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ABSTRACT 

 
In this paper, we present the preliminary results obtained 
in the project entitled “Visual ARtifacts Interference 
Understanding and Modeling (VARIUM)”, currently 
being developed at University of Brasília (UnB) and Delft 
University of Technology (TUD). In this project, we are 
interested in understanding the characteristics of relevant 
digital artifacts in video, their interactions, and their 
relationship with content. We aim at designing an 
objective metric for overall video quality that takes into 
account specific spatial and temporal artifacts, their 
mutual impact and importance for a broad range of video 
content. In particular, in this paper, we report the results of 
our first experiment, which had the goal of studying a 
typical temporal artifact, “packet loss”, by measuring its 
visibility and annoyance.  
 

1. INTRODUCTION 
 

Digital transformation of images and video offers many 
advantages over the existing analog methods. The 
advantages of digital visual material, however, do not 
come without some disadvantages as well. The quality of 
digital content may decrease when impairments are 
introduced during capture, transmission, storage, and/or 
display, as well as by any signal processing algorithm that 
may be applied along the way (e.g., compression, etc.). 
Impairments are defined as visible defects (flaws) and can 
be decomposed into a set of perceptual features called 
artifacts [1, 2, 3].  

Spatial artifacts are characterized by the presence of 
degradations that vary (mainly) within the spatial domain. 
Examples of spatial artifacts include blockiness, blurriness, 
ringing, noisiness, mosaic patterns, etc. Temporal artifacts 
are degradations that vary across the temporal domain. 
Examples include packet-loss artifacts, motion 
compensation mismatches, mosquito effects, ghosting, 
smearing, jerkiness, and so on.  

The most accurate way to determine the quality of a 
video is by measuring it using psychophysical 
experiments with human subjects [2]. Unfortunately, 
psychophysical experiments are very expensive, time-

consuming and hard to incorporate into a design process 
or an automatic quality of service control. Therefore, there 
is a great need for objective quality metrics. Objective 
metrics are algorithms that are used to (1) predict visual 
quality as perceived by human observers, (2) compare the 
performance of video processing system, and (3) optimize 
algorithms and parameters settings for a video processing 
system. 

Quality metrics with best performances are the ones 
that analyze visible differences between a test and a 
reference signal, taking into account aspects of the human 
visual system (HVS) [4-5]. However, these metrics are 
often computationally expensive and hardly applicable in 
real-time contexts. One possible alternative is to use a 
feature extraction approach, which looks for higher-level 
features of the content that are considered relevant to 
quality (e.g., sharpness or blurriness, contrast, fluidity, 
artifacts, etc.).  Popular types of feature extraction metrics 
are artifact metrics, which estimate the strength of the 
most perceptually relevant artifacts. Artifact metrics have 
the advantage of being simple and not necessarily 
requiring the reference signal. Also, they can be useful for 
post-processing algorithms, providing information about 
which artifacts need to be mitigated.  

One disadvantage of artifact metrics is that their design 
requires a good understanding of the characteristics of the 
artifacts. Indeed, most metrics exploit knowledge on the 
perceptual annoyance the occurrence of a specific artifact 
causes to the final user. A second disadvantage is that the 
artifact metrics need to be combined to obtain an overall 
quality estimate [6]. In fact, due to technological 
limitations, co-occurrence of different artifacts is highly 
likely in digital media at the moment of delivery. For 
example, packet loss artifacts can appear in videos already 
bearing blocky artifacts (from compression), to which also 
blurriness is added as a consequence of e.g. transcoding. 
The effect on perceived quality of the combination of 
artifacts can hardly be predicted by the linear combination 
of the annoyance estimated for the single artifacts. 
Masking and other interaction effects can occur, making 
the prediction strategy more complex and very dependent 
on the artifacts involved. Unfortunately, little work has 
been done on studying and characterizing artifacts and on 
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combining them to an overall metric, as pointed out in [6]. 
Some research was done on studying the visibility, 
annoyance, and interaction of blockiness, ringing, 
noisiness, and blurriness and on relating them to the 
spatial content, as discussed in [7-8].  

