 1

X (l_x)z x{1ex

The transformed— x2 is given by}

2 é lelay) = e(x;)]° ) [e0a,) = g(iep,)]?
o2 n |
Kp i=]l i qi[ge(qi)]T (lwqi) [g?(lwqi)]z

S
= 2n, (a,;) = g(p,) -————-—-—sl * x
| e t etz ] e@)]”  (2eqy) o' (2-a))]°

i=1 T

Putting in the values of g, g'; we have

: 8 q. [a,(1=0,)]% [a,(1=q,)]
. xgﬂj%_ni [lni:%;-(x*ﬁxi)jz[ iqiij +[il_;'i]
2 q
= .’Ei n, [ln 1—;:3-;« (£ + pxi)]2 [qi(l uqi)]

S SNS W mme Gee D SN e GAm GRS GRS TS GEn QAR WE SEF e MO¢ SR STm A A MR edd ke SR G (e Mk W AN Ani WD dme WSS HBe Mlel BaeR  Gmm S WAY  Ses

Problem 503

B2

Consider rc¢ sequences of n trials which may result in E or
where in trial (ij) '
N ~
Pr(E] = “ + B, Pr[E] = 1= -8, 1= 1,25 0002

Set up equations to estimate T B j by

1o maximum likelihood.

o 2, minimum modified x2

based on observations v,., ne v, .,
i3 ij
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Problem as stated produceg r+c¢ equations in r+¢ unknowns, but their matrix
is singular =~ i.e,, the equations are not independent by virtue of the fact that
the sum of the r eoquations for the *i equals the sum of the ¢ equations for
the ﬁo

J
Therefore, reduce the number of sequences to lk,

and add the restriction that Pyo = plg‘* Pyy = Pyg
ie€oe Pip =% ¥ By
Pip =% * B
Py =% By

Pop = 4 * Py = Pp * Py = Py

i.e., reparameterize and find the equations necessary to solve for the
new parameters.

Problem 51°

v
Given & seqQuences of ny trials may result in E or E where in sequence i

Pr{E] = g™ah I&{ﬁi]==l - g kit (% knowny 1 = 1,25000,5)
(let the number of Efs observed be denoted by Vi)o
Set up the equations to estimate A by
1, maximum likelihood.
2, minimum modified x2e

and find the asymptotic variance of 'i.

(note: Ferguson disecusses this problem in his Dece 58 article in the Annals)

G, Minimax estimation?

Recall that d(X) is a minimax estimate of g(9) if

sup RE:I, ©] is minimized by &(X).
g ]

Rlg, o] = Elap) - g(@)]? = f [at0) - e@)]? 2@ ax

[see def. 2l on p. Sh]
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Methods to try to find minimax estimates.

l. Cramer-Rao

: 2 2
2 > [re)® , . Lis btéigzl
RREE
B[a(z) - g@)f == [a - 2la@)] +=R@] - g(g)] 2
- &+ Bl
[1401(0)1?
R{d,0] 2 5
£
L]

If we have an estimate d(X) which actually has the risk k(@) then any other
estimator with risk less than k(@) 2leads to a contradiction,

Examples X9 Xp5 0 0 oy X~ are N(u, 02)

+ b2(8) = Kk(8)

2

2 iy
Lehmann shows that l;bs@) + b2(e) é--g—-

which implies that b(8) = 0O

and we know R(X) =

Therefore X is a minimax estimator of .

2, This method based on the following theoism which will be stated without proof.

Theorem 29, If a Bayes estimator [def. 23] has constant risk [defo 25] then
it is minimax,
d(X) is constant risk if E [d(}_g) - g(e)]2 is constant,

d(X) dis Bayes if d(X) minimizes f[d(;_c_) - g(Q)J f(x, @) da(e)

wvhere G is the "a priori" distribution of €,

ref; Lehmann == section L, p. 19~21

Examples Binomial == X dis binomial B(n, p).

Recall that we found that  d(X) = -~ £, L

1+fA 2(1+A)

is a constant risk estimator

of p [see problem 31, p. 5)4:10
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If p has a prior Beta distribution

N R
f(p)=KpT @L-p)?

then d(X) is Bayes;

hence the minimax estimate of the binomial parameter p 1is

yn_ X 1

e v -+

1+fn B 2(1+Jn)

Graphically we have the following risk functionsi
1

I e Gl
. minimax

Problem 52, Compare RQ\ (p) and By (p) for =n =25,
m

A
(d=

B

s d_ = minimax estimate)
m

H, Wolfowitz!s Minimum Distance Estimation

19 %55 0 0 ey Xn are observations from the Qistribution F(x, @),

We are also given some measure of distance between 2 distributions P(F’ G).

gl p(F, 0) = e |F@) - ax) |
' =0<X <00

ﬁ (F, G) = f[FOC) - G(X)Jz dF(x ; G‘(X

no. of X's<x
n

Also we have that the sample def., Fn(x) = (see pe 97).




nllln

% is a minimum distance esgimate of © if FE‘(X’ e), Fn(x)'J is
minimized by choosing © = 6

Notes We want the whole sample d.f., to agree with the whole theoretical
distribution =~ not just the means or the variances agreeing.

. WA
In particular, if we use the Msupedistance! then © is that estimate of ©
which yields

min sup l F(x, ©) ~ Fn(x) l °
O =w<X <O ,

N
Remarks © is a consistent estimate of 6

Pt
Proof: Suppose,for all sufficiently large n,@ differs from @ by
more than ¢ .

Then for some &
AL
sup | F(x, 6) = F(x, 8)] > 5

and for some n

&
sup i Fnl(x) - P(x, Qo)l r'd 3
We want to show that

N
sup ‘ Fn(x) - F(x, Qo)' Z. sup ) Fn(x) ~ FP(x, 8) ] 6
«®MLX <O «D £ X. £ 00

Let xt' be the x such that
F(x?, 5) - F(xt, 8,) =5

Fnl(x') - F(z', 8_) <§.

therefore F(x!, ,5) - Fnl(x9)>% &

thus sup |F(x!, ) = F (xﬁ)] >~§ ]
7 1

D sup an(x) - F(x, Qo)

but this contradicts the fact that & minimizes sup] Fn(x) - F(x, e)}

s
therefore © is consistent.
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' Example! Find the minimum distance estimate for p given X, X,, X, are N(us 1.
. Xl =1 x2 = 2 x3 = )
p .-
14+ S — Fn(X)
. 2/3"‘" /
1/3+
SCHRMNES: S Sas. S e ——

Notes The "sup~distance" will obviously occur at one of the jump points on Fn(x)‘

To find the minimum distance estimate of p an itterative procedure was used, whiclh
started by guessing at u and then finding F(x, p) at each X;o

Xl X2 X3
e Fplx) = s} 67 1300 sup
.2oh Zi=xi-p, = "loh “00}4 lo6
® (zy) = -08L o3L5 o9U5 ¢325 (<67 = 5345)
20.3 Zi = "103 "‘093 la?
Az,) = 2097 2382 «955 »288
2933 ¢(zi) = - @371 9952 0299 (
2,29 ?(Zi) = - 0386 0956 028,4 (' CD‘I h 33@)

L J
Other values of y were tried, but the min sup-distance = ,28lL,

therefore €f= 2,29, (X =2,33)

Problem 53. Téke L observations from a table of normal deviates (add an‘arbitrary
factor if desired) and find the minimum distance estimate of pe
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Chapter Vo TESTING OF HYPOTHESES == DISTRIBUTION FREE TESTS

I, Basic concepts.

%15 X35 o o oy X have distribution function F(x) == continuous
== gbsolute continuous

[density £(x )J

The hypothesis H specifies that Fe Z(some family of d.f.)

Alternative H specifiss that Fe 7— Z

Def. 337 A test is a function ?9(:_5) taking on values between O and 1
ices, if ?9(5) =1 reject H with probability 1
=k m g " k
=0 s g o 0

(note that this considers a test as a function instead of the usual
consideration of regions)

Defs 35 A test is of size « if E[P(x)] for Fe z < <

B[P@] = ? Plx) dF(x)

o0

(this says that the probability of rejecting H when it is true < A}

Def, 35: Power of a test is E[ﬁ(:ﬁ)] for Fe 7=~ ;'07 and is denoted B, (F)

?

Def, __3_@3 {%% is a consistent sequence of tests if for Fe % Z

Bﬁ?" (F) —>1 a8 n—> o
n

Def. 37 " Index of a sequence of testsd

/
N( %3 7 s %y B) 1is the least integer n such that, given that

P is of size 4 ﬁ%(F,F 87”) >1-8




Def, 38 Asymptotic Relative Efficiency (AcRoEe)
Let p(7 7) be some measure of the distance of 77 from z

Let % and %f be two Sequences of consistent tests

o
then the A R.E, of ? to ff is defined to be

N(%,;/g 5 8)

~-  provided the limit exists

P"*O N( ?n”’ ?a s B)

Prcblem 543 Xis Lys o o 05 X -avE N(u, 62) {o known)
H wu=0 alternativel >0

Consider two tests of H:

2y -t

1o the mean test: reject H if P mri—— @

n
Yt

[CP(x)=1 if x>7_»-_-:-— -
- zlw(

=0 if X £ o

n

2, the median test$ [use the large sample distribution of the median, i.e
the sample median is asymptotically normal with mean
= the population median and variance = no on

P
ova

W teste reject H if the sample median >z, ==
“% Jon

a) find the index for each test for the alternative @!
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b) f£ind the AoReEo, iee.
1im N(f: pis 4 B)
pi—>0 N(;ps W' % B)

II, Distribution Free Tests

refs; 8iegel == Non-parametric Statistics
Fraser =- Non-parametric Methods .in Statistics
Savage =~ Bibliography in the Dec, 1953 JsAcSolo

A, WQuantile and Median Testss

Def. 395 Let the solution of the equation F()\p) = p define the quantile xp.

If the solution is not unique, define A, = 1nfx[F(x) =p]

] $ = 2 =
Given the problem to test Hoo kp >‘o against the alternative Hlo Xq Xo

note; the alternative could be stated Ap# }‘o but this statement precludes
consideration of the power of the test since the power in this case woul
be undetermined by virtue of the unknown behavior of F(x).

Tests X = the number of Xyy Xpy 0 0 0y X S A

under HS X is B(n, p)

for the two sided test (q #p) at level « wusing the normal approximation

1

X - npl =
reject H if. j pf E; zlm(/z

Vnp(l = p)

Problem 55; Compute the power of the test (using the normal approximation) as a
function of q for n =100 and p = 0.5

g:_g_camgle: for paired comparisons, to test if the median is equal to zero set up the
series of observations d), dpy o e oy d s d; = xi-'-yi

where  x, <y, <=s=pd, 40

X >V < d;>0
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This test that the median is zero is often referred to as the sign test, sinec
X in this case is merely the number of di with a negative sign.

Def. LOa ﬁp, the sample quantile; is defined as the solution of Fn(i\p) = p

A
Theorem 30s hp has density function
A )
- e _nd i - Nep=l
£0) = B(x) = gy (PG [1 - PG ™H0(x)

where p = [np] which denotes the greatest integer in np

Proofy vref: Oramer p. 368

Pr[,):p gx] = Pr [p. + 1 or more observations éx]

n
- n J IETRY Loh R
3 El (3) [Fe)? [1- r@]™ - pa)

To get the density h{x) [assuming that F(x) has a density f(x)]
we differentiate the summation, getting the following two summations
[from each part of the product that occurs in each term summed

n
na) = 2 (3) sF@P 2 - re] e
J=ptl

n
- 2 (%) (- )PP [T - re)]-3Le
Jepsl, 3)(e= [(x] [ (x)] (x)

The corresponding terms {in Fa(l - F)b] cancel each other except for
the first (j = pu + 1) term in the first summation which has no
corresponding term in the second sum.

Thuse h(x) Lmaz—i—_-iﬁ [F(x)]“L [le(X)Jngu”lﬂx)

A
By the usual limiting process applied to density functions, ')‘p is asymptotically
, 21 p(l-p)
n
(A
()

normal, with mean )"p and variance

lee A is Aome(xps —Bﬁ-l-ﬂi-)—)

n fz();p)
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Problem 567 Let x have density -% £( 5%& )
[a0) [89) 0 ’
where ﬂf(x)d:ul ixf(x)dxao gxzf(x)dxsl

and f(x) is symmetric about O.
HS' p=0 HiA u = gl‘y»o

Find the condition on f£(x) such that the A.R.E. of the median to the mean
is greater than l. Use large sample normal approximations for both tests.

| x=u
0 w0 4<X <00

Specialize this result to f(x) = %é e

III. One Sample Teshs

H°° Fe Fo completely specified Hlo Fa= Fl <F°

the smaller distri-

bution has larger

', observations,

H S F = 1#F

problems? 1) goodness of fit (usually a wider problem since T
completely specified)

o is uswally not

2) Wglippage test"
3) combinaticn of tests == ref: A Birnbaum, JASA, Sept. 1954

L) randomness in time or space == ref: Bartholomew, Barton, and David,
Biometrika; circa 1955-6

Randomness in Timee (ab)?
-xb (b))
Assumes PT[h events in (O,t) (the time interval O to t)] = e n}

i.esy 15 Poisson with parameter At

\» 3
Probability of event occuring in one time interval is independent of an occurrence 1r
&y othar time iaterval, :

} 5 ) i " 'y

0 Tl
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‘ Let ’1‘i be the time at which the ith event occurred,
fé
t. =T, =T, T, = .
i i _:L-l i jol J

Pr[ti>t] ® Pr[no event occurs in time (O,t)j - o"A

£(t) = density of the b, = ae~M (the exponential distribution)
f('bl, t2’ o o oy tn) N e")‘Et-'L since the +t's are independent

Distribution of I, Tos coes Tn is obtained by transformation

T

1°%

1

st + ,Jl=l

Tp=ty + %

2 @ 0

Tnat + % “"oeo"’tn

1 2

n =AT
f(Tl’ T23 * o 03 Tn) = x e n

but O iTlé T2 gs % o éTn

Therefore, let us find the conditional distribution of Tl’ T2, ©c o o3 T
: n

given that n events occurred in the fixed time interval (0, T).

£(Ty, Tos o 0 05 I 5 n) = density of Tys Tps s © oy T, and also the probability
that no events occur in the time interval (Tn’ T)

- )‘n e"‘un e)\(T - Tn) ¥

- Ane-}'T

AT (A7)"

£(n) =

]
o

tvherefore f(Tl’ T29 ® ¢ oy Tn n) = né( JT-: )n

This distribution is the distribution of n ordered uniform independent
random variables on (0, T). '
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Ordered Observationse
X5 X55 o o s, X have density f£(x) and are independent.

Yl, Yg, o o ey Yn ars the ordered Xis.

Joint density of the Y¥Y's is n! f(yl) f(yz) o 8 » f(yn)e

-Hm<‘yl§y2 \<° o °Syn<w

If the X®s have a continuous distribution then we may disregard any equalities
between the X!'s or the Y's,

The marginal distribution of the Y, can be obtained by three methods, i.ee

l. Integrations

o @
s nd g f(yn) dyn c o s { f(yi*l) d}"i_,_l X f(yi) x
Vel 4
Y5 Y3 Yo
g f(yi-rl) dyi_l s e 0 S f(ya) dya g f(yl) dyl
=00 =0 =00

notes ==~ the observations above y; are constrained by the next lower
observation, since this is an ordered sequence

=~= the observations below y; are constrained from above

integrating this we get
gi(y) the marginal density of ¥,

- T (- Fe) T [re) P ey

2. By differentiations
Pr[Yi< y] = Pr[i or more observations fall to the left of y]

n
-3 (O[] [-re]?

