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CHAPl'ER I ..... kELIMINARIE8

I: Preliminaries:

Set~ A collection of points in lie (Euclidian k-dimensional space) -. S

Def", 1/ 8J. + 82 is the set of points in either or both sets.

Sl + 82 is the set of points in both 8:l. and 52'

it' 81 is contained in 82 (Sr e 82) then 82 .. ~ is the set of

points in 52 bllt not in S:t •

Exercise 1/ Show that 81 '" 82 c.l 82 + ~

e ~S2 I: 8251

There is also the obvious extension of these definitions of set addition and multi
plication to 3 or more sets.

CD

n~18n II;l the set of points in at least one of the 8n

CD

-n-8 &: the set of points common to all the Snn'J 1 n
s* is defined as the complement of 8 and is the same as ~ - s.

Proof': Let B denote !l1is an element ofn

X. 8 (~ + 52)* means that x is not a member of either ~ or 82 >

iGeo x J 81J X ¢ 82 J

'* *therefore x e ~ ~ 1 e 82

* * * *since x is common to both Sr $ 82 ~ x B ~ 82 I;



To complete the proof

* *x e 81 82 * *=- ~ :l£ 6 ~ and x e 82

~ x_~ andxJS2

. 7 x /. (f\ + 82)

::::::::r x 8 (81 + S2)*'

Exercise 2/

Exercise 1/

*Show that 52 - 51 - S2~ 0

In R2 define 81 .. {x,y: x2 + y2 ~ 1}
i.e~ the set of points x,y subject to the restriction x2 + 1'2 , 1

82 {x,;r ~ 'xf~o8, t1"~ 08}

8
3

{x,y: z· O}

*Represent graphically ~ + 82, S:J. 82" S3S251~ 8182 - SlS;"

Def. 2/ If ~c. 82 c 83 0 0 • 0 0 (an exploding family)

co

We def'ine~ lim Sn'"~ Sn
n~(X) n-l

We define~

CD

lim Sn· fr.B
n~tO n .1 n

Such sequences ot sets are called monotone sets ..

Exercise hi
(aj 8how that the closed interval in R2 {x,;r: txt~ loll lyl ~l may be represented

as an inf1hite product of a set ot open intervals:

Ans~ 8n • [x,p1'g Ixl <: 1+~, 1Y/< 1+ ~

(b) Show that the open interval in R2 {x,y~ JxJ.( 1" 11'1 <1 can be represented

as an infinite sum of closed intervals~ .
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Probability is generally thought of in terms of sets, which is why we study sets.

Def ~ 3/ Borel Sets - the family of sets which can be obtained from t.he family of
intervals in lie by a finite or enumerable sequenoe of operation

of set addition, multiplication, or complementation are called
Borel Sets.

The word multiplication oould be deleted, since multiplication can be per
formed by complementation, eog4l:

(.tIL * + S *)* S. S
-~ 2 • -J. 2

(s*)* • 8

Def. 4/ ~(S) is an additive set function if
11 for each Borel 8et A(S) is a real number, and
2/ it ~,\I 82, 0 0 • are a sequence of disjoint sets

Examples: - area is a set function

- in!l:L A(S). !f(X) dx

~ef3 5/ peS) is a probability measure on ~ it

1/ P is an addi tive set function
2/ P is non-negative
3/ P(I1c) '" 1

G C?' 2Y
~(S). f: dx

~

fA will denote the empty set which contains no points, 1 o e o ¢ til R
k
*; 9J + 1\ t:t R

k
•

Ex!! C;; P(¢) .. 0

Exo 6/ it ~CS2 then P(S:!) ~ P(S2)

Lemma 2/ P (~ .;. 82 + 0 0 0) ~ P(~) + P(S2) + 0 0 •

e Problem 1: Frovc lcr.una 2.
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Proof: case I - ~ C 82 C 8, 0 • • • •

Define:
f

~~. •

Sf - 82 - ~2

st = S3 - 52 etc.3
CD CD

These sets Stare disjoint; &lso ~ Sn· ~ S•
n n-l n-l n

CD

P ( 11m Sn) - P (~ 8n)
n~CD n -1

00

• P (~ S~)
n-l

the additive properly of P

• P (~) + P (S2-51 ) + P (83 - 82) 0 0 0

• P(~,>
..P (81 ) + P(S2)

- P(S2) + P(S3)
etc.

• P (Sn) after n steps

• lim P(Sn)

n~

Case 2: ~::> 82,:) 83 • e •• 0

Problem 2/ Prove lelllJl8 3 for case 2.

Defg 6/ Associated with any probabUity measure peS) on Ii. there is a point function
rex) defined by

F(x.) • pc· 00 I x).

F(x) is called a distribution function - dolo



-s-
Theorem 1/ Any distribution function, F(x), has the following properties:

1. It is a monotone, non-decreasing ·sequence.
2e F (. CD) • 0; F (+ CX» • +1
3. F(x) is continuous on the right.

Proof: 1/ For Xl < x2 we have to show that PC:;) ~ F(X2)

The interval (. 00" ~) C "'he interval (. cx), x2)

From exercise 6 we have that P(I:t) ~ P(I2)

Therefore F(~) ~ F(x2)

2/a/ It we define Gn as the interval (- cx)" - n) n:d.,2p 3,uuo

G a lim G =¢ (the empty set)no+CD n

~~ .F~n) • l~cl(Gn) • P(n~~ Gn)

• p(G) • P(¢) • 0

From lemma 3

b/ Follows in a simUar tashion by defining Gn = (- CD" n)

3/ Pick a point a ~ for this point we want to show

lim F(x) =F(a),
JC.7a
x>a

Consider a nested sequence tn~O, sn> 0 •

Then lig14(CX)a + en) =- F(a) is the property to be shown.

If we define ~ • (- IX) ~ a + t n) n:l,2,,3,uuo

lim H • H. interval (- ex), a)
n?CD n

lim P(~) • P(lim \) • P(H)

Therefore l~~ a + en) • F(a)

lemma 3



Where (aJ is the set whose only point
is a.

[ ]

.6.

Problem 3/ Show that

F(a) .. lif ~(f) + P {Cal}
x<a

Or in familiar terms F(a) • F{x - 0) + Pr(x aD a)

Where F(x .. 0) is the
limit from the left #

Theorem 2/ To any point funotion F{x) satisfying properties 1,,2, and 3 of theorem
1, there oorresponds a probability measure peS) defined for all Borel
Sets suoh that for any interval (- ex>, x)

p(- co ~ x) • F(x) ,

Proof omitted - see Cramer p. 53 referring to p. 22 II

Theorem 3/ A distribution funotion F(x) has at most a oountable number of dis
oontinuitieso

Proof~ Let vnbe the number of points of disoontinuity with a jump,. i
then vn~ n whroh is what we have to show(1

Suppo,se the oontrary holds, i.e 0 vn :> n 1#

Then if we let Sn be the set of such disoontinuities, we have

1 • P{R:t) ~ P(Sn' "> ~ (n)~ 1 whioh is a oontradiotion,

ex> ex>
Therefores the total number of discontinuities. ~ V <:. ~ n

n • 1 n 1
co

where ~ n is the sum of the integers whioh is a oountable sum_
1

Notationg

square braokets -- means the end point is not inoluded in the interval -
ioe cr , an open interval"

( ) round brackets -- mean the end points are inoluded in the interval, ioe."
a olosed interval.

(a, bJ is the interval a to b, inoluding a but not b.

In Rk to each probability measure peS) there corresponds a unique distributic.

function
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The interval is the set of points in 1\

i .. 1, 2~ ~ • 0, k

Theorem 4: F{~ .. x2' • ~ &:1 ~) has the following properties:

10 It is cant inuous from the right in each variable

2. F{- co, x2' It • ., xk) • F{~, • co, X3:1 • • 0, xk) II: 0 .. • .. 0

F{+co, +00'800, +0)-1

.3. ~ F{al' a2~ •• ", ~) ~ 0 see p. 79 Cramer

i.eo, the P measure of any interval is non-negative"

0, ~).• 0

Conversely if F(Xl ~ x2' " " 0' xk ) has these properties.ll then there is a unique

P-measure defined by

That is, I is the interval [. co, - 00, • 0 0; ", x2' • 0 0' ~).

('1.' &2 + h2~
-----~-------6---~(~ + h.t, a2 4> h2)

I

In R2

P(I) .. F(~ + ~, 8 2 + h2) - F(~, a2 + h2) - F(a1 + ~I a2) + F(~I a2)

• ~ F(~, a2)
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,,-P(Sl" ~ -I- h2" &.3 + h3) • F(~ 1- b:Ls ~i &.3 + h.3)

-F(sl + h:t, 8,2 .. h2, 8.,3)

+F(~.; a2.9 8.3 + ~) + F(~D 8.2 + h2~ a.3) <c. F(~ .. ~) Q2' a.3)

...F(al , $2" a3)

CII ~ F{~I B-2D a,)
TIle proof of theorem 4 is by analogy with the linear case (theorem 1),

F(xl' + Q)" • • • ~ + 00) • p( c· CD" xl) )

.. the marginal distribution of xl

(similarly for other dimensions)

Def. 8:
It F is continuous and differentiable in all variable s" then

is the density function of xl' x2" 0 0 .!J ~,

Exercise 7~

F(x, y) .. 0 if x ~ 0 or '1 ~ 0

ex + y).. 2 for O<x ~l

O<y ~l

.. 1 for x::>l,p '1) 1

Can this be a distribution function in R2?

How can the definitions be completed?
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Solution -- consider the marginal distribution of x

) x + 1
Fl (x) .. F(x" + (0) ~ F(x, 1 a=- 2

F
l

(0) .. (0 21 ) ai
But in fact F(O, 0) .. 0

F(O, y) • 0 for all y

Fl (0) • 0

Therefore there is a contradictiono F cannot be a proper distribution
function"

If F(x, y) is a proper distribution function, then the two marginal
distributions

F2(7) lit F(+ 00; y) must be proper and in this case
they break dowo

Proble!'l ~: If we define f(x, y) .. x + l' 0 ~ x ~ 1

o ~ y ~l
.. 0 elsewhere

Find F(x, y); Fl (x); and F2(y)

Show that F(x" y) satisfies the properties of a distribution function..
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Delo 9: Random Variable

We assume we have exper:lments which yield a vector valued set of observations

1. 13 (Xl' X2' II 0 <>1 Xlt) with the properties:

la For each Borel set S in ~ there is a probability measure peS) which is

the probability that the whole vector.! lalls in the set in S

(P(S) is non-negativeJ additive, and P(~) • 1). Cramer pe 1,2-4
axioms 1 and 2

then the combined vector (.!ll .!2J () • Il'}on) is also a random variable

Conditional Distribution--
( .~ Y) are random variables in Rk_:; R. .-

- - --~ -1(2

Let S and T be sets in " ~2'

!!et. 10: It' p( X belongs to 8»0" then we detine conditional probability

p( YeT I xes). P(Y C T.y XeS)
p( XeS) ,

We show that P( Y c:. T , XeS ) does satisfy the requirements of a probability
measure

1.. It is non-negative since p( YeT, XC.S ) is non-negative.
2... It is additive since p( Yc: T/1 xes) is additive in ~ ,.

2

P( Y C Tl J xes ) + P( yeT2 1 X c: 5 ) • P{ Y C Tl + T21 xes )

,3- P(Y c~,!) X CS)
•

P(X <;.S)

p(X cS)

P(l CS)
CI 1

If p(Y C T) > Owe could also define

P(x Co SlY C T) • PCI c. SA yeT)
-P(YeT; ·
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In familiar terminology what we are saying is that

Pr(A I B) • ~tA)B) or Pr(A$ B) .. Pr(A' B) Pr(B).,

If we have the corresponding distribution functions

F(x, y); ~ (x) ... F(x, + CD >; and F2(Y) • F(+ 00, y) then:

notation:

..- Oa·pital ktin lettet'~ used tor ranflom variables in general.
-- Small latin letters used for observations or specific values of the

random variables 0

Pr(X ~x) .. F(x)

Def. 11 -- extension:

In the case of n random variables, 1.J..~ X2$ 0 .. I) ~ Xn these are independent if

Note': Three variables may be pairwise independent, but may not be (mutually)
il'ldependent -- see the example on po 162 of Cramer..

If density functions exist, then ~, X2$ 0 0 ., ~ independent means that

Note: The fact that the density functions factor does not necessa.rily mean
independence since dependence may be brought in through the limitso

y
eog. X and Yare distributed uniformly on OAB

lex, y) • 2
O~x~l

O~y~x
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e Functions of Random Var1ables~

g is a Boral measurable function if for each Borel set S~ there is a set Sf
such that

xeS' ~ 8(:)88

is also a Borel set o

s

A notat ion sometimes used is that S i • g-1(S) -- that S i

S under the mapping go

Now consider Y .. g(X) where X is a random variable.

Pr(yc S) = Pr(x cS i) .= p(S')

U LLU,---
Sf S t Sf

is the inverse image of

Therefore, arty' Borel measureable function" Y .. g(X) of a random variable, X" is
itself a random variable.

Pr(y C S) • p [g-1(5)J

This extends rea.dily to k dimensionse

Transforrnations:-
We have X and Y whioh are random variables with distribution function F(x" y) and
a density function I(x, y)q

Where ~l and ¢2 are 1 to 1 with';'" ~; are continuous" differentiable;

and the Jacobian of the transformation is non-vanishing•."

'Ox dX
~ d~

J 1:1

'OY ~Y

a.;. o~

We then have the inverse functions X .. 'f1 (.;." ~)

Y III 'f2 (..<, ~)

The density function f(a, b) of the random variables ..<, ~ is

f ['t'l(a, b); r2(a, b)] I J ,



Solution: Consider alsoW III X .. Y

.. J3,-

y

Consider the joint distribution ot (Z, V) (0, 1) f-------44!~$ 1)

z • X+ Y

V-x-y
o Z+W X Z - W YC02 III 2 III o

t(x"Y) • 1

(:..,,0) x

Ja

1 1
22
1 1
2'-2

Density of Z" Will f(x, y) IJI -1 0 ~

l'lI ...
1

T

The limits of Z and W are dependent
Z III X + Y

WeaX..,Y

It Z .. z, then lIT takes on values from (0 .. z) thru 0 to z ... 0, so that

for Z III Z ~ 1

II
Q 1

f(z"W) .. T with limits ..z.s; W'$ +z
z~l

Since we started with only Z, and "a.rtificially" added toT to get a solution" we must
now get the marginal distribution of Z (this being what we desire)o

• z

z

F(z) • ) F(t)dt •

o



- 14·

If X • Z '> 1, then 8 takes on values from

(z - 1) - 1 to 1 - (z - 1) or from (a-2)to (2-z)

J J
z

1 1 2-z 2 .
F(z) • T + (2-z) dz 1:1 2. ~!L.

1 1

1 (2-Zi. 1 2
1 (2-!l:... T- 2 +2'- -~

~ z2
Q • F(z) =T o ~z ~ 1

1:1 1 .. (2_z)2
1 ~ z ~ 22

f(z) .. z o ~z ~l

• 2-z 1~z~2

See p. 24, ~ 6 in Cramer

1 1

F(z)

1
density

DoFo 1
~ 2'

z Z
1 2 1 2

Joint density of Z, W 1
Oiz~l1:1-

2
fez, w} ... z-s.w'S.z

1
1 ~ z ~ 2-"2

z - 2 ~w ~ 2 .. z



If the transformation is not 1 to 1 (that is J .. 0) then the usual devi. e to avoid
the difficulties that may arise is to divide ~ into regions in each of which

the transformation is 1 to 1, and then work separately in eaoh regiono

ioeo" consider in R:J. Y .. X2 We should consider 2 separate
cases:

x.<o
X~ 0

Riemann-Stie~jes Integral:

Let F(x) be a d.f 0., with at most a finite number of discontinuities in
let g(x) be a continuous function, then we can define

bJg(x) dF(x) .s follows:
a

Divide (a, b) into n sub-intervals xl' x2" • 0 0' 1i. of length ~ !J.

Cramer
p. 167

(a,9b) and

Cramer
PCll 71-74

~l <. -s; but as n~ 00" !J. ----? 0-
They can be shown to have a common limit.

So the common limit is called the R-S integral,

S is increasing, S is deoreasingn n

+00 b(
Also define r g(x) dF(x) • lim ) g(x) dF(x)

) a-7 -00 a
"'00 b-; +00

provided the :j.imit exists

and in general b( rf..x ) dF(x) bas all the usual properties of the fam:lliar Riemann
) integral0

a



If F(x) has density f(x) which is continuous except at a finite number of points,
t~n ,

F(xi ) - F(xi _l ) -.t(JI') (Xi - xi _l ) xi _l < x <' xi

f
-!', (x ) ~(x)

j' .. ~ [int g(x)] l f (x i) ] fjx

lim ~li D rg(x) dF(x) D ) g(x) .!(x) dx D ordinary Riemann integral.

a a

If F(x) has only jumps at JC:l.$ x2, 0 0 ., xnand elsewhere is oonstant

If g(x) is oontinuous then this limit (the R-S Integral) existso Also, if g(x)
has at most a finite number of discontinuities and so does F(x) and they don1t
ooincide, then the R..S integral existso

g(x)

~I

-I--.....-·------"~~ - .
--' ----,r--__

-'I...--

Def. 12: X is a disorete random variable if there exists a countable set of

points, ~, x2' ¢ C II, xn with Pr(X .. Xi) .. Pi and~ (Pt) .. 1

[elsewhere F(x) is oonstant, ioe e FY(x) =oJ.
t

1 .

a b
for such a discrete random variable, the R-S integral reduoes to a sum:

b,Jg(x) dF(x)'" lim ~ g(x~f) [F(X~) - F(X~"l)]
n.....,co

a
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r r r
Where the xi are points of division of (a, b) and xi is an intermediate

point in the i th interval

summed over the set of points xi

in (a, b) - .. the points where

there is some probability"

Det ~ 13: X is a continuous random variable if F(x) is continuous and has a
derivative f(x) continuous except at a oountable number of points e

F(Xi ) - F(Xi _l ) aa t(X~ t) [ xi .i Xi _1 ] (the theorem of the mean)

x i _l ~ %~ r~ Xi

bf g(x) dF(x)

a

Va can extend this definition to k-dimensions readily by writing:

J
.
g(~1 ~~6j ~) dx1. ~ F(x11 ••• , xk)

, HtJ, Xt<:
a

For a del II of '\ see po B
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If F(~, x 2' •••, ~) is continuous and the densitj f(Xl , x2' e It ., xk)

exists and is continuous}} then
b-

jrg('i' • 0 0' ~) ~o.o ~ F('i' 0 0 ., ~) •

a

~l•• 0 ~ g('i" 0 0, ~) f('i' • 0 0, ~) dxl' ••~
~ ak

In l1. Jd F(x) • F(x) - F(- ClO) • F(x)

-00

bji dF(x). F(b) - F(a)

a.

+CD If we let b~ .,. 00, &.-7-00

j dF(x) • 1

and this extends easily to the k-diU!ensional case, So that we have:

+00I d'i 0 •• ~F('i' • • 0, ~) • 1

-00

Consider k • 2, and the marginal distributions

+00

Fl(xl ) • F('i' + m). )

-CD

b

• lim JdFx (x1Si x2 )
a 2

a1-CD
b -7+CD
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a.., ..co
b-7 +00

• Fl (~, + m ) .. Fl (~" .00)

This also extends readily to R.k

with xl held f:ixed.

If the density function exists3 then this reduces to a k..l integral

+00

i
-00

+00r f(>i' x2, ' , 0' ~) ~2' 0 0 0' ~
..m

Z .. -2 lnX Y Q -2 ln X + ...2 In Y

or is the sum of 2 X2 with 2 d.f" each

Problem 6~

if Xl' •• U$ Xn have independent, uniform on (0.. l»)distributions,

show that n
-2~ ln Xi has a X2 distribution with 2n d.f.

1

and indicate the statistical application of thiso

see~ Snedecor ch~ 9
Fisher ...- about pG100
Anderson + BancrOft -- last chapter of section 1

From problem $b

Referenoes on integI'als~

-... Cramer pp. 39-40

- Sokolnikoft - Advanced Calculus - ch. 4
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Chapter II

Properties ot Univariate Distributionsl Characteristic Functions

Standard Distributionsl

A" Trivial or point mass (discrete)

Pr [X ... a] = 1

B0 Uniform (contimous)

F(x) ... 0
F(x) • 1

x.(a
x~a

F(x) =0
F(x) ... x
rex) • 1

x <0
o ~x ~ 1
X >1

C. Binomial (discrete)

Pr [x sa k] .(:)pk(l ~ p)n-k

] (:)pk (1 _ p),,"k D [<l-P) + pJ n D 1n
D 1

kaO

~ (: )pk (1 _ p)n-k ;; 1 is an identity in PI n
k=0

Do Poisson (disorete)

o ~p ~ 1

'\ '\ k
ct e-A ~

k:
00 (X)

~ e->.. ~ .. e->.. ~ t
kaO k~ k~O k~

k =1, 2, .o~, 00

->..>..
.. e e • 1

A >0

E. Negative binomial (discrete)

(
r+k-l) r k

Pr [x ... kJ ... r-l p (1.. p) k ... l~ 2, ..oe, 00

O<::p<l

r is an integer

Example. Draw trom an urn with proportion p of red ballS, with replacement, until
we get r reds out e The random variable in this situation is the number of
non-reds drawn in the processJ to have k black balls means that in the



first r + k - 1 trials, we got r .. 1 reds and k blaoks, and then on
the last trial got a red, the probability at this is

This is what is referred to as inverse sampling in that the number of
dofectives is speo:!1'ied rathez' than speoifying the sample size whioh
is then sorutinized for the mmber of defeotives.

F. Normal distribution (oontinuous)
• (x_ij)2

rex) == 1 e 2 cl-
J'2ia

-0:> <: X <0:>

Problem 71 Prove thatat:~l)pr (1 - p)k • 1

i"e., is an identity in r, p

Hints is in the Mmc ... express (a+b)-rl in an infinii.te series.

Def. 14: It' X is a random variable with distribution F(x) and if' ..! g(x) dF(x)

exists, then we define the expectation of g(X) as

• g(x) dF(x)

·this being the R .. S integral,

E [g(X) ] Cl J g(x) rex) dx
-co
-OD

E [g(X)J • ~ g(xv) Pv
v=O

x <.:0

if X is disorete

if X is oontinuous

Problem 8, Given F(x) == 0

• 1/2 )( x == 0

1 + 1 S· ...t 2/2
Q '2' ffn e dt x > 0

o
(This is a oensored normal distribution -- i.e., all the negative
values are conoentrated at the origin)
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Find, E(X)

Def .. 153 If E [X - E(X)]k exists it is defined to be the kth central moment and

is denoted "'k0
If E(X)k exists it is defined as the kth moment about the origin" and is

denoted "\0
Exercise 9g Find E(X) for each of the standard distributions/1

Theorem 53 E [g(X) + hey)] .. E [g(X)] + E [hey)]

Proofs Let F(x, y) be the joint d.f Cl of X, Y and Fl and F2 the marginal dof (>

E [g(X) + hey)] a II [g(X)+ h(y) ]dx/(X,y) =jJg(X)dx/(X,y) 1f(y)dx/(X,y)

IIIrg(x)dl'l (x) +fh(y)dy F2(y) .. E [g(X)] + E [hey>]

Theorem 61 If X, Yare independent random variables, then

E [g(X) hey)] .. E[g(X~ E~(y)J
Proof. See Cramer, po 1730

e Corollary. If X and Y are irdependent random variables, then

Var(X+ Y) .. Var(X) + Var(Y)

Mornentsa '\ =: E(X) .. mean

2"'-2 .. E(X ... lJ.) .. variance

~ .. E(X _ ~)3

""4 .. E(X .., ~)4,

etc.

for the normal distribution -- N(O, 1)

..x2/2
t(X! 0, 1)" 1 e

.J 2n

_..k 1 _100
E(X--) .---..-

{2i"

all odd moments (k odd) = 0 by a "s~etry" argument,



E(X2) = 1
{2n

E(X4) III 3

• 23 •

dx = 1 from integration by parts

or in general

E(X2n) III 1
{2n

2
2n -x /2

X e dx = 1 • :3 • 5 • .. 0 z: (2n - 1)

which can be shown by induction.

Theorem 7a Let.,(o III 1" ~" ~, u., be the moments of a distribution function

F(x), i.e o ,

CD ilk
then if' for some r :>O~ ~ - converges absolutely then F(x)

k=O k~
only distribution with these moments~

Proof~ See Cramer, p. 176.

Example I N(O, 1)

~k+l =0

is the

co

~
k=O

since odd terms drop out.

co
III ~ _~(_r2"",,)_k__ ::I ~ {r

2
)k

k=O 2k-1 (k-l)! .2k ~

o ~ ~(:;)k
k. .

_r2/2
III e

== exponential series
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converges absolutely for all r, therefore the only distribution
with these moments is the d.f. with the density

, " , 2
-x /2

f(x) 1lI..!.- e ilts., the normal
V2it

Problem 91 Find the moments of the uniform distribution and show that this is the
only d.f. with these moments.

Theorem 8a (Tchebycheff's)

If g(X) is a non-negative function of X then for every K> 0

Pr [g(X) ~KJ ~ Erg(X)]
K

00

Prooh E [g(X)] ••Jg(x) dF(x)

Let S be the set of values of X where g(X) ~K

Pr [g(X) 't KJ ? !.(X) dF(x) since the smallest value of g(X) in S is KS g

f K .fdF(x) III KPr [g(X)~K]
S

'.-•• Pr ~(X)~KJ ! E G(X) ]
K

Corollary II The above (th. 8) converts readily into the more familiar form

Proof, (See p. 182 in Cramer) setting

2g(X) III (X ., ~)

[
2 2 2

Pr (X - lJ.) ? (k 0) J~ TI
'" k 0

taking the square root of the left hand side
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Xn II munber of successes in n independent trials with a probability of

success in each trial II p

2
Proof & O'x = np(l-p)

n

From corollary to theorem 8

Pr [I :.r -pi ~ k 0"] (, ;l
1 1Choose s ~ = 5 or k II -

k -J8

kJ p(l-p) = e or n = p(l-~l
n 8 e

Hence 1£ n is chosen this large~ from the corollary to theorem 8 the stated
probability inequality follows o

Note I Theorem 9 could be rewritten

n=~
8 s

Characteristic Functions 3

Def o 168 Characteristic functions ¢X(t) =] eixt dF(x)

or since e ixt = cos xt + i sin xt

(X) CD
¢X(t) = rcos xt dF(x) + i • -r sin xt dF(x)

-00 ~
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the successive derivatives of ¢ (t) when evaluated at t = 0 yield the moments ofe F(x) except for a factor of a power or tti".

d v m uro
- ¢ (t) =¢ (t) = J ix e dF(x)
dt -(I)

CD

¢' (0) = i rx eO dF(x) • i ~
-00

in general

the moment generating function operates in the same manner, except it does not include
the factor tti" $ and is therefore not as general in application,

00
MaF = M(t) =E (eR ) = . ~ ext dF(x) if' this integral exists

-00

and operates by evaluating successive derivatives with respect to t at t • 0

Lemmas it E(Xk ) exists, then ¢k (t) exists and is contimous. The converse ~
also true.

Examples I

1. Trivial distribution, Pr [X =a] • 1

CD( •xt
¢ (t) III ) eJ.