In this paper, we describe the project entitled “Visual 
ARtifacts Interference Understanding and Modeling 
(VARIUM)”, which is currently being developed at 
University of Brasília (UnB) and Delft University of 
Technology (TUD). In this project, we are interested in 
further extending the first attempts of understanding the 
characteristics of relevant digital artifacts and their 
relationship with content. Our final goal is to develop an 
objective metric for overall video quality that takes into 
account specific spatial and temporal artifacts, their 
mutual impact and their mutual importance for a broad 
range of video content. In particular, in this paper we also 
report the results of our first experiment, which had the 
goal of studying a typical temporal artifact, “packet loss”, 
by measuring its visibility and annoyance. 

 
2. PROPOSED WORK 

 
Figure 1 shows an overview of the structure of the project, 
which is divided in work packages (WP). As a starting 
point for designing an objective metric that is robust to the 
co-presence of multiple artifacts, we need to collect 
information on their perceptual impact when they interfere 
with each other. The most effective way to collect such 
information is to conduct a campaign of psychophysical 
tests [3] on impaired videos. At the core of the VARIUM 
project is therefore a series of subjective experiments 
aimed at gathering information about the visibility, 
annoyance, description, and perceptual strengths of 
artifacts, and at determining the relative importance of the 
artifacts to the overall perceived quality.  

The visibility of an artifact refers to whether the 
artifact is noticed within the content. It is defined 
according to a visibility threshold, which corresponds to 
the distorting signal strength that allows 50% of the 
observers to notice the artifact. The annoyance of an 
artifact is a measure of the degradation of the visual 
content, and it is dependent on the visibility and on the 
distorting signal strength. Observers can also be trained to 
recognize specific artifacts when combined (description) 
and estimate their perceptual strength. This way, we can 
have an idea of how the visibility and annoyance are being 
affected by the video content and the presence of other 
artifacts.  

In the VARIUM project we will study the above 
mentioned perceptual characteristics for several artifacts 
(WP1 in fig. 1), first independently from one another (i.e., 
when not interfering with other artifacts, Experiment 1 or 

E1 in fig. 1) and then in combinations (E2 in fig. 1). In a 
second stage, to connect visibility, annoyance, description 
and perceptual strength information to the overall 
appearance of the combined artifacts, we will measure 
overall quality scores of videos impaired with different 
combinations of artifacts at different strengths (WP2). An 
adaptation of Keelan’s quality ruler [2] will be used for 
quantifying overall video quality. While performing all 
the above experiments, we will also evaluate the impact of 
(combined) artifacts on viewing behavior and visual 
attention (WP3). Such information has been shown to be 
highly relevant in visual quality assessment [9]. As a 
consequence, we will record eye-movements throughout 
the planned experiments. The collected information will 
eventually form the basis for the design of an effective 
video quality metric that is robust to combined artifacts 
(WP4). 

In this paper, we report the results of our first 
experiment (E1), which is part of WP1. This experiment 
has the goal of studying a typical temporal artifact, 
“packet loss”, by measuring its visibility and annoyance.  

 

 
Fig. 1. Schematic representation of the planned work and 
division of the tasks. 
 
3. ANNOYANCE AND VISIBILITY OF PACKET 
LOSS ARTIFACTS 
 
In video transmission over IP networks, the network 
variability and the lack of service guarantees represent a 
big challenge. Video packets typically traverse a number 
of links to get to its destination. Losses (transmission 
errors) may occur due to network congestion and path loss. 
Typical impairments caused by these errors are packet 
loss, jitter, and delays. Among these, packet loss is 
probably the most annoying artifact. As the name suggests, 
packet loss artifacts are caused by a complete loss of the 