J=i

g (y) = a"‘?‘ 2 () o] [2 - rer™
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(n-»i)ﬁi-lﬁ [F(V)]i'l [1 = F(y)]n"i £(y)

3, Heuristic Method (Wilks)s

dy
“?LVk :
Yy
(i=1) observations Y (n~i) observations
in the interval in the interval
(=0 5 ¥) (y; + 0)

The probability of this is essentially & trinomial distribution, therefore

g, ) = rryiiTeeny PO ) [ - re]™t

- Pr[’ri is in the interval dybl

Examples In particular, if we have the uniform distributions

£(y) = 1 Fy) =¥

) = mhmnT Y @ = 9™ (which is & Beta distribution)

and E [Y] ‘3?1'}’1’

We could also define the spacingsd Si = Yi"Yi-l 1=21, 20 ¢ ¢ oy n¥l
n+l '
1
E[Si] * T 25 =1
i=],
put Yn-!-la 1 Yo a0

Problem 575 Show that each Sy has the same density,

a) find this density,

n+l
find 1) E[E.sﬂ 11) E[Efsi-i%{

b

-
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Lemmai Probability Transformations

If X has %istribution F(x), F(X) bas a uniform distribution on (0, 1),

Proofs F(X) define the inverse function as

1,y -
(u) i;lf [F(x, u]

/

Pr[F(X)ﬁu] - h{xsF'l(u)] = F[F‘l(u)] = 0<ugl

One Sample Problem can be put in the following form by use of the probability
Transformations

Given Xy, X55 o » o5 X 5 lot X‘('l)"‘(z\(“ o o<x(n) be the X’s ordered

increasingly and define U, = Fo(x(i)) i=21;,2 ¢0sn

we have a set of ordsred cbservations IL U23 ¢ o oy Un on the
interval (0, 1) which under

Ho‘; has uniform distribution (with density ni ) ,
[or equivalently, that the original Xis had dofe F_(x) i.e0, that
the correct probability transformation was used] °

and under HlZ has distribution F [ ] =

two=gided problem one=gsided problem

G(u)<u == with the
strict inequality for
some interval

Some of the Tests for One Sample Problems

1o U which is AoN.( 2, lan)

«= for the one~sided situation
== consgistent
- reJGCt H if U is "tOO large" i.8, if a>§ + Zl < (—*?n)

(for the above pictured situation)
or if U is Moo small" in the ‘converse situation [iae. s G(u)>uj ,
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n
2, =2 E InU which is x2 with 2n dofs (ref. problem 6)

g1 1
e x2 is exact, not asymptotic
== c¢onsistent

== for the one-~sided problem
== used in combination problems

reject H if x2 is "too largst®

n
3o =2 E in (1 - Ui) == glso is x2 with 2n d.f.
i=l
«x fOr the onew-sided problem
== Poarsonts counter to Fisher's advocating No, 2
=~ consistent
== reject H if x2 is Moo smalll

Lo Distance Type Problem
Kolmogorov Statistic defined as follows

p* = sup [Fn(u) - u]
osusl
- for the one=sided problem
D = sup [u - Fn(u)]
osusl '

D = sup 'Fn(u) - u' for the two-~sided problem
osusl

we 18 consistent

5, Related to the Kolmcgorov statistic is

R = sup g‘_n_(_g_mz one=sided problem
agusl
R = sup M two=sided problem

atusl u

== not necessarily consistent

== Mgt is arbitrary but positive
derived by a Hungarian, Renyi
-= not of very great merit
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60(.0121 = g[Fn(u) = uf du
)

== twomsided or one=-sided problem

«= sort of a continuous analogue of Y
consistent

== due to Von Mises and Smirnov

n+l

1 1
7°®n”?i§_131‘”m/ g 2 uy = vy

~=~ vefs Sherman; Annals, 1950
one=sided or twoesided problem

== consistent
1l 2e=b
i is AGN. ( hond 8 )
® * 1002
n+l,
8 p= > S
isl

«m one=~sided or twoesided problem
== due to Moran
is consistent

~ 5 =1 is AN(0, 1)

90 Uy {(Wilkinson Combination Procedure)

one=~sided problem
generally not consistent

3
s

Problem 585

a) Find the test based on Ul for the set of alternatives G{u)>u
with g(u) = G'(u)

b) Find the power of the test for the alternative G(uw) = u¥ 0<k<1

¢) Find the limiting power as n ~—~>3co (if the limit is 1, the test is
consistent)

10, x2

1l, Neyman®s smooth tests
== discovered by Neyman about 1937, but never generally used
=~ ref; Neyman; Skandinavisk Aktuarietidskrift; 1937
Pearson = Biometrika; 1938
David = Biometrika; 1938
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Problem 590 X;5 Xps o o o, X are independent with dof. F(x), density £(x)

n
let R = max Xi - min Xi
l<i<n l<¢i<n

a) Pind the distribution of R.
b) Suppose F(x) has density of the form %f( }—C%E )

where Sf(x) dx = 1 fxzf(x) dx = 1
show that E [R] = k(f, n)o.

Mt mte WU e MBS MRS W M KA RS s Ty TEM Sem P MNe MEL S G MME ANE WNE  WAS GMD S MEN UN Bl BAE  GMr @ G e S W SR GEE A BNu  Sue M G

Theorem 31
If F is continuous, Fn—--—p-avF for all x.

Proofe We want to show that given &, 6 we can find N such that for n >N
o [|7 () - Fx)| <o forall x[>1.8

1~ Let Ay, B be such that
/._..‘-—'
F(4) < ¢e/y
1-F(B) < &/p

A ' B

Pick owt poimbs X()), X5y o o o5 Xy dn (4, B) sueh that F[X ,)] - F(x(i_l)}<
which we can do because of uniform continuity.

Now set A = X(O) B = X(k)

Consider a sample of size n. Let ng ==:ﬁij that fall in the i-?'--12 interval

&1y *@y)e

Dys Byy o o ey Iy 4 are multinomial with probabilities p; = F[X(i)j - F[X(i«-l)]

k+l 2 :
(ns~np; ) 2
Now, 2 e has a y  distribution with X+l d.f.

. np.
1=0 Pl

We can find an M swch that  Pr ["12&17 Ml 46
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or Pr[x§+I<M]7l~5

Since the above sum is less than M, each term and also its square root are certainly
less than M, therefores;

ni-npil
Pr| =i  Mfor each i =0, 1, ¢ 0 69 k+ 1 >1le?d

\]mpi
By
which could be.written pr lﬁ-—.pil M .
—mns (==, for each 1 = 0y 1, es0, ktl|>1 =~ &
LY
X;4x L
Recall that 4 [X ] n#; 1) . 3.
n|™(1) n jmo 9
n
Now ’ | 2 ) < ]
F[x.]-»Fx.]lf-/-_.in p/a-/ ( «p, 1< ‘ -p.l
nlk™(i) [(1) parky jmo 9 j=o n T T 3
(k+2)M‘!5
Choose n 8o large that —_ <§ for all i
Va

Hence, if n is chosen this large; with probability 1 = & the following
relationship will holds

(1+1)0fB,
| 7] “’F["u)]l <= <3

Consider x 1l1ying between x( )and x(

i-l i)

(3

F["(i)] - F x(i)] +F ["(1-1)] - Fn[x(i)] =
F[x(i-l)] oF [x(i):l £ F(x) - F (x) éF[x(i)] - Fn[x(i-l)]

with probability 1 = &

—sSubitising-thefollowing relationshipss —— % making use of the following

relationship,
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- $<Fxey] - Fn("m] <3 F["u)] - F x(i-n]é%
- % < F(X(i_]_)] - F[x(iﬂ L0

Therefore the theorem holds.

Sme e WEe ASN  Gme MR e MNR GNe GEe RWN SAm GRS MR SN smy M Gy VN GED PUD. EG GNP GRe GEa GWe dne EEY  Gbe G WA AR W ST Gus TS e M e M Was W

Example; Referring to test No., L given on page 122,

H Fn——P 3

If H is true, F, —>uniform, thus for n sufficiently large 'Fn(u) - u‘ £ eo

If G is true, lF (u)-G(u)|<s and thus 'F(u)-u}»e.

/

Therefore, the test based on D = sup l F (q) - ’ will reject H with
probability tending to 1;

hence the test based on D 1s consistente.

Problem 59 (Addendum) (see p. 1212

¢) Find the distribution of R for

1) Xl

2) X135 %55 0 o oy X with exponential density f(x) = a e

9 X2, o o og Xn uniform on (03 l)
=ax

notes in the uniform case Ul and R are dependent; in the exponential case
they are independent since the upper limit of the observations is o

Remarke The Kolmogorov statistics, Dn’ D+, and D~ are in fact invariant under
the probability integral transform.

Proof; we have to show that sup 'F (x) = F(x)‘ = sup I F (u) - ul
_— @@L X LW 0sugl
sup | F n(a) = u = sup an[F(x)] - F(x) h

0 <ugl 0 <PF(x)<1



Now?d Fn(x) = % YiéxéYi-n-l where the Y!s are the ordered
observations Xl’ X2, e o oy Xn
=3 £ <
P{F)) =3 where F(¥,) < F(x) SR(Y,)
Therefores
sup an(u) - ul = sup | F (x) = F(x) !

0 <u4l a0 L% < 00

Distributions of D2

When H is true, and Ul’ U2, ° o wy Un are uniform, then

- ¥ 222
a) lim Pr[\]-rTDn< z] ® laseg (due to Smirnov)

n—>m: O<z<w

«= PFinite distwibution of D' given by Z., Birnbaum + Tingey in the
Annals of Math, Stat,
-= Tabled by Miller in JASA, 1956, ppe 113=115.

0

- 2 2
b) L(z) = lim Pr[ﬁ{ D* « z] a2 2 (=1)™F 2T (4ue to Kolmogorov)
n—>o n m=1 0<€z<m ‘

Tabled by Smirnov in the Annals of Math. Stat., 1948
The simplest proof of both results is due to Doob in the Annals of Math. Stat., 1949

Some tables on the finite distribution of Dn are given by Massey in JASA, 19kL9,
Ppe 6877,

Consider now that H ~is true, l.e., that U has.dofs G(u):

D test is to reject H if D; > &, where
Pr{:Dn >an] = o

PR -
Pr[,rﬁ' D; An sn—] = o™l =«

lin a([
n 2n

A = max, difference between u, G(u)

D =sup Lu~F (u
P oosugl n >J

thus 3

u . . ar '
: Rejeet H if Dn >sn




Test No. 6o W, =
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Suppose H, is ture so that F  is the sample dof, from G(u) with
maximum]u-G(u)f =4 atu=u.

Then$ Pr[D;"1 >sn] > P:|:'I:u° - F (u) >en]
? Pr[Fn(uo) = U‘o<"'3n]
2 Pr[n F,(u,) &n(u, - sn)j

But F _(u ) is a binomial random variable with expectation (u. = A)
n'“o o
n{u =¢_)
‘o °n
Binomial probability = 2 F(ks n, u, - 4)
k=0

and

Problem 60¢ Find the bound on the power of the D; test where G(u) = u°

Using the normal approximation given an explicit form for this bound

in terms of
X 2
ny; A, 95(3‘) . o=t /2 as

Test No. 57 Renyi Statistic

F (u)-u
R = sup 2
a<u<l Y
F_(u)=u
R = sup L—-n__lr_—l
agusl
Limiting distribution! N
g 2
lim Pr {HR‘“@] - J—%— ot 72 g,
n—0 d

For the distribution of R and further discussion see an article by
Renyi in Acta Mathematica (Magyar), 1953.

(00}

2 [F_(u) - @2 du = i [0 = P(0)]? ar(x)

LFﬁ(u) - -2an(u) + u2] du
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wd
Fn(u) = u, su< <u,

8e8oy Fn(u) is flat for an interval

n u : 1
= 2 3‘- ZuEJ du + f u2 du
=1 n n

i 0
recallt L 1l u, = 0
n+l,
"l -2 (“i+1"“)'°§§i (ag~ w3) + 3

=1+ 2(1-2)11 --(E 2)-1+%
iasl i=1

n j=1 B j=l n i=l n
n 2
e 2 1 L1 [ _23-1
Cramer shows that} Cun = -J-:E;-é += 3 u - S5

Tables of lim Pr n(«o2 < z] have been given by T. W, Anderson and Darling in
n-—
in the Annals of Math, Statey, 1952, p. 206s

Problem 612 Find E[wﬂ

Approashés to Combining Probabilitiess

Examg;'l;e?, The following probabilities are from a oneesided t-tests

P F ) F
»026 el 076 6
0115 02 .81 o7
027 o3 .89 o8
036 ol 092 09

675 05 998 100
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. Under the basic hypothesis the p's are wniform on (0, 1)

Alternative tests.

1. x%aof -2 Eln U:l. = 18,27L P = 0,57 accept H

2. To test alternatives of the form G(u)>u the Kolmogorov-Smirnov test
statistic 15 D] = F = u .

sup DIO a 0,085

From Millerts tablese Pr(D{O > .3!42:‘ = 15

B B e @ 39-88 = 0,96l
% %
Prlz < o964 ] = 167
Since Etﬁ]under Hl< E(_ﬁ] under Ho wg will reject H if 243 o«
. ' therefore we cannot reject Hj.
Lo Against two=sided altematives
D= o35 (e75 = oLO)
See Massey's tables for small sample size probabilities,

Using the large sample approximation?

2 2.2
Pr[_J‘rTD >z] =2 3 ()" e 5 1(z)

m=l

Pr|py22 ) = L(35)
-

Example;

In the following table:
=~ the X, are taken from a table of N(O, 1) normal deviates,
~= the X(i) are the ordered Xi

® ~- the U, =\7.._1;_.. )S{(i)e't% dt = Pr[z <xi]

an
=0
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we the Si are the spacings between the Ui

l N

Xy X(1) Uy 5y nel
035 209

oli2 «0,38 o35
o1l .09

«0,02 =0,02 oli9
oOL 009

088 308 053
001 +09

cho 009 .SL“
o 10 «09

1,76 037 o« 6l
‘02 009

009 »L0 .66 ,

200 009

.08 oli2 066
«05 >09

1.12 «88 o7l
elé 009

=038 1,12 -87
: <09 209

037 1,76 096
o0l 209

Under H; the X's are N(O, 1),
The test statistic isg 10

o =% gols -] eoa8

Ignoring the slight nega+:|.ve correlation betwsen the S, 45 one could use a
normal approximation witha

slg ] = 3 =0 v = EF - 0uon)?

Example,

If you want to test Hl: the X's are x%s) then you should use the probability
transformat ions '
X

5 = 1
gg%/-?g) Og e't/z t- 4t
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Combination of Test Probabilities:

Hbﬁ U is uniform
Hl§ U has distribution G(u)>u (i.8s, the observations tend to be smaller)

refs A, Birnbaum, JASA, September 1954
He considers a comparison of the following tests?

1~ Fishers =2 E in Uy
2= Pearsonj =2 2 In (1= Ui)
== found unsatisfactory for most applications.

3= U, =~ not consistent, but is this important?

Birnbaum concluded that w2 E in ‘U:L was better for the one particular case of
testing normal means.

Other possible tests:i D, (. U s have not been studied in this light.

n’

Goodness of Fit Tests;

HO: F = F, completely specified

-« The test usually involves estimation of parameters.
-« The only completely worked out theory is for the x2-testo
For other suggestions see;
== Fo David, Biometrika, 1938«9
~=- Kac, Kiefer, and Wolfowitza, Annals of Math, Stat.; June 1955,
They present a Monte Carlo derived distribution of 2 and D
for the case of testing H: X's are N(u, o%) where p,° o2 are
estimated by X, s° working with n=25, n=100.
For consideration of one-sided tests seei Chapman, Annals of Math, Stat., 1958

== The D% tes’p is a "minimax" test (among Fisher, Pearson, D%, wﬁ s a )
of the one~sided hypothesis H°2 F = F, versus H o F = Fl< Foe

io0y "minimax! in the sense that it has minimum power to pick up easye
to~detect alternatives, maximum power to pick up hard-to=detect alternatives.
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IV, Two Sample Problemss

Xi5 %55 o o oy X have dof, F(x)

Ylg Yz’ e o oy Yn ha've d.ﬁfO G(y)
Hog F=G ng,F<G or F>G
?
Hi: F G

In the parametric case one could use the normal approximation and the twossample
t=test on the means, but these hypotheses are somewhat wider,

Partial list of testss

l, Median Test

2, Runs Test

3. Wilcoxenis Test (also called the Mann-Whitney test)

Ls Kolmogorov=-8mirnov D-test B
5¢ Ven der Waerden'!s X~test (or Terry's C-test)

All we need for these tests is to be able to order the observationsy magnitudes
are not important; e.g. =~

1o Vo \
XXZIXYYIXiYY

Test 1l: For the median test set up a 2x2 table classifying the observations
as above or below the median of the combined sample, For example:

Below Above Total
X: L | 1 m
Y: 1 L n

m+n me+n m%n

Test Statistics is the usual x2 for 2x2 contingency tables with one d,f,

Test 2o For the runs test, set

r = number of runs of X!'s and of ¥'s in the combined sample (in our
example r = L)

Ho is rejected if »r <ro. :

If H o is true, then the X's and Y's are intermingled and the value of
r will be "large"; if Hl is true, then r will be "small",
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Test 3: For the Wilcoxen (Mann-Whitney) test, we define:
uij =1 if Xi< Yj
= 0 otherwise
U E E in our example U = 22 (L#l+L+545)
i=l 3=1
Wilcoxen'!s original test was based on Ri_c

where RY = the sum of the ranks of X in the combined sample ordering from
the smallest, '

Stnilarly Ry = the sum of the ranks of T,

Problem 62: Prove: =mn+i“§—"'—l->- 23" ERY ﬁ!‘.z_f.}l

Test Lz KolmogoroveSmirnov define D for the twoesample problem as:

D, = 5P \Fm(x) - Gn(x)|

- 0L X <0

Test 5: For Van der Waerden's X~test we

u _t2/
let - = 1 S 2 4t
et @ (u) = B} e

and define: \f"(ﬁ) = W'l (u)

.. / i
then the test statistic is: X = (...........-)
1§1 Atarey:

Problem 63: Iet Q = number of ¥'s which exceed max(Xys X55 o o 05 K)o
a) Find the distribution of @ in the general case,
b) Specialize the result in (a) when H o is true,

¢) Find the limiting distribution of @ for case (b) as m—3>00, N —2x00,

I%""“)"o
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Runs Test (Test No. 2):

Refyt Mood Chap. 16
r = no, of runs of Xts or Y's in the ordered combined sample.