-00

2 0 Binomial.
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{2n
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co
¢ (t) III '" eitk a-A _A

k
3. Poissona ~

k=O kl

411 Normal (O~ 1) S

1 (1)( itx _x2/2 dx 1 .~... - x
2

2' 2itx dx
¢ (t) III - ) e e • - e.J2n -00 Fn

S
x2 ... 2itx + (it l2 + (it)2

e- 2· 2 dx

*setting y = x - it

(Note the term in curly brackets is the integral of a normal density and equals one.)
i

* The validity of this complex transformation has to be justif'iedo See Problem 11.

.)1
~ (t)

.),
~ (0)

If X is N(O, 1)
2

¢ (t) III e-t /2

2t _t2/2
= - reI'

_t2/2 2 _t2/2
= -e + te"

= - 1

22"E (X) = i ¢ =1
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Problem 10s Prove

Problem 11.1 Show that

without using the transformation used in class

Hint. eitx • oos tx + i sin tx

Theorem 108

iBt
¢AX +B (t). e ¢X (At)

where X is a random variable with a dof. F(x) and a characteristic function
¢ (t)

Proof: y .. AX + B where A, B are constants

if X is N(O, 1) then Y • a X + jJ. is N(jJ., i)
Pyet) I: eitjJ. ¢x(a t)

2 2
it - ¥ 1tjJ. - ¥

= e jJ. e • ;:;e .

Def <) 17 i The cumulant generat ing function, K{t )" is defined to be i

K( t) • :Ln ~(t)

Example. For Y which is N(jJ., i)
2
t

2
K(t) • itjJ. - T-
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Note I For further discussion of cumulants see Cramer or Kendalle

Note, Originally cumulants = semi..invariants (British school name ~

Scandanavian school name) -- however, semi-invariants have been
extended so that now aumulants are a special case.

Theorem 11: If J1.P X2J 0 UJl Xn are independent ran~om variables, then

tr~·
~f;.,~~.~ =.,.--1. ~~AO~J'~. ~~}•.~x.-"·"· .i=l' Ai• . J.

(the c.f e of a sum = the product of the individual c ,f' • )

Proof,

=e n n
therefore we could say that Y is N(] j.(.i' ] ai)

1 1

To justify this last step we need to show the converse of F(X),"""? ¢X (t) ioe" that

¢X(t) ~F(X)o Therefore, we need the followirg lemma am theorem,

- 1 b<.O
sin ht dt III 0 h '=0

t + 1 b>O

Proo.t'~ f
a:>. e-...(U • Q

J(..(, ~) III sm rU du
u

~ III (- e-..al cos ~u du
~f3 cJ

'.,('>0
/

Note I Differentiation under the
integral can be justified,
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J.
III J.~+'P2 see tables or integrate by parts tWice

f~ dp =£2~2 djl =arc tan ~ +c:

Let {3""'70 then J(.<., 0) = e'<'u ~ 0 • du ... 0

arc tan 0 + C = 0

o + C ... 0

Let J. ~O, aId put {3 ... h, then

h>On
-T

lim J(J., h) -= arc tan: 00 depending on h + or 
0<.'--7 0

n... "' 2 h<O

Theorem 12& It F(x) is contimous at a - h, a + h, then

T

J
. ....ita

F(a + h) ... F(a - h) n lim 1:.. SJ.ntht e ¢ (t) dt
\-700n _

If 1rfil (t) Idt<", then rex) =' i.t .1 .-itxIt (t) dt

(I) itx ~

Note~ Recall that ¢ (t) =-1 e lex) dx ~el~ 16-1

Combining this with the above theorem means that given ¢ (t) or lex)
we can determine the other.

Prooll

1 ; Tr sin ht -ita
Define J=- t e wet) dtn

-T

1 T sin ht -ita CJ /tx d F(X)] dt=-
-T{ t Ell

n



1a_
n

.l.
n

The !~ cos term is an even function 0·.

-31-

Interchanging integrals (reversing the order of integration) which can be justified
this becomes

or fT( sin ht ...ita itx 1) i tee dt d F(x)
-00 ... '- ;it(x .. a)

J[J s~ ht [:OS t,(x - a)+ i sin t(x..a)] dtJdF(x)

No1>e! The S~ sin term is an old ,function "". _~ a 0

Ja2j
- _; _~_( 2 ,r.- J b S;i~ h! cos t(x.-a) dt dF(x)

Notes 2 cos A sin B = sin (AotB) ... sin (A - B)

J a} 1 f j sin t(x-a+h) ~ sin t(x-a.hl dtJd F(x)

now take the limit as T7(0

using the lemma just proved, with that h = (x-a+h) here

x=a+h

For sin t(x-a+h),-_Xi_-_a_+h_<O...;..._I__·_-~_-·_+_h)O~----11---------
For sin t(X-a.-h)----__t x-a-h<..O I..... Xi_-_a_-....;h>O _

1t

For x in each region

Whole integral (in
brackets)

n
both = ... 2'

o

- n
:1st part '2"
I

I n
J2nd part"" ~
I
f
I
I
I
I

both lit ~

o
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i,e o , in the region a .. h ~x~a + h

Trf sin t(x ~ a + h) dt ~ T( 1
) t sin t(x - a .. h)

o
elsewhere

dt .. 1l

.. 0

1Ja
nThere

a+h a-h CD

alh n dF(x) + ..i o. dF(x) + a~ 0'1 dF(x)

.. F(a + h) .. F(a - h)

Proof of the second statement in the theorems

ex>
F( h) F( h) 1 ) sin ht· -itaa+-a-. t& e rI.(t)dt2h ~ 'P

-00

taking the limit of both sides as h -70

tea) =2
l

n
<X>J lim sin ht e...

ita
¢ (t) dt

_ h-.,o ht

"-~=1
therefore

1f(a) ... '2i' -J
-ita

e ¢(t) dt

X. are independent
~

Problem 12iLet Xi (i .. 1, 2, 0 eo, n) have a density function given by

a-l
f(x) ... a x a>O O~xfl

n

Find the density of Y =-rr X
i=1 i

(may need the result of Cramer p. 126)

Problem 13r Define a factorial moment

B(X[r]) = E [X(X-l) U 0 (x-rotl)]

Define

* ex>F (t)... .1 (1 + t)X dF(x) as the factorial moment generating function.
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Find
F*(t) for the binomia1 and use this to get the factorial moments.

-It I
Problem 142 If ¢ (t) 1:1 e find the density of f(x) corresponding to ¢o Find the

distribution of the mean of n independent variables with this dof ~

Theorem 13: A necessary and wfficient comition that a sequenoe of distribution
fUnotions Fn tend to ., at every point of oontiwity of F is that ¢ n" the oharaoter-

istic function oorresponding to Fn' tend to a funotion, ¢ (t) which is continuous at

t 1:1 0 ~r tends to a funotion ¢ (t) which is itself a oharaoteristic function] It

Proof: Omitted - see Cramer po 96-98

This theorem says, if we have Fl F2 F3 ouu F

(11. ¢ 2 ¢ 3 fl H U ¢

we go from the Fi to the ¢ i - .. observe that the ¢ i tend to a limit ~or exampl,

the normal approximation to the binomia~ -- observe that the limit is itself
a charaoteristio funotion [of the normaJJ .... then go to F by previously
disoussed teohniques.

Theorem l4~ (Central Limit Theorem)

e If' X:t." ~" X3 uou are a sequenoe of independently and identically distributed

random variables with a distribution function F(x) with finite first ilnd second

moments (say mean IoL and variance ~2] then3

1-- the distribution of Yn =vn-(* ~Xi - IJ.) tends" as n ~oo" to the
normal distribution with mean 0 and variance (]2

2- for any interval (a" b)

~ (Xi""' IJ.)

rn-=

3-- the sequence [Yn1 is asymptotically N(O, i)

Denote the o.f o of X. as¢(t)
~ ~ (X... IJ.)

to get the c.f. of Yn = rn ~
n

Proof:

¢y (t)
n
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it' we expand ¢ (t) in a Taylor series, we have

¢ (t) &: 1 + i ." t + i2~ t 2/2 + remainder

&: 1 + i lJ,t ... (lJ,2 + ci) t 2/2 + R(t)

where~ ~O as t?O
t

In 1\ (t) • n ~n e -:I. fn t + In r6 (i> ]
n

&: i rn lJ, t + n In $6(*)

2· 2." = loLl ~ = I0Io + a

Note:

:: i IoL rn t + n In [ 1 + ifi..
x2 x3 x4

In (1 + x) = Xae T + '1" .. "4 •••••
x2 t=x -"7 + R

2 2 2 )]... (1+ + (j )t + al :::".
2n lrn

R
t

where .~......, 0 as x~O
·x

t 2 2 t 2 tsetting X·!'I i IJ. - .. (IJ. + a ) ~ + R (~) we getvn t:n 'In. [t 2 2 t2
tln 0{ (t) = .. 1. rn ~t + n i lJ. - .., (~ + (] ) 2n + R (-)

~n rn n Tn
2 3 It]_ ~ (i j.L.i) +~ An + R ~t) .rn nJ/to. n
~ .,.

L denote this by Y2
h

i / +nR(~ +V~~ n

2 t2 Rill

lim In ¢r (t) =- a 2 since lim \-;:::F/"" = 0
n~CD n n-)ro ./ U

it2 lim R~ t
2

&: 0

• "• lim rA (t) &: e- -r n~Q) ( ~) l
'Yn t 0n-too since as n~,~~

which is the characteristic function of the normal

distribution N(O, (]2)



Note 8 See Cramer p tI 214""l215.

The theorem says, for any given s there is some sufficiently large nee, a, b) such
that

2 2 jb( -t /20
J e dt <::::s

a. directly -- use Sterling's approximation
btl by characteristic functions see Feller ch. VII

Problem 15 ..- says that the standardiZed Poisson random variable is asymptotically
normally distributed N(O, 1) . .., .,

- \t
Cauchy Distribution - see problem 14 --- has no mean or variance since e is not
differentiable at the origin

lim .!.n
b~CD

a"-7CD
=oo-co

therefore E(x) does not exist for a Cauchy random variable, even though the distri
bution is symmetric about the origin"

Theorem 15~ (Liapounoff)

If ~I X2, e&o Xn are independent random variables with means ~ and variances
2

0i and with
n
~p3

P~ =E IXi - 8i 13
4.. CD and lim ;r:L ." 0

VI -']00(~ an 3/2

then ~ ""
~X. -~J,t..

Y =c :L ) :L is asymptotically N(O, 1)
~ 2 1/2.
"O'i

Proof l See Cramer p tl 216-217 ..
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Problem 16a Define M*(t) III E(Xt ) as the Mellin Transformft.

If X has density f(x) III k xk-l 0~X~

then M*(t) III k~t

It X has dens! ty f{x) III ... k2. ~"'l J,n x O<x~l

then Wet) Q &~Y
Use this to find the density of Y III Xf2 where the Xi are independent and have

density f(x) III k x k-l

State a theorem necessary to validate this approach.

Laplace Transform:

if f(x) III 0 x<O

-- extensive uses in differential equations
..,. extensive tables of the L.T o in the literature -- tables for passing from

the transform to the fuction and vice versa ...- see Doetscha Tables of the
Laplace Transform"

Notes Replacing (s) by (-t) gives the m(Jgof .. , or by (-it) gives the c.f 0

Fourier Transform -. the mathematical name for the charact.eristic function

III E [eitx
]

\Ie have previously noted that if X, Y are NID with means jJ.. and variances a;
221. •

then Z a X + Y is normal N(~ + ~I a
1

+ a2 )c

There is a converse to this "addition theorem for normal variatesll to the effect
that:

if Z =: X + Y where X, Y are independent and Z is normal$ then X, Y are both
normal ._. see Cramer po 213.

Derived Distributions (from the Normal and othersh

densityname- n. l...x/2 ;~
1 e 1

n/2 .. x
2 r (~)

Cof..
n

(1 .. 2it)~ n

2a

2n
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n

.- it' ~....... Xn are NID(O, 1), ~ xt
2 is y.,2

1 n

_. it has the additive property X;+n =X; + X~

aA -ax "'-1
e x

rCA)

A-a

.. XZ1) is a special case of the gamma

- =Pearson's Type III distribution with starting point at the origin"

student's t

(n) 1

rm
~(~)

r(~)

1
2 nil

(1+ !..) 7'"
n

-- o
( n",>l)

n
n-2

Ln ;;.2)

-_ t =XJn where X~ Yare independent, X is N(O,? 1), Y is X~
y

-- t with 1 d.r \) is a Cauchy distribution

F(m, n) r{~)

r<;) r(¥)

n/2 i· 1

(~) ., X m+n
(1+ !!! x) T

n

X>O

--- .
n

n'" 2

2
2n (m + n ... 2)

m(n_2)2 (n-4)
~

2 . 2 Jil!!-
- if X, Y are independent, X is Xm, Y J.s Xn, then F = 'YTr1

Fisher's z is defined by F =e2z see Cramer p. 243~

Beta

13(p, q) r (p+q) p...l q-l
- - x (l-x) .~.

rp,rg-,

p
p+q

~ F
__ putting P =~o q =~, we get 13 =_n__

l+!!Fn

-- see Kendall for the relation to the Binomialo
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Gamma function,

rep) =
n-l

x dx n>O

rep) III (p-l) r(p-l)

if p is a positive integer rep) = (p-l) !

r(p+l)

lim r~h) =1
p rep)

P~

III 1 Stirling IS Formula

h Fixed

2Problem 178 X and Y are WID (0, (j ). Find the marginal distribution of

2. e III arc tan Y/X

Problem 18g

Cramer po 319 No. 10.
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Chapter III

Convergence

Convergence of Distributions:
a. Central Limit Theorem (theorem 14)
b. Poisson distribution - (problem 15) - if X is a Poisson r.v .., then

If->..x= -rr

where P(a"b) is the above

probability statement.

>"+b~

P I ~>...,y.
(a, b) = >..+a{X e K!

LetK= >"+VAx

Proof: 1. By c of'. is straightforward - see sol. to problem 15, or p. 250.
2. Direct

b

P .. L.-A AA + xl?:.
(a,b) . x=a (h + x~)!

X+6x aK + l - h

iA
1ax 111-rr

using stirlingl s Formula:

nl
n -JIl ' .. 1/2 III 1 + Q(n)

n e (2nn)

where e{n)--7 0

as n --7 co
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2-x= eNotes: limit 1
X 700 (1+ lfi3:1t

eXvr
limit ln - :::J

1..-1 00 (1+ .:.)1..
{i

see J. Neymam First

v
where 9 (X) -7 0

b as 1..700

~ e..h2~henoe the lim Pea b) = lim ~:tG1:l18ml sum ..l..
X 700 ' 2n

b 2
= .l.. r e"'x /2 dx

f2;a
Note: For a similar proof for the binomial oase,

. Course in statistics, Chapter 4.

o. If' X has the X2 distribution, then

~ :_n is A ~1(0,1) as n-7 00

V 2n
Proof: See Cramer, p. 250.

d. If X has the Student's distribution with n d.f .., then

X-o

J~~
is A NCO,l) as n 700

I

1

Proof: Deferred for now) a proof working with densities is given by
Cramer, p. 250.

e. If X has the Beta distribution with parameters p, q, then the standardized
variate is A N(O,l) as p -j 00, q -700, and p/q remains finite

Note: Xhas mean...P.... 1
p+q 1 + qJp

Proof: Omitted
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Problem 12: X is a negative binomial r.v. (r,p)

a. Find the limiting d.f'. of' X as p~l; q-70; rq-7'A. (f'inite).
b. state and prove a theorem that shows that under certain conditions a

linear function of' X is AN{O,l).

Problem 20: X,Y have a joint density f'(x,y) 0

Define E [seX) (Y] .. j g(x) f(xly)dx
-co

where f(x Iy) ::I f'(XJY>!f'l(y), f'l(y) is the marginal density of y.

Show that E[g(X) ] DEE [g(x>Iy]
Y X

Use this to find the unconditional distribution of' X if xlY is B(Y, p) while
Y is Poisson (A.).

Convergence in Probabilit;y

Def. 18: A sequence of' r.v., X:t' X2, .. ., J!h is said to converge'in probability
to a r ov. 'X if given s , 8 there exists a number N( eo, 8) such that
f'or n ';7 N(e J6)

Pr[1 Xn - X)?SJ<8

which is written ~-p X n -t tt indicates converging

in probability.

As a special case of' this we. have J!h p> c if given t, 8 there exists

Nsuoh that for n > N

Pr[\~ - cA>~e]< ~

Further, in this notation, theorem 9 may be written:
1£ J!h is a binomial r.v • with parameter n, then

~
Ii p-1 p

Theorem 16: If' ~,X2' ...'J!h are a sequence of independent random variables with

means l-Li and variances cri then if
n

Lcr~
1 1

---""2- ~O
n

then n

Yn • ~ ~ (~ • ~-j 0
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Proof: Bit' the corollary to the Tchebyohe.fi'" Theorem (thm.8)
n

Pr [I ~ ~Xi - I'i~ 7 K "Y
n
1"'~

given ~, ~ choose ~ iii ~< ~
" K. '. n

Now oi:' iii ~ )' o~ ~ 0 as n -7 Gl)

n n t
Put K IOl v'"f and take n suffioiently large so that

V2 (~ f' o~ )1/2 <.. s
{6 n r

Theorem 17:

with this choice of n
n

Pr[1 ~ ~ (Xi - '1.~ ? ~J< ~

If X:I.,X2,X
3
, ~ a U ~ have the same distribution,

2 2
andOy = .2..~o asn--7oo

n n

so that in this particular case, X - P ~IJ. •

(Khintchine) (WGSk Law of Large Numbers)

then ai
n

2o=-n

If J1.,X2, u "Xn are independently and identioally distributed r .v. with

mean IJ., then I p ~ IJ..

Proof: (See Cramer, p. 253...4)
IT t·

¢xCt) = E(e~"')

i(~ IXi)t
¢l(t) = E(e ) • L¢x(i)] n

In ¢. (t) == n In ¢(~) = n In r1 + i IJ.! + R]X n L n

where ~ -7 0 as t -1 0
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In ¢. (t) .. -1IJ.t + n In(l + i lJ.! + R)
1-1.l. n

Note: In(l+x) III x + R(x)

where R~X) -7 0 as x -7 0

• -:UJ.t .. n ~i IJ.* + R{i> + Rll]
Rn(1)

= in t whioh as n-f (I) *-j 0

n RU(!)
so tn.--to...

n

henoe ¢. (t) -) 1 as n -t 00

!-lJ.

but if ¢(t) = 1 F{X) = 0 x <.0

III 1 x~o

or, in other words, the limiting distribution of X- lJ. is the

trivial d.£ 0 whioh takes the value 0 with probability 1.

Questiom

If X:J.' X2, X3, 1>&0' Xn? X

Do II lJ.2 ~3 .". lJ.n ~lJ. ?

Do 2 2 2 GO" ,i ---762
?~ °2 °3 n

i.e ., does~7 I imply lJ.n }lJ. '1

1-n
11- ....nwith probability= 0

Not neoessarily)as shown by the following example.

Examples

Let Xn be defined as follows:

In = n2 with probability
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,"~ X -j 0
n p

E \'" X J :I 0(1 - 1) + n2(1) :I nl n n n

as n -)00 E r.~1-t 00

Problem 21:

Problem 22:

Theorem 18:

Proof:

Let X be the r.v. defined as the length of the first run in a
series of binomial trials w~th Pr [ successJ :I p. Find the distri
bution of X" E [XJ ' and ~(X).

Let ~" 12, '''''!n be independently unit.ormly distribu.ted (on 0,1
L~t r= m1n OS.." 42' ..." ~). Find the d.f. of I" ELY] , and
er(Y).

Find the as~totic d.f. of nI and of I ... E(Y) •
tTy

Is Y ... E(Y) A N(O"l) as n -j oo~
0'1

Let X.,,~, •u"x.a be a sequence of random variables with distributi~

functions Fl(x)" F2(x), "0' Fn(x) ~F(x). Let 11" 12, ""Yn be
a sequence of random variables tending in probability to c.

Define: Un :I ~ + In; Vn • ~~; and Wn :I ~/Yn •

a) the d.f. of Un ---7 F(x-c); and if c 70

b) the d.f. of Vn~ F(x/c)

c) the d.f. of Wn~ F(xc)

All three parts are similar - see Oramer p. 2S4...S for proof of

the third part.

Proof of the first statement (a):

Assume x ... c is a point of continuity of F. Lett be small so

that x ... c ± t is an interval of continuity.

Let B:t :I the set of points such that.

X +1<' x; /1 -cl<::. 6n n- n -

82 :I the set of points such that.

xn + Yn .:::. Xj ) In .. c \ 7 6

8 :I ~ + 82 CI the set of points such that

X +1 <:"xn n_

..
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P(S2) • PreXn + Yn L.-~. IYn .... 0 \'7 eJ~ Pr [I Yn .. 0)7 eJ whioh ten~s to 0 as

n -700" the~efore we can choose nl so that n >nl implies P(82) c::.. i
In ~: 0 .. e Soy ::- 0 + &, thus-1 - n-. .

F@x .... 0 .. 6) .... f<F{X" c .. e) :=I P [xn ~ x .. (c + elJ :::-
P(~ + ~L. x) =P(~ =x .. Yn)

~ p[V x ~c - ~)] =F
n2

[ x - c .. ~.o(x - c + s) - i
where n2 is chosen so that when n;>n2 Fn(x) .... F(x)(i in the vicinity of c.

Therefore" in Sl

F(x .. 0 ... e) "" i< P(Xn +Yn€x) L F(x .. c + ~) +.i
6 oan be chosen so that F(x ... c + 6) - F(x .. 0 - 6}< i for n .,max (~"n2)e

NO~ing i?hat ,Pr[Un ~ xJ=~[Xn + Yn~xJ = P{Sl) + P(S2)' we can write:

.... 8 ~ .... i .. i ~ F( x .. 0 6) .. i + 0 - F(x ., c) L.

p(81) +p( 82 ) .. ~(x c) = Pr[Xn ~ .xl :"" F(x ... 0 ~

~ F(x - 0 + e) + i +- i .... F(x - 0)~i + ~ + ~ ~ 6

whioh makes use of F(x c + e) F{x .., c) II( i
F(x 0 .... 6) F{x .... 0) III • i

This then reduces to .... ~ ~ Pr [x ~xJ .. F{x .. o)~ ~
- n -

hence JPr[Xn~xJ .... F(x ... c)J~~ for n7max(nl ,n2)

which is what we set out to prove in the first plaoe •
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:'heorem 19: If Xn P >0 and if g(x) is a funotion oontinuous at x • 0,

g(Xn) P-} g( 0)

ProBlem 23i Prove Theorem 190 (work with faot that g{x) is oontinuous)

ExamJ2le of Theorem 18:

Show t n is AN{O,l)

2
s =n

2
where XJ.,~, •000 are independent with mean ~, val' (]

whioh is in the Wn form

In is A N(0,1) by the oentral limit theorem.

Henoe, 1.t' we show that
sn

y=- p-71n (]

then the statement that t is A N( 0,1) follows from theorem l8{ e) •

~(\ _ 1)2

{n _ 1)(]2
=-

n
::I n -1
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by KhintchineJs theorem (No. 17) this sample mean tends to (]2

i.el)' ~ E(Xi ... J.L)2 p) (]2

therefore, the first term - p ) 1

hence, it remains to show that

(x - J.L)2 ':j 0
2 p

(]

but we know that ) X ... J.L J. p -7 0 as n -7 ex> by Khintchine t s
theorem (No. 17).

2
Therefore. (I ... t.l.)2 _ :;J 0 and sn ~ 1

, 2 pI 2' p
(] (]

s
and thus by another application of Theorem 19 -; p ., 1

Note: The t n in this case is Studentas distribution if the x are

independently and normally distributed -- however, this is

for general tn.

Re Theorem 19, see: Mann and Wald; Annals of Math. Stat., 1943;
itOn stochastic Order Relationships" -- for extending ordinary

limit properties to probability limit properties.

Mise .. remarks# On the Taylor series remainder term as used in the

proofs of theorems 14, 17, and on p. 37 -see
CratAer p. 122.

If f(x) is continuous and a derivative exists, than we can write

f(x) = f(a) + (x GO a) ff La + Q (x - a)] 0 ~ 9 ':=-1

=: f(a.) + (x .. a)Lf'(a) + ,fl(a ... G(x - a) ) ... f~(a)J

10 f(a) ... (x .. a)fU(a) + R

where R = (x - a) [fl(a + "(x .. a» - f' (a)]
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R
IS fa [a + Q(x ... a)] .. fl{a)

f t [a + G{x .. a)] ... fl{a) ----70

then if f~ is continuous" as x --7 a

Ref .. Cramer, P4 74

ioeo,P R converges to 0 faster than x - aIII 0Rlim
x...-.)a x-a

Remark: If there exists an A such that fA g(x) dF (x) < s
0) n .

.. and , g{x)dFn(x) <s
for n r::; 1, 2~.3, 0lJ u then if Fn--p"7~ F

) g(X)dFn(X) --; j g(;)dF(x)
...co ...(1)'

Question, Under what conditions does E(tn) • 0 for all n

or does E( t ) --j 0 as n ----1 co'ln .
(tn is defined as in the example illustrating theorem 18)

Counter-exampJ,elt ~

1 2
Define Pn:=...L ;-; e- x /2

~ 1--n

In is normal (0,1) except on the interval. (1 - ~ , 1)

and ~ III 1 with probability Pn '

Then with probability (Pn)n X:L' X2, "0' Xn III 1

.§l - IJ.) = ,.,.in which case t n 0 ~

therefore E(tn) is not defined.

Problem.: 24~
. 2

X is .Poisson All then Y III (X X".)

is asymptotically X~l) as ".-7 CD
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Convergence Almost Everywhere:

Def. 19: A sequence of r.v., X:t' X2, ...--t X a.e. if given 8, 6 there

exists as N such that

Ref ..: Feller, Chapter 9.

~: Convergence almost everywhere is sometimes called "strong convergence"

Convergence in probability is sometimes called 'lrseak convergence".

Exam:raleg . (of a case when Xn p ) c but Xn~ c a.e.)

with probability 1 .. ~

with probability *x -,=: 1
n

the XI s are independent.

(1) To show Xn p -j 0

.. ! for any 8<1
n

can be made arbitrarily small by increasing n.

(2) ~-/-10 a¢e ..

P.r D~ "'" 0 ) < 8 n =N, N + 1, N + 2, • • ...J
00 CD

III IT Pr[~L.E] = IT (1 - N;j)
nmN j=O

Note: l-x <:::.. -x 0 ~x =1e

which series is divergent
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therefore Pr [I Xn - 0 I<e

therei'ore ~n 0 a.e.

Problem 25:

n =N, N+l, N+2, •••••] =0

If ~ =0 with probability 11..,-
~

1
~ = 1 with probability 7'

then Xn --j 0 a.e.

Problem 26:

¢x(t) = cos ta

1. What is the d.f. of X'1

2. Is 'f A.. N. as n -7 CD (suitably normalized) '1

3. To waht does X converge as a--j 0 '1

Prohlem 27:

X. and Y. are independent and identically distribu'ted random
~ ~ .

variables with means IJ., 1/ and variances vi ' a~. Find and

prove the asymptotic d.£ 0 of XY (suitably normalized).n n

[~~ be a sequence- of r oVa with meansKolmogorov ine9W¥it,V Let
2IJ.i. and variances O'i"

Then n n

Pr I~Xi - ~ fl \.q

(tai )1/2

Exampls3

J1. 0 1

X2 0 1

Pr [J Xi \-< L \ JS. + X2 \ < Y2K ] '/ 1 - ~
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strong J.!!! £! large numbers

if \ 2/,2. L ail. converges
1

• oo. are independent random variables with means l1i
00

2
ai' then,and variances

rl1n - 'iinl-7 0 a •••

or we say that X obeys the
n

where jj; = 1 I l1in I

Proof of Theorem 20:

Let A. be the event that for some n in the interval 2j ...14.n '" 2j
. J .