107



packet being transmitted, as a consequence of 
transmission errors.  
 Typically, for block-based video compression 
schemes (e.g. MPEG-1/2/4, H-261/2/3/4), consecutive 
macroblocks in a frame are transmitted as a slice in a 
single network packet. Therefore, the loss of network 
packets results in a loss of macroblocks. Because the 
compression process removes a lot of spatial and temporal 
redundancies from the original video, every packet is 
important for the video reconstruction. Moreoever, 
because of the use of motion-compensated temporal 
prediction, a single loss of a packet can affect many 
subsequent frames. Therefore, packet loss artifacts are 
visually characterized by the presence of rectangular areas 
distributed over the video frames, whose contents differ 
from the surrounding areas.  
 The visibility and annoyance of packet-loss 
impairments depend heavily on how the video stream has 
been coded, how it has been mapped into flows and 
packetized, and what type of error concealment algorithm 
is being used. In this section, we present the results of a 
study conducted to investigate the perceptual properties of 
such artifacts. 

  
3.1. Experimental Methodology 
 
We used seven high-definition videos with spatial 
resolution of 1920x720 and temporal resolution of 50 
frames per second (fps). The videos were all ten seconds 
long and were chosen with the goal of generating a 
diverse content, as it can be seen by examining the first 
frames of the originals depicted in Fig. 2.  Figure 3 shows 
spatial and temporal perceptual measures for all videos. 
 To generate test sequences with several levels of 
packet loss artifacts, we used the reference H.264 codec.  
To avoid inserting additional artifacts (such as ringing, 
blurriness, and blockiness), we compressed the original 
videos with high bitrates and used the H.264 standard 
error concealment algorithm, generating videos with Peak 
Signal to Noise Ratio (PSNR) well above 70dB. We also 
varied the frame intervals (M) between I-frames with the 
goal of having artifacts with different time durations. We 
used M = 4, 8, and 12 frame intervals. Then, we randomly 
deleted packets from the coded video bitstream, varying 
the percentage of deleted packets from 0.5% to 9%. For 
each original, we had 4 (percentages) x 3 (frame intervals) 
= 12 stimuli, generating a total of 13 (12 stimuli + original) 
x 7 (originals) = 91 test sequences. 
 The experiment was run with one subject at a time 
using a PC computer and a Samsung LCD monitor of 23 
inches (Sync Master XL2370HD). The dynamic contrast 
of the monitor was turned off and the contrast was set at 
100 and the brightness at 50. The software Presentation® 

from Neurobehavioral Systems Inc. was used to run the 
experiment and record the subjects’ data. The room where 
the experiment was performed had illumination conditions 
compliant to ITU-T Recommendation BT.500-8 [3]. The 
subject was seated straight ahead of the monitor, centered 
at or slightly below eye height for most subjects. The 
distance between the subject’s eyes and the video monitor 
was 3 times the monitor screen height. We used a chin rest 
to guarantee that the distance between the subject’s eyes 

       
‘Park Joy’     ‘Into Trees’ 

        
‘Park Run’         ‘Romeo and Juliet’ 

        
‘Cactus’             ‘Basketball’ 

 
‘Barbecue’ 

Fig. 2. Screenshots of the first frame of the sequences 
included in Experiment 1 (E1).  

 

 
Fig. 3. Temporal and spatial characteristics of the 
videos included in the experiment 
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and the monitor remained constant. 
 Fifteen subjects from Delft University of Technology 
participated in the experiment. They were considered 
naïve to most kinds of digital video defects and the 
associated terminology. They were asked to wear glasses 
or contact lenses if they needed them to watch TV. A test 
session was broken into five stages. In the first stage, the 
subject was verbally given instructions. In the second 
stage, we showed examples of original and highly 
impaired videos to establish the range of annoyance used 
in the experiment. In the third stage, the subject carried 
out practice trials to allow the responses to stabilize. The 
fourth stage was the main experiment. At the last stage, 
we asked the subject for qualitative descriptions of the 
impairments.  
 The main experiment was performed with the set of 
test sequences presented in random order. Subjects were 
asked to detect the impairment in the test sequence 
(detection task). After each test sequence was played the 
subject was asked “Did you see a defect or an 
impairment?”, prompting for a  ‘yes’ or ‘no’ answer. Then 
participants were asked to perform the annoyance task 
consisting of giving a numerical judgment of how 
annoying the detected impairment was. Any defect as 
annoying as the worst impairment shown in the second 

stage of the experiment should be given ‘100’, half as 
annoying ‘50’, ten percent as annoying ‘10’, etc.  
 