There are two cases to be considerede~that of an even and that of an odd
number of runs,

Even case: The number of arrangements of m X's and of n Y's that have the
property of giving rise to 2k runs can be found by a simple
generating function device.

Again, there are two possibilitiesg i.e, starting with a run of X's or of
Yts, so starting with either, we must multiply the end result by 2 since
the two starts are symmetric,

Starting with the X's, they are divided into k groups, all non-zerc, To
find the number of Wgys of doing this, consider the coefficient of t™ in the
expansion of b+t + 1:.3 + oous )kg

k
(642 +8 5 o) = (Fp) =t (1)
=-t,k(1+kb +.(_-_l.{.)?(.:l£:_1_'lt2 +°") :
(0+] ‘i<‘_ KL;]—\ \\\‘/%/)

PR e I L)
t é%% b 31‘%E=Tfs RN
Jou

i

The coefficient of t™ is found when j =m = k, and

=k4’m-k-l)£=(m"1)
m=k){ (k=1)1% k=1

Similarly the number of arrangements of the n Y's into k non=zero groups
is '

n - 1

G -7

Therefore, the number of arrangements of X's and Y's with 2k runs is
m - n -1
261 G- 7)

(m +n)t

The total number of arrangements possible with m X's and n Y's is T at

©



Therefore:

o[r=ad = 2GoDGEID

"o

0dd Cases (r = 2k + 1) For the case when the number of runs is odd, i.e.,
to determine Pr f_'r =2k + 1:] s the argument is similar, but we
start and end with either X or ¥ (instead of starting with one
end and ending with the other), therefore

CehEIDAGIDELY
"a™

Pr{r=2k+1] =

B(r) = M 412 Nup

- 2mn(Pmn -~ m - 2 2
V(r) = (mmﬂ(n’;’?m — _n%j ~ LN B

i

NB A +B =1

By Sterling's approximation methods, we can show that

Where: N=m+n n = N« n

1im __F_;.g]‘yﬁ is N(O’l)
N—>w® 28 /N

Test: Ho is rejected if r < T,

ro can be determined from the left hand tail of the normal

approximation or from tables in

1. Swed + Eisenharf, 1943 Annals of Math, Stat.
2, Siegel, Table F

‘ 3. Dixon + Massey, Table 1l

Wilcoxen (Man-Whitney) Test (Test No, 3):

=;>: Eu | where u,. =1if X, <Y
i3 ij ij . i J
= 0 otherwise

If H is true, B(U) = 3 2 B(u;,) = s

, i 3
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For the general case, assune .Pr[Y > X]=p

[}

@

g Pr{Y 7> x ‘X=x] dF(x)
=00

@

S [1 - 6(x)] aF(x)

=Q0

E[L{1-0(} | Fx)]

t

In this general case E(U) =mnp

O 2
E(1F) = 2 2 By) (1)
i3
QT <D
+2 2 2 B(ug s, uyy) (2)
i j# J
5 ) S W
PR ACHPRNY (3)
ifa J
TN Q2 Q
+2 2 2 & By, uy) (1)
ifa j#b
To evaluate this, we can examine each part separately, e.g.:
(1) E(u?_j) =p mn such terms
2 ’ 2
(L) E(uij’ uab) = E(uij) E(uab) = p m{m=1)n(n=1l) such terms
(2) E(uij, uib) = Pr _Yj s Ty X
o

=S Pr[Yj> x,Yb>x|Xi=x]dF(x)

-0
00
2
= S (1 -ax)] ar(x)
-00
=E[ {1- G(x)} Z‘F] mn(n=1) such terms
. : 00
(3) by similar argument E(uij s uaj) = g e (y) da(y)
-

= E [Fz (¥) ‘ G] mn(m-1) such terms
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Thus: 2 2
V(U) = mnp + mn(m-1)(n-1)p°+ mn (n-1) E [ (1-G) ] F]

2
+ mn(m=1) E [Fz G] - nen p2
. Exercise: If H is true, verify that E(Fz) = E(1 - G)2 =%—
and then Var(U) = % (m+n+1)

Mann-Whitney in their further work on Wilcoxen's test proved that
mn

U-=5

/‘{g (m4n+1)

formula to get all the moments of the distribution of U, then observing

that the limits of the moments, asm — ®, n - o were the moments of
the normal distribution.

is AN(0,1), This they found by discovering a recursion

U == may be used for one-sided or two-sided tests.

-- the most complete tables are given by Hodges + Fix, Annals of
Ma'bh, Stato’ 19550

Problem 6l:
Take 10 observations of (a) X which is N(0,1) and
| (b) Y which is N(1,1)
Apply each of the five tests to the data to obtain tests for
Hy: F=C against Hy: F # G
Problem 653

let ay, 8ys cees By _q be fixed points,
et X, X2 5 eves X5 X9, Y2, soey Yn be independent observations from

. F(X), G(y)e
Define: 2, = Fm(ai) - G (a;)

k=1

Z=§ 25

i=1

(a) Find E(Z), Var (2) in general and for the case F = G,

denote : F(ai) = £, G(ai) =g
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(b) Find E(Z), Var(2) for the case when

F(u) = u G(u) =0 0<udhb 0<b< 3
=1 4+ ul--lz'!' b b <_ a S_ 1D
=1 ‘ 1-b Lu <1

; -i
In this problem let a; = §

(c) Assuming Z is AN, is it consistent for alternatives of the
form of G in (b).

- e e @ W em W w am ws A M W MR SE mEa An WS WA M TR my N AN AR O A O e WD W G Wy em W

Kolmogorov=Smirnov Test (Test No, L):

Our basic sample (R XX XYY Y XY Y) could be expressed graphically in
two ways:

(a) (b)
| 1.0 — lx L (5,5)
I L
| X
+ N nad ;ﬂ“’i"
[ Tam
Fq-—” i—-.---x r
i - i
— -
l ! X
TS | l‘ TR Y U T (O’O) /
D= .8 - L0 i.e., the sample could be plotted as

a two-dimensional random walk reaching
the point (5,5)--reject if the walk
strays beyond a line parallel ito the
15° 1ine,

Asymptotic distributions of Dmn’ if H is true:
lim Pr 2op <« z] = L(z) =2 g (-l)iﬂ' e'2i222
mm Tmn - =
myn —>»

1(z) has been tabled in the Annals of Math, Stat., 1948,
+ +
Also, Dr-r.m have the same limiting distribution as D; (one-sample

statistic) with the normalization /mn  (see p, 127)
m+n



_ Test: Reject H if Dmn 7 d.

Van der Waerden's X~-test (Test No, 5):

n X
x=2 Y & where Y (u) = ¢ (u)
i=sl a
2
g (u) = oV /2 44
‘/’Zn
-00
N
N .
X is AN(O, %E_TQ‘) where@=%f Zitfa (N“:'L.ﬁ) N=m¢+n
i= ‘
Example: XXXXYYYXTY
F = 1 2 3 L 8

L

1

R = 1 2 3 8
N+l 11 011 1 1 1

| =

= ,09, .18, .27, .36, .73
using nomal deviate tables

Ry
Lf}(N'»:I) =% 09 2 18 Z 27 Z.36 2,13

= 'lmBh, '091, ‘0603 '0359 +,60
X= 2 ¥ Gep = -2.60
i

For determining the variance of X, tables of @ have been given by
Van der Waerden in an appendix to his text.

Theorem 32 (Pitman's Theorem on A,R.E.):

Assume : T» '.I% are A, N, Statistics

1 ,
() is a subset of () indexed by p such that
when H is true p = O,

. Let the sequence of p's tends t0 6, 1.ecy Py Py see P, —> O,
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Tests T == reject H if ’J.‘n > tna(

T -- reject H if T* D B,

Assumptions:
d
(1) 3 e (T) >0
(2) 1 o B0 @) | 0 if £
R (1 B = C if p = =
d F c n ‘/;-
d
7 Bp(T)|p=0p
(3) lin St Ll
n-=wo d p(Tn)‘p=O
% (Tn)
() 1im c""(o Ty "t
n =

Theorem: Under these regularity conditions, the limiting power of the Tn

test for alternatives P, = X asn-—=>ow is 1 - ¢ (za( - ke).
n

The A.R.E. of T to T* is

Bp (1)) | p = 0 o (T%)

p(T'*)!p—O GS(T)
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Proof: - (1) (T)
T =-E.(T T
Pr n O0''n > n«:( O n = o
o o
0 0
For large n, since T is asymptotically normal, tn¢< = 2.0, + EO(Tn)
. Rei . l. n Epn(T )
1lim Pr [Reject H | pn] = 1lim Pr 5 >
n == 0o n == 0o L- Pn ;
1-5_00 + EO(Tn) - Epn (Tn) ]
o
Pn
o E(T) =Ep(T)o
I v 0 O.n - nn 0O
lim Prlzpyz, =+ % 5
n=>wo n “n_
E(T) -Ep (T) o
. 0 0'™n n_‘'n 0y _ _
1im z, (5'”)"' % (5 )-zx ke
n = o n fn
%
from assumption 4, as n = ®, (-&—") — ]
Py
using a Taylor series expansion:
4 -
= L o .
Epn(Tn) o(Tn) * pn[dp Ep(Tn) ' - 0< pl!l < P
..plfl

Putting P, = K.

H Jlo- =

E&:(T)-E (T) . [’%..Ep('l‘n) |
lim = 1linm - 98 Te)
/ %

n — o n— o

= = ke

Therefore: lim Pr[ReJect HP prJ =1-4¢ (71%‘- ke)
n—» o
By a similar argument, the limiting power of the T test is

1~ ¢ (Z = k-)r C.A) d B (T*) =0
ek 5
where c# = lim e

n— 0o VrT °°é§




~143~

We want to determine sequences {nlg s {nf} such that 1 = ¢ (21-94 - ke) =

1-0 (Zl_ <" k#c%) which means that ke = k¥%c#, Also, for the two sequences

to be the same p_ =p;1?0r-—-=—-k*

Yo Vef

Thus we can determine the equality of the following ratios:

2
ny (k-;e)z ()2 = 1in <n og) dng (T )'p=o
By A a%Ep (%) | p=0

The A.ReEe of T to T* is given by any of these ratios, or as stated in the
theorem:

2

2 d
\ 2 ' Ep (T )|p =0
ARE, = =) =1im % do L ‘
o -0-2_‘ d E (T*)l -
n - o\0 a_g; P \ig/ e

Example: Obtaining the A,R.E. for the Wilcoxen test versus the nommal
mean test, i.e.

U versus Z = which is asymptotically equivalent to the

=] =
]

Q
=]

+
S bl

two=-sample t-~test.

X and Y have d.f, F(x) under H..
X has d.f, F(x), Y has d.f, F(x = u) under Hy.
In both cases the wvariance = 02,.

For Wilcoxen's test:

o
p=P[Y>Xx]= [1 - G6(x) J]aF@x) = g [1-F(x -] £x) o

7
- o

8”\

«©

93‘ = gf(x-p,)f(x)dx -\ P&

-
=Q0
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[¢>]
E(U) = mnp a‘& B(u) Lo S £ (x) dx
m
=00

mn(m +n + 1)
12

Var (U) =

B(z) = Sx dF(x = w) ;lng(X) = b

o'/ ..:!'.4-2'- [o} 2‘.4—1‘.

n m g om

e . 1. L Var (z) =1
dw /1,1 min
e} —_ o - g ———
vV nom mn

Therefore, the A.R.Es of U to Z is

1 -

AJRE, = lim IR, " —
n— 12 sy mm

which reduces to: Qo
2 2
ARE, (Uto2) =22 [ | £(x) ax]

w

Thus we can compare U and 2 for any f(x) whatsoever,

7
For instance, if f(x) = ____J_.___e-x /20 then jfZ(x) dx = 1. ox /0
' yen o ‘2?11(7:E
using the transformation % =L
Ve
00
2
ij(x)dx=1 °\/J‘§°‘/—é— S ey/zdy
n 2
' VvZno A
- 1
20/m
s 2 2 ) L 2
end 12 0°[ |\ £ (x) &] = 12 ¢
20/m

dx
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A1l of which says that the A,R.E. of the Wilcoxen test to the Normal
' (two=sample) test, if the underlying populations are normal, and we are
testing "slippage of the mean" is 3/n.
Problem 66:
(a) Evaluate the A.R..E. of U and Z when

(1) £f(x) =1 0<x<1, i,

F(x) =x 0<x<1
Fx =) =x = p<x <1 +y
(2) £(x) =™ 0<x<®

(b) Find an f(x) such that the A,R.E, of Uto Z is + w,
Remarks It has been shown that the AJR.E, of U to Z in this case, i.c.
testing slippage, is &lways 2> e86)4 - Hodges and Lehmen, Annals
of Math, Stat,, 1955,

ARE, of test to 2

Test , (testing for slippage) Consistency
1. Median : 2/n : yes, if the median of Fy #
. median of Fl
2. Runs : 0 consistent for all FO = Fl
3. U 3/n yes, if the median of FO #
_ A median of Fl
L. XK~3 ?2? consistent for all FO =Fy
5. X 1 yes, if the median of F, #
median of Fl

Robustness of a test (as propounded by Box) refers to the behavior of a
test'when the various assumptions made for the validity of the test are
not fulfilled,
Type 1 error = Pr Ereject H when true under the assumptions]
Power - Pr [reject H when false under the assumptions]

A test is said to be robust if Pr [reject H when true if assumptions are

not fulfilled] remains close to « regardless of the assumptions,

Note: the Z-test, or two-tailed t-test, is robust,

The proponents of distribution-free statistics argue that the disadvantage

of the Z-test is that the power may slip if the assumptions (of normalcy,etc)
‘ are not satisfied,
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V. Jk-Bamplc Tosgts:
l. Median Tests

2. y2-Test with arbitrary groupings
3. Kruskal-Wallis Rank Order Test
L. Kolmogorov-Smirnov Type Tests

samples: 1. X X12 o o e Xln

11 1
2. le X22 . e X2n2 - k .
. = !
ke Kg Ko oo xknk
1. Median Test is made by setting up a 2xk table:
samplé 1 2 ... i 7)) ALk
. Above ' m, | W2
~ Below n, -m | - N/2
RSP PRI B P EPPRNE N

where m, = the number of observations in sample i above the median
of the combined sample.

Use a xvz-test of the null hypothesis with the expected values = ni/z when N

with k=1 d.f. under the null hypothesis

: 2

2 k 2(m,
is even, and ¥~ = 3
i=1 ni/2

that the k samples all came from the same distribution.

2. Xz-Test:

Being given or arbitrarily choosing groups A 3 (aj < X £ aj+1) define nij =
the number of X's in sample i that fall in Aj'
. Under the null hypothesis Pr{X falls in AjJ = pj independently of i.
K » 2

This can be tested by X° in the usual manner -- as an rxk test of homogeniety,

where X’2 has (;c'-l) (k-1) d.f.
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3. ___Kruskal-Wallis Test:

kT ¥ R
12 = Ml {2 12 = i -
H= S n [R. - —-] “FED 2 5 3(1+1)
N(&1 i‘;l i 1 2 N(N+1 l=j. ni
where Ri = sum of the ranks of sample i taken within ths combined sample
E. = R./ﬂ. _
i i

H is asymptotically distributed as X2 with k-1 d.f.
refs March 1959 JASA for small sample approximations.

Problem 67: What does H reduce, to when k = 27
Prove your answer.