(Xn .., I1n /;> s (violating the definition of convergence a ..e.)
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: Pr [J t<l"- ~) 17 nJ
~ Pr ~ L<x" - jJ.nl » 2

j
-
1J

I I {Xn - ~JJ 2
j

...
l

e

L. PI' '7----
(I <7~ )1/2 ( I <7i )1/2

from the Kolmogorov ine'qUslity:

[
x.. (JS. + X2) .. (!1+ ~2

PI' -J.'" h1 L.. If- <::... If;

<71 ~ (2 + 2)1/2
<71 . 0'2

•• ~ •• t:,;

IL(~ ~ ~t
..:..-_--..;. <:

{~ <7i)1/2

2
j
-
l

letting k == I e
( 2)1/2<7i

and inserting the upp~

bound of n in the
summation

/



L.. 4.
-2

8

-53-

Interohanging the order of summation

~ { ~: 2~j
1=1 2j >i

Note that L
j

2j 7i

1

V
1

1-':'2"""
2

since it is a geometttio series.

16
III ~

38

Now this sum is finite by hypothesis - henoe I Prl Aj ]
j

'X --1 fJ. a.e. 2
\' O"i

Proof: is immediate sinoe L ":"2"
i

III ,,2 I!2 which converges, i.e. ~ a> •
i

other TYpes of Convergenc::e:

1. Convergence in the mean

1.i .m. X III X if lim E [X - XJ 2 ---7 0
n n-ja> n

Note: 1.i om. III limit in the mean

Implies convergence in probability but not convergence ·.a.e ..

Ref: Cramer - Annals of Math. stat. 1947.



2 _ Law of the iterated logarithm

Ref.: Feller, Chapter 8

3. st. Petersburg paradox

X = 2n with probability L
2n

-54-

Note:

I ~n = 1
1

e.g. Toss a ooin until heads comes up .- oount the total number of

tosses required ( II! n) .... bank pays 2n to the player.,

E(x) 1• _ III

~

for a fair game, the ' entry fee should be equal to the expeoted

gain, therefore, this game presents a problem in the determinat~

of the fifair" entry fee.

Ref.~ Feller, p. 235"'7 -. he shows

~ ~n~:in ~ 1 l>~}~
tha.t is, the game 'lbecomes .fair It if the.. entry' fee 'is .n. 1n n.
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CRAPI'ER "N

ESTIMATION (Point):

Ref: E. L~ Lehman, "Notes on the Theory of EstimationU, U. of Cal. Bookstore
Cramer -- chc 32-3

F(x, 9) -- a family of distributions

X, 9 may be vector valued, in which case they will be denoted !, 9

I 8 ~

9 sn -- parameter space

Example~ 1; if Xl' X2, • ~ ., Xn are NID(~, i) then

n consists of all possible ~

and all positive (l
2: F(x) Fs7' the family of all continuous distributions

n is then the space of all continuous dof 0

-- this is the non-parametric case
- might wish to estimate Er(x).

co1x dF(x)

"'00

provided that we add the restriction that E.F(X) <: co

Estimate of g(Q) is some function of ! from Rk to -f.L which in some sense comes

close to g(Q)

Or in the "general decision theory" point of view (Wald)

an estimate of g(Q) is a decision function d(X) and we have associated with

each decision function a loss function W [ d(!>, Q] with W .. 0

whenever de!) ... g(g)

The choice of loss function is arbitrary, but we frequently choose

Poet;) 20~ Risk Function is defined as co

R(d, ~) ... E fW[ d(!), £]1 ... S W [ d(!), £ ]
-00

dF(~ ~>
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d~(X) ... f

R(d*,~) a E(X _ ~)2 101 ~
n

A t'best" estimate might be defined as one which minimizes R(d, Q) with respect to
d uniformly in Q.

R(d, Q) 15 R(d*, Q) for all Q with d* any other estimator ..

consider the estimate d(x) of g(g) defined as d(x) .. g(Q)
o

Hence amiformly (supposedly) minimum risk estimate can be found only if there

exists a d(x) such that R [d(x), QJ.. 0

An example would be similar to asking which is better for estimating time -- a
stopped clock which is right twice a day, or one that runs five minutes slowo

Since a uniformly best estimate is Virtually impossible to find, we want to
consider alternative

WAYS to formulate the problem of obtaining best estimates~.

I. by restrioting the class of estimates
l~ unbiased estimates

Det. 2l~ d(!.> is unbiased if E [d(!.} J... g(Q)

d(X) is a minimum variance unbiased estimate (m~vOuQe.) if

E t de!) - g(Q)J 2 is minimized over unbiased estimates d

~ invariant estimates

Let heX) be the transformation of a real line into itself which induces
a transformation h on parameterspaceo If d [heX}] "" li[d(X)] then
d(X) is invariant under this transformation.

Example~ family of d.f c with E(X) < 00

Problem is to estimate E(X)

hex) ... ax + b Ii [E(X)] Q. a E(X) + b

An estimate d(X) of ~ is invariant if d [h(X)] 101 Fi [d(Xi}

d(aX + b) • a d(X} + b

Therefore Xis an invariant estimate of ~ under this
transformation.

Note that d(X) .. ~o is not invarianto
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3. Bast linear unbiased estimates (b.l ~u.a. )
Dei'. 22: Estimates of g(Q) which are unbiased, linear in the X. and which among
-- such estimates have minimum variance are b .l.u.e. J.

Problem 2~: Xl' X2, 0 " OJ Xn are independent random variables with mean IJ. and

and variance (12

show that I is the bolou~e. of IJ..

2Problem 29~ Xl' X2, 0 C 0, Xn are NID (IJ., (1 )

W[d(X), QJ co b [d(I) - IJ. ] if d(X) :> IJ.

III C [d(I) - IJ.] if d(X) ~ IJ.

a" d(X)" X find R(X, j..L, (1)

(note: the answer depends on the loss function constants only,
not IJ.)

b. d(I)" X + a -- show how to determine a such that R(d,IJ.,(1)
is minimized

[note~ the answer involves ¢(z) which is defined as

-co

Comment on this problem~

An orthogonal transformation
.- is a rotation or reflection
-- l. .., ~ where A is orthogonal

.... IJ1= 1

.~ 2 ~ 2
...-....wyi = -"ixi

II 0...... For

n

+ a.l_x : ~ a~ ... 1; ~a'jakj ... 0
.Lunj=lJ.J j J.

In general if d(~) is a function of T(Xl .. X2) e et 0' In)

R(~, Q) .. E[W(d, Q)J

•f,.. fV [T(X), Q ] dF(!)

/

\
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Making the transformation y ... T(x)

y ...

•
o

Y·

n-1 functions independent of the first one

Then R [d(T). 9} f'll [T(X). 9 ] ~(Yl! ..ro.o ) elF(Y2• Y), 000. Y</

~arginal distribution ~conditional distribution

of Y1 III T(x) of Y2' Q"11 Yn

given Y1 • 1

~ r'll [Y1, 9 ]elF(Yl)

g SWCT(X), 9] elF [T(X)]

II. Optimum Properties in the Large

1c Bayes Estimates

Defo 23: If Q has a known "a priori" distribution H(Q) then the Bayes estimate
o.r g(G) is that d(G) which minimizes

)R(d, 9) dH(9) with respect to d(x)
ft

Example: X is B(n, p) and p is uniform on (0, 1)

Let W[d(X), GJ • &(1) .. p] 2 and minimize this with respect to d

R(d, 9) = ~ Id(X) - pJ (:) pX(l _ p)n-x
x ... O~

Average risk ... risk function averaged with respect to p

1

= SR(d, Q) dp

o



n
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x=o
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1J[d
2
(x) - 2pd(x) + i] xJ(:~xli pX(l, - p)n-x dp

1
(a{)b a£ b~

Note: ) p 1 - P dp = (a+b+lj1
o

Using this evaluation on each part separately we have

~ [2 nl xl (n-x) 1 2d{x)nJ {x+l)J(n-x)J
= d (x)xJ(n-x)J· (n+lp· - (x)J(n-x}l • - (n+2H
x • 0

+ nl (x+2)J(n-x)J ]
xHn-x}J 0 - -(n+3JJ

n
~ [d

2
(X) 2d x) x+l + (x+l)(x+2) ]

·x a 0 n+l - n+l n+2 m+l){n+2Hn+3)

. 1 ~ rd2{) _ ~(x){x+l) + (!:!:!)2 + {~+1)~X+2~ _(~ '\ 2]
• n+l ~ 0 ~ x (n+2) n+2 \n+2) n+3 n+2 Jx·

1 ~ rr: ' X+11
2

x+l {n+l...x }]
1:1 n+l

x
" 0 nd(x) ... n+2 + n+2 \.Tn+2)(n+3) J

This is certainly minimized with respect to d(x) if each term in the first summation
is zero -- ioe 0 if

d(X) 1:1 X;l
. n+2

Problem 30: if d(X) .. ?f. find R{d.ll p) as a function of p and alson

1

average R... i R(d~ p) dp

o

if P is uniformly distributed on (o~ 1)

R(d,? p) os E [d(X) ... pJ 2
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2. Minimax Estimate

Def~ 24: d(X) is a minimax estimate if d(X) minimizes sUPeR(d, Q) in comparison

to al\Y other estimate d*(X)

(9) i;Je., we get the min (with respect to d) of the max (with respect
to e) of R(d, 9)
-- or we take the inf (d) sup (e) of R(d, 9)

dl(x) is minimax estimate since it

has a minimum maximum point
l---"L------~__-- R('1.1 Q}

'-------- .au!~ Q)

3. . Constant Risk Estimates

Def 0 25: A constant risk estimate is one for which R(d, Q) is constant with
respect to 9

Problem 31: Find a constant risk estimate among linear estimates or p if X is B(n,p)

I±I -::J~l. de~~.,,",o~y_.w~p_~..la~~@...!~.!!!E.!e (a.~.~~':~~1~..Eertie~.5)! estimates

Der. 26: Consistent Estimates ~- d (X) is consistent it:
n -

d (X).. ) 9
n - p

(it does not necessarily follow that E(dn)~Q or that d~drl70)

Problem 32: If' E(d ) -79 and J(d HO then d (X) is consistent"n n n

(these are the sufficient conditions for consistency)

Best Asymptotically Normal Estimates (B"A"N"Eo) •.- d(X) is a B.AeN.
estimate:if:

is A., N(O, 1)
dn-E(dn '
atdnJ -

2. if d: is any other Ao No estimate, then

lim
n-?co <:. 1--
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METHODS OF ESTIMATION-.
A ...... ~thods ofdi>ments (Ko ·Pear$on)

~ .. 91' 92,u", 9k .... equate the .first k sample moments to k population

moments (expressed as functions of 91" 92' <1"" Qk). Solve these equations for

91' 92, <I <I ., Qk and these are the moment estimates.

example: Xl" X2' •• '$ ~ are NID{l.', 02t

(Un" being the divisor used
by Ko Pearson)

first population moment .. ~

second population moment ... 0
2

n
~. 2

. . ..:J (Xi"!)
1 ~23' N <Ithen .It. = ~ , ";'--n--- .. 0

note: This method yields poor estimates in many cases -- has very few optimum
._ .properties .

B -- M9thod of Least Squares (Gauss -- M:l.rkov)

i~e.~ both X and Q are column vectors

s~n

A is of rank s
s

.. ~ aijQ j i .. l~ 2, <I 0 OJ n
j .. 1

•
••

o <I

anl 0" ans

{Xl' X2~ 0

all ....
o

A ...

let X ...

also ioe o , the covariances III 0

Def. 28: * *~ is a least squares estimate of ~ if ~ minimizes

n

(X - A9)' (X - AQ) .. ~ (X. - aJ.'191- 00 e - ais 9
8

)2
- - - - i-l J.

Theorem 21: (Gauss -- Markov)

With the given conditions on Xl' X2' •• Q$ Xn the least squares estimate

~* is a best linear unbiased estimate {belouve.} of ~ ~
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ref: Placket: BiometrikaJ 1949, po 458
Lehman

we first show that
g* .. c·1 A t X t

where C 1:1 A A
t

C = C since it ia
symetrio

.1 t
it' we write ~ =C A!. + l then we are trying to minimize

with respect to y, i. (! .. A ~) t (!. • A ~)

= (!. _ AC-1 A' ! .. Al)' (! .. AC..1 A'!. .. AZ)

= (! .. AC..1 A' !.)' (! - AC·1 A'!r - (1" AC..1 A'o!)' Al

- (Az) t (! .. AC-1 A'!) + (Al) , (Al)

now the croas-product terma equal zero
, '-1 ' , , ,

eClg4 -! Az + ! A(C ) A Al 1:1 .. ! Al. + ! Al. .. 0

since (Cool) t ;:I Cool C =A'A

(C..1 )tA'A • C-1C = I

similarly the seoond cross-produot also .. 0
I

hence ! is minimized with respect to y it' (Al,) , (Al,) is minimized which will

happen if Az .. 0 sinoe A has maxilrrwn rank s this will happen only if' y=O

n

or writing I = ~ (X... aU 91 - 0" .... a i .9. -I) (I 0" a. 9)2
i .. 1 1 J J 1S S

formally minimizing .! in the usual fashion by differentiating with respeot to
the 9

j 'dl n

'1r = -2~ a .. (Xi .. a11 91 .. • () .. .. a ..9j .. • 0 (t - a. 9 ) .. 0
d~j i ;:I 1 1J 1J 16 S

j .. 1, 2, • n 0, a

solving these equations

n n n

~. a i .x. • (~ aijan ) 91 + '-' 0 • + (~ aij&is) 9 si =1 J J i. 1 i • 1
, I

or A X • (A A) Q- -
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* ( -1 ')To show that ~ so defined ioe., '"' C A! is B.LoUoEe

consider a linear estimate B~m!

B AQ '"' Q thus BA '"' I-
note that o-2BB ' is the covariance matrix of B! -- the elements in the

diagonal are the variances of the estimates ~ ...., we thus wish to mini

mize these diagonal elE;1ments (by proper choice of B) subject to the

restriction that BA" I

(B .. C·1A') (B ~ a·1A'), '"' Bit. B{A')'(C-1)' _ C·1A'B' + C·1A'(Ai)'(C·l )

using the relationships that BA '"' I \ AOfA '"' 0 0 '... 0 or (C..l ) t III 0-1

(B_O..1A') (:B..O...1A ')' a BB 8 .. (0...1 ) I .. 0-1 ... C-l '"' BB' • C-l

thus BB' '"' C·1 + (B • CnlA') (B ... C·1A')'

minimization will occur if (B .. O-lA I) '"' 0 or if B • C...1A' (~'"' C...1A '!)

*hence ~ are B~LoUoEo

example: if JS., X2J 0 0 .~ Xn are uncorrelated with E(Xi ) '"' ~ and

common variance ci then the least squares estimate of ~ is f

let A·

1
1
.,
o

o

1

here
t

S • 1 (we have a lxn matrix of 1 s)

o '"' A'A '"' n 0...1=~
n

n

'"' 1 ~ x... f
n 1=1 ].

t i are known constants

i =1" 2, 0 0 0, n

n

and assume ~ t
i

lOl 0
1

find bol"u. e. of col., ~ using theorem 21 #
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Aiken extended this result in 19.34 to the case where the X. are correlated and
we mow the correlation matrix V (up to an arbitrary multlplier) --
b.lou"eo are also least squares estimates which are obtained by minimizing

(! _ Af~) f V·I (! _ At~)

ref: Plackett: Biometrika, 1949, p&45~

c. Maximum Likelihood Estimates (ref. Cramer oh• .3.3)

Defe 29: Likelihood function

L III f(JS., X2" I) • 0, In' ~) if the I's are continuous

III p(Xl, X2' 0 I) ." Xn' Q) where the pts are discrete probabilities
- if the Xt S are discrete

if the Xi are continuous, independent,and identically distributed

n n

L .-n-t(X., Q} or ln L II: ~ ln £(X., Q)1.1' 1 - 1 1 -
1

= 0 i .. 1, 2, Q •• , S

Regularity conditions needed in the maximum likelihood derivations (ref: Cramer
500-504)

exists for k =1, 2, .3we assume that

1. The ~ are continuous, independent, and identically distributed.

~ will assume first ttat ~ 1s a scalar ..
~ ln £(Xi ' Q) .

2. is a function of X. and hence is a random variable.dQ 1 .

"lln £(Xi , Q)

';)gk

.3.n is an interval and 9
0

(the true value of Q) is an interior point

kd In t(Xi , Q)
4. 09k < Fk(Xi ) which is integrable over (- 00, 00)
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E [F
3

(Xi )].(M for all Q ...- i.e., it is bounded

50 E ta;nQfi~2 • J(O ln~f~", Q»)~(,,1' Q) dxi • k2 O<k2< 00

Theorem 22:
"'-Ma'

If f,n satisfy the regularity conditions, and if L, or In L, has
a unique maximum, then

1- the maximum likelihood estimate ~ is the solution of the equation

,¢In L
0 9 • 0

1\
2- 9 is consistent

3- rn (~ ... 9 ) is asymptotically normal with mean 0
o and variancaE[o~l~iJ

Proof: 1- since '9t~ L is continuo'lls with a continuous derivative, if

n

In L(a f In f(X1' Q» has a maximum,· \1~ L.. 0 at this max~

2..- to show that ~ is consistent

summing each term on both sides of the equality, dividing by n, and doing
some substituting

1 aIn L 1 ~ d In f i J 1 ~ [~.21n f i ] } z ~ (Q-Q )2
- s:: - ...::i. + - ...::i (9-9) + - ~ F (x ) 0
n e- 9 n i=l ~ Q Q=9 n i=l 0 Q2 9=9 0 n i-l 3 i 2

o 0

the term in the third derivative is replaced by the term in
regularity condition 4a -- and multiplied by the factor z(O$z-il)
to restobe the equality

this equation can be written~

(9_9 )2
!.. aIn L • B + B (9 _ 9 ) + Z BI) 20
n ~Q 0 1 0 ....

-----~-----------------~~--------------~---



note that we have:

from which we can Show:
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1f(xi • Q) dxi • 1
..00

also" differentiating a second time we have:
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-----~--------------~~----~----------------

Thus, by Khintchine's theorem (noe 17)

B ~O
0 P

··B 2
1 P .. ..k

B2 > E[F3(xi >] <Mp

Let S = the set of points where

IB0 IL.. ,} Bl ~ ~ k
2

We can f'ind an n j given 8j 0.11 such that Pr[S]>1 - s •

In S the right hand side (rohos.) of' the Taylor series expansion is to be
considered"

Consider: Q = Q + 6
o

rohas~ ... Bo + Blo + ~ B2 62

~ F} (1 + M) ,., ~ k2 8 letting z • 1

k2
So that" 1£ 6 < 2{1+M) the l"ah~Sc ~ 0 "

Considering: Q ... 9 - 8o

'? ... 8
2

+ ~ k
2

6
2

.. M52
= -(M + 1)62 + ~ k26

k2
~ 0 f'orthe same 5 <~(l+M)

Hence, in S, which occurs with ·probability > (1 - 8» ~ a"'al~ L .. 0 has a

%'Oot in the interval (9
0

- 6" 9
0

+ 6) and ln L has a maximum

__ in the interval. {at the root)a
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1\
Q is then the maximum likelihood estimate and the solution of the equation

! ~lnQL ... B + B
l

($ co Q ) + !2 z B
2

(Q _ Q )2 .. 0
n ~ 0 0 0

whioh yields ~.., Q ... _ _ Bo _
o z ~ .

B1+2" B2(Q - go)

Multiplying both sides by k..r;;

We lmow that:

B2 <M (i>e()~ it is bounded)

[
1 ] [dln £i

V Bo J ... ~ E dQ

[nBotherefore is AoNo(O, 1)
k

Bl-~p->~ ...k
2

A
9-Q--»-0o p

Thus, by the relationships we have jUst stated, and by use of theorem 18

1
O~ 2" III

k

1

[ d
ln

f.iT·E ~ Q

----------------~----~-------~-------------

Example~ f(x)'" a a-ax

Find the moloe o • of a, and its asymptotic distributiono
n .

L .. an a-a f Xi
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n

In L • n In(a).... a ~ xi
i-l

n
.~~

a

therefore 1- ............
x

We can easily verify that E(x)

by the method of momentso

1 c>= - ,a
E(x) 1=-a

'V 1or a .. -x

or is A N(O~ 1).

--------------~-----~-----~----------~-----

Problem 346
2

f() 2 ..·a x
x • a e x ,>0

- find the m"loe& of a and its as;ymptotic distribution.

-- verify that the same result could be obtained by a Taylor Series
expansion.

Problem 35~ Xl is Poisson ~ (i = 1.1' 2, " 0 .J n)

e -- find the ~lc:>eo ot A and its asymptotic distribution.
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Problem 36: X is uniform on the interval (0" a) ..

- ... Find the mol.e", of a [not by differentiating]

_... Correct it for bias and find the asymptotic distribution of the
unbiased estimate (~!, e

-- Another unbiased estimate is * ..a .. 2 x 0

1\,; *Compare the actual variances of a, a •

Note: a* is a moment estimate -- for another comparison of the method of moments
with the method of maximum likelihood" see Cramer p., 505"

NoteZ The meloeo is

the mol.e o of

Remark~ If dn(X) is

invariant under single valued functional transformations i"eo,p
1\

g(9) is gee).

A N(j.L" afn) and g[dj is oontinuous with continuous first

and second derivatives and the first derivative .;, 0 at x=1J.

then F" [g(dn ) - g(-IJ.).J is A" N(O, [g'(~)J2 (12).

From 'Which we can get

Hence by use of theorem 18

rn (g(d~ ... g(lJ')] is A N(O.9 1) "
(j g (j.L)

"---~) 0
p

-------------------------------------------

Multiparameter case:

Theor~~~ Under generalized regularity conditions of theorem 22" if,
~ "" (91, Q2,9 " " ~!I 9n)" then for sufficiently large n and with
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probability 1 - t, the mol.e~ of ~ is given as the solution
of the equations

.•~

III 0 i • 1, 2, Q 0 ~, S

• "0 ~o ~oand furthero 91 , Q2" •••, ~s has asymptotically a joint normal

distribution with means Ql' Q2" e 13 ." 9s and variance-covariance

matrix V-l

where • 0 •
V"" ... n • 0 0

13 13 ~

E ri In.1.\ Vlnil (:lln f \
( dQsQl E d Q 9 (0 o • E (2 ;s 2) d ;:

S

This is the so-called information matrix used in
multiparameter estimatIOno -

Sketch of part of the proof:

o a ~ d::l1: iLa ~ ~l~iL to
-

From theorem 22:

+ second and higher degree terms i· 1" 2, ••• , s

(Note: ln L terms can be replaced by ~ In f i CI n" 111 f i termso)

n

lnL... ~ ln f(xi ,!)1

E(~~) a E(~ P~l:jii1) =0
.. E(a2~ Ii) . E(dl~ f2:)2

d Qj "l7 j

We also need a set of covariance terms:

_ E f:.d
2

ln f i ) .. E [-( dln
f i .) (. ~ ln fi)JC-d Qj Qk ~Qj d Qk

which follows in a manner similar to the derivation of the variance
expression in theorem 220
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Now we oan write:

------:lJo) 0
p

n

b ok II! !. ~
J n 1

The maximum likelihood equations can be written (ignoring the second degree terms
in the expansions):

A °~ ~ .. B (g ~ 9 )
o

in matrix form or completely

written out as:

•
o

o

o

•

B -p....--~> E(BJ (i.e., .. each element bjk replaced by E Lb
jk
1)

. [J -1For la~ge n~ B E(B) p ) 1

-Bo 13 B [E(B)]-l [E(B)] (~ - gO) 13 (E(B)](Q - (P)

or: ($ - gO\. -~(B)J-1 Bo "

[E(B) J CI V and is non-singular.

Variance-covariance matrix of S' .. gO = E(B) -1 [ var-.cov

V

n

~ Xi .., (b ... 1) ~ n
1

~ lnx
defining ~ "" . n i

b'70a »0X;>O

Example of the information matrix used in the multiparameter estimation:

b
(

0 ) a -ax b-l
f Xj afj b ... 'fCE' e x

ln L .. n b ln a ~ n lnreb) .. a
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1 ~ln Lb."
.... . •• ." .. • x • 0n . aa a

1. dln L. • ln a - /i/f~tn~b r +.~.o

A b
From the first equation a·:;

x

Substituting this in the second equation we get:

In.2 - F2(b) + Xr. • 0
I

lnb-F2(b).lnX-~"

defining ln (' (b) )

Note: Pearson has compiled tables for F2(b) which he called the
di-gamma function . ..

Thus we have:.....

'd2 "In L

da2

~21n L
oaa b

'?J2 In L
~b2

b 1
7 -a

V - n
1 ,
- F2(b)a

IvI- n [+ ~ F~ (b) -~ ]
I

note: F2(b) is called the tri-gamma.

The asymptotic variances or covarianoes are thus:
t ) '2

1\ F2(b F2(b) a
of a - •

J V I n [bF~ (b) - 11
A 1\ = J1.!. a

of a,P • ----rOt----Iv/ n[bF2(b) - lJ
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...;n (~ • b); Vn (~ .. a) thus have a joint normal asymptotic distribution with
means 0 and variance-covariance matrix:

a2 F~(b)

b F~(b) :l

a b
i

b F2(b) .. 1

2 1 (x - f,/:)2
Exercise: f'(x;~,il (] ) .. -e- 2. j2"";' (] >- 20-

.... Find the moloe" of j.l. and (]2 and find the information matrixo

..., The mol~e 0 of a and ~2 are

n

~ (xi" i)2
• 1x" ------n

....,. ~3 '6-2 are independent:J therefore the covariance terms in the information
matrix are == 0 0

.. oo.(x <00

We have a single observation"

Note~ This is the so--called Laplace distributiono
It is an example of finite theory ."" the m.l.e" is not a minimum
variance estimate for any finite sample size.

a) Find the moloeQ of j.l. (based on n independent observations).

Does it satisfy the conditions of theorem 22? why not?

b) Is x an unbiased estimate of ~? find a2
0..

x

Problem 38: X is Poisson ~ &

Y is Poisson ~ j.l. 0

Find the m~l<!le(l of A" j.l. and also their information matrix~
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Check that the same results are obtained by expanding ti' in a Taylor series

about I-t-I henoe this result is asymptotic as ~ ~ ClO

Xi
Problem 39: - is- a

j • 1,2, ... ,n

I" Yare independent

a">O b70

Find the m.loeo ot a$ b and also the asymptotio variance-covariance
matrix.,
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D. UNBIASED ESl'IMATIONe

Theorem 24: Information Theorem (Cramer-Rao)

If d(X) is a regular estimate of Q and E [ d(Jt) J I: 9 + b (Q) (where b(Q) is a
possible bias faotor) then

for all n

where

-- the equality holds if and only if d(X) is a linear funotion of )~ngf e

Regularity oonditions for the Information Theorems

1& e is a soalar in open interval.

JS., ~, ou.t Xn are independently and identically distributed with density

f(X.? e) 0

2 '" t~ exists for almost all x (the set Where;~ does not exist must not depend

on e).