4. EXPERIMENTAL RESULTS 
 
To estimate the visibility of the packet loss artifact, we 
first calculated the probability of detection of the artifact 
in the test sequences by dividing the number of subjects 
that detected it by the total number of subjects. In Figures 
4 and 5, we show graphs of the probability of detection for 
two sample test sequences, i.e., ‘Park Joy’ and ‘Park Run’. 
The x axis in the graphs corresponds to the Mean Squared 
Error (MSE) between the original and the impaired video, 
while the y axis corresponds to the Probability of 
Detection. The different curves in the graphs correspond 
to different values of M (i.e., 4, 8 or 12).   
  For the videos ‘Into Trees’ and ‘Barbecue’, the 
values of the probability of detection were equal to ‘1’ for 
all test cases, i.e. every subject of the pool was able to 
detect the artifact in all test sequences for these two 
originals. These two videos had camera movements and 
large smooth light areas (e.g., sky areas in ‘Into Trees’ and 
concrete areas in ‘Barbecue’ as shown in Fig. 2), what 
might have made the artifacts in these scenes easier to 
detect. The videos ‘Park Joy’ (see Fig. 4), ‘Cactus’, and 
‘Basketball’ had probabilities of detection curves that 
increased very fast with the MSE. This means that 
artifacts in these videos were also relatively easy to detect.   
 For the videos ‘Romeo and Juliet’ and ‘Park Run’ 
(see Fig. 5), on the other hand, the probability of detection 
curves had a less steep slope. This might indicate that, in 
these originals, the artifacts were harder to detect. The 
video ‘Romeo and Juliet’, for example, is a relatively dark 
video with a clear focus of attention (i.e., the couple in the 
middle of the scene). All of this makes it harder to spot the 
artifacts. In the case of the video ‘Park Run’, there are a 
lot of spatial details (i.e., the crowd) and temporal activity 
and not a lot of camera movement. Therefore, it is again 
not easy to spot the artifacts.  
 To get insight in the results of the annoyance task, 
the Mean Annoyance Value (MAV) was calculated by 
averaging the annoyance score over all observers for each 
test video. In Figures 6-8, we show the graphs of MAV for 
the videos ‘Joy Park’, ‘Park Run’, and ‘Barbecue’. Notice 
that, as expected, the higher the MSE, the higher the MAV. 
Again, the graphs show three curves, corresponding to the 
three different frame intervals (i.e., M = 4, 8 1n 12). As 
expected, the larger the value of M, the higher the value of 
MAV.   
 For some of the videos (‘Barbecue’, and ‘Romeo and 
Juliet) the MAV curves for M = 8 and 12 are very similar 
(see Fig. 8), i.e. subjects did not notice a difference in 

 
Fig. 4. Probability of Detection  for video ‘Park Joy’. 

 
Fig. 5. Probability of Detection for video ‘Park Run’. 
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quality between artifacts appearing with different time 
intervals. Notice also that, the video ‘Barbecue’, which 
had probability of detection equal to ‘1’, had annoyance 
scores higher than the annoyance scores given to other 
videos (i.e., compare Fig. 8 with Figs. 6 and 7). This may 
indicate that there could be a correlation between visibility 
and annoyance.  
 
 

 
Fig. 6. MAV for video ‘Joy Park’. 

 
Fig. 7. MAV for video ‘Park Run’. 

 
Fig. 8. MAV for video ‘Barbecue’ 

 
5. CONCLUSIONS 

 
 In this paper, we presented preliminary results 
obtained in the project entitled VARIUM, which has the 

goal of understanding the characteristics of relevant digital 
artifacts, their interactions, and their relationship with 
content. In particular, in this paper we reported the results 
of our first experiment, which studied a typical temporal 
artifact, “packet loss”, by measuring its visibility and 
annoyance.  
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