L. K-S Type Tests:

Would involve drawing a step~function for each sample on the same graph.
Unfortunately nothing is now known about the distributions.

ref: Kefer, Annals of Math. Stat., article to be published probably in 1959.

Consigtency:

The Median and H are consistent against all alternatives if at least one of
the sub-group medians differs from the others.

ARE.:

A.R.E. for slippage alternatives:
median test against the standard ANOVA test 2/
H test against the standard ANOVA test 3/w

where the underlying distribution is normal.

If the underlying distribution is rectangular, then the A.R.E.'s become:
median agaihst ANOVA 1/3

H against ANOVA 1
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CHAPTER VI
TESTING OF HYPOTHESES == PARAMETRIC THEORY =~ POWER

Refsg  Qramer, che 35
Kendall, vol. 2, chs, 26=27
Lehmann, "Theory of Testing Hypotheses!, Us of Cal., Bookstore
(notes by C, Blyth)
Fraser, "Nonparametric Methods in Statistics', che 5

1ls Generalities

X

l, Xz,‘ooo, Xn have dafo F(BE, g)

== usually the X's are independent with density f(x, 9), ‘the density having a
specified parametric form with one or more unknown parameters,

For the paramete'r‘spaceﬂ Hos (=} auo Hls [ eCd_L

Recall that f§ (x) is a test function of size « such that

g(x) =1 reject H with probability 1
= k reject H with probability k
. = 0 ’ “do not reject H (accept H)

where E [(?}) I 9 swo] <
Power function$ ;3¢ (8) = E [¢ } @J
Ref$ Defse 33=38 in chapter 5,

‘Defs L1y @+ is a uniformly most powerful (uom.pe) test of size «, if @ being an,
o " other size « test

13¢* (9)2ﬁ¢ (8) for all & 38Y

2o Probability Ratio Tests

‘Neyman=Pearson Theorems

X is a continuous random variable with density f(x, €).

HOC Q = OO 7 Hls e = gl
(simple hypothesis) (simple alternative)
' Assumes f(x, % ) > 08 f£(x, @l) >»O for the same set S,
£(x, l)

s . .
Assume? m is a cont:_.nuous random variable,
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Theorem 33 (Neyman=Pearson):

The most powerful test of Ho against Hl is given by #*(x) defined as followss

Pe(x) =1  whenf (x, 6;) >k f(x, 8y) or £; > k £,

= 0 elsewhere
where k can be chosen so that f# is of size <.
If the test @ is independent of @, for 6, e‘wjthen @ is the u.mop. test of Hy
against Hli & &ml

Remarks*® This is what has been called the probability ratio test, since Neyman-
Pearson originally expressed the theorem that

£
P =1 iff- > k

£y
E

e

1 {
i {
e ] ;
VLU
¢ probability = & —

{

o
g

\
\

Proof?”

1o To show there is a required k that makes @ of size «

£1(x)

defines (k) = Pr m >k X has density f

0

«(0) = 1 «(o0) =0

£
since Ti is a continuous random variable, 1 = «(k), which is the d.f, of

this random variable, is a continuous function and is monotone non=decreasing,

hence for some k! we must have «(k') = «,
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g_xample le X
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To show that ## is u.m.po
let ¢ be any other test of size

We want to show thatg

5¢*(X) f(xa @1) dx ; ¢(x) f(xs el) dx

Considerg Eé*(x) o gi(x)] [f(x, Ql) - k f(x, @O)] dx 2 0
That this integral is 2 0 follows since
when £, = k £, >0, then f* = 1, and #* = # >0
when £ =k f < 0, then §* =0, and ff* = § €0
Expanding this integral we getg
g;é*fldx - g¢fldx -k[ gﬁ*fodx - 5¢f0dx1 =0
but fgﬁ* £, dx = 5’ §£,dx = =the size condition

Therefores Sfé* £, dx 25 /) £, dx

and @ is uomepo

19 o5 coos X are N(py 02) o® known
Hys p=0 B p=p >0 Jecade
2 2
- 2(Xi - ) - ?Xi
: 2 2
fl B . lv e 28 fo = .__..-:"__. e 202
m_a Jon o
fl '
Reject Ho when -f(; >k
> N 2 2
mExi - 2;,:.12}{1 * By~ = Exi
' 2
20
o > x
2“1 Exi - ny12
or 5 » Ilnk

2c
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(1n k) 20'2 * nulz

24

‘ or ‘EXi >
10909 if x > K

To satisfy the size condition, K =z, ’((:/\,;ﬁ_) (which is independent of p,l)

. X
If H is true, X is N(0, <) Pr[ >3z =
0 n o*/i-n l=x

Remarks  If the most powerful test of Ho against Hla e = Ql is independent of Gl
for some family wl, then the probability ratio test, f s 18 usmepe for

He @ = 8y against His @ e

- is UeMops for H. against Hls > 0s

Therefore, X >z, = b

n

. .c
For Hys =0 against His <O the uomop. test is X< %y F
n
@ Zamle X, Xy, ey X, ave NID (4 o)
Hyg p=0 B8 w FO
There can be no u.mgps test for this problem since the u.m,p, tests for
L <0 and p >0 differ,

UoMoPo heres X <K' UeMeD> heres T m K

B

Y

By

or

A
Vo

.

Problem 68 X,

s X2, eeny Xn are independently distributed with density

ex

f(x) =9 e % >0 £>0

He € =@

b 0 H: e=8 >8,

(1) Find the u.m.p. test explicitly (i.e., find the distribution of the
‘ ‘ test statistic).

(2) Wwrite down the power function in terms of a familiar tabulation,
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o 2l d b d iabl
H i8 1 l a ?
Remar FEGC-)' is required to be a continuous random var e

L
If this ratio is not a continuous random variable, then « (k) = Pr(:z‘-]i >k
' 0

may be discontinuous, so that « (k) = « has no solution, (e.go small bi=-

nomial situations where one can't get « = ,05 exactly.)

¢* in this case is defined to beg

e ] Whenm)- >k
' 0

= g when ?—(—-‘- = k where & is chosen so that the size
: 0 x) of the test comes oub as A

\ , | &= «(k40)

&

| TEY =~ (07
“(k) 4 \1 o
T &(k+0) : -
(k
(k + 0)

Problem 69¢  For £, let 8 be the set where £; > O,

For fo let So be the set where fo > Ou

(l) If SO and Sl are not coincident then there may be no test of size «

~(2). If there is no test of size « given by the Neyman-Pearson Lemma
- (Theorem 33) there is a test of size <« « with power = L.

Hypotheses noted thus far have been simple hypotheses. If 6, has more than one point,
the hypothesis is called a composite hypothesis, e.ge. $

Xys Xy eoes X_ are NID (py o)
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Hye @40 Bt u>0

8(8) = Pr [ reject H:{
for H.e W =0 against

Lt u>o0

. o ol
:4‘ Test? X>Zl"(\f-:r:_

N il

_Extension of the ueme.ps test to composite hypotheses by means of a "most unfavorable
distribution of &¥,

Let A (@) be a distribution of & over .-

Then X has a density £ (x, ©)e

hl(x) = gf(x, €) d A(e) = density of X under Hy plus the

5 additional information.

v -
Let H, bef | =
o P88 X has density h?x (x) He o N
i.e0, the density of X is £(x, &)

| "
Let yi;: be the most powerful test of H, against H .

Theorem 3L4¢ If ¢* is of size « for the original test, it is m.p. for this test.

Proof: Let ¢ be any other test of Hye

g (x) £(x, €) dx £« for all 8 & <

Then <2 f g g (x) £(x, ©) dx.l an(e)

S b X
= g ¢ (x) S £(x, ©) dA(e) dax
X aJ
= g (x) by (@) ax

AA
Thus § is of required size for Ho

and} gﬁ* (x) £(x, ©) ax > gfé (x) £(x, 8) dx Qe8ods
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Examples$

H
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2

X5 Xos 0oy X are N(p,.; 02) 0% known

12
o® p,'éo | Hls g>»0 -

¢* tests reject if ¥ > 21t 2 which was found to be UsMePe for
n v

|
Hyt =0 against K3 p>0. We kmow that Pr [rejecting H with

¢*‘ p,] < « for u £ 0,
Put ./\.'(e) =0 " 8 <0

=1 0

1 G?
(iceey concentrate the distribution at O which is the worst spot from
the standpoint of testing or distinguishing)
This makes our composite: diébributions
hx (x) = £(x, ©) dA(e) = £(x, 0)

_ ? 1
8o that our problem is back to Ho and we have for HO a ueMcPe test which
is also a test of the original HO'

One way to get an optimum test in the absense of a u.m.po test is to restrict the

class.of tests to be considered end look for probability ratio tesgt for restricted

classe Such restrictions areg

l, Unbiasedness

Def, k2¢ ¢ is an unbiased test if By (8) >« for all © & Wy

2, Similarity

Defo U3s ¢ is a similaf test if Eg (¢) = forallge 0)0

3@ ~ Invariance
X has density f{x, &)
G = a family of transformations of the sample space of X onto itself,

eofo 8 glx) =ecx change of scale
=x+d translation of axes

Let g(X) have density f [x, E(G)] g®) « ()

g is a transformation of the paramster space induced by the transfore
mation of the sample space.




Def, h5=
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€080 $ if X is N(p, 02) cX is N(cus c202)
- 22
B(uy 0°) = oy 00
2 . 2
if X is N(u, ©°) X +dis N(u+dy o)

- 2 2
glpy 0°) =p+dy o

If we have HOS € & w and Hls @ ﬂ- (> then a transformation ine
duced by g leaves the problem invariant if

2(8) & (0 when & & GU
g(e) &ﬂ-w when @ & e

Example® X is N(u, 02) Hy$ p=0
P g(X) =cX c >0
Bk %) = cpy c20?
u . " &> is the 02 axis
22
under H, g(X) is N(0, ¢“0
Hy g(Xx) is N(ey, 0202 - which doesn't change @

Def, Lt A test, @(x), is invariant under a transformation g (for which the
corresponding g leaves the problem invariant) if ¢ [g(x)] = f(x)

1 ) I
- 'z B>X 3 ek,
E pl s t = = L = d = .
xample o E(Xi Y 1/2 (under g = cX) (E c?ci"ﬂ.’%a 172
(n-l) n (n-l) n
=t

If among all unbiased (or similar or invariant) tests there is a ¢*
which is uomepoy then {b'* iS UeMePolly (0 UsMaDPoSo O UsMeDels )e



asse
Uniformly Most Powerful Unbiased (uemepou,) Testss

Single parameter @ Hos &= 90 which is inside an open interval
of the parameter space.

ifn is differentiable with respect to &,

Remarks  If ¢ is unbiased, then

38, ©)
2 le=o0

Proofs } £«

B (8,
By (R) >« for @ # &,

Hence (3¢ (¢) has a minimum at © = %
By (6) = Syﬁ (x) £ (x, 0) dx

B¢ (@) is differentiable with respect to @

and hence Bﬁ¢ (0)

5 =0

@=OO

Notes For unbiasedness, alternatives must be two=~sided (otherwise the power curve V

has no minimum),

Assuming that 5f(x, @) dx is differentiable under the integral sign, and with

HO' &= QO Hls e = el (two=sided) we can gets

Theorem 358 If there exist k), k, so that

of
{é*u =1 when £(x, &) >k; £(x, §5) +k, 28 | oo
0

= 0 elsewhere

is of size « for HO and unbiased, then it is m.p. for alternatives
Qle If the test does not depend on el it is uemepoue for I-I_LS e & (),

Proofs (vefs (Cramer p.532)
Let # be any other unbiased testo

Then jw’: £,dx =« = Sgﬁ £, dx

pL iy 0= \g 2f
g‘d: 5.é.’eneodx ° g¢ EN

~ gize conditions

7 dx = unbiasedness
e = 90 condibions




We want to show thats ¢: £, a2 Sﬁ £, ox

This integrand must always be 2

0
since if f. = k f. = k. oF >0
1° % fo = k35 2

| 6 =6,
<0

Thus the desired relationship always, holds,

Comment: If you are trying to find a bounded function, a € f < b which maximizes
# £ dx subject to side conditionsg §¢ fi dx = cy 1=1,2y seeg n3
then this maximum will be given by choosings

#=b where f > Ekifi(x) where ki are chosen to
satisfy the n side conditic

= g otherwise

R 2 2
Example$ Xl, X23 ooy Xn are NID(p, o) - ¢ known

HO: p=0 He p £0
Consider a particular alternative by e

2
20w

5
1 20
£(x, - ot
@ w) (V2r o)® )
2 (o )

rY S N 2¢i-H
ok (JFH )" o




®
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If we can find proper k's, the uemepols test isg

Reject H if .

< 2 . 2 N, 2
- %_(f.{i'ﬂ__ - EX-’L - 2k 2o\
1T 20° 1 20° L 2f [ <%
— © ‘ DA kl o € o+ k2 —_— -
({27 o) Nan o) (J27 o) - o
(derivative evaluated at y = 0)
2
by .Exi - 0y
e ¢ 20° 2k, + 2 EX
° FaT 2SN
2 2
n
el | n n
2 2
.o v ! = ' 20 ! n 20
e . 2 i + k, ¥ wheres k =e k2==-o?—e

If we set ¥y = the left hand side of this inequality, ¥, = the right hand side,
and restrict ourselves to the cases where b2 Os then we could get the folloy
ing type of graphe ’

1]

- l". 1t
Y2 Yo

, toy 1y ) .
(y2, Voo ¥p 0 ¥, are possible Y, lines)

The test says to reject H if X <a or X >b where a may be = ®
b may be + o
[yz gives a two-tailed test (finite a, b) == y;, yé‘, y;u all give one=~tailed
tests (only one intersection with y;) ]
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~ Requiring that the test be of size « specifies thats

Pr a<§<b‘1 = ] e

160y o e & =1~ T1]

Ten o

Also, the unbiasedness condition requires thats

- | n(E = p)? o BE-w)
B‘ J—n— ' e 2052 3% + in 20

-~ b n(X - ) 1

n b =0
b -2
o hx
] -
or - ‘1_1_'1— e 20 . % d';E =0 [2]
2n0 o

The function under the integral in [2] is an odd function, so that the :mtegral
is zero only if a = = b (i.e., if a, b are symetrical)s -

[l] thus becomess a gzl
-]
-—‘r-ﬁ——— e 20 d;: =1 @ £
2no
=g
so that we can determine a ass a =3z, /2 TF
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Thus the test isg
o

% w2 J—n=

and since it is independent of B it is ue.mepole

Reject H if )5‘:‘ >

Problem 708 X, Xpy cess X, ave NID(n, o)  kmown
Hog o= o‘o ng o % O'O

Find the u.m.peu. test for HO.

notes E(xi - u.)z is sufficient for 02.

Theorem 36s If T is sufficient for @ then given any test /i (x) there exists a
test \V (_';'_) with the same power function. Hence in looking for
optimum tests, only functions of T need be considered.

Proofs define \}/(g") =F [¢ (x) i T] which is independent of @
by definition

Thuse

E [\{J (}‘_)1= EpBy [yj (gc_)] T] =E [¢ (5)] Qeeode
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Invariant Tests

‘ Refst  Lehmann, "Notes on Testing Hypotheses", ch. L
Fraser, "Non Parametric Methods in Statistics", ch. 2

We have$ observationss X parameters @ densitys f(x, 9)

Hoz N <o Hl: Q¢ (,Jl
t 1
Transformations§ x = g(x) == X has density f Eg, g (G)]
i.e., there is an induced transformation on the parameter spaces
~ '
e =g (6)
Gs the group of transformations that leave the problem invariant, i.e.

g (8) & C, if 88 ¢y

QR

(@)s(ul if 6 & &.Jl

Exampleg X195 X595 000y X are NID (1s 02)

x' =cx +d x' is NID (cu + dy 0202)

- ' 2
g(x) = ox + d E (b 0°) =( u+ 4, o¥o?)
Hep p=0 s u >0

If we set 4 = 0 and ¢ > O, then the problem is invariant, and we haves

1 = 2 2 2
x = g(x) =cx g (kg 0°) =(cyy c'o
Sufficient statistics for p, o’ are X and § =3 *. o 1)
i
Under the transformations
t =X is invariant (the inclusion of constants does
s not affect invariance),

(discussion to be continued after def, L6 and theorem 37,)

Def, 46t m(x) is a maximal invariant function under a group of transformations if

. 1) m[g(X)] = m(x)

2) m(xl) = m(xz) ::% there is a g such that g(xz) = x, of vice vers
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Theorem 37¢ The necessary and sufficient condition that the test function ¢ (x)
! be invariant under G is that it depend only on m(x).