(Noteg Problem 36 where f(x) I: ~ (i.e o uniform on (0, a) ) would be an

exception to this oondition) 0

'3. Sf(x, 9) dx can be differenUatedunder the integral sign with respect to 9.

40 Sd(x) f(x" e) dx can be differentiated under the integral sign with respect
to 9&

5. 0<k2~ CD

Proof! From the proof of theorem 22 we remember that

Differentiut:i,ng both sides of this ~quation, we get



and d(X) ~ 1-
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h 0ch a al b Ott E k(!) 4dl~ f JI: 1 + b re w 1. c n so e wrl. en L
Oln f(X)

The correlation coefficient of S<,~) = d Q -

(E[S(~) d<l) ] )2
- ~ 2 L 1

O"d(~) O"s (:1£)

Note~

or

now

E (S<!>l E [d<!:)] term vanishes since E CSl.!) ] =0

therefore

[1 + bR(e)] 2

I'D in f (1)]2
n E -'09

Since r 2 =1 if and only if the random variables are linearly related it follows
that the equality in this result holds if and only if d(~) is a linear f!J.nction of
S(.!) •

2. 2
!2rC'Jrlplea JS., X2> ~I);" Xn are NID(&J" 0" )$ 0" known.

Find the C.,R lower bound for the variance of unbiased estimates of jJ.1)

2: (\ _jJ.)2

1 2 )
L = . e v

(2 n 0")n/2

In L =K ""
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k
2 1
.~

a
2

Hence any regular unbiased estimate d(~) of ~ must satisfy a~ £. ~
2 2 "-

but ax = *- hence x is a minimum variance unbiased estimate (mov.u.e,,).

Example (Discrete): Binomial

x is B(n, p) -- find the C-R lower bound for the uJiased estimates at p.

(
n ) n-x

L = x pX (1 - p)

In L :or K + x 1n P + (n - x) In (1 '" p)

din L. ~ _ E.:! -:- 0 ;: Y- '..L~~) - YI '\op p I-p -- 0() \ P \-f )

?;} In L x n-X.. =~ +dp2 P (1_p)2

.. E ['d2
In LJ= ~ + n(l-~ = n . =n k2

} p2 p (l-p) . p(l-p)

Hence i >- R\l-p) but i =E(l-p)
d ~ n (!) n

n

~: Recall that the C-R bound is achieved if' and only if de!) is a linear function

of "a'dlQ.f -- if ~ is not a linear function of d~~:f then~ will not achieve

the C-R 10W'er bound.

Problem 40: Find the C-R lower bound tor the unbiased estimates of the Poisson
parametsr A. based on independent observations X:t" ~, ..., Xne

Example: Negative Binomial (Ref. Lehman ChI 2" P. 2-21, 22)

L = Pr(x) =pqx

In L =In p + x In (1 - p)

i.e., sample until a single success occurs

1 x=---p I-p
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E(x) =I-p
p

thus

+ 1
p(l-p)

= 1
2p (l-p)

2= n k

To find the M.L.E" of P8

1 x=- --orp I-p
1\ 1
p .., l+X

or

- .. it oan be shown that this estimate of p is biased,

E [d(X~ =d(O)p + d(l)pq + d(2)pq2 + c~o + d(n)pqn + fOO S P

do + ~q + d2q2 + .00 + dnqn + o¢oeo 5 1

If this power series is to be an identity in q we can equate the coefficients on the
lett and on the right

d =1o ~ =0 ~. == 0

*The unbiased estimate is thus p = 1

=0

if x.., 0

if x~l

ioe .. , the decision as to the status of the whole lot is based on the first
observation"

This is unbiased, but o~o.o

(this example is used to show Why we don't always want an unbiased estimate)

i *' =pq~p2 q (the C-R lower bound) - thus the C-R lower bound can't be met
p'

.' since this estimate is the only unbiased estimate by the uniqueness of power
serieso
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To find an unbiased estimator we can try to solve the equation

co.J de!) f(~" Q) dx == 9 for the continuous case.

or

for the discrete case.

These equations" however, are in general rather messy and difficult to handle"

Problem 41. f(x) I: k xk- 1

1. Find the C..R lower bound.

20 Is it attained by the M.LoEo?

Multiparameter exte~sion of the Information (C..R) Theorem

We have fey 91, 92" U '" 9k ) ..

Assume the same regularity conditions as for Theorem 24 in all the Gts.

Denotes

A=
>tl ""ooe ~k

0 ..
./\ is non-singular" ..

" ..

~l """ ~

as in theorems 22, 24

Let d(!.) be an unbiased estimate of "J.

BO that ~(~) f{y 91' 92, "., 9k ) ~ =l\~
By differentiation with respect to 91

E[d 81] =1,'

e By differentiation with respect to 9
j

Eld8 j J == O~'
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Theorem 2$, Under the regularity conditions stated

,
where 1. = (1" O~ 000" 0) k components

or

~2

0

0

•
2

~
'1ca

ad:!.

"u
f)

"
0

~

fle. ~k

o

0.. ~k

(>

o

e.. ~

k

Proof: Observe that E [d:!. - 91 - ~ ai 8i J 2 ~ 0
1

constants to be determined.

where the a's are arbitrary

Which then becomes

k k

ad:!.2 ~ 2 a1 "" ~ ~ a. a j A•.
. 1 . 1 J. J.JJ.= J=

Call the right hand side of this inequality r(J<,!)
We wish to maximize<:V(a) with respect to a to get the best possible
the bound of the var'iaii'ce.. -

statement about

k

(1) (!) = 28- - ~ a
2
J.. AiJ.. - ~ ] a.a j X..

____T .L--.J;l.:=~l '_ i" j J. J.J
- '---'---=-------
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k

d~~CP =2 - 2~>-.u 2 ~ a "\ 0- ~ j A' j a.. 2 ~J=

or k

~ aj A.. =1
j=l ~J

or k

~ a. Aij =0
j=l J

Hence the equations in ! to maJdmize fJ(~) are

k

~ aO

j' A:t. =1
j=l J

k

~ a~ ~ . = 0 i = 2, 3~ OQO~ k
j=l J J

e where a ~ is a maximizing value of a j:';.,.

How, multiply the i th equation by a? and add all the equations.
J.

The left hand side of the sum so obtaimd is

k k k k

~ a? ~ a~ A. J~ = ~ ~ aO 0 A.
i=J. J. j=l J J.J ~ i~ j. i a j ''ij

The right hand side is a~"

Hence (ZJ (~) = 2 a~ - a~ =a~
;max

Therefore
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or~ as stated in the theorem~ >'22 C$$ ~ke
¢ ~

c- o

" "
2 v Pel I1

\:2 o_1t 7'1':kO"~ ? I1
D1 --

An .1:. A:Lk

0 "
<> ~

0 0

~ 00. ~

Remembers Aij III E [SiSj J 8. d1n L=-e-1.

" i

ab -ax b-l
Examplei :rex) =-8 x x>O

reb)

-- the generalized Gamma. or Pearson's Type III

... a, b are the unknmm parameters

Find the lower bound for the variance of the unbiased estimate of a",

In L = n In a - n 1n r (b) - ax + n(b...1) 1 n x

nb ..,
III - - xa

82 =.~lb L. =n In a .. n fo [ 1ll r (b )] + n 1n x

denote ~ [ ~ r(b) J... F2(b)

[ 2 -1 'd2
J.n L nbAu= E 81 =- da"2-- "";~

A_
2
=E [8

2
2 J:I _ ~

2
In L = n F~ (b)

."2 d b2-
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A = n

1-~)
a

1--a
F~{b)

a2 F~(b)
=--~;;...---

n [b F~ (b) - 11

Note: See the e~'l"lJ.ple for Theorem 23. k
~ _ 2

~I We started the proof with E [cL - 91 - ~ a. s. ] ~ o.
J. i=l ). ).

k

The strict inequality will hold unless [d:J. - 91 - ~ ai 8i ] is essentially
oonstant" 1

Therefore; If the multiparameter C...R lower bound is attained, 'i. is a linear
k

function of ~ a. 8.
i=l ). J.

and, as before, the M.. L\OE. (corrected for bias :if necessary) attains the
lower bound (IF there is any estimate that attains that lowe!' bound).

Problem 42: X:t" QUI Xn are negative binomial

(

1' + X - 1 \
P:r [x = x ] = l' .. 1 ) pr qX p + q = 1

Find the C-R lower bounds for the unbiased estimates of p

1. If l' is known

2. If l' is unknown
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Problem 42 (b): Show that it I I A. is Poisson ( A ) and A. is distributed
with density b

f( A ) • ..!.... e-a>. Ab- l

f1b)
then X is negative binomial. Identify functions of a, b with p,r.

~-------~--~------~~--~----~--------~-------

Summary on usages re m.l,e.:

We have the following criteria for estimates:

1. Efficiency (Cramer) -- attains the CaR lower bOWld.

2" (Asymptotic) Efficiency (Fisher) ...- (n) (variance)~~ in the limit.
k

3. Minimum variance unbiased estimates.

4. Best aSYmptotic normal (b.a.n.) -- among A.N. estimates, no other has a
smaller asymptotic variance,

Properties of m.l.e"

10 If there is an efficient (Cramer) estimate (i.e., it the estimate is a

linear function of d~nJ=. ) then the m.l.e. is efficient (Cramer).

2. If the m.l.e. is efficient (Cramer) and unbiased it is JIlc,v.u.e. other
m.l,e. mayor may not be m.v.u.e.

·Jo Under the ~neral regularity conditions, the m.l.e. is asymptotically
effie ient (Fisher) 0

4& Among the class of unbiased estimates, then the m.l.e. are b.atln., otherwise
(ioe., if the m.l.e. are biased) we can not say that the m.l.eo are necessar
b.a.n.

ref: Le Cam; Univ. of Calif. Publications in Statistics;
Vol. I, No,) 11, 19.$3

-- The class of efficient (Cramer) estimates is contained in the class of m.vou.e. -
which is the real reason we are interested in attaining the CaR lower bound.

-- 1, 2 are finite results, i"e. for any no

- 3, 4 are finite (asymptotic) results -- for large n only.
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e Eo MilV"u.eo "".. COMPLETE SUFFICIENT STATISTICS:

."" Let X be a random variable with density f(!., ~), ~ eno
~- T(X) is a statistic, ioeo, a function of the random variable (~)o

"".. Assume that the conditional dofa of X" given T. t, exists",

De1' 0 .31~ T(I) is a sut'1'icient statistic for Q if the distribution of X given- -T 1:11 t is (mathematically) independent of ~ that iSJ if in

1'(!.t 2,) • g(T,9 £.) h(xlT)

h is independent of ~v

llt~!!:

NO e 1 -- suppose Xl' X2~ 0 0 CJ Xn are N(~, 1)

~(r.i ... ~)2
f(x, ~) a 1. n e'" . ; 2 -

(.[2n)

..
X is thus sufficient for ~::>

.- distribution of ~x is N(x,9 1)

No.2 ..... Poisson:

~Xi) ~

Tfii ~
"'------v---------""

heX IT)
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~Xi is Poisson (nA); given ~Xi' the individual observations are

IJ!1ltinomia1 and T =~ xi • n i is sufficient for Ao

NO(J> :3 -- Normal

•

n
Here sufficient statistics for IJ., ,,2 are x; ~ (xi _ i)2 •

1

Problem 4:3~ Find sufficient statistics (if any) for the parameters of the following
distributions:

a-- Gamma

b-- power

b
f(x) = a .•

((b)

f(x) = k xk- 1

-ax b-1e x

O~x~l

x>o

C"· Beta

d..- Cauchy

nego binomial

O~~l
( ) 1 a ...1 (1.. x)b-1f x III pta, b) x

f(x) =; ( 1 2)
1 +(x .. lJ.)

p(x) ... f + r 1'" 1) pr qX
r-

e-

f-- normal mean: .,(, + ~ t
i

variance; ,,2

t i mown

--------------------------~----------------

~~: for any real number c

e E [X - 0)2~ ETfEx(XLT) _ ~2

,
----'



where t is any particular value of the
statistic Til

Proof'~

..
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E [x21 t] ? [E(X I t)]2

E [XJ ... ET[EX(Xt T)]

E [X2]. E.r[EX (x2fT)] ~ F~[E(XI T)J2

replacing X by (X - c) we get

Etx -cJ2 ~ ET[Ex(X coo c f T~2

~ ET[Ex (X/T) co cJ2

Proof: Since T is suffioient then the distribution of d(~) \T is independent
of Q and hence

t(T) ... Ex~(!)IT1 is independent of ~e

1- E[~(T)]" ETfExEtC!) IT]) ... E@(!)] = g(~)

2- In the result of the lemma put de!) III X g(~) .. c

then it follows immediately that

O'~ .. E[d(!) - g(~IT2 ~ ET['t'(T) - g(~)J2

~ 0'2
/' 'r

" : .. Of
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1.... Binomial Xi is B(l, p)

~ 0 OJ x
n

) • pI(l _ p)n-X

i 1:1 1, 2, ~ 0 ., n
n

where X • ~ xi
1

(since f(x) is ordered,
term is omitted)

the coefficient

X is a sufficient statistic for p.

E(Xl ) ... p so that JS. is an unbiased estimate of p:>

'C1
2

eo pel ... p)
xl

.... by the theorem t (X) will be unbiased and have
smaller varianceQ

Xl II 1 if SUCCEUSS on trial 1
II 0 if failure on trial 1

in n trials we have X successes

PI{Xr 1:1 success I X] II! X/n

Pr[Xl =olx ]
Pr[Xl I: llx]

X-1 .. n

x
"" -n

therefore

2-
Problem 44: Negative binomial:

X... -n

r lmown

Example No, 3: Uniform distribution on (0, s)

show that 10 X is sufficient for p.
2B (1 = Xl) is an unbiased estimate of p,

nO"iiegXi == 1 if faUure on trial i
find E[Xli xl" .. 0 otherwise

X II ~Xi

Z ... max(Xl , x2' • 0 01 Xn) is sufficient for So

E[Xi ] .. ~ so that 2Xi is an unbiased estimate of 9.

'f (Z) II E[2Xil ZJ will be unbiased and have smaller variance Gl
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Thus:
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If Xi is one of the observations less than Z then Xi is

uniform on (O~ Z),

then E [2x1IXi .c ZJ • 2( ~ ) ... Zc

If Xi is the maximum (1. e ~, ... Z) then E[2xi lZJ • 2Z ..

E[2xil zJ I: n ~l Z + ~ 2Z • (1 - ~) Z + ~ Z

... (1 + 1) z ... ( IL,+ 1 ) Z
n n

4- Given that X is a Poisson random variable,?

n

we know that T'"~ X is
~ i
.J.

sufficient for A and

observation) ..

T
P (T) ... e-nX (~;"j (see example No 0 2 on po 86 )

(alSO X is mcl~ee for A and e-X is m~loeo of e-A') •

What is an unbiased estimate of e-X ??

so that

E [ ~] • e- A • PrLx • 0]

n
..2 is an unbiased estimate ofn

-'A.e ..

Define the estimate of -'A.e

.. 0 if X. :> 0
J.'

n

then nO" ~Y.
1 1.
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l)T
III (1 - -n

1 r. 1 T]
III Ii Ln( 1 .. Ii )

.\j..J 1 T
To show that I (T) III ( 1 - n ) is unbiased:

CD
(n>..)T

E ['reT)] III ~ ( 1 _ ~ )T -n>..e
T • 0

n T :

.~ en>.. [(1 • *Hn>..)I:: -n>.. n>..->.. ->..-e e III e
T :

. Problem 45: Find the variance of

Compare it wi. th the CoR" lower bound for unbiased estimates of e->'"

--~------------~---------------------------

Sufficient statistics are not unique:

Example 1: Poisson is sufficient; but ! =X is equally goodo
n

f(x) ... ( 1 )n
- {2n

~xi I ~f are sufficient for ""~ however ~Xi is not necessary and

gives no more information about I.L than does f
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- this set gives t.ha same inforM
mation (need ~o combine them
to estimate a )

Example 4: Same as No o 3, but lJ. is known"

then T... ~ (Xi "" lJ.)2 is sufficient for cr2 ~

-~-------~~~-~~----~-~~~-~--~-------------

Remark: (aimed at problem 43.l1 but holds in general)

The i'llol:le~ is .~function of the sufficient statistic(s)

since L .. g(t, ~) h(b !)

ln L • ln g + ln h

III 0 since it is

independent of 9

The solution of this equation (which gives the Molee.) obviously
depends only on T"

D!f. 32: A sufficient statistic :is called complete if

implies h(T) =O~- =9 denotes identically

equal in Q

, Theorem 27: If:T is a complete sufficient statistic and 4(T) is an unbiased"
estimate of g(Q) then d(T) is an essentially unique minimum
variance unbiased estimate (mOv0uQ eG)e

Proof: Let dl (T) be any other unbiased estimate of gee); then we know that

E
Q

[d(T}] II g(Q)
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Eg[t\(T)] e g(Q)

thus by subtraction Ee[d(T) - dl (T)J.. 0 for all Q"

The completeness of T implies ·that d(T) - dl(T) • 0 (see defo 32)

or that d(T) ~ ~(T).

Further -- let d i Qf} be any other unbiaS~d estimatorG We mow from theorem 26

that E[diQ£i T)].. reT) is unbiased and o~ ~ O~t with the equality

holding only if d v is a funotion of To

But, by the first part of the proof 'f (T) III d(T)~

Hence, if we start with an unbiased estimator not a function of TJ we can improve
it. If we start with an unbiased estimator that is a function of T, it is d(Th
This is the contention of the theoremQ

Example No" 1: Binomial X is B(n, p)

======~~> heX) .. 0 •

For completeness of X; which has previously been shown to be a sufficient
statistic$ we need

n

~ heX) ( ~ ) px (l...p)n..,x ~a
x .. 0 p

The left hand side is a polynomial in p of degree n"

For this to be identically zero in p implies that all coefficients are zero
which means h(X)" 0 for every X" 0" l~ 2, ~ 0 ~~ n,

therefore heX) pta and X is a complete sufficient statistic"

hence ~ is m.vouoee

Example No. 2~ Poisson

implying h(T) .. 0 on the integers=0
1.

T III ~Xi is sufficient

For completeness, we must have

co

~ h(T) e..nX (n;i
T

T 1;1 0

and is Poisson (nX)o
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CD

or ~ h(T) (nA)T ~ 0
T • 0 TJ 1\

x 0

Such a power series identically zero means each ooefficient "" 0 or h(T) = 0,

Tso that T is complete ..... therefore n is m.v.uoe. of A,9

Example No o 3~ Normal Xl' X2", <) ~ ., Xn are N(~, 1)0

X is sufficient and is N(lL'~) CI

-fin- .- '!f S[h(!} e~ ~]e-nX1L eli IL 0

~s is a bilateral Laplace transform

By the theory of Laplace transforms (ref~ Widder Ws book) if the Laplace
transform =- 0 identically, then the function = 0 or

nX2

heX) e"" -r III 0 which implies that h(X)'" 0,

therefore X is completeo

2 (.. 2If Xl' X2' ~ 0 0", Xn are N(lL, a) then by a similar argument X, s) are

2complete for (J.J a c

Remark~ lmy estimate which is unbiased and a function of
of g( lLJI aCL

In particular, if' g(lL, a2 ) ... lJ.2 + a2 "" E[X2] ,

! ~X2 is an unbiased estimate of 1J.2+ a2
0n i

2 -2
~ ~X~ .. (noel)s + nX
n J. n

1 ~ 2 2 2
so ii A::d Xi is me V 0 u.e. of IJ. + a
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e !:oblem 46; Find m"v"upe .. of Ap where Pr[x (hpl "" p"

and Xl" X21 0 ~ ." Xn are NIO(~I a
2

)

2are N(~.t a)

Y1" Y2, e 0 ~p In are ~(<; a2)
, 2 ~

Sufficient statistios ar-e (X$ Y', sx' s;>
(i~e"," we have four suffioient statistios for three pal~ametersip

thus this suffioient stitistic is not oompleteCl

for oompleteness~ the suffioient statistic vector must have the same
number of oomponents as the parameter vector.

for an example of what oan happen by foroing the oriteria of' unbiasedness
on an estimatep see Lehmann p~ 3~13, 14@

Non-parametric: Estimation (m"vouoeo)

Let 1S., X2'p 9 0 ().t Xn be independent random variables with oontinuous dof. F(x).

The prob~e~ is to estimate some funotion g(F), e.g"

00

g(F) IS )X dF(x) a: E[X]

-co

provided E(X] <. co

g(F) ~ F(x) i oe v5 we want to estimate the density function

. g(F) "" F(a) "" Pr[x ~a1
g(F) = F(b) ~ F(a)

g(F) 1:1 (Xl" Xn) such that F(Xn) - F(Xl ) ~ 1 - co<.

(two-sided toleranoe limit problem)
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Theorem 28g If d(Xl ; X2.l1 () 0 0, In) is symmetrio in JS." X2" <l <) 0$ Xn and

E&qpJ = g(F) then de!) is mov.u.eo of g(F)"

Proofg Suffioient statistic is T = (~Xi" ~xi" 0 'I 0$ ~X~)e

Consider the n equations:

.. C (I

These equations have e.t most nJ solutions 0

Assume (as is true with. probability 1) that all the I's are distinot -'" :1:f.'
x_, X2S 0 0 "I X is a solution, so is ar.:y permutation of the XiS"-j, It

There are nJ permutations of the Xts se these give a oomplete set of
solutionsQ

Since the sufficient statistic may be regarded as a set of observations"
order disregarded" any function of ~ is s,ymetric in Xl, X21 0 e I, Xn~

To show completeness, we must show

) geT) dF(T) F 0 ==)~> g(T) .. 0 "

Consider the sub..family of densities

,
i

I
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where: p(tl' t 2J • 0 ., t n ) is polynomial in the t's obtained

from the Jacobian -- it does not involve the Q's and is
non-negative.

Hence, if

n

CD ..~ Qjt j
) g(!.) e

jUll p(~)
-CD

by the same type of theory as :in the normal case (uniqueness of the bilateral
Laplace transform) this implies

or g(l)'" 0

Example 1: EstiD:ate E(X).

X is symetric function of Xi, X2, 0 0 .~ In'

e further, it is unbiased so that by theorem 28 it is mj)v.u.e.

Example 2: Estimate F(x).

We have, from the sampleIt

l..f------~-----~--:---===--:.:::::,,=-,..-.i;'-·'~derlyingpopulation dof.

sample d01 » -<.-:",~\~

.\1:::;> ..<'~" The observations here are ordered
. ? in size but not by observation

j' order (chronological).

n

Fn(x) • ~ (:Ixi'~x) III !. ~ ~(x) where ~1-' (x) III 1 if Xi(X
n n . 1 1-]..

••
~.

n

F (x) =±. ~ Wi (x) indicates symmetry in the xts•
n n i=l Ii

It then remains to show that it is unbiased$ i.ee, for each x: E[Fn(x)J ... F(x) Ii

For each fixed x the number of x 'Ex is a binomial random variable with
parameters [n, F(x)J-- and henc~, since the sample frequency is an unbiased
estimate of the binomial parameter, we have the required unbiasedness.

Remark~ Fn(x) ) F(x) for all x [prOOf given later]
p
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Problem 47: Find the movouQ e4\ of Pr[X '! a] (a known)

with dof" F(x)o

S liS ~xi is sufficient for (12,

a) find the minimwn risk estimate of (l among functions of the form aS~

b) is there a oonstant risk estimator of (12 of the form as + b?

~----~---~----~------~~_._-----------------

Fit x2.estimation

.- most. generally applied to multinomial situations~

~- us~ associated with Karl Pearson~

ref ~ Ferguson.... Annals of Matho Stat 0 _. Dec 0 58

Multinomial Distribution~

Given ..., a series of trials with~

possible outcomes of each independent trial

probabilities :tor a given outcome~

and n experiments result in:

with the restrictions that ~Pi • 1

v1 v2 I;> 8 • v k

~v... n
, 1.

Characteristic"function~

~ ~ t ~~ t
T (t1, t 2, • 0 ., t k ) .. ~ n e V (Ple) (p e k,v v v v1 I v 2 I 0". k Ge. k Jl' .2' c •• , k :l , 0,

t
= (I1. e 1 + u.
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(t11 0, .00' 0) "" (Pie 1 • P2 + GO. + Pk)n
vl' v2»OU$ vk

II [l1.et l + (1 - I1.~ n

i.e., any one variable in a multinomial situat:.ion is
is binomial B(n, Pi)~

M>ments~

is AN(O" 1) as n --.o.J>)' CD c

Asymptotic distributions~

vi-nPi
a) z "" ---

i ~nP
i
(l-Pi )

k k 2 .. -
~ 2 ~ (vi'",np.) ')

b) ~z. = A - ~. has a x""-distributionwith k-l d.f o as n-7(Q,
i=l]. i-l nPi .

(see Cramer for the transformation from k dependent to
k...l independent variables)

v l' v2" ~ ~ a, vk_1 have a. -limiting multi...Poisson distribution with

parameters h:t.t ~~ I) Q 0" \:...1 ("i' v2" coo, v k-l are independent

in the limit)"

-------------------------------------------
Example: (Homogeneity)

We have 3 sets of multinomial trials with possible outcomes Ep E2" E3 )

with probabilities 91' 92,91 - 91 - Q2 for each set of trials.



- 100 -

Therefore we have the following outcomes

Vu v
12 vl .3 n..t

v
21

v
22 v2.3 n2

v.3l v
32 v3.3

vol v. 2 v•.3 N

In L = In[n.. V1ll p v12 n.. V31.3 p v2l p v22 P v23 p v31 p v32 P v337 + 1n K
-~ 12 .~ 21 22 23 31 32 33 J

These give the two equations~

(1) (vol + vc ) 91 + vol Q2 = vol

(2) v €l2 Q1 + ( v$2 -I- v 03) Q2 = v 02

which when added together yield

(3) N Q1 + N Q2 = v"l + v 82 = N - v 0.3;.;
v

Multiplying (3) by N,,2 we get

v •2( v 01+ va2)
(4) v Q2 Ql + V 02 Q2 = N
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It can also be found that

-----~----------------------------------~-

!!oblem 49: (Independence)

Consider one sequence of N trials that result in one of the rc events

r

where ~ p. IlS 1 ;
i=l J.

c

~ 't"j 1:3 1 "
j=l

Find the lll"l"el} of Pi" 'l;'j and also their variances and covariances.

x2.estimation; general case

Given:--s serie~ of ni trials, each trial resulting in one of the events El1o .. ,Ek

_The probability of E
j

occuring on any trial in the
k

~ p .. =1 0

j=l J.J

i th series is p.. •
J.J J

each-the random variable
event:

in the problem is the number of occurrences of
k

o G, vik' ~ vij =ni •
, Jl:ll

-the PiJ' are functions of Q (continuous with continuous first and second
- derivatives) 0

I

_expectation is with respect to I'jlf ... ioe." E[Vij ] =ni Pij -. the use of

the @ti" subscript is a convenience, we could consider the s trials as one

big trial"
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The following methods of estimating .i. are asymptotically equivalent, ieee:l
(i) they are consistent

(ii) they are asymptotically normal
(iii) they have equal asymptotic '\rariances

lE> maximum likelihood

20 m:iriimum X2

3" modified minimum x2

4$ transformed minimum X2

1(1 Maximum Likelihood Estimation:

Maximize

k
~

sUbject to ~ Pi. (~) = 1 for each i,9 with respect to Q;
j=l J

or actually solve the equations:

~.~ ~ ~,~ d Pti = 0
i . p~ '9

J :'.J - " -

(provided su.itable regularity conditions are imposed as given in
theorems 22, 23)~

2
(vi· - niPi·)
~ ,J

ni Pij
is asymptotically distributed as X2 with s(k-l) dof p

The method is to minimize this expression with respect to ~ or to solye
the equations~

.. 2

This set of equations could be expressed as:



therefore the second term eql~ls 0

R • the third tel"ll1 > 0 as N~oo
p

Hence, equation r2] is the same as equation [1] except for R and thus it is seen
that under suitatle regularit,y condiGions the solutions of equation [2] tend in
probability to the solutions of eqtlation [11.

Replaoe Pij in the denominator of the regular minimum ,,2 equation with its

estimated value, and then minimi3e with respeot olio ~:

2
XI~i1' .. ~ ~ (V;ij: ni Pij )

i j ij

subject to ~ Pij • 1 for i· 1, 2, • ••, s.
j

e Comparing the two ,,2.,. methods

2 2X ... X IIIm

...

2
R . ) 0 faster than does X --....- therefore methods (2) and (3)p
are aS~l!l.pi.;otioal1yequivalent.

The equations to be solled in this oase are:

,

~ ~ ni (V";j.:'ni~ij)
'''., '1....,

40 Transformed 1I'~i.'n''!!LL

In(Xn..~) S(X )-g(~)
Recall that 1£ -b;- is a.symptotioally normal~ then Cng'(~)

and the asymptotic variance of g(Xn ) is cf[ g t (IJ.>] 2•

is ll.N. ~



thus the qij are random variableso
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Before writing the necessary equation, write

vii
qij .~

Thus the modified minimum x2 equation can be written:

2
X; • ~ ~ ~i(qiJ - Pi 32..

i j . qij

The equivalent estimation procedure is thus to minimize

~ ~ D1 [g(q~) - g(P~W
i j Qij Lg.(qij>]

(the numberator should be Pij [gf(Pij}J2 but the difference

occasioned by the modification >0)

for gts which are continuous with continuous first and second derivatives" and
with g' (Pij ) bounded away from zero~

This method will be useful if the transformation; gl!ij{~~ is simple.

The equations to be solved are thus;

~ ] ni [g(Qij) .. g~;ij) ]

i j qij [gl(qij)]
• 0

Summary:.
Method (1) [mol"e"J... is most useful if the Pij can be expressed as

products, i.e., Pij • Pi'Cj as in problem 49~

Method (2) [minimum x2] -- most useful it Pij can be expressed as a

sum of probabilities, i.e.» Pij .. .,(i + Pjo

M9thod (3) [modified X2J- same as (2).

Method (4) [tranSformed x2] -- may be most useful in some special cases..
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Examples of minimum -" prooedures:

\) t ,1----1 v\,

\) '2' t V'\\.

01-) / V\,

1. Linear Trend: ni • 2 p.)

obs. prob~ ~ ~-
vIl Pu·p-A v12 P12- l - p + A

v2l P2l • P v22 P22 • 1 - P

V
31

P
31

., P + A v
32 P32 III 1 .. P - A

Problem is to estimate both p and Ao

Using the modified minimum_x
2 procedure:

total

l_d_ 2
2'~ at the expectations since - ~ is the exponent

l · [vu""':J.(P-d)j2 [V~l + V~2] + ("2l-n2"Y[~ + "~2] + [".3l-n3(P+d») 2 [vi + V~J
-t ~~2. ~ [vll"~(P-A)J + a2 [v2l-n2P] + a3 rV31...n3(P+A) ] • 0

where ai • ni'...L +..L)
Vil Vi2

These tw equations yield the following two equations which can be solved simul
taneously for p and A ~

Note: remember that this procedure is asymptotically equivalent to the m.l.e o -

therefore the asymptotic variance-covariance matrix can be found by evaluatin~

!.2 ).2y2: ! ~2y2 •
~# 2U'

of the asymptotic normal distributiono



Recall 1 l)a.. = n1 ( - +-.. J. v
ll

v
12
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E[vlIJ =~ (p-A)

Replacing the random variables in ~ by their expectations yields

1 1 I
--p--). ( p-A + l ..p+l ).. {p..A) (i..p+A)'

Similarly~
I

p 7 p(l..p)

...
thus the inverse of the Ao V-COV matrix is

-----------------------------------~-----~-

2e Logistic (Bio-assay) problem (Bergson)

... applying greater dosages produces greater kill (or reaction)

s = general n = 2i

xl' ~$ Q G o~ xs dosages

nI" n2" 0 0 0, ns receive dosages

vI,\l v2' c :> 09 va die (or react)

e-(-<+~xi)

1 .. Pi = l+e.(-<+~xi)

Vi
q. = - =- proportion dying or reacting

J. ni
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2Applying the transformed- X method to estimate .,/." ~ and using the transformation

Putting in the values of g, g', we have

s
,,2 • ~ n.

T i=l ~

i

---------~-----------~----------~---------

Problem 50~

~

Consider rc sequenoes of n trials whioh 'lrS.y result in E or E

where in trial (ij )

i 1,,2, 00 ."r
j 1,2,.06,0

Set up equations to estimate "/"i" ~j by

1 0 maximum likelihood..

20 minimum modified X2

based on observations vij ' n - vij •

•
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Problem as stated produce.s r+c equations in r+c unknowns" but their matrix
is singular -- i.e., the equations are not independent by virtue of the fact that
the swn of the I' equations for the .,(i equals the swn of the c equations for
the ~jfl

Therefore, reduce the number of sequences to 4i

and add the restriction that P22 CI P12 -+ P2l - Pll

ioe o " reparameterize and find the equations necessary to solve for the
new parameters<ll

Problem 51~ -Given s sequences of ni trials may result in E or E where in sequence i

(let the number of Eis observed be denoted by vi)o

Set up the equations to estimate A by

l(t maximum likelihood"

20 minimum lOOdified X
2

"

and find the asymptotic variance of 1.
(noteg Ferguson discusses this problem in his Dec. 58 article in the Annals)

G~ Minimax estimation:-
Recall that d(!) is a minimax estimate of g<.~) if

sup R~, Q] is minimized by dqf) Q

Q

R[d, Q] • E[d(!> - g(~r· f[d(,y - g(,2.>r f(!.) ~
[see def e 24 on p. 54]
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Methods to try to find minimax estimates:

1. Cramer-Rao

cl;:" [l+b'(Q 2 2 0 J:.:l+ b'~lL
d ;;;..- nE[d ln x ~1 [. d n f(X~J

d Q J nE -a 92

E[d{~) • g(~)J2 III E ~(!) - E[d{!)] + E[de!)] - g{~)J2

• <{ + Lb(9)}2

Rld,9] >- f1+b f (9)1
2

+ b2(Q) D k(Q)
,/ nEI~ In f!&12

d Q J
If we have an est:iJnate d(X) which actually has the risk k(9) then any other
estimator with risk less than k(Q) leads to a contradiction.

Example: ~"X21 ~ 0 0, Xn are N(~, J)
2

and we know R(x). ....2
n

Lehmann shows that

which implies that b(Q) = 0

Therefore X is a minimax estimator of ~0

2.. This method based on the following theoJ:em which will be stated without proof G

~eorem 29: !.f ~ Bayes estimator [deft 23] has constant risk [defo 25] then
1.t 1.S minimax/}

d(~) is constant risk if E [de;) - g(9)]2 is constant.

de!) is Bayes if d{!.) minimizes f[d(!.) .. gee) ] f(x, Q) dG(9)

where G is the Ita priori" distribution of Q.

ref: Lehmann -- section 4, p. 19-21

Example: Binomial -- X is binomial B(np p)e

Recall that we found that d(X) = rn !. +
1+.Jn n

1

2(1+Jl}

is a constant risk estimator of p [see problem 31" p. 54].
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If' p has a prior Beta distribution

.f'n" 1 12. 1
f(p) I: K P2" (1 _ p) 2

then d(X) is Bayes;

hence tJ?,e minimax estimate of the binomial parameter p is

rn_!+ 1 •
l+Jii n 2(1+$)

Efd(X)_p,2 I: :e(l-p)
.It.::; l - 'j n

Graphically we have the following risk functions:

1rn-- - - -- - - - -.---.-,.

o ;!. -+- p

Problem 52: Compare Rd' (p) and Rd (p) for n =·25..
m

A X
( d ~ -; d = minimax estimate)n m

Ho Wolfowitz is Minimum Distance Estimation

Xl' X2, 0 0 .~ Xn are observations from the distribution F(x, Q).

We are also given some measure of distance between 2 distributions ro (F, G) e

e.go: f (F, G) = sup 1F(x) - G(X) \

.co<x<oo

Ii (F. G) = (fr(X) -G(x>]2 <lex) ; G(x)

Also we have that the sample d.fo Jl F (x) -= noo of.l's<x (see p. 97).,n n
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Q' is a minimum distance es~mate of 9 if f. fF(x, Q), F (x)] is
minimized by choosing 9 = 90 t n

Note: We want the whole sample dof. to agree 'With the whole theoretical
distribution ... not just the means or the variances agreeingo

~

In particular, if we use the "sup-distance" .then 9 is that estimate of e
which yields

min suP' F(x" Q)- Fn(x) I jJ

9 -CD <x <CD

/V

Remar!.: 9 is a consistent estimate of eo

Proof:
"..-

Suppo se ,)for all sufficiently large n) 9 differs from 9 by
more than 8"

Then for some 15

sup I F(x, ~) .. F(x" 9
0

>J > 15

and for some ~

We want to show that

sup I F (x) - F(x,
"'CD<X <00 n

Let x' be the x such that

Qo>} L.. sup l Fn(x). F(x,Q> I "
-oo.(x. <. 00

,.J

F(x', Q) - F(x'a Q > = 15o

Q ) < 15
o :3

therefore F(x', 'Q) '" F~ (XS»j 15

thus sup IF(x I, Q) - Fn (x W>J > j 15
1

) sup IFn(x) .. F(x" Qo) I

but this contradicts the fact that Q minimizes sup IFn (x) .. F(x, Q)}
N

therefore Q is consistent.

",



e Example: Find the minimum distance estimate for IJ. given Xl' X2, 13 are N(IJ., 1.

1. \

_::::;:::....,,==....-- Fn(X)
p

o

1

2/3

1/3

~ = 1

Note: The n:sup-distance" will obviously occur at one of the jump points on F (x)~
n.

To find the minimum distance estimate of IJ. an itterative procedure was used$! whicJh
started by guessing at IJ. and then finding F(x, IJ.} at each X.o

J.

Fn(x) = Xl X2 X3
~ (\33 767 1 0 00 ~

204 zi=xi-IJ. lilt -1.4 "",0.4 1,,6

P(zi) .. ,,081 0345 0945 e325 (067 - w345)

2,,3 zi = ...1.,3 -00 3 10 7

f(zi) = ...097 0382 ~955 ~288

2e33 P(zi) = ..371 &952 0 299
(

20 29 f(zi) ;: 0386 .956 0 284 (.(,1- 3~ b)

•Other values of IJ. were tried~ but the min sup-distance .. 0 284,

therefore
IV

(x =2,,33)IJ. ... 2,,29 ..

~~em 53: Take 4 observations from a table of normal deviates (add an arbitrary
factor if desired) and find the minimum distance estimate of IJ.p

e.
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TESTING OF HYPOTHESES ... DISTRIBurroN FREE TESJfS
~ .-

I~ Basic concepts ...

Xl' X
2

' 0 0 ~, Xn have distribution function F(x) ... continuous
-- absolute continuous

[density f(x)]

The hypothesis H specifies that Fe 7o(some family of dQf.)

Alternative H specifies that Fe 7- f{
Der Q 33: A test is a function «J(~) taking on values between 0 and 1-

iQe.~ if f(!) ... 1 reject H with probability 1

... k II H tI II k

Illl 0 n H II it 0

(note that this considers a test as a function instead of the usual
consideration of regions)

Defe 34: A test is of size .,( if ErfI(!) ] for Fe ? ~ .,(
E fr'(!lJ· rf(~) dF(~)

"'00

(this says that the probability of rejecting H when it is true ~ co<)

~~: Power of a test is E[1'(!)] for Fe 1",. ~ and is denoted ~f (F)

~...12~ r~1 is a consistent sequence of tests if for Fe 7- (

~96 (F) as n~ (I)

Defe ~: Index of a sequence of tests~

N( Cfn~ 1: co<!)~) is the least integer n such that, given that
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l-~ +-----/

I-- --Io-;- F

7~

Def. 38; Asymptotic Relative Efficiency (A~RoE.)--
Let p( 1: 10) be some measure of the distance of ;/;rom 10

/\A.-'

Let fn and 9ii be two sequences of consistent tests

--then the AoR"Ee of ~ to ~ is defined to be

N( ~'1," 7~ ""'3 ~)
lim ---~----- provided the lindt exists

p-';'O N( fn9 7~ .<.~ 13)

(0' mown)

alternative~ IJ. > 0

Consider two tests of H~

10 t he mean test ~
... ~-z

reject H if X)'_..- (J

Vn

2" the median test: [use the large sample distribution of the median, i"e-
the sample median is asymptotically normal with mean
... the population median and variance = Ra2/ 2n J

if test: rejeot H if the ssmple median '7 "1--<~

a) find the index for each test for the alternative ~!
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b) find the A~RoEo" ieee

lim N~f', ,*U 2 .,(,9 @)

IJ.'-7 0 N(r; IJ. r; co<." (3)

II g Distribution Free Tests

refs~ Siegel -- Non-parametric Statistics

Fraser -. Non-parametric Methods .in Statistics

Savage -- Bibliography in the Dec. 19S3 JoAcSeAo

Ao Quantile and M:ldian Tests:

Let the solution of the equation F('" ) I: P define the quantile A.
p P

If the solution is not unique, define \ .. infx(l(x) I: pJ

Given the problem to test Ho: \ .. "'0 against the alternative ~: Aq = "'0
note~ the altemative could be stated A -L A. but this statement precludespI 0 .

consideration of the power of the test since the power in this case wouJ

be undetermined by virtue of the unknown behavior of F(x).

Test: x I: the number of JC]." x2"

under H~ X is B(n" p)

/) " oa X < A, n - 0

for the tl<ro sided test

reject H

(q ~p) at level co<. using the normal approximation

. /) Jx~ npl- ~
if. . > zl..<./tJ np(l - p) ;; .., 2

Problem SS: Compute the power of the test (using the normal approximation) as a
-. function of q for n"'" 100 and p == 005

~::!!lple: for paired comparisons" to test if the median is equal to zero set up the

series of observations dl , d2" 0 • 0" dn, di =Xi-Yi
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This test that the median is zero is often referred to as the sign test, sine(
X in this case is merely the number of di with a negative signa

~ ~pete 40: >-p" the sample quantUe~ is defined as the solution of , n (Ap) = P

A
Theorem 30: \> has density function

where l.L -= [np] which denotes the greatest integer in . np

Proof: ref: Cramer po ,368

Pr [Xp ~xJ III Pr [l.L + 1 or more observations {x]

n

• ~ (j) [F(X)] j [1 - F(X)]n-
j

.. li'(~)
j-l.L+l

To get the density hex) [assuming that F(x) has a density f{X)]
we differentiate the summation, getting the following two summations
[trom each part of the produot thatoocurs in each term summed]

n

hex) -=. ~ ( j ) j ~(x)]j-l [1 ... F(X>]n- j f(x)
J=l.L+l

n

... ~ ( j ) (n - j) [F(x)]j [1 - F(x8n-j-lf(x)
j-",,+l

The corresponding terms [in ,a(l .. F)bJ cancel each other except for
the first (j'" l.L + 1) term in the first summation which has no
corresponding term in the second sum.,

/\
By the usual limiting process applied to density functions, A is asymptotically

p

normal" with mean \> and variance . 2 1 p(l..,p)
. . f{\) n
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~ob1em 56: Let ha11e density 1 f( X"/J: )J$; ....
c C1

co

J
co

where ) rex) dx .. 1 x rex) dx .. 0 \ x2f(x) dx -= 1

""co "00

and rex) is symmetric about Oc

Find the condition on rex) such that the AcR.E. of the median to the mean
is greater than 1" Use large sample normal approximations tor both tests"

Ix..,u I
Specialize this r.esult to f(x)" ~ e- o;-~ .. CJ.) <x <0:>

--~-------------------~-------------~-----

III. One Sample Tes~~

Ho: F .. F0 completely specified

~ \) -J..
:Ell:> F == F.,,..F

.I. 0

the smaller distri
bution has larger
observations.

problems: 1) goodness of fit (usually a 'W·-.lder problem since F
o

is usually not
completely specified)

Bartholomew, Barton" and David;
Biometrika; circa 195,.6

ilslippage test!i.

randomness il1 time or space _. re£~

2)

3) combine.tion of tests -. ref: A Birnbaum, JASA, Septo 1954

4)

Randomness in Time:

Assume:
-At J.~t)n

events in (O,t) (the time interval 0 to t)] • e n'

i"e." is Poisson with parameter At
"-.

Probability of event oocuring in one t.ime irrlierval is in:iependent of an occurrence ir
any other time ~tervalo

o GOO T



Let T. be the time at which the
J.
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i th event occurred c

i

~ t.
j=l J

Pr[ti>tJ III prGo event occurs in time (O,t)] .. e"'At

tet) = density of the t± Q ),e"At (the exponential distribution)

f(t1s t
2

, I) 0 0, t
n

) .. ~ e"A~ti s:L"lce the t IS are independent

Distribution ot Tl' T2' 0 <u; Tn is obtained by transformation

T1 == t 1

Therefore, let us find the conditional distribution of Tp T
2
, ~ !> ., Tn

given that n events occurred in the fixed time interval (0, T)e

f(T1, T2~ Q ~ ~, Tn ; n) =density ot Tl , T2, $ ~ 0' Tn and also the probability

that no events occur in the time interval (T , T)
n

,\n -AT
.. 1\ e

ten)

This distribution is the distribution of n ordered uniform independent
random variables on (O~ T)c
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Ordered Observations:

~, X2" 0 0 0, Xn have density f(x) and are independent.

I l , I 2" 0 0 ., In are the ordered XiS.

If the XQs have a continuous distribution then we may disregard any equalities
between the Xrs or the I's~

The marginal distribution of the Yi can be obtained by three methods, i ..e.

10 Integration:

00

= nl ) f'(Yn) dyn , ••

Yn""l

Q)

( f(Yi+l) dYi+l

Ii
x f(y.) X

J.

•

Yi Y3 Y2
\ f(Yi...l) dYi_l •• /) ) f(Y2) dY2) f(Yl) dYl

"'00 -00-00

note: ...- the observations above Yi are constrained by the next lower

observation$ since this is an ordered sequence

-- the observations below Yi are constrained from above

integrating this we get

gi(y) lllI the marginal density of Yi

20 By differentiation:

Pr\!i.( Y] = Prei or more observations fall to the left of Y]

n

1:1 ~ (j) [F(y)]j [1 .. F(y)ln- j

J=i :.J
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• tn.i)~ti.ln [F(y)]i-l ~ .., F(y)]n...i fey)

3(» Heuristic Method (Wilks):

(n...i) observations
in the interval

(y" + 00)

(1-1) observations
in the interval

(-eo, y)

dy

____-"'··~1!i.._·; _
1i
Y

The probability of this is essentially a trinomial distribution» therefore

Example: In particular, if we have the uniform distribution:

fey) a 1 F(y) =Y

( ) n). J.-,l (1 )n..."i
gi y = "{ii..ntrI:IYl y .. y (which is a Beta distribution)

We could also define the spacings~ 81 " Yi-Yi -1

n+l

~ 81 -1
i-1

i • 1, 2, • e QI n+l

Y .. 0o

Problem 5n Show that each 81 has the same densityo

a) find this density.

b) find 1) {~5~] [

n+l 11
11) E 1~ r51 - n~~

----~---------------~----~-~--------------
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Lemma~ Probability Transformation~

define the inverse function as

F'"'l (u) u in! [F{X) = uJ
X

au

If X has distribution F{x).. F(X) has a uniform distribution on (0" l)c
u

_______.......I-- ...r.- x

PrI!(X)~U] • Pr[X~F-l(u) ] D F~"'l(u)J

One Sample Problem can be put in the following form by use of the probability
t ransl'ormation:

Given Xl' X21 e ') 0); In; let Xll)'~'I(2)~ e o<X(n) be the IVs ordered

increasingly and define Ui III Fo(I(i» i = 1,9 2, e 0 !9 n

we have a set of ordered cbservations U1, U2s .. eo... Un on the
interval (Oi 1) which ul'lder

Ho: has uniform distribution (with density n,t')

[or equ~salently;,l that the original XiS had do.f o Fo(X); i.eo" that
the correct probability transformation was used]

and under HI ~ has distribution F1 [F~l J a Go

two-sided problem one-sided problem

G{U)~ u -- with the
strict inequality for
some interval

Some of the Tests for One Sample Problems

1. n which is AoN~(~, rk )
- for the oneo:osided sitnation
-- consistent
-- reject 1i if it is "too large"" ioe~ if 'O'>~ + zl-.-<. (lin)

(for the above pictured situation)

or if ii is "too small" in the 'converse situation .. [i"e." G(u) >uJ '..



n

2 0 -2 ~ In Uii=l

.. 12.2 -

whioh is X2 with 2n do!~ (rafo problem 6)

2
e~ X is exact, not asymptotic

- consistent
.... for the one-sided problem

- used in combination problems

-"" reject H if' X2 is Oftoo largeU

n

30 <.02 ~ ln (1 ., Ui ' _.. also is ,,2 with 2n d.! 0

i-l

....., tor the one-sided problem

=. Pearson's counter to Fisher's advocating NOa 2

",,- consistent

... reject H if' X2 is ~too small If

4G Distanoe Type Problem

Kolmogorov Statistic defined as follows

n+ ... sup [Fn(U) .. u] )
~u~l

[ ]
for the one..sided problem

n-... sup u - F (u)
o~uu n

D III sup , Fn(u) - u I
o~u~l

.- is consistent

for the two,.,sided problem

5a Related to the Ko1.mogorov statistic is

R+ ... sup Fn(u) ...u

a~u!l
u

R III sup tFn(u)-u)

a~u~l
u

one""sided problem

two-sided problem

-- not necessarily consistent
-- lIa" is arbitrary but positive
-- derived by a Hungarian, RenYi
-- not of very great merit
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6., eu~ = )[Fn(U) ~ ul du

o
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.... two-sided or one-sided problem
__ sort of a continuous analogue of ,,2

-- consistent
-- due to Von Mises and Smirnov

n+1

7~ wn =~ ~'8i co ~ I
i=l

-- ref: Sherman$ Annals, 1950
-- one-sided or two-sided problem
.... consistent

-- is AoN.

n+l

8f) ~ = ~ S~
i-1 J.

a_ one~sided or two-sided problem
-- due to lII.bran
...- is consistent

- , ., 1 is AoNo(O$ 1)

90 Ul (Wilkinson Combination Procedure)

-- one-sided problem
•• generally not consistent

Problem 58~

a) Find the test based on Ul for the set of alternatives G(u)")u
with g(u) = G'(u)

b) Find the power of the test for the alternative G(u) :I uk O<k<l

c) Find the limiting power as n ~co

10. ,,2

(if the limit is 1" the test is
consistent)

11$ NeymanYs smooth tests
-- discovered by Neyman about 1937, but never generally used
-- re.t'g Neyman; Skandinavisk Aktuarietidskrift; 1937

Pearson ... Biometrika; 1938
David"" Biometrika; 1938.
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-. Problem ,9~ Xl" X2, o. 0 0, Xn are independent with dof~ F(x), density rex)

let R = max Xi - min Xi

l~i'!tn l~i~n

a) Find the distribution of R...

n)O'o

where )f(X) dx • 1

show that E(R1- k(f"

b) Suppose F(x) has density of the form 1: f( x""tL )
(J a

Jx2
£(>:) dx ~ 1

-------~----------------------------------

Theorem 31:
If F is continuous, Fn p>F for au Xv

!!22!.~ We want to show that given 8, (3 we oan find N such that for n '/ N

-Pr [I Fn (x) .. F(x) I <' s for all x]., 1 - (3

Let Af) B be such that

F(A) <. 8/2

l-F(B) <: 6/2

A

Flok out points X(1).9 X(2)" 0 0 .. , X(k_l) in (A, B) suoh that F[x(i)1... F(X(i_l)] <
whioh we can do because of uniform continuity.

Now set ~ =X(o)

ConSider a sample of size no Let

(x(i_l)' xCi»~·
n. =;/-{x. that fall in the i~ interval

1. n J

i=o
has a ,,2 distribution with k+l dof"

We oan find an 1>1 such that



i· 0, 1, •••, k + ~ >1. 6

- 12,5 -

or Pr [X~l <. MJ /' 1.. S
Since the above sum is less than Mj each term and aJ. so its square root are certainly
less than MJ therefore~

[
Ini..nPii

PI' ...• < Mfor each
-JnPi

which could be written

Recall that
i

a ~ n.
j=o J

n

*

Now J Fn(X(i)J ~ F[X(i)l/ ·/~? -~ Pj I -/' ~(~. Pj ~ ~ .~ I~ -Pj I
j=o j=o J=O 1 JUO

(k+2)MJP! e
Choose n so large that rn < 2' for all i

Henoe, if n is chosen this larges with probability l .. S the following
relationship will hold:

IFn(X(i)] '" F [XCi)11 <. (i+l)M.JP"i <:. ~
vn

Consider x lying between x(i-I) and xCi)

<.-
F[X(i)] - F[x(i)] + F[X(i_l)l • Fn[x(i)l s

F[x(i_l)l ...Fn [XCi)] ~ F(x) • Fn(x) ~ F[X(i)J

<C 8 8
'2'+~&'lS

with probability 1 - S

* lltUieiI1g the following x'elalllonsblps: 'i.'* making use of the following
relationship:
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.. ~ <: F[X(i)l .., Fn[X(i)] < ~

• ~ <F(x(i_l)l .. F(x(i~ <0

Therefore the theorem holds c

------------~-------------~----~-~-------~
Example: Referring to test No o 4 given on page 1220

If H is true, Fn ~uniform, thus for n sufficiently large IFn(u) - u, ..(&0

If G is true, IFn(U). G(u) 1< 8 and thus I Fn(u) DO uJ '>s.