Proofs 1) § (x) = \‘/[m(gc_)]
¢ @] - Yolw]l - Y] - i

2) Suppose that @ (x) is invariant, We have to show that § (x) is

a function of m(x).

aiven ¢ (6] =4 ()

show m(xl) - m(xz) > ¢ (Xl) =f (x2)

m(xl) = m(x2) ————> for some g, call it g', g'(xz) =X
thuss § (x;) = f [g'(x2)] = (x,) which is what we set out

to prove.

Returning to the M3tudent®™ problems
It remains to show that t = -J-)g__- is maximal invariant.
S
? %' 1
s b = X we have to show that given t = t , we can f£ind
Jar

! -
S = g(X; S)o

Setting v =

e

g such that X,

P |

Consider -)-(-. and call this ratio "at,

S SR SO -Y 2
_-—a-—:q--=--;-_z=a_ or S =a“Ss
J5 57 T VE

But this ié just one of the members of the original family of transformations so
t is maximal invariant.

Hence the problem is reduced to finding the u.m.p. test based on t.

In summarys Xl, X2, scey Xn are NID (l-Lg 02)

Hos “L=0 ng u,>0
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1) - Reduce by using sufficient statisticss X, S,

2) Impose the invariance conditions under the transformation x' = cx, ¢ > O.
This reduces the problem to tests based on t.

3) Find the distribution of t under HO and Hl and apply Theorem 33 (Probabilit:
Ratio Test), -

S Eme G ey S Gmn e RS Gun G WEe e TP M G mm San N R e Gmm MW G Gy IR G Y M GGS SN GE WS GEm S GG SR W AR See  oms  Mee e

Distribution of NonwCentral t (t-distribution under H)s

Refss  Neyman + Tokarska, JASA 1936, pp. 318326 (tables for the one-sided case)

Welch + Johnson, Biometrika, 1940, pp. 362-389
Resriikoff + Lieberman, "Tables of the Non-Central t-distribution', Stanford
. University Press, 1957

Ts the nori=central t-variable, is defined bys

246

\ ’w? £

T = 1‘(5,1‘) =

wheres 2z is N(O, 1)
w is x° with £ Qefo
§ is a constant >0

The usual tevariable is

Qlsa

n X Jn

t =q (0, f) = = N
‘ 2 /___f»:i.
nI | cz(n-l)

when H is true

J" 2 o)

Ile:.strue,uspland —— . iSN(O, 1)

ﬁ“(z"gl )+ L

’ S2
02 (n=1)
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The joint density of z and w ise

-
f(Z,W)ﬂJ_g_n__ e ;m—r—-f.—w e - <% <0

2 w0

To get the density of 4 (the nonecentral t) we make the transformation

LY R T
2 e

Thuss

: Q
f(f;‘)a——?‘—..—_ﬂr?].'_——_.ge
ENP L R

To get the distribution of the usual t, put § = 0,

The integral in £ (7 ) becomes
@© £+l u 1:2
2 -1 '5(? *1>
J u e du

which can be readily evaluated recalling that

(2¢]

g R ”?gz
' a
0
Thus, 2l
+1 \.
1 V\“""‘z) 1
£(t) = = ref? Cramer, p.238
= TE) = H

2
t
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The uem.peis test is to reject HO if s

9 1(T': O
£(7, 6 ifdur oV Lu £ 2\ 41
(v, 6) Se ?i‘g_)e ?u z du (]_+_fL)"§" >k

Notes This ratio is a monotone increasing function of 1 . (The simplest
proof of the required monotonisity is given by Kruskal, Annals of Math

Stat, 1954, ppe 162=3,)

R(%)

ratio

d‘-q- —-,.,...

0
Since % >t° when the above ratio > k, the probability ratio test thus reduces tog

Reject Ho when t > to

Final result is that the m.p.i. test for Hla K=y > ise

=

nX
Reject H when t = —= >t (n=1)
el
¢] f“‘s 1

This is independent of B and hence is u.m.p.i. for HO against Hla

2
Examples X Xz, socy Xm are NID (“l’ o)

l.’
Yl’ Y2, ocoey Yn are NID (“'2, 0'2) 0_2' % U W VARV, U AVE ILVoN

Sufficient statistics for the three parameters are:

2@, -1+ 2, - 1

P Mt N
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' Considers Xt =aX + b Xt is N(a by * b, a2c:2
Tt = oY +d Tt is N(c w, + dy ¢%0)
Invariance requires thats
au.l-?b==cp&+d whenpl=u2forallu

ap +b>cyp, +d when w, > p,

The first line requires thats b=d;y a=-c¢
The second line adds the requirement thate a=¢ >0

Thereforet XV = aX + b, Y' = a¥Y + by & % 0O leaves the problem invariant.

To be provens

. R st?
defines _é__g =¢ >0
P
T-¥ -0
3 —— c..
®p ®p

(X =) =X - ¥t
now let X7 = cX =d
(e P =c¥+d=T

-ci=d-1t

ors Y =c¥ +d ‘
Xt =cX +d so that the same transformation has been applied to

¥ and ¥, -
The uemep. test invariant under the family of transformationss
. Xt =aX +by, Y!'=aY+b, a >0
iss
[ 3 - Y

: > tl-.< (m#ne2 )
¥ L
n

Reject Hif ¢t =

= H oy

5p
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Under the alternative by = by = dy thus

(2.:._? - d) + g
g g
8 1 1
2 =*%
o
has a non=central t distribution with parameters -——31———-3 M+Ne=2
A [} -:-L- + é
m n
Exercises % = 048 « = 0,05

Find m, n required to have the power 2 .90 (put m = n),

Try to find m, n also by normal approximation.

Answers? defc = 2(n=1) non=centrality parameter =p = dfn . 8 /o
oz V2
= 95657 n

2 s
30 3.1

28 2.99
27 2,9
25 2.8

For the power to exceed .90, from the Neyman-Tokarska tables we need?

[o] = 2;99 at dafo = 30
p = 2.93 at dofo = Q0

Thus, by rough interpolation, the minimum size required is n = m = 28,
From the normal approximation: n = 26,7 or 27

. 2
_ljroblem 713 Xl" X2, e8d0y Xm are NID (pl, O'l )

Yl? Yz; soeey ¥ are NID (u2, 022)
H 2 _ 2 . 2 2
0% o =6 e o Yo,

a) Find the group of transformations leaving Hy invariant,
b) Find sufficient statistics for the parameters.

¢) Find the maximum invariant function.

d) Find the uemsp.i. test,



e) Find the uom.psu.i. test (i.e., set down conditions to get the rejection

. !
region as in problem 70) fore Hog 0-12 = 0-22 against Hl 9 012 4o 2’
f) Show that the usual test which is to reject if F >F,_ (m-1, n-1) wheres
2 -0f  , 20D 52 s’
% T TR fy = n-1 F-M?Q;'i
ks X

is a test of size 2« with %equal tail probabilities®.
g) Plot the power of the test of (£) for m = n = 10 with 2« = 0,05,

(Include the points 0'12/0'22 = 0o5, 008y 1e25, ls5, 2,0)0

Tests for Variances:

X,5 X55 eo0es X are NID (1 02)
Hoz 02 = 002 Hls 0'2 > 002
Hi: @ # 002
1) p known E (Xi - g,L)2 is sufficient for 02.

Reject H, if E(Xi - p.)2 T K == um.po for H, against H.
Reject H  if E(Xi - 54.)2 < K or >K, =- Um.p.u, for H, against H]'_.

refs problem 70 2 X 2 )2
4™

2) p unknown I, are sufficient for u, o

n=l
Problem is invariant under translation, i.c.e

Xt=X+a Xt =% +a (s"‘,)ns2

To find a maximum invariant function
£(Xs, 332) =f(X + a, sz) = £(¥, 32) must hold for all a,

This says that £(X, 82) is independent of X, Thus invariant functions are funce
tions of 32 only.
2
_g_n_-}_%_s__ is x2 with (n=1) dofe when H
o

exactly that of (1) with the d.f. reduced by 1 (i.e,, n-l vice n).

Hence, since is true, the problem is

0
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Summary of Nommal Tests:

2
X]_, X2’ YY) Xm are NID (va: Gx)
Y Y m [ RN X Yn are NID (“lyﬁ o;)

X1s, Y's are independent

12 2
Alternative Classification Invariant under
Hypothesis Test: Reject H if (for H against the transformations
\ given alternative) of the form
1. Hyp =0 (o known )
- > ox
Hys p, >0 X Dz, —= ‘ U Do
1 u’X 1e /l'-l'l—
5
Hy: #0 fxb zl_g e U Polls
2 H.: = 702 unknowﬁ)
° 0 by T Hg ( X
Hys By DHg 80 % u.m.p.i. Xt =cX ¢ >0
Hi: U # W D> b, WoM.pollel, Xt =cX
LT 0 ! , 1 2 ¢ arbitrary
2 _ 2
3. Hy: o = 0 (p known )
2 2 2
le oS ? % E (Xi - ) D xl_’((m)‘ UdleDe
2 2 Qv 2 ‘
H]'_: of # % 2 (Xi ~w)° < Kl or >K2 UMePolls
(for equations for Ky K5
see problem T0)
L. 2.2
Le Hy: ol =G (p, unknown )
2 N =\ 2 2 . :
Hys o > oé 2 X; =X > %y, (m=1) U.mepol. X' =X +a
Hi: c}zC # % E (Xi - )-C)2< Kl or > K2 Uen,Pollel, Xt =X +3

(for K,5 K, see problem
70 -~ use m=~1 d,f.)
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Classification Invariant under
Alternative (for H against the transformations
Hypothesis Test: Reject H if given alternative) of the form

Se HO M pz(,c known)

I-7F .
H > ——— g UePols It =X +a
1Sl T 7 Y=Y +a
/l+l
n n
|7 - 7] .
H'.p # 1 S %, 4 WalloPoelel s X =X +a
ST g2 It =T +a
XL :
v 7 'a :

6. HO: by = by (ci, o?r unknown)
, 2D+ 2@’

- - - . p)
a, o = ny s X, Sp —r are sufficient for HX’U‘Y’G
1% Bg > by -1 >ty (m4n-2) Wl p i, X' =aX +b
8 1,1 ' =aY¥ + Db
° /5
Hi: p 7 4 .__!._3.(._:}.__].,. >ty & (mn=2) UdnePotted, X' =aX +b
7 1 2 Y' =ay +b
s /= +=
p/m n
2 2 = 5 2 2 - . s 2
b, o # oy % T, s, 8, are sufficient statistics far u,, s 0}2{, e

This is the classical Fisher~Behrens Problem~-no exact test
is known., The approximations thus far have tried to keep the
size of the test under control, and very little attention has
been paid to the power, The appraximstion used is:

T -7 t! is approximately distributed as t with
R modified d.f. (i.e., modifications by:

i s2 Smith-Satterthwaite, Cochran-Cox, and

X,y Dixon-Massey)

m " n

Ref: Anderson and Bancroft, p. 80.

Tables far t! in the one-sided case (< = 0,05, 0,01) have been
given by Aspen in Biometrika, 19L9,




Ifm=n pro= i T
2 2
S + S
X y
V4 n
E 3 2ot T =t
(n=1) s, * (n=1) 5, | & 1,1
2(n=1) n n
Test proposed, when m = n, is to reject H if t > tl_a((n-l)

for the one-sided case.
Empirical results:

based on 1000 samples, o2 = 1, o5 = L :

2
m=n =15 Significance level 54 1%
actual rejections L.9% 1.1%

~rejections based on 28 d.f.

significance level 5% 1%
ms=n=5 actual rejections 6.).;% 1.8%
rejections based on 8 d.f.
In re power in the Fisher-Behrens' problem
Ref‘: Gronow; Biometrika, 1951, pp. 252-256

He gives a nbdte on the power of the U and the t tests for
the 2 sample problems with unequal variances.

With n, 7 n,, o:ZL # "2’ the U test stays fairly close to «

in size, whereas the t~-test jumps wildly amd a comparison
of the power becomes very difficult,
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Classification Invariant under

Alternative (for H against the transformations
Hypothesis Test: Reject H if given alternative) of the form
2 _ 2
Te Hy: % = O (“‘x’ by known)
3, 2/
le 0‘}2c > 02 z (ki - fo)/ m > F (m n) uemopoio X' = aX + b
¥ E(Y- - [,,‘.‘y‘);/n L= V72 Y = (i’a)Y"’c
i
Hi oi # 032; Z (Xi - “k)/ " <F, o DF UoMePoltieds X = a(.X ;'b
2/ 1 2 Yt = (+a)¥+c
Y, = Z
2y = pg)y/m
Where F,, F2 are chosen to satisfy the unbiasedness
conditions as in problem 71,
Since Fl’ F2 depend on complicated eqQuations, we usually use
the test: 82 5
: . X -
Reject Hy if max | =5 , —32’- > Fq (myn or n,m)
\s 5 2
y X
d.f, depending on which term is in the numerator,
; 2 2
8. Hy: o o, (p‘x’ by unknown)

2. -2
é(}\-i"x)

maximal invariant statistic is ==

=@, - i);/m-l
2 (Yi - 3-7)3

2 2
Hl. o, > cy

22 20 -2
i: O'X i‘ Gy Sy =27
Z (Yi - Y)/ n-l

<F;L or >

7 > Fl-x(m'l’ n=1)

A (Yi - §)2

Um.pei, X' =al +D
Y' = (+a)¥4c
U.m.pottcia Xt =aX + D
' = (4a)¥+c

Same comments on the determination of Fl and F2 apply as

in No, 7, and the same alternative approach is usually
taken (with the appropriate modification of d.f.)
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3. Maximum Likelihood Ratio Testss

HO: Gt-:(,.)° le Geﬂ~ (A_)O

observations: Xl, Xz, cesy Xn

max f(x, ©)
® e Ly
max f(x, ©

Qsﬂ

Maximum Likelihood Ratio Test is to reject HO if A <ko where 7;0 is chosen to satisf:
the size conditions,

A s

For small samples in general this procedure may not give reasonable results, For
large samples, as with the m.l.e., results are fairly good.

Remarke Under suitable regularity conditions =2 15, M is asymptotically distributed
as x2. The degrees of freedom depend upon the number of parameters speci-

fied by the hypothesisy i.e., if @ has m components in ﬂ and k component
in o, then the dof. in the asymptotic distribution of =2 in A (under HO)'
are (m = k)o

Proof; See S. S Wilkss Annals of Math Stat, 1938, or "Mathematical
- Statistics"; Princeton University Press

Wald has proven that the m.l,r, test is asyinptotically most powerful or asymptoticall
most powerful unbiased test.

Refs A, Walds Annals of Math Stat, 1941
Transactions of American Math Society, 1943
(both papers in his collected papers)

Example of m,l.rs tests

2

X1y Xz, ocey X are N, o?) ¢~ unknown
Hos u=20 le u#Eo
2
i E(Xi - X)
2

1 e 20

(V37 o)"

£(x3 032) =




2]
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3. 2
Exi 2

is the m.l.ee of o~

When HO is true,

E(xi - ¥)?
n

And in general, %, — are the melseo of yy 023

_ nEXf

: 2
RSN

2n
A =
1 i nE(X:.L--)'C)2
E(x:.L - 5&)2 I'21 o 2§(xi-2)2
an —— . .
§(Xi )¢
A= wam——
2
Si,
2 =2
. %‘_Xi -5 () &
EX 2 (n=1) 8° + n%°
i

SR Y-

i

\)n-l ¢N ~2/n - 1)1/2 = —B—:—%ﬂ-= %

h(A) = Jn=I (A =2/n - l)l/ 2 can be used if it is a monotone function

of Ae

7
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ht(2) ==-J':?-T(%) (x‘z/n ~J.)"l/2 A‘é/n)'l (%) <o

Therefore h(\) is a monotone decreasing function of A
h(:)
Reject HO whens A < Z.O

h(A) > by

|t >t

e :
Problem 728 Find the m,l.rs test for Hy$ =0 against B: p>0.

Does it reduce to the u«m.peis test?

Problem 73¢ Xl’ Xz, 6oy Xn are NID(u, 02) ks 02 unknown
Hi¢ 2 =c_(specified) Bt Z=¢, >e¢
0 m 0 T 1 o

Find 2 ucmepoio test for Hb against Hl'
Perform the test where £ =5, s =12, ¢/ =1, n = 20

G wme G B s G GG MM GEe TR Gmy e WS S Bma WA MR G WG MM G My SRR WM MeP BAN D SRt Geem AR e e e Gan R Ame VEe e B NS S S e

lis General Linear Hypothesis:

assumptionss Xi are NID(ui, 02) i=1 2,‘000, N
p
Wy = j=1 aij ﬂj pl, eesy pprare unknown parameters
pgN
rank A = (aij) is p
Hog Ebkaﬁ:j k=l’; 2, e.oss Sép

ileeoy 8 linearly independent
equations in the parameters,

ats, b¥s known
Alternative formulations

We may solve for 31, 32, cooy B in terms of p of the uts and then get as the
assumptions? o P

217\“ 2=1, 2 s Nep

Hy can be written as an additional set of s equations in the u's:

HO& iEi pki ﬂ.& =0 k *]1., 2, comg S
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Example? Xij are N(“’ij’ 02)
Mig = W oAyt Bj i.84y the 2=factor, no interaction model
Eﬁi -EBJ. =0 i= l, 2, ecey a ,j gl, 2, LEX ¥ b

ab observations
Parameters are p, % ecey 413 ﬂl’ soey ﬁb-l

a+b el parameters in all
HO: -41=O
=0
o ¢ @

“a#l = 0 are the a=l equations in the parameters

Lemmal I E 2y 375 (i =1, 25 veey m) are m linearly independent equations in

n unknowns (m ¢ n) then there exists an equivalent set of equations with
matrix C which is orthogonal, i.c,

Ei c2, for 1 =1, 2, seep m
J=
2 ci,) i i#e

Proofs  Refs Mann, Analysis and Design of Experiments,

given m equations in n unknownsg

AT algyg *ane .8y V. = 0

8o3¥7 * 3po¥p *ece F 85y, = O
(-] » L] o o ¢ [ ] ] [ ]
a’mlyl * a—m2y2 + e¢0 + 8 Y = 0
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The first row in the equivalent set is determined by settinge

a, . n
€15 = bl 202 =1
\ J n y o 1d
- =
&=L
To get the second row:
t
02j a2j Aolj
2
Ecla 23 2 ©15%25 = l? °13
This = 0 (a8 required) if A = :Sclj 2
J
. ,
Thus, we set ¢, = ___22_____ which will hold if the denominator # O =- but by
J 12 virtue of the independence of the original equa=~ -
:S (e.,) tions the equality can not hold.
2¢
4=1 :
For the third row:
!
35 7 %3 7 M % T ety
?cla 33 2':"33 °5 = (1) = 3(0)
This = 0 if %1 jgaBJ 13
Similarly ke =?a33c2j
Finally we set: C, .
c. . _..29___...
33
:Z(c
4=l

The completion of the proof follows readily by induction.
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In the alternative formulation of the general linear hypothesis; we had the followin
N-p+s (= N) linearly independent equationss

N

2 e pe =0 2 -"-JL, 2, eesy Nep
1=l i i

N

:S P1s =0 k=1, 2y ceey 8
S Pty .

From the lemma we may assume these form the first Nep+s rows of an orthogonal matrix,
These can be extended to form a complete orthogonal matrix (NxN) =~ this is a well !
known matrix algebra lemma, proof is in Cramer or Mann, If we call the complete ‘
orthogonal matrix s we have

Ma ¢ My \  A's, p's orthogonalis
. M .
° ¢ 78 added to complete
A AN-p, 1 s o @ ANGP, N the matrix.
= P11 c o PL N
: ]
Ps1 £ o Pey
11 oo "y
Tp»s, 1 o o ® Tp_s, N
1= Az
N
E(Y‘B) = El %-’gi uli -8 = l’ 2, seoy N"p
=0 by the assumptions
N .
=0 if Hb is true

Yts are independent normal variables with means as shown and variances 02 (an ortho~
gonal transformation changes NID variables into other NID variables with the same
variances).
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This is the canonical form of the general linear hypothesis,

Yi are NID (“'i’ 02) where'p,i =0 i=1, 2y esey N=p

HO: “'. = O i = N-p'l"l, osoy N-p'l"S

.
H¢ one or more of these s u, s #0

MeLeRs Test for the canonica]_. forms

Nep Nep+s
£(y) = 1 o 1=l i=Nwp+l. i=Nep+g+l

Melecs Of the w's in f Lare obtained by setting by = ¥y (1-N-pl, oo, N)

Nep
and cr =2 Y /\I
. i=l

meloee Of the p's in Cu are found by setting p; =¥, (i=lep+s+l, ceey N)

and cr =2

i=d

._l..s - N/2 D N
%\

A2
\§ - N/2 9
-Q.

N-p

N-p+s specified about the hypothes
EY r = relative minimum
i

i=l

EY q W2
j=1 * .} [ a a = absolute minimum (nothing
\ %

Nep+s

q, = Q+3 Y
i=N~p-trl

2
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We can use any monotone function of A for test purposes;, therefore the test isg
Q-9
Reject HO if T > K
which is eguivalent to rejecting Hy if A <L L
Ne=pts
2

2 .
Q.= Q, ig-p*l.yi i X% (g)

Ne

3 2.
Q= " is y

i=1 (N~p)

Q,~Q
Therefore Cr % has the F=distribution with parameters (s, N=p)

a/ =P
If Hl is true, then E(Yi) = di i= N"'p*flsvo:>o, N=p+s
Ediz > 0
Recall that « Yiz is the sum of squares of variables with non-zero means, and
i=Neptl 8
hence has a non-central x2-distribution with parameters (s, 2 diz),
i=]1 ‘

2 2 (Qr - Qa)/ S

The ratio of a non-central ¥~ to a central x~ is a non-central F, thus T
a

8

under Hl has a non~central F-distribution with parameters (s, N=p, 2 diz).
i=1

Thus the problem is solved in terms of the Y's (the orthogonalized X!'s),

The original problem wass
X's are NID (p,i, 02)

.8

l) 2 ) B, = 0 & =l’ 2, ceeg Ne-p
jep 171
‘n

2) .E pki u’i = O k =1’ 2’ 2905 8



- 181~
McLoRe test?

defines Q; = min E(Xi - ui)z under restrictions (1)

Q; = min E(Xi - p.i)z under restrictions (1) and (2)

P

o (in L)) =(Q;)1/2

5 (1 w) = (apt?

'\N/2 .
Q| =N/2

Q. e'ﬁ;§ :
!
- Q
As in the other case, this is a monotone decreasing function of -2
Q
a

Recall that under an orthogonal transformation, sums of squares are preserved.

' ,
Thus? @ a is carried into Qa

Q. is carried into Qr

L I

Hences 1 1

: == and has the same distributions under I—IO (F~distributio;
A a and under H, (non=central F). |
Problem 74 X, 1s N(u ., ) 121, 2, ooy @
J J =15 25 sees P
Myg = b ¥ &y + By + (4B
24 =2p, =0
i Y
)y = Dep);, =0
1 J
1
HOS a.lla$i=0 Ho?y all -(i=0; all (dﬁ)lJ=O

Find the usual F~test for 1) Ho

2) H,
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Power of the ANOVA test:

Power of the ANOVA test has been tabled by Tang (Statistical Research Memoirs, Vol. 2
for « = 0005, « = 0,0L for various values ofs

2
o |+/2 2“1:12
g = |sT Ae ——
20
Tables in? Mann
Kempthorne
8 N 5
2% = 2 af = 2(2 o m
k=1 k \i=l
s
Y = P.. X,
Neprtk i=1 ki *i
s 5 s N 2
o, = 2t =3 2 e, X
k=t P k=1 \ i=1

2 -

hence 20" 1s Q,, = Q, with X; replaced by J..(Xi) by
» 2

Example$ xijk is N(p.ij, )

“'ij =t +3j + (xgs)ij

or Xijk = kA Bj + (Jp)ij * 045k

?«iw ?@jw 2y =0 ?(«s)ijw

HO= °<i =0 Hls Ai not all zero

,-9,=322 ® -f )

ioo LR

under Hs E(Ki.o)=u+«i-h0-u0
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a b n a
hence 20'2)\, = E E 2 a(iz = nb E 4412
i=1 j=1 k=1 i=l
1/2
1/2 , '
e S ? -
thus  § === = |3 =T
207" & o

Exercises If a = 3, b =5 how large should n be so that we can detect
?(1 = -05250'§ "42 = "002507; 43 ”= 05500'
with probability .75 (« = 0,05).

Try n, calculate @, enter the tables and find the power., After successive
trials n will be obtained to give the required power. (d.fs for the numerato
= 23 for the denominator = ab(n-1) = 15(n=1), Verify that n = 13,

Randomized blocks:

i =‘l’ 2, Soey a-

2
3 =1y 2, aoey b

Xij gy ave N(uij, o

Byg BB+ & bj

J
b, are N(O, 052) (this is the additional assumption of randomized
J blocks)
~ . 2y
or Xij =kt bj + aij where eij is N(0, &%)
R 2
bj is N(O, % )
and they are independent.
Hye  all «; = O, B¢ some «; £ 0
b
> LI
. i=1 o O
Given bj’ Xi‘ are N(u + «; + =5 3 )
: a b a 4
- ? - - -
Ir H, is true, \fb- Xi is N(p , 0'2), and 2 2 X, ~-X% )2 =b E(X. - X )2
. i=l g=l ** °* i=l Tt et

has a xzidistribution with a=1 dofs This conditional (on the b.) distribution does
not involve the bj’ therefore the unconditional distribution of

a b
=2 -1 Pis x2(asl1).
i=1 j=l °s

i.
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.  In general, given bj’
| DT N S B T
(X, =X, =X .+X ) isy (a=l)(b=l).
1 4 ij i. o] o
J
Again we have the same result for the unconditional distribution,

Hence a test of HO is based on the statistice

2 2 (ii. - X“)z/a =]
1 J

2 E(Xij - Xi; - }'{.J. + X’M)z (a=l)(b=1)
ij

which has the F-distribution with (a=l), (a-1)(b=1) dof.

If Hy is false, \ﬁ: }?i is N(u' +\Jb 44 %) > 2(5'51 - 55‘ )? has a non-central

xz-ndistribubion with parameter b 2&12, dofe a=l,

The Power is also calculated as if the bt!s were fixed parameters. -

. Random model$ (Heirarchical Classification or Nested Sampling)

X, Mo
lj j =JL’ 2, *0ey n

ij
Hyg S w¥ 8y
where the a, are N(o, 0'32),

or Xij=u+ai+aij

ANOVA Table

dof, S5 E(MS)
als aml. 2 2(5{'1 wX m)2 o +n Gaz
- 2
error a(nw1) § § (Xijuxio) 02

. . 2
Given the a,, Xij is N(u + a5 o)

< o
i J ° has a x =distribution with a(n-1) d.f.
p _
o
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Since this is conditional on the ass but independent of
themy, it is also the unconditional distribution,

2
R, is N(y, &+ caz) «= unconditional distribution.
()

€eges in terms of moment generating functions

2. % }a ub 2-2- 2-2- +0°
E Ee (e ie i) = e 2 n a
ai Xi

a
n 2 X; - % ) is X2 with a=l defe
i:l [ ] Qe
o> +no

a

HOS °'a2 = 0 leads to the usual F-test against H$ °a2 >0, 100,

2
EE(KL 'zo.) ) 2

¢
22 ® (2 ’ o® +no?
(X5 = X5)) a

has an F=distribution with [ (a=1), a(n—l)l dofe

-] » 2 .
Problem 754 X:‘ij lulJ is N(u,ij, o”) ;:i, g, vesy &
y $ oceeg
k = l’ 2, 8oy n
- 2
a) Mg =Bt & bij where bij are N(O, o )

b) Wiy Sk+ay + bij where bij are N(O, o,
2
a; are (o, 9, )

and the a's and b's are independent.

Forn = 23 b = 23 a = 53 « = 0,05, plot the power of the testss

24

1) in (a) against — L 5
o +2<zD
2
) in (b) against T__.....éaa
2) in
o+ 20

b
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Multiple Comparisonss

Tests of all contrasts with the general linear hypothesis model following ANOVA,

Tukey's Procedures

observationss X;, X5y e0ey X are NID(O, 02)

= g - J
let R=max $X,{ =-min {x}
l€ign lgign
862 is an estimate of 02 which is independent of Xl’ X2’ coay Xn with
£ defe
. 2,2 2 et ters .
(ioeey £ 8, /0 has a y“=distribution with £ d.f.)

. The distribution of R/oc can be found in a general form, and in particular when the
X%s are normal (since the Xi/@'are N(0, 1) == it is free of any parameters,

 ttp s _ R _Rfoc _ .
The distribution of R = E; —-5273r = Studentized Range has been found by

numerical integration and percentage points have been tabulated by Hartley and Pearsor
in Biometrika Tables, Table 29,

Consider the one-way ANOVA situation:
2
Xij are NID (ui, a®)

2
g
Ki are NID (p,i, 'ﬁ")

=E z(xij - %, )2

2 (1) < is an independent estimate of 02 with a(n=1) d,f.

MSE
Consider H.¢ S = i =
0f By Sty OF My =y =0

Given Hos

_
‘B (’-‘i° 'Kk,)
S 2., -xi.)2

L
1)

vt £ PrE-v>t] = «

N a(n=

This t is the statistic Q(a, f) in Snedecor, section 10.6, p. 251
where £ = dofo = a(n=1) in this case,

This inequality will hold for any possible pairwise comparison (i.e., any i, k)
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' Frame of reference is the total experiment, not the individual pairwise tests =« i.e.,
for the total experiment and making all possible pairwise tests, the probability of
the Type I error is < «, where « is the level chosen for the Q(a,f) statistic.

Hence we reject HS W = by = 0 for any i, k when

o &y - %)
V ISE

Scheffe Test for all contrasts (most general of all),

> q, (a,f)

Ref$ Scheffe, Biometrika, June 1952

X, are NID(u;, o°) 121, 2, seey @
J j = l, 2’ Qe., ni

Se2 is an estimate of 02 which is independent of Xi with £ d.f.

a a
Hy(e)s > oy = O P> c; = 0
i=1 | i=l

. Consider the totality of all such Hy(g).

Theorem 383 If the y, are all equal, then

~ _a 2 T
52 oy &y, - i.n)} foaly - amHt
pp |—i=L % - - >t (a=l). G §F§ (1+§-‘l P) 2 &
2 o]
| e i==1h':f‘ J
a=l F(a-l+f

2
where ¢ = (#)

~1\TYE
ME))
hence, if we reject any such Ho(g) when
(a 2
e, (X, -F% )}
§i=l cl Lo . > (a-l) F

a
2
s'62 E ¢y

i=1 n,
® o

then the type I error < «,

(1-«)
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—
0 and 20. =0, For all ci withEci = 08

. Proof?s  Under ZeX = M
froofs Ho .. ity
n, ¢ 2
Y 2 [EJ‘—; i 2. - () j
ﬁbc. X_.- ) 1 Jni ( Lo ul)
Pr i i < Pr {max e >
>t
' 0.2 ~ S5 2
2 i P i
s P v S . anp——
e B3 Eci=0 ¢ E"n:‘L
,n. (R, = )
defines Y, = 2 = Y, are NID(0, 1)

i=l, 23 LA RK ] a

d, = — .
i Eciz / i i71
1 /0 2a.2=1
. ( dl Yiy
Expresgion we wish to maximize 18 wemimeedccen with respect to d

Xz :
o)t Bma a3 D

§¢= [Ed ]%"7‘1\]—5;"2"2‘13‘0 J =1, 25 eesy a
J

maltiply \'_l] by ‘r-J‘ and sum over jg

2 {2 {n, Yj][Edi Yil
2n,

J
multiply [l] by dj and sum over js

o Z[Edjl’j] [EdiYi] -0=22,(1) =0 sincer 1) 2vhjd, =0
1) 24,2 =1
S, |? :
= <dity |

= ) since 2{?1—idi=0
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pub A, Ay in [ 1] to obtain the 3 equation:

2y, [EdiYi] - 2 E[EE;&J[;%YJ - 24, @diYi} =0

3
L Em2En s
J 2 b R A
ny

multiply this by YJ. and sum over js

2
[ 4% }2 = 2%2 - [EE\FEYJ

3

2 [EY 12 S o
in the n, are equal, this = EY - —da = (Y, = Y)
J J a jo1 9
a 2
Recalls % ey &y,
Pr £ - 5 >t for all Cys 201 =0 [2
: Q4
s 2 25
i 4 2
20.2
pr { max Ll >4
c, c.
i 3‘22 _1_1_1__
cho e 1

_ Jog (& =)
]

and are NID(O, 1).
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We can make an orthogonal transformation of the forms

a

3
. Eéi ER A
" (2"1)”2

Zz==

2
Then 22 (2 @Yi) —> 22 Ez

i J J
J=1 J=2
S.
(Sz,)
Y.
Hence EYi w id has s xzndistribution with (a=l) dof,
S,
2 Z /
- j=2 L
Thus Pr [2] Pr 2 / 2 > ==
2
Ezj a=]1

but — has an F=distribution with (a=1, £) dofs

2/

Therefore the type I error will be less than or equal to « if we reject any Ho(g) ifs

[E"i ’_‘io..\ 2

5 7 (a=1) Fl o (a=1, £)

c
23
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Se )_(_2_-Tests

Single series of trialsg Simple hypothesis
classes (or events)3 1 2 ¢ o0 k
probabilitiess 5] Py s e Py j§pj = 1
observations: v, AP ° oo Vo Ev j==8
0
H. = Dp.
o° Py =P
If HO is true
0
vV, = np.
X, = e is asymptotically normal subject to the restricti,

J [0
v > J pﬁo X, = 0

By an orthogonal transformation it can be shown that

k K o -0y
EX =2\—j—n_ﬁ'ﬂ:—,—-

2
< 4y “, has an asymptotic y-distribution with k-1
=L J=i np 5

dofe a8 N =3 ®o,
The power of the test —>1 as n—>00,

Power of a simple x2-testz

B Py = py J 73 Jn
H §
v, = np v, = np P. n(py = p.%)

3 - —
an an Pj anj
c,

= 1+ ...._L._(_)_ —31
Vny o
as n —— 00,

Under Hl the YJ. are asymptotically normal,
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With the same type of orthogonal transformation, we have EX j2 under Hl is a sum

c.
of squares of YJ. + \/—__—Q_ﬁ* and hence has a non=central xzndistribution with parameters

p

J

k o. 2
kel S .
j=L p.
PJ 2
k
(p; = p.)
The non-centrality parameter can also be written as n E -——Q—-—-Q—-—
J=1 P
j

Examples v, = no. of families with i boys in families of 2 children,

Assume the number of boys is binomially distributed with parameter pe

By p =065 B$ p=0ck
0 '
No, boys Py under HO) Py (under Hl)
0 025 16
1 050 - oli8
2 025 036
6! -0 09 . (02 , (i)
A=n S —L 40 =-n["*§"‘w YO0 YT
P
= 40816 n
For n = 100 A= 8:.16

The power can be determined from the Tables of the Non-Central X2 by E. Fix,
University of California Publications in Statistics, Volume 1, No. 2, ppe 15~19.