Therefore" the test based on D eo sup IF (u) - u I will reject H with
probability tending to 1; n

henoe the test based on D is consistent$

Problem 59 (Addenduml (see p. 12~ ~

c) Find the distribution of R for

1) Xl' X2, 0 () 0$ Xn uniform on (0, 1)

2) Xl' X2, 0 0 ~1 Xn with exponential density rex) =a e-ax

note: in the uniform case Ul and R are dependent, in the exponential case
they are independent since the upper limit of the observations is co

---~-~----------------~------------------~
Remark: The Kolmogorov statistics, Dn, D+, and D- are in fact invariant under

the probability integral transform"

Proofg we have to show that sup f F (x) "" F(x) I S! sup IF (u) - u ,
-a><x..(oo n 0 ~u ~l n

III sup \ FJF(X)] ... Fex) l
o!F(x)~
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F (x)
n

where the YI S are the 0 rdered
observations JS., X2' • rJ ., In

i.-n where

Therefore:
sup , F (u) ,. u I
o ~u-{l n

III sup , F (x) ~ F(x) I
..c:o~x <con

Distributions of D~

When H is true, and Ul, U
2

, (l III _, Un are uniform, then

a) lim . Pr[rn D: <zJ .. 1 QI e_2z2 (due to Smirnov)
n~CD . 0 {z <co-+_. Finite dist!'ibution of D given by Zc Birnbaum + Tingey in the
Annals of Math., Stat..,

-- Tabled by Miller in JASA, 1956, pPo 113-11'0

CD 22
b) 1(z) III lim PrrJii D+ .c. zJ .. 2 ~ (_l)m+l e-2m z (due to Kolmogorov)

n-7 co l~ n m=l O~z <CD

-- Tabled by Smirnov in the Annals of Ma.th~ Stat"" 1948

The simplest proof of both results is due to Doob in the Al".nals of Mith" Stat~" 1949

Some tables on the finite distribution of D are given by Massey in JABA" 1949"
ppe 68-77Q n

Consider now that ~ is t:rue, i.eo, that U has, de!. G(U):

n- test is to reject H if n'" >e where
n n

PI{D~ >en1 ... .,(

thus

Pr[.rn D~ >frl I-;nl
lIn. .,( I

2n

~ • max. difference between up G(u)

D~ .. sup [u ... F (u)]
o ~u~l n
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Suppose ~ is ture so that Fn is the sample d.f l) from G(u) with

maximum / u - G(u) I • A at u III UoG

Then: Pr[D::> fin1~ Pr[uo - Fn(uo) >en ]

~ Pr[Fn(Uo) - uo<-en ]

~ Pr[nFn(uo ) t::n(uo - en>]

and

But Fn(uo ) is a binomial random variable with expectation
n(u -e )

. 0 n

Binomial probability'" ~ F(k; n, u - A)
k=o 0

Prob1em.§Q.: Find the bound on the power of the D~ test where G(u)'" u2

x
,J, 1 i _t

2
/n, -<, 'I (x) =.- e 2 dt

J2n
IlC

Using the normal approximation given an explicit f.orm for this bound
in terms of

R =sup
a<u~l.....

Test No 0 5; Renyi Statistic
+ Fn(U)-U

R =0 sup
a~u!l u

IFn(U)-U.l
U

Limiting distribution:

lim Pr [ rn R+<z]
n"-1oo

For the distribution of R and further discussion see an article by
Renyi in Acta Mathematica (Magyar), 1953.

1 co

Test No. 6: CJ~ a I [Fn(U) • UY du a j (Fn(x) - F(X)]2 dF(x)

1

sa \ lF~(~) -2uFn (u) + u
2 Jdu

o
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ittl _

n

eeg., F (u) is flat for an interval
n

+

1

f u
2

du
o

recall: u 1" 1n+

n+1
.. ~

i=l

n

( i )2 ( ) 2 "'" i ( 2 2) + !- u1 1 .. u. ...,:r...c::J -n ui +' "" ui 3
n + 1 ~ 1-1 •

n n

.. 1 + ~ ~ (1 .., 2
i
)u

i
.. ~ (~ u~) .., 1 + i

n~ 1-1 n 1=1 J

.:F.,2
.""4J

'n

n 2

Cramer shows that: GJ2 III 1 + 1 ~ [u - ~ ]
n 12n2 n 1-1 1 2n

Tables of lim Pr(nw2 ~ z] have been given by Te We Anderson and Darling in
n~co

in the Annals of Matho StatQ~ 19$2, P3 20611

Approache.s to Combining Probabilities:

Exampte~ The following probabilities are from a one-sided t-test:

...R-. F J.... F- -0026 .1 ,,76 06

.11$ 02 081 07
,,27 03 ,,89 08
036 04 ,,92 09
&7$ S .98 1 0 0
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Under the basic J::wpothesis the pts are uniform on (O,\i 1)

Alternative tests:

P • OeS7 acoept H

34> D. eS88

21.' To test alternatives of the form G(u»u the Kolmogorov-Smirnov test

statistic is D:. Fn ., U •

+sup D10 A OQ08S

From Miller's tables: Pr[~O '> •.342J•015

.. 1
U ... ~ 0088"" ·J~r ·~ · 0e964

Pr~ <' 0964] • 067

Since BtU] under H.L <: ELUJunder Ho we will reject H if' z <zco(

therefore we cannot rejeot Ho~

40 Against two-sided alternatives

D = 035 (,,75 - 040)

See Massey's tables for small sample size probabilitieso

Usi.l'lg the large sample approximationg
co 22

Pr [rn D »z ] • 2 ~ (__l)m e-2m z at L(z)
mal

Pr [D)~ ] (II L(035)no
Example~--
In the following- table~

•• the Xi are taken from a table of N(O,t 1) normal deviat~so

-- the XCi) are the ordered Xi

XCi) 2i f J-- the U... ..L ( e-t /2 dt = PI' Z <Xi
1. {2n )

..co
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- the 81 are the spacings between the Ui

Xi X(1) Ui 8i
1

n-«-!- - - ~ -;"09
042 -0038 .35

.14 009
-0002 -00 02 .49

&04 009
088 ,,08 .53

~01 ~09

040 009 .54
.10 t>09

1.16 031 064
.02 009

009 '?40 066
,,00 1109

e08 042 .66
.05 :>09

1012 088 011
c16 ~09

-Oe38 1;p12 081
009 t}09

031 1016 &96
004 009

Under H: the XIS are N(O,\l 1)0

The test statistic is: 10

l.Jn
1 ~ Is . .1.../ Ill; Oe38=-2 i-O i n+l

Ignoring the slight negative oorrelation between the S., one could use a
normal approximation with: 1.

E[W ] l: ! . 0037 v( W ) D 2e-?2 • (0.07)2
n e n lDe

~amp1e:

It you want to test H:t ~
transformation:

2
the X' s are X(,5) then you should use

X i-l
u.. 57~i?5) re-

t
/ 2 t' dt

2 It~ 0

the probability
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Combination of Test Probabilit1es~-- ...- --
Ho: U is unito rm

H:J.: U has distribution G(u»u (i~e.J the observations tend to be smaller)

ref: Ao Birnbaum, JABA, September 1954

He oonsiders a oomparison of the following tests~

1... Fisher: -2 ~ ln Ui

2<:» Fearson~ -2 ~ In (1 .. Ui )

..- found unsatisfaotory for moet applicationso

3- tJ.J.. .... not consistent, but is this important?

Birnbaum conoluded that -2 ~ lnUi was better 1'0 r the one particular case of
testing normal meansc

...
other possible tests~ D, ~,.9 U ; have not been studied in this light.

Goodness of Fit Tests:

H
O

: F - F0 completely specified

The test usually involves estimation of parametersQ

The only oompletely worked out theory is for the x2-testo

For other suggestions see:

.- F. David~ Biometrika" 1938·9

-- Kac, Kiefer, and Wolfowitz, Annals of Matho Stato" June 1955.
They present a Mmte Carlo derived distribution of W2 and n
for the case of testing H~ Xts are N(fJ., 0'2) where lJ.; n 0'2 nare
estimated by x, s2 working with n-25, n=100o

For consideration of one-sided tests see: Ohapman, Annals of Mathe> Stat., 1958

... The nff test is allminimax" test (among Fisher, Pearsen$ oR, W~ , U)
of the one-sided hypothesis He: , a '0 versus Hl ~ F .. '1<' Fo.

ioe~, timinimax ll in the sense that it has minimum power to piok up easy
to-detect alternatives" maximum power to pick up hard-to-detect alternatives.
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IV. Two Sample Problems s:

X1"~" • • ., ~ have d~f. F(x)

Yp Y2, \!l II 9' Yn have d"f. G(y)

Ho : F 1:1 G H1I F < G or F>G

e
Hl :. F "G

In the parametric case one could use the normal approximation en d the two-sample
t-test on the means, but these hypotheses are somewhat wider~

Partial list of testsi

1. Median Test
2. 0 Runs Test
3. WilcoxentsTest (also called the Mann..v-lhitney test)
4~ KolmogorovoooSmirnov D-test
5. Ven der Wa.erdents X-test (or Terry's C-test)

All we need for these tests is to be able to order the observations; magnitudes
are not important; eeg. lv y. y \/~ \.' \

~3~~W~

Test 1: For the median test set up a 2x2 table classifying the observations
as above or below the median o! the combined sample. For example:

Below Above Total

X: 4 1 m

Y: 1 4 n

Total: m + n m + n m +n
~ 2

Test Statistics is the usual X2 for 2x2 contingency table s with one d.f,

Test 2: For the runs test, set

I' = number of runs of Xt S and of Yt s in the combined sample (in our
. example r = 4)

If' Ho is true, then the Xis and yts are intermingled and the value of

r will be "large"; 1£ Hl is true, then r will be "smalllt •
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Test j: For the Wilcoxen (Mann-Whitney) test, we define:

=1

= 0 otherwise

u
m n

0: ~ ~ •

i-1 j-l ~j
in our example U = 22 (4+4+4+5+5)

n
0: ~ R~ _ n(n + 1)

. 1 J 2JD

Wilcoxen's original test was based on Rf
where ~ = the sum of the ranks of ~ in the

the smallest.

S1m1larly R':! = the sum of the ranks of Y
J
.•

J m

Problem 62: Prove: U = mn + m(m2.,. 1) ... ~ ~
3.=1

combined sample ordering from

Test 4: Kolmogorov-8mirnov define D for the two-sample problem as:

Dmn =sup \ Fm(x) - Gn (x)I
-oo<x<co

. ¢ (u) .. .l:
fin

let

Test 2: For Van der Waerden' s X-test we

S
u _t2~

e dt

-eo

m RX
then the test statistic is: X = :t~1r( m + ~ ... 1)

Problem 63: let Q. a number of Y's which exceed max(Xp ~, • I!l 8' ~) 0

a..) Find the distribution of Q in the general case"

b) Specialize the result in (a) when Ho is true.

c) Find the lindting distribution of Q for case (b) as m~, n ~oo,
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Runs Test (Test No Q 2):

Ret lI' : Mood Chap fl\ ·16

r == no c of runs of X' s or Y' s in t he ordered combined sample.

There are two cases to be considered-that of an even and that of an odd
number of runs.

Even case: The number of arrangements of m X's and of n Yrs that have tl:e
property of giving rise to 2kruns can be found by a simple
generating function device.

Again~ there are two possibilities, i~ell starting with a run of l'S or of
yts, so starting with either, we must multiply the end result by 2 since
the two starts are symmetric.

Starting with the X's, they are divided into k groups, all non-zero. To
find the number of ways of doing this, consider the ccefficient of t m in the
expansion of (t + t 2 + t3 + •• ., )k.

23 k t k k k(t + t + t .;. He) = (l-t) = t (1 .. t)-

== t k ( 1 + kt + (-k) (-k-l) t 2 +
2

The coefficient of t m is found when j =m - k" and

_ fk + m - k - 1) 1 _ (m .. 1)
-m • k)t (k .. I)l - k .. 1

Similarly the number of arrangements of the n Irs into k non-zero groups
is

Therefore" the number of arrangements of X' s and Irs with 2k runs is

2 (~ : i) (~ : i)
The total number of arrangements possible with m XiS and n Its is (m + n)t 0

mt nL
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Therefore:

OOd Case: (r = 2k + 1) For the case w..l1en the number of runs is odd, i oe '),
to determine Pr [r ... 2k + IJ , the argument is similar, but we
start and end with either X or Y (instead of starting with one
end and ending with the other), therefore

E (r) =~ + 1 ;::;:;; 2 N..( Rm + n t'

( ) 2mn (2mn - m - n) 4 2 2
V r = em + n) em + n _ i):;:::::; N,.( ~

Where: N = m + n m = No<. n =N!3 0( + ~ =1

By Sterling's approximation methods, we can show that

lim r - 2N4. is N(O,l)
N~ 00 2..<13 rN

Test: Ho is rejected if r < r
- 0

r 0 can be determined from the left hand tail of the normal

appro:ximation or from tables in

1 0 Swed + Eisenhart, 1943 Annals of Math. Stat.
2 e Siegel, Table F
3 • Dixon + Massey" Table 11

Wilcoxen (Mann-Whitney) Test (Test No o 3):

U = ~ ~
i j

where u
iJ

' ... 1 if X. < Y.
. ~ J

=0 otherwise

If H is true" ~(U) ... ..2 ~ E(uij ) = ~
i j



-137-

For the general case, assume .. Pr [y >X~ = P

= rPr [Y > x IX = x] dF(x)
-co

CD

= ) [1 - G(x)] dF(x)

-00

= E [{I - G(x)} I F(x)]

In this general case E(U) =m n p

E(tf) = ::1 "
~4
i j

+-Z] ~
ijfb

2E(u.. )
~J

B(u.. , u. b)
J.J J.

(1)

mn such terms

m(m-l)n(n-l) such terms

~ +~ ~ 2i E(uJ.'
J
" uaJ·)isla j

+~ 2 ~ .z E(u .. , u b)
ifa jfb ~J a

To evaluate this, we can examine each part separately, e og.:

2(1) E(Uij ) = p

(4) E(Uij " uab) = E(Uij ) E(uab) = p2

(2) E(uij , uib) = Pr)j Xi' Yb JS.:

= ~ Pr [Yj > x, Yb >x I~ = x] dF(x)

-co
00

= ) [1 - G(xll dF(x)

-00

(3 )

(4)

=B[ {I - G(x)} 2 tFJ mn(n-l) such terms

00

(3 ) by similar argument E(uij " uaj ) = ) F2 (y) dG(y)

-00

= E C; (y) IGJ mn (m-l) such terms
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Thus~

V(U) = mnp + mn(m-l) (n_l)p2+ mn (n-l) E [(1_G)21 FJ

+ mn(m-l) E [; IG] - m
2n

2
p2

, Exercise: If H is true" verify that E(F2) =E(l _ G)2 == ~

and then Var(U) == IT (m + n + 1)

Mann-Whitney in their further work on Wilcoxen's test proved that

/~ (min+l)

formula to get all the moments of the distribution of U" then observing
that the limits of the moments" as m -+ (x)" n -7 (X) were the moments of
the normal distribution.

mn
U -2

is AN(O,l). This they found by discovering a recursion

U -- may be used for ane-sided or two-sided tests.

-- the most complete tables are given by Hodges + Fix, Annals of
Math. Stat." 1955.

Problem 64:

Take 10 observations of (a) X which is N(O,l) and

(b) Y which is N(l"l)

Apply each of the fi ve tests to the data to obtain tests for

H • F =Go·

Problem 65:

let a1o' a2, IOU' ~-l be fixed points o

let Xl' ~" n., Xm, Y1o' Y2" u., Yn be independent observations from
F(x), G(y).

Define: zi =Fm(ai ) - Gn(ai )

(a) Find E(Z), Var (Z) in general and for the case F == G.

denote: F(a.) =f
J. i
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(b) Find E(Z), Var(Z) for the case when

F(u) =u G(u) =0

"'_ 1 + u - 1 ... b
- 1 - 215 b S. u .s:. l-b

=1 l-b <.. u <1

In this problem let ai = ~

(c) Assuming Z is AN, is it consistent for alternatives of the
form of G in (b).

-- - - - - - - - - - -- --- -- -- - ~ -- ... _-------
KoJ.mogorov-8mirnov Test (Test No.4):

Our basic sample (X X X X Y Y y X Y Y) could be expressed graphically in
two ways:

t
I

I.r-
x

Y (5,5)

Y

X

y

Y
(b)

(0,0) ,.'"'-----~~-----

i.e., the sample could be plotted as
a two-dimensi ona1 random walk reaching
the point (5,5)--reject if the walk
strays beyond a line parallel to the
45

0 line"

I
I

L!.
'I
I

~--.J' Gn(y)

if

Fm(x)
-roj-1,-,_ ..........

I
I

l~:

I
I

~>

i
~I
I
I

(a)

/

/

Asymptotic distributions of D , if H is true:ron

lim

m,n --7

1(z) has been tabled in the Annals of Math. Stat., 1948.
+ +

Also" D- have the same limiting distribution as D- (one-sample
mn n

statistic) with the normalization 1m: (see p. 127 )
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Test: Reject H if D )' d.- . ron

Van der Waerden's X-test (Test NO e 5):

where

u

¢ (~) =...L. (
.;rn)

-00

2
e-t /2 dt

N

X is AN(O, :1 Q) where Q = j ~
2 ir (N+1) N =m + n

i=l

Example: XXXXyyYXyy

It = 1 2 3 4 8
J.

RX = 1 2 3 4 8i e09, 018, .27, 036, 073=
111+1 11 11 11 11 11

using normal deviate tables

~f (111+1) = z .09 z .18

-.60,

For determining the variance of X, tables of ~ have been gi van by
Van der Waerden in an appendix to his text.

-- - - - - - - - - -- - --- - - - ---- - -- - - -- - - - ---
Theorem 32 (Pitman's Theorem on A.R.E.):

Assume: Tn' T1i are A. N. Statistics

n ' n
.!. L is a subset of ..! L indexed by p such that

when H is true p = 0"

Let the sequence of p'S tends to e, i.e., P1 P2 •• " Pn --+ O.
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Test: T -- reject H if Tn > t n.,(

T -- reject H if Tl!- >

Assumptions:

(1) -dd Ep (T ) > 0
.p n

d Ep (T ) I p=O
(2) lim ~ 7 n. = cpm" CJo

J.'f l{P =-
n rn

d
Ep (Tn) Iere p = p

(3) lim n =1d
Ep (Tn) I p = 0n",,"*oo -dp

CJp (T)
lJ"l n 1

(4) lim CJ;rr;J- =
n-1'OO

Theorem: Under these regularity conditions, the limiting power of the T•.• . n

test for alternatives p =..!. as n ~ 00 is 1 - ~ (zO'( - kc).n{r1
~.

The A.R.E. of T:~:' to ~~ is
"l!

= (c*)2 = lim

n-7oo
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Pr Tn - EO (Tn) > tn:< EO ~J. J= ..<
0"0 0"0

For large n, since T is asymptotically normal, t n.,( = z.,(O"O + EO(Tn)

lim
n~co

lim

n..-?oo

Pr [Reject H I Pn] =

=lim
n-1oo

0"

(...9...) = Z - kc
0" .,(

Pn

0"0
from assumption 4, as n~ 00, (_..) ~ 1

0"
Pn

using a Taylor series expansion:

o < pI < p.n n

Therefore: lim

n -1 00

= - kc

prlReject Hr P~ = 1 - ¢ (z.. - kc)x-'"

By a similar argument, the limiting power of the Tll- test is .

where c~l- = lim

n-j 00

d E (Toll-) IP = 0
- P ndp

.., '"'«OS
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We want to determine sequences {nl ~ , fn11 such that 1 - ¢ (Zl_..< - kc) =-

1 - ¢ (Zl_..< - k*ci~) mich means that kc =k*c*. Also" for the two sequences

k k*to be the same p =p* or --- =--- 0

n n y'ii1 0i¥
Thus we can determine the equality of the following ratios:

The AeR.E. of T to T* is given by any of these ratios, or as stated in the
theorem:

2

(

C' 2 Coa2).(~ Ep (Tn) Ip =0 )
AeR.E. = -r- = lim d

c , ) n ...., CD ~ dp Ff' (Tjt) Ip • 0

Example: Obtaining the A.R.E. for the Wilcoxen test versus the normal
mean test, i.e e

U versus Z = I-X which is asymptotically equivalent to the

two-sample t-test e

X and Y have d.t. F(x) under Hoe

X has def. F(x), Y has d.f. F(x -IJ,) under HI.

In both cases the variance = i 8'

For vfilcoxen' s test:
co

p • Pr [Y > X] • ) [1 - G(x) ] <IF(x)

- co

• ~ [1 - F(x -101)] rex) dx

-h>

f (x - IJ,) t (x) dx

-00
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E(U) = mnp ~ E(u) = mn
IJ.=O

2
f (x) dx

Var (U)

E(Z) =

_ mn(m + n + 1)
- 12

1x dF(x - IJ,J - Xx dF(x) =

crV/ .! + !n m

dE(Z) =
dIJ.

1

~/1+1vI ii iii

= 1

~
in

(J -mn

Var (Z) == 1

Therefore, the ADR.E e of U to Z is

200

) f2 (x)
-00

1 I ron
(] y' iii-+n

I-mn<m ; n+ 1) ).oo\! 12
n~

which reduces to:

A.R.E. (U to Z) =12 ;. [

Thus we can compare U and Z for any f (x) whatsoever.

2 2 fFor ins tance, if f (x) =-L e-x /2cr then f2 (x) dx =~
. Il1tcr 2no-

using the transformation

1 .1
0 ........... 0 -

V2n .j2
~ e-l /2

dy

-00

= 12i =1= 955~ .
4ncf" n

=

and 12

1

2cr/fl
00 2 2

J [ ) f (x) dxJ =

-00

12i



All of which says that the A.R.E. of the Wilcoxen test to the Normal
(two-sample) test" if the underlying populations are normal, and we are
testing IIs1ippage of the mean" is 31n.

Problem 66:

(a) Evaluate the A.R..E. of U and Z when

(1) f(x) =1 a~ x ~ 1" i.e,

F(x) =x a < x < 1

F(x - j.l.) =x - j.l. IJ. <x ~ 1 + IJ.

(2) f(x) =e-x a <x <CD

(b) Find an f(x) such that the A.RIlE. of U to Z is· + co ~

Remark; It has been shown that the A.ReE. of U to Z in this case" i.e e

testing slippage" is always > e864. - Hodges and Lehmen, Annals
of Math" Stat .. , 1955. -

Robustnes s of a test

test when the various

AeRoE. of test to Z
(testi~ for slippage)

2/n
Test

1. Median

2. Runs

3. U

4. K-S

5. X

a
3/n

???

1

Consistency

yes, if the median of Fa F
median of Fl
consistent for all Fa =Fl
yes" if the median of F ,.a
median of F

l
consistent for all Fa = Fl
yes, if the median of Fa f
median of F1

(as propounded by Box) refers to the behavior of a

assumpti ons made .for the validity of the test are

not fulfilled.

Type 1 error - P.r [reject H when true under the assumptions]

Power - P.r [reject H when false under theassumptionsl

A test is sa:.d to be robust if Pr [reject H when true if assumptions are

not fulfilled] remains close to ..4 regardless of the assumptions.

Note: the Z-test, or two-tailed t-test, is robust.

The proponents of distribution-free statistics argue that the disadvantage

of t,he Z-testis that the power may slip if the as sumpti ons (of normalcy, etc)

are not satisfied.
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1. Median Tests
2. X 2_Test with arbitrary groupings
3. Kruskal-Wallis Rank Order Test
4. Kolmogorov-Smirnov T,ype Tests

samples: 1.

2.

· . .
· . .

N=
k
}"n.
J~ J

k. ~l \2 • • .
~~

1. Median Test is made by setting up a 2xk: table:

sample 1 2 i ./ k... .....
Above mi N/2

Below ni - m. N/2
J.

nl n
2 n. ... nk

N
J.

Use

Where mi = the number of observations in sample i above the median

of the combined sample.

a x2.test of the null hypothesis with the expected values =n./2 when N
J.

2is even, and X with k-l d.f. under the null hypothesis

that the k samples all came from the same distribution.

2. x2.Test:

Being given or arbitrarily choosing groups Aj (a j < X ~ a j +l ) define nij =

the number of X's in sample i that fall in A.•
J

Under the null hypothesis Pr[Xfalls in A. J =p. independently of i.
.. • J J

This can 'be tested by x2 in the usual manner -- as an rxk: test of homogeniety,

where x2 has (r-l)(k-l) d.f.
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12
H =: N(I~H)

where Ri = sum of the ranks of sample i taken within the combined sample

ii =: Ri/ni

H is asymptotically distributed as X2 with k-l d.f.

ref: March 1959 JASA for small sample approximations.

Problem 67: What does H reduce, to when k = 21

Prove your answer.

!to K-S Type _Tests:

Would involve drawing a step-function for each sample on the same graph.
Unfortunately nothing is now known about the distributions.

ref: Kefer, Annals of Math. Stat., article to be published probably in 1959.

Consistenc"I:

The Median and H are consistent against all alternatives if at least one of
the sub-group medians differs from the others.

A.R.E. :

A.R.E. for slippage alternatives:

median test against the standard ANOVA test

H test against the standard ANOVA test

2/rr

3/rr

where the underlying distribution is normal.

If the underlying distribution is rectangular, then the A.R.E.fs become:

median against ANOVA 1/3

H against ANOVA 1



't.-

.. 148 -

CRAnER VI

TESTING OF HYPGrHESES -- PARAMETRIC THEORY - POWER

Refsg Cramer" ch. 35
Kendall" vol 0 2" chs. 26-27
Lehmann" IlTheory of· Testing Bypotheses,lI, U. of Cale Bookstore

(notes-by C. Blyth)
Fraser" IINonparametric Methods in Statisticsll"ch. 5

1. Generalities

-- usually the XIS are independent with density f(x, 9), the density having a
specified parametric form with one or more unknOwnparameters.

For the parameter space.fl HO' Q e CJo ~. ~ e '--\

Recall that ¢ (~) is a test function of size 0< such that

=k

==0

reject H with probability 1

reject H with probability k

. do not reject H (accept H)

where E [(¢) I ~ e Wo] ~-<

Power function' ~¢ (Q) ~ E [¢ I ~J
Ref 8 Defs" 33..38 in chapter 512

-- '\}

Def'll ~: ¢* is a unif'ormly most powerful. (uom.. p.) test of size ""-, if ¢ being an.
. other size cI.. test

2. Probability Ratio T~

Neyman-Pearson Theorem,

X is a continuous random variable with density f(x, 9)0

HOi 9 == 9
0

(simple ~pothesis)• Assume!

Assumes

Hlll 9 == 91
(simple alternative)

f(x, 90 ) > OJ f(x" Ql) > 0 for the same set So

f(x" 91)
is a continuous random variable 0f{x, QoJ
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Theorem 33 (Neyman-Pearson):

The most powerful test of HO against ~ is given by ¢*(x) defined as follows~

¢*(x) a 1

- 0 elsewhere

where k can be chosen so that ¢it- is of size ..<.

If the test ¢* is in~ependent of Q1 for Q1 &GJ~\hen ¢* is the u.mopo test of HO

against Hl : Q1 &~ 0

Remark:· This is what has been called the probability ratio test, since Neyman.-,
Pearson originally expressed the theorem that

k I----+--~--__~--~----

Proof:-

ltl To show there is a required k that makes ¢-:l- of size ..<

define: ..<{k) = Pr [£1 (x) :.> k , X has density f
o
l

f'O{x) IJ
-«o) ., 1 '-'(00) == 0

£1
since r: is a continuous random variable, 1 - ~(k)$ which is the d.£~ of

o
this random variable, is a continuous function and is monotone non-decreasing,ll

hence for some k f we must have -«k f ) ==-<.
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2. To show that ¢* is uomopo

Let ¢ be any other test of size ~.