From the tables, for A = 8,16, k=1 = £ = 2, & = 0,05
0.7 & B (power) < 0.8

xz-test may also be a one=sided test$

$ =
ot BTy

. 0 . 0
Hlo pj >1;>j for j £k' (k' exceed pj )

0 . 0
. . I k' (k = k' fall
Py (pa or j >k ( all below Py )



xz-test is modified as follows:

for j £kt3

for j D k'e

if v B{v.) =np,
J>(J) Py

. 0
if v, .
V5 < 1Py

if Vj > npj

if vy Z np

0

0

0
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2
0
(v, = np, )

caleulate ——i J as usual

5
npy

put the contribution = 0O

put the contribution = 0O

calculate x2 as usual

x2 is rejected if the sample value > x21-2x(k"l>

Examples

8(10)

12(10)

20

12(10)

8(10)

20

noteg

Refss (on the y «test):

1952 Annals of Math Stat
195, Biometrics

Cochrang

20

if Vi1 > 10 we would then calculate ¥ .

20

xz-test of a composite hypothesisg

classess

8 series of observations:

probabilities?

1
Y11

o

1]

©

Vsl

[ X B

ces

L RN 2
[N N-]
LR

e

e
o0 e

L X -]

Hog p = Oos

x? = 0 therefore we fail to

reject Hb

2

k
e JInE Ul
: k

Vsk E‘L Y137

Pix

i pyy = £(8)

psk
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Vij = n,p; (e)

X, .
+ AN (
E‘/pij Xi,j = 0 for i = 1, 2y esoy 8

A
Theorem 398 If © is estimated by m.l.e. or any asymptotically equivalent method
thefl as n —» w0, under the ragularity conditions as for estimations

. . A2
< (75 = mipg5(9)]

e A
j r\lpij""-g—>

i
|
He ﬁ\;‘ﬂ

has a xzmdistribution with s{k=1)=t dof, when H is true.
(t = no, of components in 9)

If H, is trues =p. . = 0 + i:'-'-'l and = fl—-l--
1 18 8 Pjy T P33 % Pyy = e
ol n

i
then X2 has a non~central x2udistribution with d.f, as before,

and non-centrality parameter &9 [I - B(B'B)"':L BGJ 8

‘s ‘)p.
where §8 % = —}L—.—-—E

1 ks J—-——o—
pi j

Q

l’ 2, 006’ s
l_, 2, ooy k
l’ 2, sésgy t

S B
W onu

EP:LJ

Bks xt J-iO*

Refe Cramer: x2 section
Mitras December 1958 Annals of Math Stat
Ph.D, Dissertation, UNC, Institute of Statistics M:Lmeograph Series
NOC' l)-l.20

8 =9,
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Note on the general x2 tests of compos:.te hypothesess
n;py
Xij = J'J ——-—i are asymptotically normal subject to the linear
Vi Piy
restrictions that E 1j :.;j for all i =1, 2y essy 8 [_1]

Por sufficiently large n the m.l.e. reduces to solving the equations

: 2 ,
B}lg L _ béngL ..(E_-B_z%i (8 -8,) E]
=8, 6 =6,

Recalls
Vij
L = X ” H)}ijw)j
i3

InL = K' + §Ev 13 10 pyy (8)

lnL
In L is llnearintheva, as are 39 h=1, 2

Hence the estimation of & (single component) means one additional linear restriction
on the v, 4 OF on the Xi j (since the two are linearly related).

If this restriction [2] is linearly independent of the s restrictions in [L], then
we can transform the s+l restrictions to s+l orthogonal linear restrictions and then
by the usual extension get an orthogonal transformation that takes

2 2 Xijz into E E Yijz with s(k=l) = 1L = sk = (s+l) terms and hence we get

the result of the general x2 theorem (theorem 39).

Exanmples Power of a X2 test of homogeniety, 2 x 2 table,

Probabilitiess 1)  p ' P, =1 =Py n

2) Py i Pop =1 = Py ”
Bof Py =py =@ Ppp =Py =1-8
H? pl=9+c/,}n p12==l-e-c/\}n

plwe-c/\{—ﬁ“ p22=l.-e+c/f;—‘
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@ '-¢ [z- B(BthlBr] 8

take p; = p, =-J-'2- (sampling fraction)

B!

{1 -1 1 -1
(J‘z‘é' J2(-6) 2@ Jz(l«-G))

. 1 o1

e l1-09 e(1 - o)

f

B!B =

(BvB)"l = o(1L - 8)

1-0 - 8(1l=@ l1-8 - 6(1=6)
- 2 ) -2 2
- @(1=8) ) -8(1=8) R
3 P
B(B!'B)""B¥ =
1-0 - 8(1=8) 1= - 8(1-8)
. 2 2 P 2
= 2(1-0) 2 =8(1-e) e
2 2 2 -3
51 = (o} - [+] =i

8! (_B(BﬂB)-lB'] 8 = 0  (patterns of + and - signs in 8y B are
opposite and sufficient to cancel all terms.

2
Hence the non=centrality parameter, A = "e‘(c'i-gi

Which can be expressed in terfns of the pts as}

P, *+ P Py, * P
_ P11 Y Py l1eg = a2 P2

° - =
. 2 2_ n R
pll - le = J—;‘ c " 'E (pll p21)
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2

A=

(Pyy # Ppy)(Pyp + Pyy)

In the December 1958 Annals of Math Stat Mitra gives the following formula for A in
the 2 x k contingency tables

probabilitiese P31 P oso Py
Po1. Pop Pox
s = =
Hob Py = Py = 6 o, =1
S Pyy = e + CLJ/‘/n :SCLJ =0

k (Cl 023)2
A= p P, >
=1 QJ
For the above examples Py =0y = % clj =c 023 = 0 R

Suw Ges Ve WS WS Gep NS D mE WEA WER Ep WM Sau GER SRR NP WES NS WS M EAd N ER Ame 0N MEE G MEE W G D Gim e My GEe W SN GRS WSS G waa

6, Other Approaches to Testing Hypotheses and other problems:

1, Most Stringent Testse

Let the family of tests of size « be @(a).

Let B(9) = By (@)
ged?
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# (x) is most stringent if?$
i) it is of size «

ii) for any other size « test #'
sup o [ F(0) =y ()] < sun g [P (9) =y (@]

2, Minimax Tests® Decision Theory Approach

I,[p(x), G-] = the loss when D(x) is the decision made and © is the true
value of the parameter.
Examples X is N(p, 1) Hys w=0
D(x) =1
D(x) =0 means accept Hy2 =0
L [b(g), u:l = C u? when D(x) = 0
L [D(_:g), p.] = ¢/u when D(x) = 1

Having set up a loss function, we then have a risk function defined ass

9.°)
ry(8) = B(L) = L [p), 6 2(x, ) ax

It is frequently impossible to minimize this universally with respect to €, thuss

D()_g) is a minimax decislon rule if it minimizes (with respect +o all possible
decision rules).

sup, r(9)

or expressed another way we determines  infp supg Ty (8)

ref$ Blackwell and Girshick, Theory of Games, Wiley

3, Admissible Decision Rules?

D(x) is admissible if there is no D!(x) such that
rD,(G) < rD(Q) for all &
rD,(Q) < rD(G) for some @

ieeoy you can not improve on D(x) uniformly.
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CHAPTER VI
MISCELLANEOUS
4. Confidence Regiong:
X is a random variable with d.f. £(x, ©) ee L2

B(w) = the totality of subsets of L)L
Let A(X) be a function from X (sample space) to B(w)
Def. L7: If Pr{A(X) D8]1> 1 - « then A(X) 1is a confidence region with
confidence coefficient 1 - «.
Theorem LO: If a non-randomized test of size « exists for Ho: e = 60 for every 90
then there exists a confidence region for © of size 1 d A,

Proof: Let R(X, Go) be the set of X for which Ho: e = So is rejected, s.g.,

R(X,0) R(X,9)
8 1112111 Wy r /Iy
o TR 77777
L
jf(;g, e) L £« | (1]
R(X, @o)

This R(X, eo) is defined and satisfies [1] for every O .

Define: A(X) = [J X £AR(Z, o) //

6
1‘ ......... Lhdhddod ddd fod S fhbd
17777777710 1077777 H77rrerriry
LLALL LI LAY LLLLLLLLLLL L]
1¢717177(L FIErTTTryirrr7isTy

e /;2.

PrA® S 6]= PriXARO)] = 1-PrlXeR(@)] > 1-< qe.d.

Def. 48: A confidence region, A(X), is uniformly most powerful if
Pr[A(X) D @ | o' is true] is minimized for all 8! # 6.

note: Kendall uses this same definition with "uniformly most powerful"
replaced with "uniformly most selective." Neyman replaces "u.m.p."
with "shortest." ‘
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. Def, 49: A confidence interval is "shortest" if the length of the interval is
minimized uvniformly in ©.

n

Confidence Interval for the ratio of two means:
N 2 2 .
Xy Yi are bivariate normal BIV N(u, <, Ty Oy /o) i=1,2, ...,

where © = correlation coefficient and may = O.
E(Y -

Problem: find a confidence interval for « = e

. 22 , 2
Z; = LK =T, is N(O, « T 2A/ocxcy + cy)

z(zi - 2)2 and Z are independent and distributed as X and normal respectively.

2eD° S - 1)? - n(&-D°

n-1 n-1
2 < 2 , I =2
® £2(4 -D" -2« (% -0(G -1 +3(y, - T
- n-1
= ,42 s2 - 245+ 32
x oy
E = A E'- ?
therefore:
RV g‘}é ) has a t-distribution with n-1 d.f.

- 5/
(«"s 248, ¥ sy)

(s = 2»<sxy + sy) 1-%

We can solve this and get confidence limits for «, This yields the following

quadratic equation in «:

e _2,e2 2 2 L2 2 .22
) = £“(nX° - t sx) 2¢<(nXY~tsxy)+(nY tsy)-o
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Among the wvarious possible solutions of this quadratic equation we can have the
following situations-

A, If T - 42 32>O

X

It can be shown that 2 roots always exist and this the confidence interval is:
| q <<

For the above inequality to hold, X must be significantly away from the origing

1.e., we must reject H th = 0 on the basis of Kl’ 23 *tes Xn at the ¢ level.

¢.g., the following condition must hold: Esb-{-Lﬂ e
x 2

Note: One could, if desired, change t (and thus g) to insure that this inequality
always held and thus that a "real" confidemce interval exists.

=2 2 2

B, If nkX
/////r 0 —! &1, x? may be real or complex
.\
“ 2

If the roots are real, then the "confidence interval' is (- oo, xl), (xz, + 00),

£ <0
Q(o<)

i.e., we accept "in the tails."

. If L(nX¥ - 2 Sy ) < h(nX - tzsi)(ﬁYQ - tzsi)

the roots are complex and we have a confidence interval (- co, + c0).

, i.e., b® < lac, then

[Thus we can say that = 0 € « < + oo with confidence 1 - ¢].

D. If we get Q(«)

n AQ(#()<O.< >\/‘_|AX-?!

- 248+ 8
xy

)1/2 <t

thus we always accept Ho since the test statistic never exceeds t.

Refs: TFieller, Journal of the Royal Statistical Society, 1940
Paulson, Annals of Math Stat, 1942
Bennett, Sankhya, 1957
Symp051um, Journal of the Royal Statistical Society, 195h.



- 202 -
LIST OF THEOREMS

Theoren
1. Properties of distribution functions « « s ¢« ¢ s+ ¢« 2 ¢ ¢ 0 0 6 s ¢ o 8 o o
2 1 - 1 Correspondence of distribution function and probability measure . .
3e Discontinuities of a distribution function « o « s ¢ o ¢ s s s ¢ ¢ o o 0 o
e Multivariate distribution function propertieS « e o « o s o ¢ o ¢ s s o o
5. Addition law for expectations of random variableS o o s o o s o o ¢ » ¢ o
6, Multiplication law for expectations of random variableS + ¢ o ¢ o o o ¢ o
T Conditions for unique determination of a distribution function by moments
(Second Limit Theorem) o o o o o o ¢ o 0 o ¢ 6 o 0 8 s 0 o s s« s s s o o o
8. Tchebycheff!s Inequality « » » o o o o o 6 5 o ¢ ¢ o o 0 s s 0 s 0 6 00 @
9. Bernoulli's Theorem (Law of large numbers for binomial random variables) ,
10. Characteristic function of a linear function of a random variable . « « »
11, Characteristic function of a sum of independent random variablesS « o & o o
12, Inversion theorem for éharacteristic functions « ¢« s o ¢ o s o o s o s 6 @
13, Continuity theorem for distribution functions (First Limit Theorem) . « «
1he Central Limit Theorem (independently and identically distributed random
Variables) o o o o s+ o 5 8 0 6 6 € o 8 o 6 6 o 6 s 6 6 s 0 s s s 6 s b b e
15, Liapounoff Theorem (Central limit theorem for non~identically distributed
random varigbleS) 4 « s s ¢ o o s o 6 6 0 0 o e o 6 e s b s s e s e s e o
16, (Weak) Law of Large Numbers (LLN) o o o o o « o o o o o ¢ ¢ 6 o s o o o o
17. Khintchine's Theorem (Weak LLN assuming only £(x) € 00) o « o s o« o s o &
18. A Convergence Theorem (Cramer') « o o o o o v © s s o o 8 2 s o o » s.s & o
19. Convergence in probability of a continuous function + ¢ o o = o ¢ o ¢ o }
20, Strong Law of Large Numbers (SLIN) ¢ o o o o « o ¢ o o s 06 0 ¢ s s 5 s o o
21, Gauss-Markov Theorem (DsleUa€s) o o o o o o s ¢ v o ¢ 5 s s 5 0606 o o o o
22, Asymptotic properties of Mole€e (SCalar Ca58) o « o o s 5 o o o o s o o o
23. Asymptotic properties of m.l.e. (multiparameter CasS€) s+ ¢ o o o « o o o »

o O

-~

22
22

23
2l
25
28
29
30
33

33

35
b1
L1
Lh
L6
51

65
70



= 203 =

Theorenm Page
2L, Information Theorem (Cramer-Rao) (ScCalar Cas€) + o s s s s 0 s s s o 0 0 o 16

25. Information Theorem (Cramer-Rao) (multiparameter case) . . 8L

26. Blackwell's Theorem for improving an unbiased estimate « o + s o o » o« o o, 88
27. Complete sufficient statistics and MeveUeCe o 2 ¢ ¢ ¢ o ¢ 0 0 o 5 9 6 0 o I2
28, Complete sufficient statistics in the non-parametric ¢ase .+ o« ¢« o o ¢« o o 96
29, Bayes, constant risk, and minimaxX estimators « o o ¢ o o ¢ o ¢ 9+ s ¢ o o o LO9
30, Density of a sample quantile « « s o o o s o 0 0 o ¢ 06 s s 0 o o o o » o o LL6
31, Convergence of a sample distribution function o « « o o o o o o ¢ o o o, 124
32, Pitman's Theorem on Asymptotic Relative Efficiency « o s v o+ o o 0 ¢ & o o 1UO
33. Neyman~Pearson Theorem (Probability ratio te8t) o o o s s ¢ ¢ o ¢ ¢« o o o 149
34 Extension of Probability Ratio Test for composite hypotheses ¢ o o s ¢ o o 153
35. Sufficient conditions £or WoMePole BE5L o o 6 0 o o o o s 0 e o s ¢ ¢ o & 156
36, Reduction of test functions to those depending on sufficient statistics, , 160
37 Conditions for invariance of a test function « o o o » s s s ¢ o s o o » s 162
38, Scheffe!s Test of all linear contrasts s o o s o o o o o « ¢ o o o s » oo 187
39, Asymptotic power of the x° test (MLLTE) o o o o o o o o o o s o o s o oo 194

0. Correspondence of confidence regions and te5tS o ¢ o ¢ o 6 ¢ ¢ ¢ 5 0 o oo 199



= 20 =
LIST OF DEFINITIONS

Definition Page
1, Notation of SEtS « o « o o o o o o ¢ 6 ¢ 6 8 o v s o6 s o s o s 0 5 s 0o L

2, FamilieS8 of 5618 o ¢ o o s« o o 0 ¢ 6 o2 o o 6 ¢ 0 6 ¢ 0 6 o 6 9 8 09 0 ¢
3o BOrel SetS o s o o s s ¢ o 5 o 6 s 8 ¢ 0 8 o o ¢ & o s 6 e e 0 s s s 0 0 e
Lo AAQAitivibty Of S€TS o ¢ s o ¢ o ¢ s o 2 0 o ¢ 2 ¢ 6 2 06 6 6 v o s 0 6 0 0 0
5 Probability MEaSure o« » o o ¢ ¢ o ¢ 0 0 8 o 6 6 6 ¢ s o e 0 0 ¢ 5 0 0 ¢ o
6o Point function « o o o o« ¢ ¢ ¢ ¢ © ¢ 6 0 6 ¢ 0 6 06 0 8 6 0 6 s ¢ 0 ¢ e s o

7« Distribution function o« o« ¢ ¢ ¢ ¢ ¢ 8 c ¢ s 2 25 s s ¢ 6 0 6 9 a8 06 8 8 o

@ O W W W

8e Density function o « « > o o o o 6 » 8 6 2 66 ¢ 06 686 060 ¢ 0009 0082

9 Random variable o « « s o o ¢ o » » ¢ o ¢ o a4 o ¢ 0 6 o 5 o5 s o ¢ 2 ¢ L0
10, Conditional probability .+ ¢ s o o o o o o o ¢ 5 s o ¢ o a s e¢ o0 ¢ s s 10
11, Joint distribution function ¢ o o o o o ¢ ¢ ¢ o o ¢ o s 5 s ¢ o 6 o s » ¢ Ll
12, Discrete random variable o s o o o o o o o s o 0 s e o s 5 s e 06 s 00 o 16
13+ Continuous random variable o o o s v o o o0 0 o o ¢ 0 ¢ s o s s 0 s s & .‘. 17
1he Expectation of g(X) o o ¢ e o o o 0 o e s e e o B - §
15, MOMEOES o o » » o o a 6 8 6 o 6 & s e o 8 s 6 s s 0 e s 6 s s o s s e 22
16, Characteristic function o+ o s s a o o o o s o 6 o 66 o o6 60 00 s e 0o 25
17; Cumulant generating functioﬁ o o e 8 86 0606 oo 06 e o s e 06 esas e 28
18. Convergence in probability o o o o o o o 2 0 s o s o o o 5 ¢ s 0 o ¢ o o o LL
19, Convergence almost EVETYWHETE o o « « o s o o o o o o o s oo s o o o o o U9
20, Risk function o o o o o o « o ¢ s 6 8 ¢ o e 5 s 6 6 5 500+ s 0 s se DO
21, Minimum variance unbiased estimates (MeVsUe€o) o o o o o o o ; o s 0 s s s 56
22, Best linear unbiased estimates (DeleUo®o) o o « o « 0 o 0 s s 0o 6 o s o s 57
23, Bayes estimates o« o « » o o ¢ ; @ 6 6 s o o 8 o o 6 8 o s o 5 s a s s e s B8

2}4.mnima}cestimateso.ncno.oonoouo.0009000.00.6060



- 205 ~

Definition Page

25. Constant risk estimatesS o o« « o o o o s s o ¢ o ¢ 0o ¢ 0 s 0606 502 s e0 &0
26, Consistent estimates o o o o 5 s o o ¢ s s s s s 0 s s s s s 0o 0 0s &
27. Best asymptotically normal estimates (De@sNcBe) o ¢ o s o o o o o o o o o 60
28, Least Squares eStimatesS o o o o » s o o o s o s o s 00 e 5 5 o s a5 o OL
29, Likelihood function « o o « o o o s ¢ e o o 0 s o 6 o s 0o s e s e oo Ob
30s Maximum likelihood estimates (Mmele€e) o o o o o s ¢ o s 6o 5 ¢ s o o s 0o 6h
31, Sufficient stabisticS o « o o o o » o s o 6 o s 6 6 o e 6 6 0 o0 s 009 86
32, Complete sufficient statisticsS o« o ¢ ¢ o« 0 ¢ 6 ¢ o s ¢ 006 s s o 0 0 ¢ o 92
330 TeSL o 5 o o 0 o 0 6 6 0 0 6 96 ¢ 6 6 6 8 8 8 68 80 s s s e e e 113
34e Test of 5128 & o o o o o o s o s © o a 0 s s o0 6 0 s s s 8 e« o0 oo 1L3
35 Power of @ £8Sb o o o o v o o o 5 6 0 0« 5 0 50 s 6 s 6 s 0 e s e o o 113
36, Consistent sequence of t65t5 o o o o o o o o ¢ s o ¢ s o o6 0 s 5 0 8 o o 113
37 Index of testS o o o o 9 6 ¢ 2 2 6 0 6 ¢ s o o 6 ¢ a8 06 0 o080 00 o LL3
38, Asymptotic relative efficiency (AcReEc) o o o 0 o 0 06 0 o 6 o o o o o s . 1L
39, Quantile o o s o o o ¢ o s e o0 0 5 s s s s a s s o o e e s s 0 e s o o 1L5
4O, Sample QUANEILE o o o o o ¢ o s 6 6 o o o o 6 5 s 85 6 6 s 6 5 0 0 060 o o 1l6
1, Uniformly most powerful teSt8 o o o o o o o ¢ o o o ¢ o s o5 0o o o o s 148
L2, Unbiased tE€5ES 4 v o o o 5 o o o ¢ o o 0o 6 6 0 s s s s o s o s s s o 15
L3, Bimilar teStS 4 o o o o o ¢ o s o s 00 s o 0 s o s s s e s o0 s s o s s 15N
Lo Invariant t@StS « o a o o s o o ¢ s s o 2 0 6 ¢« o 0 s o s o s 0 o s s o o 155
L5, Uniformly most powerful unbiased tests (UeMoDoWs) o o ¢ s o s o o s o o ¢ 155
46, Maximal invariant function . o « o o e o ¢ 9 6 5 o0 o s s o s s e o 0 o LOL
L7, Confidence reglofN o « o o o o o o s o o o 8 ¢ » o 0 6 o s 2 0 06 0006 s s 199
8o UeMeP, confidence region o« « o o o s » 8 o 3 6 6 5 0 0 s c 0o ¢ 00 s 0 ¢ 199

Ll.9o "Shortest! confidence interval . « ¢ o o ¢ 2 ¢ 0 o « « o s ¢ s o o 0o o o 200



- 206 =

LIST OF PROBLEMS

Problem
1. Pr(Sum of sets) £ Sum Pr(sets) o o o« o o s o ¢ s 0. 0 6 6 ¢ s 6 00 00 o
2, Prove Pr(lim 5,) .= lim Pr(S,) o ¢ o e 0 s s s 0 o oo 0o a0

n—»00 n-->»00

3. Cumulative probability at a point o o « o« ¢ o s o« ¢ ¢ s ¢ 0 ¢ ¢ 5 ¢ o o @
L» Joint and marginal distribution functions « ¢ » o s 2 5 0 o 0 ¢ 0 0 o & »
5. Transformations involving uniform distribubions ¢« o o « o s ¢ o o » 0 o o
6, Distribution of the sum of probabilities (combination of probabilities) .
7. Prove that the density function of the negative binomial sums to 1 ¢ »
8, Find the mean of a censored normal distribubion . « o o o ¢ s o 2 ¢ ¢ 5 »
9. Unigueness of moments (Uniform) s ¢ o o o ¢ o ¢ o o c o 6 & » o s o v o o
10. Prove the normal density function integrates to 1 ¢ ¢ o o o o o ¢ ¢ » & @
1l. Derive the characteristic function of N{Oy 1) ¢ o o o o s o s s a o s o
12, Density of the product of n geometric distributions ¢ » « ¢ o ¢ o s ¢ o o
13s Factorial msgef, for the binomial distribution o o s+ o ¢ o 6 ¢ ¢« ¢ ¢ » o
" 1he Inversion of the characteristic function (Cauchy) o« o o o o ¢ o o 6 » 2 o
15, Limiting distribution of the PolsSSOn o o ¢ o o o o o ¢ ¢ ¢ ¢ 6 6 & s & &
16, Use of Mellin transfOormsS « o o o o © 6.8 ¢ o o o ¢ » s 6 o s o o 0 s » o
17. Transformations on NID(O, 02) T
18, Limiting distribution of the multinomial distribution . o o o s o ¢ o o o
19, Limiting distribution of the negative binomial 4 o ¢ > « o o o s s » s o
20, show E [g()] = Eyzx[g(x)[yj,....,...”o...,,..,..
21, Distribution of the length of first run in a series of binomial trials .
22, Distributioﬁ of the minimum observation from a uniform (0, 1) population.
23s Prove theorem 19 o 5 o« o o 6 ¢ 0 0 ¢ c o © 6 6 © a » o o o o e o o o # o
2lis Asymptotic distribution of (X =- h)z/x where X 1s Poisson A s o « o o o @
25, Example of convergence almost eVErywhere s » o « ¢ ¢ o o o 6 o 8 0 ¢ & o

Page

13
19
21
2l
2l
28
28
32
32
33
35
36
38
38

L1
L
L
L6
L8
50



- 207 =

‘ Problenm Page
26, Inversion of @(t) = co8 t3 o « o o s s e« « o o s o » 60 ¢ s 00 s 0006, 50
27, Asymptotic distribution of the product of two independent sample means . , 50
28, Show that X 18 @ bolee@ Of L o o » o o ¢ ¢ o o 06 o s o 0 06 o s o o & & 57
29, Example of minimum risk estimation « o o ¢ o o o 0 s o s s ¢ 6 0 0 00 0 o 57
30, Determination of risk function for Binomial o + « ¢ ¢ o o 2 o s ¢ o o o o 59
3L, Find a constant risk estimate for Binomial P o« + o o s o ¢ ¢ 0 o o o o o o &0
32, Proof of consiStency o o o o ¢ o » ¢ s o 6 ¢ 6 5 9 ¢ ¢ 6 8 000 s e o 00
33, Bo,leuse, of parameters in simple linear regresSSion s o o » ¢ ¢ o ¢ s o o o 03

a2x

e- o.ocenoqocoolo,69

3L, Find the melees of "a' where f£(x) = a?

35, M,l.e, of Poisson A and its asymptotic distribution o « o o 0 o o s ¢ o , 69
36, Milege Of parametor Ma" of R(Oy @) o 6 o o s s o 5 6 ¢ 5 s 0 co 6 0 88 o T0
37¢ Melces of the parameter of the Laplace distribution . « o o ¢ o ¢ ¢ o ¢ o Tl
. 38 Meloes of Ay p where X is Poisson Ay Y 15 Poisson UM o o o o s s s o o o » Th
39« Application of the multiparameter Cramer-Rao lower bound « o ¢« « » « ¢ 2 o« 75
4O. C=R Zower bound for unbiased estimates of the Poisson parameter A o+ « o o 78
L1, C=R lower bound for estimates of the geometric parameter « s o « ¢ ¢ « o ¢« 80
L2, Appliéation of the C-R lower bound to the negative binomial .+ o « o+ o« » « 84
L3s Derivation of sufficient statistics o o o o o s o ¢ o o s o 2 0 00 0 o o« 87
Lhli, Sufficient statistics and unbiased estimators for the negative binomial . 89
45, Variance of sufficient statistics for the Poisson parameter A e s « o o o 91

hée Meveuee. of a quantile

)
o L] . L . . L] ° . ] . [ ] ] [ 4 * . * 9 @ . [ ] . L] o L] 9b

Ll.?o MoVeuceeOfPr(xsa)ooo'oaoo'o-ooeo'inooo0-000 98
L8, Minimum and constant risk estimates of cr?' (normal) « ¢ 2 ¢ o o 0o ¢ o 8 ¢ 0o 98
L49. M,l.e, of the multinomial parameters (pij = pi'rj) o o s e s o s o v s s e 101

‘ 50, M,l.e, and minimum modified x2 estimates of the multinomial parameters
(pij = ‘i + Bj) & ] 9 9 ° ? L ] ] 9 L] * L ] [ ) 1 ] L) * L] [ ] L[] » L ] . L] * ° * [ ) [ ] 107



51.
52,
53,
5h-
55.
564
57+
58
59
60,
6L.
62,

@ .

6L,
65,

664
67+
68,
69,
70,
1.
72,
130
The

.' 75 0

- 208 -

Problem

=l \
Mol.eo and minimum modified x> estimates of p; = e i

> & © o & O

©

Comparison of variance of minimax and m.l, estimators for Binomial p

Example of Wolfowitz minimum distance estimate of u . »
AR,E. of median test to mean test (normal) . o ¢ o o o
Power of the normal approximation for testing Binomial p
A.R.E., of median test to mean test (general) . ¢ « o+ o o
Distribution of intervals between R(0O, 1) variables . .
Example.of the Ul test (Wilkinson Combination Procedure)
Distribution of the range s+ « « o o 0 o ¢ 0 0 s o o & o

Power of the D; test (Kolmogorov statistic) « « o o o &

pected value of &)° (Von Mises « Smirnov statistic)
Expected val fﬁ( ML Smi tatistic)

.

L4

©

L

Wilcoxent!s U test @ © & 06 5 3 & © 8 8 3 @ © ® e & ¥ 8 e ¢ 0 e

Distribution and properties of the number of Y exceeding max X

sample teSt) e o ¢ 0 0 B s o e & 3 8 e C O o o o o o e 3 3 s o

Application of two Sample testS 4 s et 2 3 6 4 0t s 6 6 s e s s

Moments and properties of a particular nonw-parametric two-sample
gtatistic o 2 ¢ o o ¢ o o o o e ¢ 8 & 2 & & O e O © 8 © 0 & e & &

AJR.Ee of Wilcoxen's U test to the normal 685 » o o o o o o o

Equivalence of the Kruskal=Wallis H test and Wilcoxent's U test

Usmepe test for negative exponential parameter ¢ o o o o o o »

Example of non-existence of tests of size & o ¢ o o » o
UeMoPotis test for o (normal) o o ¢ o 6 6 ¢ 0 ¢ o o ¢ s »
Example of application of Maximal Invariant Function . .
Maximum likelihood ratio test for p (normal) « o o « o &

UsmopPeis test for the coefficient of variation (normal)

@

-

?

test

L]

for k=2

*

©C e & o°o & e ¢

Derivation of F-test for the general linear hypothesis (two-way ANOVA)

Power of the two*way ANOVA TFewbeSt o « o« o 5 o 06 ¢ 6 s o o ¢ o o » [

Page

108
110
112
11k
115
117
120
123
12h,6
128
129
13k

134
138

138
15
7
151
152
160
167
175
175
181
185