We want to ShO'!l'l that g

j/(x) t(x, !ll) dx ~Y(x) t(x, !ll) dx

Consider! ) [(x) - lI(x)] [t(x,~) - k t(x, 90)] dx ~ 0

That this integral is 3 °follows since

when f l - k f
O

>0" then'!t =: 1.9 and rf! ... ¢ ~O

when f - k f ~ Os then r =.0" and ff .. ¢ ~O

Expanding this integral we get8

)1 tl dx - flltl dx - k [ r1to dx - S¢ to dx1;? 0

but l!f f O dx ::&. j¢ f O dx == '" ... the size condition

Therefore; j¢* f l dx ~5¢ f 1 dx

and r is u"mQpO

Example Ii 2
a known

f ... ~l_
1 j2n' a

I\~ IJ.=~> 0

~ (Xi '"' ~)2
..,

2&2
e 1f O I:" -- e

J2n'a
f 1

Reject Ho when T > k
.LO

or

e

~ ~ 2 ~ 2
~X. - 2u.. .:::JX. "" nu.. .. ~Xi

l. .' J. J. ".L ,

2a'2 > k
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2 2
(In k) 20' + nlJ:t.
-

To satisfy the size condition, K a Zl-..Er,Pl) (which is independent of IJ:LJ

If Ho is true, X is NCO, ~) Pr[ X >zl....<l. =0;"<
aJ,pr J

Remark: If the most powerful test of HO against H:J.. Q = Q1 is independent of Ql
for some family~" then the probability ratio test, ¢*~ is u$m.Pe for

He' Q =: QO against~. Q 6~t

Therefore" X> zl_..< .fn is u.m()p. for HO against 11.: j,l. '> 0",

For Hoa IJ.. 0 against ~. It'- < 0 the uOm0p. test is X< zl-'. J;

There can be no u~m9P. test for this problem since the u.m.p. tests for

l.J. <0 and l.J. >0 differ.

uQom~po here& X< K' u.m.p, hereg X> K
, +\ ~4 --._---

'j' °
.'\ l.J.1

Problem 68: Xl' X2" ••• , Xn are independently distributed with density

f(x.) = Q e-Qx x '> °

(1) Find the u"m.p~ test explicitly (i"e., find the distribution of the

test statistic) c>

(2) Write down the power function in terms of a familiar tabulation.
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flex)

fo(X)

If this ratio is not a continuous random variable, then .J..

may be discontinuous, so that .t.. (k) lOt ..< has no solutiono

nomal situations where one can't get ..< lit .05 exactly.)

f in this case is defined to bee

(k) =Pr(~>~
(eogo small bi-

=1

=0

flex)
when i'O(x) >k

flex)
when l' (x.) < k

o

flex)
I: a when r (x) =: k where e is chosen so that the size

o of the test comes out as .,(

~(k).

.t.(k-ltQ)
I

'----
(k)

(k .. 0)

Problem 69g For £1 let 8
1

be the set where f
l
~ o.

For fa let So be the set where fa > 0(1

(1) If So and Sl are not coincident then there may be no test of size ..<.

(2). If there is no test of size ..< given by the Neyman-Pearson Lemma

(Theorem 33) there is a test of size <.,( with power =1 0

e Hypotheses noted thus far' have been simple hypotheses(l If Cy has more tha~ one point:

the hypothesis is called a composite hypothesis, eGg. 3

Xl' X2, eGO, Xn are.NID (~, cr2)



13(Q) = Pr[rejeot H]

for HO: I-.t. =: 0 against

I1.1 I-.t. >0

1

,,(..
~- ---

Testg

Extension of the u.m(>pe test to oomposite h;y'potheses by means of a "most unfavorable

distribution of @"'o

density of X under H
O

plus the

additional information.
~(x) -=

Let A (Q) be a distribution of Gover w.·

Then X has a density f (x, i).

~ £(x, Q) d :\(iI)

w
NV

Let Hobet X has density h4: (x) I1.$ Q = Ql
i~e~1 the density of X is £(x~ Ql)

Let ~ be the most powerful test of%against ~.

Th~~ 34: If rp~ is of size d.. for the original test" it is mOp$ for this test.

Proo£g Let ¢ be any other test of Ha-

•

¢ (x) f(x, ~) dx ~ -< for all Ii lit W

Then '" ~J[5 ~ (x) £(x, iI) dx1d:\{iI}

Q J iii (x) f J£(x~ iI) d:\(Q}} dx

= ~¢ (x) ~ (G) dx

AA
Thus ¢ is of required size for H ~o

andl ~¢" (x) f(x, Q} dx l r¢ (x) £(x, Q) dx
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ci known

e·

rf' test~ reject 1£ X ';> zl-<...2:- which was found to be uomop. for
rn

H~: (;J. I: 0 against Hl : (../,> O. We know that Pr [rejecting H with

!f I(../, ] ~"CO< for(../, ~ O.

Put A(Q) = 0 '3 <0

-1 Q>O
,/

(ioe&$ concentrate the distribution at a which is the worst spot from

the standpoint of testing or distinguishing)

';fhis makes our composite distributioni

~ (x)" ( :rex. ~) d},(Q) .. :rex, 0)
J 2 ,

so that our problem is back to HO and we have for HO a u.mop" test which

is also a test of the original HO'

One way to get an optimum test in the absense of a u"mop" test is to restrict the-- ---------
class ·of tests to be considered and look for probabilH,y ratio test for restricted

class. Such restrictions area

1<)

Defo 42~..
2/j1

Def. 43g

3e

Unbiasedness

rJ is an unbiased test if l3¢ (Q) ~ co< for all G e ~

Similarity

¢is a similar test if Eg ( rJ) =..< for all! e Wo
Invarianoe

X has density f{x, ~)

G :=, a family of transformations of the sample space of X onto itself\)

eogo a g(x) =: cx. change of scale

= x + d translation of axes

Let g(X) have density f [ x, g(Q) ] g(Q) a JL
g is a transformation of the parameter space induced by the transfor~

mation of the sample space.
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if X is N(~" (l) oX is N(0 j,J." 0
20'2 )

g(~.f (12) lit OJ,.L,, 0
20'2

if X is N(~, 0'2) X ... d is N(~ of!- d, (12)

g(~,\1 (12) lit ~ + d" ci
IT we have HOi ~ e wand H.J.I ~ an. w then a transformation in

duced by g leaves the problem invariant if

i(Q} 8: (,.J when Q 8: UJ

i(i) 8: n...~ _when Q oS n .. w

0'2) H08 ~. 0Example:

-----+-----1-/.
under HO g(X) is N(O, 0

20'2)

Hl g(X) is N(~, 0
20'2)

g(X) .. oX 0 > 0

g(j,.L1 (12) .. oj,J., 020'2

W is the (12 axis

whioh doesn't change eu

Def.44t A test, ,s(x)" is invariant under a transformation g (for whieh the

oorrespo'nding g leaves the problem invariant) if W[g(x)] lit ~(x)

l~ l~
X n-"i X. ii ~cXiExample t t. =:. J. • (under g a ex) ---"':::-_~r-J"I\'

81m (] (Xi .. f.)2)~2 (~~i_Iq.)~\1/2.
. (n-l) n 1 (n-l) n )

• ii~:'X' . lit t

~(Xj-f)2J 2
(n-l.) n

Def* 45: If among all unbiased (or similar or invariant) tests there is a rjf
which is uom.pol then ~ is u.m.p9u. (or u.m~poso or u.m.p.i.).
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Eniformly Most Powerful Unbiased (uom.pou,) Tests:

Single parameter Q HOi Q =: QO which is inside an open interval
of the parameter space.

"f" is differentiable with respect to ~G

Remarks If ¢ is unbiased, then

=: 0

Proof: ~~, (iO) 6.,(

~¢ .(~) >-t for Q ~ ~O

Hence ~¢ (Q) has a minimum at ~ =: QO

~_ (Q) a ~_ (x) f (x, Q) dx

~¢ (Q) is differentiable with respect to Q

and henoe d~¢ (Q) ..I Ill: 0
'aQ G .... Q

O

Notes tor unbiase~~-j~La..l:t~.!'-1?:~~~yes._mu~!:?.~.~:w.Q~~!c.!ed(otherwise the power curve
has no minimum 0 "

Assuming that 5f(x, Q) dx is differentiable under the integral sign, and with

He: "Q., 90 11.$ Q • @l (two-sided) we can get.

Theorem 35:. If there exist ~, k2 so that

( I: 1 when f(x, Ql) >kl f(x" i o) + k2 ~~ "I
Q =: ~O

I: 0 elsewhere

ProofS

is of size ..,{for HO and unbiased, then it is mope for alternatives

Ql e If the test does not depend on G1 it is uom.po u. for \ U i 6 GJ.

(refS Cramer p.532)

Let ¢ be any other unbiased testo

Then Sfu fa dx ='" = )_ fa dx - - Bi~ conditions

(w: ~§"' .dx = a = (- ~ I. dx - unbias~dnessJ' Q '=' 90 J' Q = Qo conditJ.ons
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We want to show that. ~~ f 1 dx ~ )¢ f 1 dx

)Cf -lI) f 1dx ~ rCf - ¢) [f1 - k:J. f O - k2 ~ IQ ~ QJdx~O

This integrand must always be ~ 0

since if f 1 - kJ. f 0 - k2 ~i I ~ 0 1. lit #} >, ¢
. i = QO

~O o=f~ti

Thus the desired relationship always, holds o

Comment: It: you are trying to find abounded function" a ~ ¢ ~ b which max~mizes

)¢ f dx subject to side conditionsJ f¢ f i dx = ci i = 1,,2, "",9 n;

then this maximum will be given by choosing,

• = a otherwise

where k. are chosen to
J.

satisfy the n side conditil

Exampleg 2
a known

-

-1

Consider a particular alternative lJ:Le

~ (Xi·~)2
·2 -

2a

,,
!.

~,
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If we can find proper k'a, the u.m.p.u. test is~

Reject H if .

..

(derivative evaluated at ~ : 0)

e

~x.
~. J.--rcr e

2
nlJ:L

•. - 2
2a ~ k +

r 1

~l

n ~2

k ' n 2a
2

=T e
2 a

2
n~

2
k' 2a-""1 =: ewhere,

\
J \

I \
- -.- --.+

I
I
I
I
I","
'"

ing type of graph~

n~

-:r-!
v ....... W ,-

e ? kJ. +. k2 x

If we set Yl = the left hand side of this inequality" Y2 = the right hand side~

and restrict ourselves to the cases where '1.. ~ 0; then we could get the follo~

I It ,It
(Y2" Y2, Y2 "Y2 are possible Y2 lines)

The test says to reject H if x< a or x> b where a may be - CD

b may be + 00

[
. I II Iff

Y2 gives a two-tailed test (finite a" b) ..- Y2' Y2 "Y2 all give one-tailed

tests (only one interseotion with Yl) ]

___-==-_......:"' ..,-__-l- i
'"

i 41',

•

,
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Requiring that the test be of size 0< specifies thatll

Pr[a<i<bJ ... l.-.,{

2

)
-me- 20'2

i.e." rn di =1. .. ..<.--'.-- e
,r2n 0'

Also, the unbiasedness condition requires that:

)
n(i - lJ.:L)2

00
n(x - lJ.:L)2

d ( rn - 2ci ): 2cidX+ rn ..
-0dPl f2io; e" dx

$0' '2=0-co

)
n(x _ ~)2

.. - 2(i'- orl 1. .. _rn- e dX =0
d~ -{2ncr

lJ.:L It 0

b ..2

~
nx..
2r:irn ..

nx di ==0
[2 ]

or - e ill

~,f2na
a

The function under the integral in [2] is an odd function" so that the integral

is zero only if a == - b (i.e", if a, bare symetrical).

so that 111e can determine a asg..

[1] thus becomesg
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Thus the test is:

Reject Hii' 1xI >
and since it is independent of IJ.r it is U1>m.p"u.

Problem 70.

Find the u~m.p.uo test for HO•

note~ ~ (Xi - ~)2 is sufficient for cr2•

Theorem 36e If ! is sufficient for ~ then given any test ¢ (~) there exists a

test 'Y (~O with the same power function. Hence in looking for

optimum tests, only functions of '£. need be considered.

Proof: define Y(:£) = E [¢. (o!) ( TJ

by definition

Thus8

which is independent of Q
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Invariant Tests-
Refs: Lehmann" "Notes on Testing Hypotheses"" cho 4

Fraser" "Non Parametric Methods in Statistics", ch. 2

We have8 observations. I parameter. Q density& f(~ Q)

Transformations:
t

X ... g(x) ._ X t has density f [!., g (Q)]

ioeo, there is an induced transformation on the parameter space:

Gg the group of transformations that leave the problem invariant, i.e.

- (Q) $, Wo if Q eg °0
"" (f}) .~ if ~ 8 ~lg 8

Examplee 2
Xl' X2, " ... "', In are NlD «(.I., (J )

t
X =OX + d

g(x) :0 CX 0\+- d

Xl is NID (C(.l. + d, c2(J2)

g «(.I., (J2) :(0 (.I. oft- d, c2(J2)

11.~ ~ >0

If we set d ... 0 and c >0, then the problem is invariant, and we have.

t
X ... g(x) ... ex

2.. '"Sufficient statistics for ~, cr are X and S ...~(X. ~ X)2
J.

Under the transformation:
xta-rs is invariant (the inclusion of constants does

not affect invariance).

(discussion to be continued after def. 46 and theorem 370)

Def. 46t m(x) is a maximal invariant function under a group of transformations if

1) m[g(x}] =m(x)

2) m(xl )'" m(x2) > there is a g such that g(x2) = Xl of vice verB
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The necessary and sufficient condition that the test function ¢ (~)

be invariant under G is that it depend only on m<.~).

Proof~ 1) ¢ (2£) I: Y(m(~) ]

rJ [g(~)] = 'ftm~(!)]1 = "r[m(~.>J = ¢(x)
, -

2) Suppose that ¢ (!) is invariant, We have to show that ¢ (?E.) is

a function of m<.~~).

Given ¢ [g(~) J = ¢ (!)

show m(x1 ) ~ m(x2) > ¢ (~) :: ¢ (x2)
t ,

m(x1 ) = m(x2) > for some g, call it g , g (x2) == xl

thusg ¢ (~) == ¢ [g t (x
2

) J I:' ¢ (x
2

) which is what we set out

to prove.

Returning to the IIIStudentD problema

It remains to show that t ==.1. is maximal invariant (l

JS
X ""I

Setting t :. -" t t :c.L.- we have to show that given t = t I I we can findrs J'Si
... i , _)

g such that X , S : g(Xi S •

-,
Consider..!.. and call this ratio "a""

X

t 2
or S = a S

But this is just one of the members of the original family of transformations so

t is maximal invariant.

Hence the problem is reduced to finding the u.mGp. test based on t.

2
In summary. Xl' X2.9 eo., Xn are NID (~.? Cf )

H 3'0 /lk=0

/
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1)· Reduce by using sufficient statistics, X, SW

2) Impose the invariance conditions under the transformation x' at CX, C :> 0.

This reduces the problem to tests based on t.

3) Find the distribution of t under fb and H1 and apply Theorem 33 (Probabilit:.

Ratio Test). -

-------------------------------------------.
Distribution of Non-Central t{t-distribution under H)a

Refs~ Neyman -Ii- To:tmrska, jASA 1936, pp. 318-326 (tables for the one-sided case)
Welcl?- + Johnson; Biometrika, 1940, PP. 362-389
Resnikoff + Lieberman, "Tables of the Non-Central t-distribution ll , Stanford

University Press, 1957

.'C 5 the- non-central t-variable, is defined bya

where I z is N(O, 1) .

2
w is X with f d.f~

8 is a constant >°
The usual t-variab1e is

t ='C CO, f)

i
= rn CT

hE2

-r-
(j (n-1)

when Ho is true

Jil (X-/.L:1.)
If ~ is true, lJ. lit 11. and (] . is N(O" 1)
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The joint density of z and w is,

1
f w
2' -1 - '2

w e - Q) <.Z <,co

w ~O

To get the density of 't" (the non-central t) we make the transformatiom

't" = _e +8

rr
Thuss

co 1/fU 't" _ 8)2 !:! _ ~
~ e 2r rr u 2 e 2 du

o

To get the distribution of the usual t, put 8 =0 O.

The integral in f ('t" ) become s

Ju £;1 - \ - ~(l +1) du

which can be readily evaluated recalling that

~ e-ax xb-1 dx

o

Thus,

ref: Cramer, p.238

1 + t
T
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The u.m.p.i. test is to reject EO if &

ratio

kl-------~

Note. This ratio is a monotone increasing function of 't'. (The simplest
proof of the required monotonisity is given by Kruskal" Annals of Math
Stat" 1954, pp. 162-30)

R('t')

Since t >to when the above ratio> k" the probability ratio test thus reduces to:

Reject Ho when t > to

Final result is that the m.p.io test for Hli ~ =~ > ~o is.

Reject Ho when t ~ fl: > t 1-< ("..1)

This is independent of '1. and hence is u..m.p.i. for EO against Hlo

Example. Xl" X2, 000" Xmare NID (~" el)

Yl" Y2" Yn are NID 2
i~ u V\ k \;"-0 W \l\

000, (~2' (J )

Sufficient statistics for the three parameters are:

s ==p

~ (Xi - X)2 +~ (Y
i

- 'Y)2

m+n...2



Consider. X'=a.X+b

yt : oY + d

_ 166 ..

X i ( 2 2)
t S N a ~ + b, a a

yt is N(c ~2 + d, c2a2)

Invariance requires that,

a~~b=o~+d

a~ +b>o ~2 +d

when ~ =- j.L.2 for all j.L.

The first line requires that. b· dJ a=-o

The seoond line adds the requirementthat~

Thereforec Xi' =- aX + b, yt == aY oft b, a ')P 0 leaves the problem invariant.

To be provent

is a maximal invariant statistic.

t =- t t===} there exists an a, b such that X'= aX + b" yt =- aY -11 b

=- x. - ", ?
S P

define:

o(x .. i) =: j( t .. !I

now let XI .. eX = d

o(x ... Y) = ef ... d - ! •

.. ei l:<o d .. il

or~ 'if =- of + d

Xf == eX ... d so that the same transformation has been applied to

'X and Yo

T~e u.m.pe test invariant under the family of transformations,

iSI
Xt =- aX ... b, Y': aY + b" a "> 0

Rejeet II if
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Under the alternative ~ - 1J.2 I: d" thus

(!..:-X - d) "'" !!
cr cr

s JH.... 1
~ mT Ii

cr

has a non-central t distribution with parameters [ d •

crJl:+!. m n

Exercise. d
- = 0.8cr .( == 0.05

Find m" n required to have the power '? ,,90 (put m = n)~

Try to find m, n also by normal approximation.

Answer: dof 0 =0 2(n-l) non-centrality parameter =p

n-
30
28
27
25

For the power to exceed e90" from the Neyman-Tokarska tables we need:

p == 2.99 at dGf o =30

P ., 2.93 at d.,f o =00

Thus, by rough interpolation, the minimum size required is n == m • 28.

From the normal approximation, n = 26.7 or 27

Problem 7lg
Xl' X2, X are NJD 2

0"00, (~, cr1 )m
. 2

Yl~ Y2, "Ill"" Yn are NJD (1J.2" cr2 )

HO~
2 2 1\$ 2 2crl == cr2 crl >- cr2

a) Find the group of transformations leaving HO invariant.

b) Find sufficient statistics for the parameterso

c) Find the maximum invariant function.

d) Find the u.m.p.i. test.
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e) Find the u~m~p.u.i. test (ioe., set down conditions to get the rejection

region as in problem 70) forI HO' cr1
2 = r:J2

2 against H~U (J12 rJ· cr
2
2•

f) Show that the usual test which is to reject if F '> Fl _..<. (m-l, n-l) where:

s 2 1:0 ~ (Xi" x)2

x m-l
2
~ (Y... !)

z .~
y 1= n-l

is a test of size 2..< with lIequaltail probabilities""

g) Plot the power of the test of (r) for m = n = 10 with 2..<. =0.05.

(Include the points cr1
2/r:J2

2 =0.5, 0.8, 1.25, 1.5s 2~0)~

Tests for Variances:

are sufficient for IJ., cr
2~(X. - xl

X J._
., n-l

~ (Xi .. /.1-)2 is sufficient for cr
2•

~ (Xi ~ 1J.)2 )t K -- u"mopc> for HO against H:t.
~ (Xi - f!.L)

2 < IS. or >K2 -- uemopo u<) for HO against H~.Reject Ho if

ref: problem 70

2) IJ. unknown

~) IJ. known

Reject Ba it

Problem is invariant under translation, i.e ••

XI = X -It a

To find a maximum invariant function

f(X', s,2) =f(X + a, s2) = f(X, s2) must hold for all a.

This says that f(X, s2) is independent of X. Thus invariant functions are func

tions of i only.
2

Hence, since (n-l~ s is ,,2 with (n-l) d~f. when H
O

is true, the problem .is
(j

exactly that of (1) with the d~fo reduced by 1 (i~eo, n-l vice n).
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Summary of No~alTests:

Xl~ X2' oe", Xm are NID

Yp Y
2
m ...~ Yn are NID

XiS" Y's are independent

u.m.p.

xr = X + a

Xf = eX
e arbitrary

Xf = cX e) a

Classification Invariant under
(for H against the transformations
given alternativa) of the fom

Altel'native
Hypothesis Test: Reject H if

1. Ha: ~ &It a (~ known)

HI: - O"x
~ )0 x )zl -

-..< rm
O"x

Hi: ~ :f 0 I-I -
IX )Zl_~1m

2 fl HO: ~x = ""0 ( O"~ unknown )

" HI: ""x > ""0 t ) t 1_..<

H' " ""x I: ""0 It I>tl~I"
2

3. Ha: 0"2 = i ("" known )x 0

0"2 2 ~ 2 2HI: >' 0"0 (Xi .. ",,) >X1-..< (m)x

2 2 --:1 2
Hr: O"x F 0"0 ~ (Xi ;.. ",,) < Kl or >K21

(for equations for K1' K2
see problem 7a)

4e HO: 2 2
("" unknown)0" = 0"

X 0

HI: O"~ ) og ~ - 2 2(Xi - X) >X1-..<(m-l)

HI: O"~ F O"g ~ (Xi - j{)2( Kl or >1<2

(for K
l
, K

2
see problem

70 - use m-l d.f.)

Xt = X -I- a



Alternative
Hypothesis

H
O

: lJ.x :: lJ.y
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Test: Re ject H if

01assification Invariant under
(for H against the transformations
given a1ternativa) of the form

x' = X + a
I'=I+a

x' = X + a
I' :: Y + a

a. x, 'f, s~ = m+n-2
2

are sufficient for j.Lx'~~O'

x-f
s/!.+!p m n

IX- y I
s J!":Tp(lii-r"ii

>tl_~(m+n-2)
2

x' = aX + b
yl =aY + b

Xl :: aX + b
It :: aY + b

irix y X, f, s~J s; are sufficient statistics far IJ.x' ~, ~, 0';.
This is the classical Fisher-Behrens Prob1em--no exact test
is known. The approximations thus far have tried to keep the
size of the test under control, and very little attention has
been paid to the power. The approximation used is:

X-I
s2 i
2:. + _l
m n

t' is approximately distributed as t with
modified daf .. (i.e., modifications by:
Smith-Satterthwaite, Cochran-Oox, and
Dixon-Massey)

Ref: Anderson and Bancroft, p. 80.

Tables far t I in the one-sided case (-< = 0.05, 0 ..01) have been
given by Aspen in Biometrika, 1949.



If m = n
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X-I

t f = -:;:::::::::;;;:

I i + s2
x Y

V n

X-I

Empirical results:

based on 1000 samples" cri = 1" cr~ = 4 :

significance level
m =n =15

actual rejections

rejections based pn 28 d.!.

5% 1%
4.9% 1.1%

m=n=5
significance level

actual rejections

5% 1%
6.4% 1.8%

rejections based on 8 d.f.

In re power in the Fisher-Behrens problem:

Ref: Gronow; Biometrika, 1951" pp. 252-256

He gives a note on the power of the. U and the t tests for
the 2 sample problems with unequal variances e

vfith nl f n2" cri f cr~, the U test stays fairly close to ..(

in size, whereas the t-test jumps wildly ani a comparison
of the power becomes very difficult.



XI = aX + b
yl = (±a)Y+c

XI = aX .,.. b
yl = (:ta)Y+c

Classification Invariant under
(for H against the transformations
g!!~m alternative) of the form

-172-

~ known)

Test: Reject H if
Alternative
Hypothesis

H'cl=iO' x y

2 2
Hl : (j > (jx y

vJhere Fl' F2 are chosen to satisfy the unbiasedness

conditions as in problem 71.

XI = aX + b
Y t = (ta)Y+c

u ..m.p.i.

Since Fl' F2 depend on complicated equations, we usually use

the test: ~ 2 2 )

Reject HO if max 1-, 1 >Fl~ (m,n or n,m)
·8 s 2y x

d.f. depending on which term is in the numerator.

(lJ.x ' ~y unknown )8"

u.m.p.u,.i. XI = aX + b
yl = (ta)Y+c

Same comments on the determination of Fl and F2 apply as

in No.7" and the same alternative approach is usually

taken (with the appr'opriate modification of d.f.)
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3.. Maximum Likelihood Ratio Tests.

Ha: ~ 8 W 0 ~: Q 8 n - W a

11.=

max f(!I Q)
Q 8 Wa

max f(~ gj
Q 8..0..

Maximum Likelihood Ratio Test is to reject Ha if A <: Aa where Aa is chosen to satisf~

the size conditions.

For small samples in general this procedure may not give reasonable results. For

large samples, as with the mel.e., results are fairly good\t

Remarkc Under suitable regularity conditions -2 ln A is asymptotically distributed
as x2• The degrees of freedom depend upon the number of parameters speci-

fied by the hypothesis, ice", if Q has m components in nand k component-in W a then the dof" in the asymptotic distribution of -2 lnA. (under Ho)
are (m - k).

Proof: See S. S. Wilksi Annals of Math Stat, 1938" or "Hathematical

Statistics" II Princeton University Press

Wald has proven that the ffieloro test is asymptotically most powerful. or asymptoticall

most powerful unbiased testG

Refi A~ Walda Annals of Math Stat, 1943-
Transactions of American Math Society" 1943
(both papers in his collected papers)

Example of m,l.r~ tests...

0
2 unknown

e

2
~ are N(~" 0.)

R.t.8 ~Fa

~ (Xi - ,,)2- 202

Xl" X2" ou"

HaS ~ =a
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~ 2
~X. 2

When H is true" J. is the m.loe. of a "o n

And in general" X"

1

1

e

e

n~X2
i-----

2 ~X 2
i

n~ (X._X)2• __...;;J. _

2~ (X
i
-X)2

.··if

2 ~ (Xi" X)2 (n-I) s2-
An: =- ( ) 2 -.2

~X2 n-l S -it nx
i

2 . 2.-
A

n
1 +~ n )'=-::: n:r 2s

h(~) ::: J n-l (A. -2!n _ 1)1/2

of Ae

can be used if it is a monotone function

/



~ </\o
h(:\) >ho
ltl >to

Reject HO whens
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hf(A) ==-[n-l (~) (X·2/ n _1rl / 2 i\..f/n)-l (~) < 0

Therefore h(~) is a monotone decreasing function of ~o

h('iI.)

Problem 72& Find the m,lor e test for HO: lJ,=O against 1\: I-L > O.

Does it reduce to the u.m.p.i. test?

Problem 73: Xl" X2, 0«>01 Xn are NID(ft./., (i) lJ,J ci unknown

Hog (j (specified) HIg
(j

'> Co-::: C ~ == c1lJ, 0

Find a uem.po io test for HO against ~.

Perform the test where X :: 5J S ::: 12.. 00 =: 1, n II;'; 20

4. General Linear Hypothesis~

assumptions8

Alternative formulationg

X, are NID(lJ""
1. 1.

P

lJ" == ~ a .. ~,
3. j=l 3.J J

i = 1.1/ 2" 00 ~" N

~1" $.0, ~p are unknown parameters

p ~N

rank A ::: (aij ) is p

k = 1,,: 2" eu" s s ~ p
i.eo" s linearly independent

equations in the parameters.

aBs" bes known

We may solve for ~l" 13 2" ClU" 13p in terms of p of the l,J>is and then get as the
assumptions:

N

~ ".ei lJ.i =t 0 .f, ::. 1" 2" u. ~ N..,p
i==l

HO can be written as an additional set of s equations in the lJ.'SI

N

HOtJ ~ C1'... ~, = 0 k -1" 2" GU', S
i=l '10. 3.
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i.e.~ the 2-factor, no interaction modeJ

i =- 1" 2, eo • .t a

ab observations

Parameters are iJI, '"'1." •~., ~a-l' ~l" ... , (3b-l

a ~ b - ~ parameters in all

o ••

0<. • 0a-l . are the a..l equations in the parameters

Lemma:
n

It: ~ a. jY' (i = 1., 2" .. fl, m) are m linearly independent equations in
j=l 1. J

n unknowns (m .c: n) then there exists an equivalent set of equations with

matrix C which is orthogonal" i.e.

n

~ c~. :: 1
j=l l.J

for i =1, 2, o~., m

ProofS 'Refa 11ann, Analysis and Design of Experiments.

given m equations in n unknowns=

, • 0 . " . • • CI



•
.. 1.7'7 ..

The first row in the equivalent set is determined by settingt

\

To get the second row:
t

c2j ::: a2j .. ~lj

~cl·c;. e~cl·a2' .. A~ci,
j J J j J J j J

This = 0 (as required) if A. : ~clja2'
j J

which will hold if the denominator ,. 0 _. but by
virtue of the independence of the original equa
tions the equality can not holdo

For the third row:

~Cl,c3' , =~a3,cl' .. A:L (1) - ~(O)
j J J j J J

This = 0 if A:t =. ~a3 .cl '
j J J

Similarly .~ =~a3jC2j
J

Finally we set:

The completion of the proof follows readily by induction.

-------- ~~-
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In the alternative formulation of the general linear hypothesis~ we had the followin
N-p+a (~ N) linearly independent equations,

N

~ A.ti ~i Ill: 0
i=:~

From the lemma we may assume these form the first N-p+s rows of an orthogonal matrix,
These can be extended to form a complete orthogonal matrix (NxN) -- this is a well i

known matrix algebr~lemma,\l proof is in Cramer or Mann. If we call the complete '
orthogonal matrix ./ '- , we have

'A,ts-" P Vs orthogonalizE

't'ts added to complete
the matrix.

":w
•••
~-p,

Pl N
0..
fJ

PaN

'l;lN

•••
'l;

Np-s,

III ••

o Q "

" <l> •

.0.

.0.

1

~l
•
II..

A "N.p" 1
III Pu

•C)

•

Psl

N

E(Y,e) = ~ 4Di ~1.=1 'CI

=0 by the assumptions

.0 if HO is true

yts are independent normal variables with means as shown and variances ci (an ortho
gonal transformation changes NID variables into other NID variables with the same
varia.nce s) "
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This is the canonical form of the general linear hypothesis.

2
Yi are NID (1,.(.1" a) where lJ.i at: 0

jJ.. =- 0
].

I "

H:t• one or more of these s IJ.i S .;. 0

MeL.R" Test for the canonical form:

1
=- - - e

( {2i1 a)N

m.loe. of the IJ. 's in ware found by setting IJ.. = Y. (i=N-p+s+1" u." N)
]. ].

N-p+s 0
and~2=~ y. 2 "N

1=1 ].

8~1 - N/2e

A =

(~
- N/2e

N-p
~y.2

=(~ri=l ].
N-p+s
~y2
i=~ i

N-p+s

Qr == Q +] y. 2
a i=N-p+~].

2 Q
a'A,N = CJ;

a = absolute minimum (nothing
specified about the hypothes

r =relative minimum
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2
- 'l:9 Q - ~

1'1 r a
A. -1= Q

a

2
X (s)

N;f
Q = ~ y. 2 is

a i=1 J.

Therefore has the F-distribution with parameters (S.ll N-p)

and

~d.2 > 0
N.;fItS - J.

Recall that ~ y.2 is the sum of squares of variables with non-zero means"
i~-~l J. S

hence has a non-central x2..distribution with parameters (s, ~ d. 2}e
i=1 J.

(Q - Q )/s
The ratio of a non-central X2 to a central X2 ia a non-central F~ thus ~r_,...-a__

Qa7N-P
s

under H.. has a non-central F-distribution with parameters (a, N-p.t ~ d. 2).
--~ i=l J.

Thus the problem is solved in terms of the yts (the orthogonalized XiS).

The original problem was:

XiS are NID (~i' a2
)

N

.. 1) ~ )..0' ~i = 0
• i=l ",J.

n

2) ~ Pki jJ.i = 0
i=l

.e = 1" 2" Q ••$ N-p



•
- 181-

HeLoR. test:

defineS Q; =: min ~ (Xi - ~)2 under restrictions (1)

Q; =: min ] (Xi - lJ.i)2 under restrictions (1) and (2)

~ (in .f).) =: (Q~)lJ2

G (in w) ~ (Q r )1/2
r

~
')/2 -N/2'" a e .

"" =- ~n' -Nl""r e

As in the other case,

I ,

Q - Q
this is a monotone decreasing function of r, a

Qa

Recall that under an orthogonal transformation, sums of squares are preserved.
I

Thus: Qa is carried into Qa
t

Qr is carried into Qr

Hence:

and has the same distributions under H
O

(F-distributioj

and under 11. (non-central F).

Problem 74:, X. 'k is N(j.l.", cl)
~J ~J

j.l.•• = ~ + ~i + ~. + (~)i'
~J J J

i =~, 2,
j =1.. 2,

0.0,9 a
b

all ~. = OJ all (-<13) •• =: 0
~ ~J

Find the usual F-test for 1) H
O,

2) %
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Power of the ANOVA test:

Power of the ANOVA test has been tabled by Tang (Statistical Research 11emoirsl Volt\> 2
for ~ =0005, ~ = 0.01 for various values,of.

G
2~JJi2¢ lit --,-

s+.

Tables ing Mann
Kempthorne

11,=

2aO' A

s

== ~ d.
2

k=l 1 ~
N

== ~ ~
k i==l

N

YN-p*k =i~ P ki Xi

s 2 s (N
Q-Q =~y' =~]

r a k=l N-p+k k=l i=l

hence 20'2", is Q - Q with X. replaced by E(X
i

) I: IrA.r a 1 1

Example:

or X"k = f,J. + -<i + ..<. "" 13· -I; (0<[3) •• -I; e" k1J 1 J 1J 1J

]13. "" 0
j J

~ (0<[3) .. "" 0
i 1J

~(~13).. =0
j 1J

Q .. Q ==r a

..<. "" 0
1

under ~,

-<i not all zero

»X l
eo.

E(l. ) = ~ + -<. + 0 + 0
1 • ., 1

E(l ) "" ~
•• C'

E(l. - X ) "" -<.1.. .... 1
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a b n a

hence 20'2",::: ~ ~ ] ..{. 2
R nb ~ .,(. 2

i=l jl:~ k=l 1. i=l 1.

thus ¢

Exercise:

[

~ 2]1/22nb .::J~i

I: 2
20" a

If a I: 3" b = 5 how large should n be so that we can detect

with probability .75 (~ ::: 00 05).

Try n.. calculate ¢, enter the tables and find the power. After successive
trials n will be obtained to give the required power. (daf 0 for the numerato
:0 2,; for the denominator::: ab(n-l) ::. 15{n-l). Verify that n ::: 13.

Randomized blocks;

"0.''
~.. • ~ + J..i oft b.

J.J J

i .. I" 2"
j = 1" 2"

.. e ... a
b

or X,. I:'.~ + "<i + b. + e ..
J.J J J.J

(this is the additional assumption of randomized
blocks)

where 8 ij is N(O, 0'2)

b
j

is N(O, 2
O'b )

and they are independent.

some -1... rj °1. .

Given b." X. are N(~ + ..(. +J 1.. 1.

b

~b,
i=l J
b

2
II> 0' )
""0

a b a

If HO is true" ib X. is N(~ ' .. 0'2)" and ~ ~ {f. - X )2 ~ b ~ (X. _ X )2
1.. 1.'1.'11.... '11.•••= J= 1.=

has a X2-distribution with a-1 dGf. This conditional (on the b,) distribution does
not involve the b j " therefore the unconditional distribution ofJ

a b

~ ~ (X, - X )2 is x2(a_l).
i=l j=~ 1.0

.. •

...
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In general" given b.,
J

~ ~ (X
iJ

. - Xi.... X . + X )2 is X
2

(a-l)(b-l).
i j -J ••

Again we have the same result for the unconditional distribution.

Hence a test of He is based on the statisticB

f t (ili. - il•.>y'a -1

i ~ (X'j~x-.-'"';"'--x-.-It-X-)2-~~(a---~)-(b-"-l)
i j 1 1. .J .~~'

which has the F-distribution with (a-l)" (a-l)(b-l) dof.

If H
O

is false, [b x. is N(IJ.' +$ ..<., ri)e ~ ~(X.... X )2 has a non-central
1" 1 1 0 O'~

X
2-distribuliion with parameter b ~c(i2.9 dot' ~ a-l~

The Power is also calculated as if the b t S were fixed parameterso .

Random model: (Heirarchical Classification or Nested Sampling)

i =~J1 2, 00., a
j = 1.~ 2" .. u, n

2
where the a i are N(O, ?"a ).

ANOVA Table

~ SaiS. E(MS)-
aSs a-I ~ ~(X ....! )2 2 2

a +na
1. CI<ll a

error a(n.,l) ] ~ (Xi {'Xi )2 2a

has a x2.distribution with a(n-I) d.f.
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Since this is conditional on the ai' but independent of

them" it is also the unconditional distribution"

.... unconditional distribution.

e~g., in terms of moment generating functions

j.tb
e

a

n ~ (X. - X )2 is ,,2 with a-l d.f.
i=l J. 1t

Qa

2 2a ·itnaa

He; eTa
2

... a leads to the usual F-test against ~g

8 --:2. 2
a +naa

has an F-distribution with [(a-I), a(n-l)l d 0f.

Eroblem 75~ Xijk 1ll:LJ is N(l';.j' ,i) i =1, 2, fj.~, a.
j = 1., 2, ., .., b
k = 1., 2, 0 •• , n

a) ... l..l. ... ..<.. it b .. where b
ij

are N(O, 2
lJ.ij CTb )

J. J.J

b) =:0 l..l. -I; a. + b .. where bij are N(O, 2
I.kij a

b
)

J. J.J

a. are N(O, CT 2)
J. a

and the a's and b is are independent.

For n = 21 b = 2; a = 5; ~ : 0.05, plot the power of the tests:

1.) in (a) against

2) in (b) against

eT2 + 2~2 

2
aa
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~ MUltiple Comparisonsa

Tests of all contrasts with the general linear hypothesis model following ANOVAI!>

Tukeyts Procedures

observations: Xl' X2, eo., Xn are NID(O, 0
2

)

let R =- max iXi~ - min {Xi}

~ '5 i ~ n 1. ~ i ~n

se2 is an estimate of 0
2 which is independent of Xl' X2, qU, Xn with

f d.f.

(iQe., f s 2;02 has a X2.distribution with f d.fQ)
e

The distribution of Ria can be found in a general form" and in particular when the
X9s are normal (since the X.la are N(O, 1) -- it is free of any parameters.

:L

The distribution of Ri = !.. "'" RI! ::0 Studentized Ranges s ae e
numerical integration and percentage points have been tabulated by Hartley and Pearsor
in Biometrika Tables, Table 29Q

Consider the one..way ANOVA situation~

2
Xij are NID (~i' cr )

2
!i. are NID (I-l-i , ~-)

i =1" 2, 0 ~ ~, a
j =- 1 ~ 2~ 0". II ni = n

~ ~ (Xij 2<0 Xi )2 2
I'1SE =- a(n,,",l)~- is an independent estimate of a with a(n-l) d~f.

Consider HO~ J.!i::O ~ or IJ.i .., ~ = 0

Given HO:

Pr

This t is the statistic Q(a" f) in Snedecor, section 10.6, po 251
where f =0 d.f () =' a(n-l) in this case.

This inequality will hold for any possible pairwise comparison (i.e lll " any i, k).
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Frame of reference is the total experiment" not the individual pairwise tests -- is eli,
for the total experiment and making all possible pairwise tests, the probability of
the Type I error is ~..<" where co< is the level chosen for the Q(a"f) statistic.

Hence we reject H: i.1. - '1<: I:' a for any i" k when

rn (Xi. - Xk )

{Tm
» Q..< (a"f)

Scheffe Test for all contrasts (most general of all).

Ref: Scheffe, Biometrika, June 1952

2X.. are NID (lJ.., (1 )
l.J l.

i 1, 2,
j 1" 2,

se2 is an estimate of (12 which is independent of X. with f dof.
l..

a

~ c.~l.' ... 0
i=1 l.

a

~ 0 .... a
i=1 l.

Theorem 38g

Consider the totality of all such HO(~).

If the lJ.i are all equal" then

Pr

where 0'

a-l

a (¥) 2

t
( a-l.1 _ a-ltf

(a-I). C JF"l (1 • r1
F) 2 dF

r(a-~+! )

r(¥)r{f)
hence, if' we reject any such HO('£) when

[

a 2

~ 0i (Xl.' - X >}
i=l • ••
----

a 2
s 2~ 0i

e. i=l n.-
l.

then the type I error ~-<.



Proof: ~ Under H_ ~c.X
--0 1. ...
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For all c. with~ c. =:0 0,
1. 1.

~Pr
.......

~c =0i

> t

define: Y. are NID(O, 1)
1.

i=l, 2, ".:1 a

d. =
1.

~o. =~.r;-:- d. = 01. 'J u i 1.

tit (] d. Y)2
Expre8$ion we wish to maximize is 1. i_

8
e
1(,2 with respect to d

i

j =- 1" 2" ... " a

2 r~ rn: y.J~di Y~
J J li= ~
~n.

J
multiply [lJ by d

j
and sum over j:

2[;EdlJ [;EdiYiJ -0 - 2~(l) - 0

~ - [~diYi] 2

since ~ (ltd. := 0
1. 1.

since: i) ~ v£:'d. =- 0
J. J.

ii) ]d. 2
=:0 1

J.
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put ":t" ~2 in [1] to obtain the jth equation:

2Y
j
[~d1YiJ ~ 2 Tn;~Jii',.~J[~diyJ -2dj~d1yJ ~O

~ nj

a

= ~ (Y
J
. - i)

j=l

> t

2

~C'!iJ. ,

» t

:il:. Pr-

2

~ c. !. ]
., J. J..
J.=..Pr

Reoall:

:=Pr

2
~ n. Y.

__...J.---.;J.;;;.._

~ni
6
22

e (]
> t

Y. =
J. and are NID(O" 1)0
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We can make an orthogonal transformation of the formi

o

e

Then

Hence

Thus

but

has a x2..distribution with (a-l) dof ..

t>a.:r

has an F-distribution with (a-l, f) d.f.

Therefore the type I error will be less than or equal to ..< if we reject any H
O

(!!) ifa

L~Oi Xio12

- 2 '> (a-l) Fl _-< (a-l" f)
2~ci

s ~-e ni
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Simple hypothesis

1 2 ·. " k

l'J. P2 ·. , Pk ~P. = 1
J

vI v2 • • • vk ~v =nj

classes (or events)~

observations:

pr6babilities~

$" ~.Tests

Single series of trialsi

If H
O

is true

X. lOt

J
is asymptoticall1 normal subject to the restricti...

ha.s an asymptotic X2.distribution with k-l
d"f. as n --7 (!) 0

By an orthogonal transformation it can be

ak ( 0,
~ "'Iv. -flP.'/

= ~. -1L.~ 6~·
j=1 l1Pj

shewn that

The power of the test --71 as n--7oo"

~ower of a simple x2-test:

,
p. = p.

J J

X. =
J

ov. - np.-L-_:.L.r::-O-, np
j

I
V ... np.

=_L.-...:2
r:;::'

'I np
j

$ j · 0p. p. to> p.
now e = -:L = 1. + -J J

j 0 0
Pj Pj

as n~oo.
Under HI the Yj are asymptotically normal!)
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e With the same type of orthogonal transformation, we have ~Xj
2 under H:L is a sum

of squares of Yj +J~~_ and henea has a llOn.-oantral x200distribntion with parameters
Pj

k

~
j=l

The non-centrality parameter can also be written as

k

n~
j=l

Examplea v." noo of families with i boys in families of 2 children.
l.

Assume the number of boys is binomially distributed with parameter Pit

HO: p: 005

No .. boys

°1
2

°p. under HO)
J •

P .. Oc4
,

Pj ~under I1.)

.16

~48

.36

A=n ~

=t ,,0816 n

For n = 100

The power can be determined from the Tables of the Non..Central x2 by E. Fix,
University of California Publications in Statistics, Volume 1, No.2, Pp. 15-19.

From the tables, for A. ... 8/116" k-1 = f =- 2" .,( = 0.05

00 7 ~ ~ (power) <: 008

x2_test may also be a one-sided test:

for j ~kw

for j >k'

(kt exceed P.O)
J

(k - k' fall below Pjo)
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for j .f k':
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o 2
(v, - np, )

caloulate ~ a J - as usual
nPj

put the contribution == 0

calculate x2 as usual

put the contribution =0for j >kit

if v j <. np j
0

if v > np,O
j J

o
if vj < np

j

x2 is rejected if the sample value ;> X21.2~(k-l)

Examples

8(10) 12(10) 20

12(10) 8(10) 20

--
20 20

Hog P =: 0.5

X~ = 0 therefore we fail to
reject HO

noteg if v1I > 10 we would then calculate x2•

Refs: (on the X2...test) Z

Cochrane 1952 Annals of Math Stat
1954 Biometrics

x2.test of a composite hypothesis:

classes:
s series of observations:

probabilities:

1 2 •• 0 k

vll v12 0 •• vlk
i = 1, 2, ... ~ s
j =1, 2:1 0", k

'" 0 .eo 0

0 0 •• 0 0 k
" • o Q ~ " ~ Vi'vsl vs2 .. ~ vsk

=: nij=l. J

P1I P12 ••• Plk
e •• 0 • Pij =: f(~)
f Q ••• 0

• • "l) •
PSI P.s2

.,,. Psk
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~ [P;; X' j 1:0 0 for i e 1" 2" ..." s
j ~J ~

HO~ Pij =PijO(~)

1\
Theorem 39. IrQ is estimated by m.1.e~ or any asymptotically equivalent method

then as n~ 00, under the regularity conditions as for estimation:

r: . 1\ ""\2
LVi; - ni.Pij (~) I
-~ 7t -=-

n-lp, . (9)
.l. ~J -

has a X2~distribution w~Gh s(k-1)-t d$fo when H is true.
(t =: no~ of components in ~)

i 0 c. . ni
If H1 is true8 Pij == Pij =: Pij + -8- and p =: --

l/ ni ~ n
i

then X
2 has a non-central X2..distribution with d.. f. as before"

and non-centrality parameter .§S [I • B(BfBr
l B~J ~

(C"JPi)where Oi :: _~J ~
- ], x ks r=-o-

..J Pij i = 1" 2"
j # 1" 2"
.e == 1" 2"

0'." s
.. /) 0·" k

".." t

Ref: Cramer:
Mitra:

x2 section
December 1958 Annals of 11ath Stat
Phq,D. Dissertation, UNC, Institute of Statistics I".fimeograph Series
No,,142.
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Note on the general X2 tests of oomposite hypothesesi

vij - ni PijX
ij

: - are asymptotically normal subject to the linear
Jni Pij

rel>i;rictionB that 11 JPij X1j ~ 0 for all 1 ~ 1, 2, .... B [ 1J
For sufficiently large n the m.l.e. reduces to solving the equationa

dIn L == dIn LI +(~~ In L j ) (9 - 9 )"$Q -a Q · ~2 0
Q = Q oQ ~ =9

o 0

Recall:

1n L =- KI 01; ~ ~ v.. In Pij (9)
i j 1J

...t-~
In L is linear in the vij" as are '0 ili h =- 1" 2

Hence the estimation of Q (single component) means one additional linear restriction
on the v. . or on the X. j (since the two are linearly related) It

J.J J.

If this restriction (2) is linearly independent of the s restrictions in [11" then
we can transform the s+l restrictions to s+l orthogonal linear restrictions and then
by the usual extension get an orthogonal transformation that takes

~ ~ Xij2 into ~ ~ y ..2 with s(k-l) - 1 1:1 sk - (s+1) terms and henoe we get
ij ij J.J

the result of the general X2 theorem (theorem 39).

Example a Power ofax2 test of homogeniety" 2 x 2 table 0

Probabilities: 1)

2)

11.1 1

1

~:

Pu =- P21 = Q

P11 = Q + o/[ll

.P21 = Q - olin

P12 =P22 • 1 - Q

Pl2 = 1 - 9 - ctF
P22 == 1. - Q + c/rn
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(sampling fraction)

1-1

A =t,2' [I - B(B IB)'l B'1,2

1
take PI = P2 ::0 '2

BI ~ (-r;--Q-

BtB ::0
1 + 1 1=- -
Q 1 - 9 Q(l - Q)

(BIBf1 =: Q(l - 9)

~ .. Q - 9(l-~ 1 - Q - 9(1-9)
2 2 -r 2

... Q(l-@) Q -Q(1-9) Q

B(BIBr1Bi
2 . 2 ~- 2"

=.

1 - Q - 9(1-9) 1 .. 9 - Q(l-Ql-r- 2 -2 2

.. Q(l-e) Q -9(1-Q) 9
~-- T -2 --r

5' (~
-c c -c )- --J2(1-9) ~ ~2(1..9)

61 I 0 ::0-

Hence the non-centrality parameter,

(patterns of + and - signs in 5, Bare
opposite and sufficient to cancel all termse

c2
;.. =Q(i-Qj

Which can be expressed in terms of the pts as:

PII of; P2I
9 =---r-

2c
PII" P2I = Fn

PI2 + P22
I-Q~--~-

2 n ( )2c =t 4 Pll .. P2I
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A=

In the Deoember 1958 Annals of Math Stat Mitra gives the following formula for A in
the 2 x k contingency table&

probabilitiesg •• G

pJ." " = Q + c1 ./rnJ .J

~Qj =1

~C1j = 0

~C2j = 0

For the above example:

2
(clj - C2j~

9j

1
Pl =P2: "2'

6. Other Approaches to Testing Hypotheses and other problems,

1. Most Stringent Testse

Let the family of tests of size .I.. be <p (..<).

Let ~(Q) = sup ~ ~¢ (Q)
¢ e ':f'(.1..)
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¢ (x) is most stringent if:

i) it is of size ~

ii) for any other size ~ test ~ I

20 I'1inimax~: Decision Theory Approach

L [D(X)" ~J == the loss when D(x) is the decision made and 9 is the true
value of the parameter.

means accept HO~ Il'" 0

Il] ... C JJ.2 when D(!) ... 0

Il } : C/Il when D(!) = 1

X is N(Il" 1)

D(!) == 1

D(!) ... 0

L [D(!)"

L [D(!)"

Example:

Having set up a loss function, we then have a risk function defined as:

00

rD(Q) ~ E(L): .5 L (:>(!:), Q]f(",. g) ~

It is frequently impossible to minimize this universally with respect to Q" thus:

D(x) is a minimax decision rule if it minimizes (with respect to all possible
decision rUles).

SUPg reg)

or expressed another way we determme3 infD sUPQ rD (Q)

ref: Blackwell and Girshick, Theory of Games, Wiley

3& Admissible Decision Rules:

D(~) is admissible if there is.E2. DI (x) such that

rD,(Q) ~ rD(Q) for all t;

rD'(~) <:: rD(Q) for some Q

i.e o , you can not improve on D(!) uniformly0
---------
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CHAPTER. VII

MISCELLANEOUS

A. Confidenq,§ Re gions:

! is a random variable with d.f. f(2$., e)

B(w) =: the totality of subsets of .rL

Let A(~ be a function from X (sample space) to B(UJ)

e e n

Def. ta.: If Pr[A(!> ::> e J) 1 -.,( then A(X)
~ - ...

confidence coefficient 1 - ~.

is a confidence region with

Theorem 40:- If a non-randomized test of size ~ exists for H : e =: e for every e
000

then there exists a confidence region for e of size 1 J ~.

Proof: Let R(X. e ) be the set of X for which H :
- 0 - 0

I9
R(X,e)·,

90 _ _lIl1f111,

e =: eo is rejected, e.g.,

IllIflfn

--x

[lJ

This R(!, eo) is defi~ed and satisfies [1 J for every eo'

Define: A(!) = U X J R(2£, e) ./
e

x.
Pr[A(!> :J Go] = Pre! J R(e)] = 1 - Pre! e R(e) J > 1 - ~ q.e.d.

'~=' 48: A confidence region, A(!>, is uniformly most powerful if
Pr[AQ~) ::> e Ie' is true J is minimized for all e' r/ e.

note: Kendall uses this same definition with "uniformly most powerful"
replaced with lIuniformly most selective. 1I Neyman replaces "u.m.p."
with "shortes t •II



Def. 42,: A confidence interv'al is "shortest" if the length of the interval is
minimized uniformly in 9.

Confidence Interval for the ratio of two means:• ,~_==-. :d

Xi' Yi are bivariate normal BIV N( fl., "<ll-, a~, a~, p)

wherejO = correlation coefficient and may = O.

Problem: find a confidence interval for ..< =~fi~ .
Z ..<X Y is N(O ~2a2 - 2..<na a+ 0'2)i= i-i "x rxy y

i = 1, 2, ... , n

2. (Zi - 2)2 and Z are independent and distributed as X
2

and normal respectively.

L (Zi-Z) 2

n-l-

=

222
=..< s - 2~s + ByX :xy

therefore:

4):~=~~i1/2' has a t-distribution with n-I d.!.
x xy y

[
··-.... 1- -1

Pr ....i~ 2~...;:.-Y~-s;>2~1"'r72~
(..< s - 2..<s +x xy

< t
l-§..

2
(n-I)J = 1 - e

We can solve this and get confidence limits for ,,~. This yields the following
quadratic equation in ..<:
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Among the various possible solutions of this quadratic equation we can have the
following situations: ~,l~/,,(

A. If nX! .. t
2
s~ > 0: ~"<2

It can be shown that 2 roots always exist and this the confidence interval is:

...
For the above inequality to hold, X must be significantly away from the origin;

i.e. ,

e.g. ,

we must rejectHo:~ =0 on the basis of Xl' X2, ••• ~ Xn at the

the following condition must hold: i\lx.L>t l .. .!
x 2

e level.

B.

Note: One could, if desired, change t (and thus e) to insure that this inequality
always held and thus that a ureal" confidence interval exists.

If nX2 - t 2 s2 < 0x

~, ..(2 may be real or complex

If the roots are real, then the "confidence interval" is (- 00, ~), ("<2' + 00),

i.e., we accept "in the tails."

...... 2)2 ....2 2 2\ -2 2 2 2C. If 4(nXY· t Sxy < 4(nX .. t sx' (nY - t Sy), i.e., b < 4ac, then

the roots are complex and we have a confidence interval ( .. 00, + 00).

[Thus we can say that .. co < ..< < + co with confidence 1 .. eJ.

D. If we get Q(..<)

----+-----'-"..<) ill:.. 1..<1 - YI

'\

Q(..( s. 0 <: ~ 2 2 . 2 l7~2 <t
(..( s .. 2..<8 + S )

x xy Y

thus we always accept H since the test statistic never exceeds t.
o

Refs: Fieller, Journal of the Royal Statistical Society, 1940
Paulson, Annals of Math Stat, 1942
Bennett, Sankhya, 1957
Symposium, Journal of the Royal Statistical Society, 1954.
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r
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