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ABSTRACT
In this paper, four subjective video datasets are presented.

The considered application is Scalable Video Coding used
as an error-concealment mechanism. The presented datasets
explore the relations between encoding parameters and per-
ceived quality, under different network-impairment patterns
and involve error-concealment on the decoder’s side, to sim-
ulate a complete distribution channel. The datasets share a
part of common configurations which enables, in the first part
of the paper, to compare the outcomes from several Single
Stimulus experiments and draw interesting correspondances
between different types of distortion. In the second part of
the paper, we analyse the performance of three common ob-
jective quality metrics on each step of the distribution chan-
nel, to identify the possible directions to be followed in order
to improve their accuracy in predicting the perceived quality.

Index Terms— Subjective video databases, Video quality
metrics, Inter-experiment alignment, Scalable Video Coding,
Error-concealment, Packet-loss, Source characteristics.

1. INTRODUCTION

When dealing with video transmission over lossy communi-
cation networks, several factors are involved in the perception
of quality of the end user. First, video coding is known to de-
crease the perceived level of quality by adding quantization
artifacts. Then, packet-loss or corruption can compromise the
decoding process and result in additional visual distortions.
These distortions can in turn be corrected or made less vis-
ible by error-concealment techniques, which try to mask the
missing parts in the decoded stream.

A possible way to enable effective error concealment is to
use Scalable Video Coding (SVC) to provide redundant ver-
sions of the same video content. In this paper, we consider
a scenario where a video stream is encoded using two scal-
able layers: one base layer and one enhancement layer. Un-
der nominal transmission conditions (i.e. when no packet-loss
occurs), the enhancement layer is decoded and displayed on
the end-user’s terminal. When packet-loss makes decoding
the enhancement layer impossible, data from the base layer is

used to conceal the visual artifacts produced by the missing
data. As the base layer is usually encoded with relatively low
bitrate, it is easier to protect it using conventional techniques
and to make sure it is transmitted correctly. This assump-
tion might not hold in extreme transmission conditions. One
of the major advantages of SVC regarding coding efficiency
is that the higher layer can use data from the base layer for
prediction to reduce the overall needed bitrate. This advan-
tage can turn into a major drawback in case of high error-rate,
as losing data from the lower layer makes the whole stream
impossible to decode. An alternative scenario can be to use
SVC without this inter-layer prediction, at a price in terms of
bitrate increase. The use of SVC still makes sense in such a
configuration, because of the stream structure. The layers are
indeed interlaced, together with synchronization information,
that facilitates the switching operations between the different
levels of the stream.

Such extreme transmission conditions are beyond the
scope of this paper, and we assume in the following that the
base layer is correctly decoded at all times. As a result, a
lower-quality version of the video is displayed in case of loss,
which represents an interesting alternative to conventional
frame freezing and skipping, commonly used with single
layer coding. Naturally an SVC solution comes at a price in
terms of bitrate and encoding complexity, but this drawback
can be compensated by a better acceptance from the users.

In this paper, we present four subjective video quality as-
sessment experiments conducted in the context of scalable
video transmission under various packet-loss configurations
with error-concealment. The paper is constructed around two
main contributions. First, we show how the four experiments
can be combined through the use of common sets of config-
urations, to circumvent the classical corpus-effect of Single
Stimulus experiments. The combination of the datasets can
be used to analyse the relative impact of several types of dis-
tortions which can be met in the considered application con-
text. As a second contribution, we analyse the performance of
three common objective quality metrics on specific aspects of
our experiments and show how these datasets can be exploited
to build more accurate video quality models.



SRC HRC OBS HRC overview Common PVS

T1

9 15 29 – 1 non-coded reference T2 : 36
– 1 AVC-based error concealment T3 : 36
– 2 SVC upscaled base layer, bitrate = 120,200 kbps T4 : 0
– 2 SVC-based error concealments : patch, switch

– combined with 2 SVC BL bitrates : 120,200 kbps
– combined with 2 SVC BL FPS : 15,30 Hz

T2

11 30 27 – 1 non-coded reference T1 : 36
– 16 SVC constant QP scenarios : T3 : 126

– base layer: QP0 = 26, 32, 38, 44 T4 : 50
– combined with enhancement layer: QP1 = 26, 32, 38, 44

– 4 upscaled base layer scenarios: QP = 26, 32, 38, 44
– 4 AVC scenarios: QP = 26, 32, 38, 44

T3

11 36 28 – 1 non-coded reference T1 : 36
– 3 AVC scenarios : QP = 32, 38, 44 T2 : 126
– 23 scenarios with a selection of the following parameters : T4 : 16

– length of impairments = 2, 4, 8, 16, 32, 64, 128, 224
– number of impairments : 1, 2, 3, 4
– intervals between impairments : between 8 and 128
– base layer QP = 38, 44

T4

60 5 27 – 1 non-coded reference T1 : 0
– same HRCs as T2 T2 : 50
– only 4 HRCs per content T3 : 16

– 4 groups of HRCs were formed from the results of T2
– MOS < 2; MOS ∈ [2; 3]; MOS ∈ [3; 4]; MOS > 4
– 1 HRC from each group was randomly selected for each content

Table 1. Overview of the four subjective experiments presented in this paper.

2. DESCRIPTION OF THE SUBJECTIVE DATASETS

Four subjective experiments were conducted in the context of
Scalable Video Coding and error concealment. Table 1 sum-
marizes the four experiments in terms of source contents and
tested configurations. Here we quickly review the important
aspects differentiating the four experiments. More details are
available in [1, 2, 3].

The first experiment (T1) proposes an overview of the ca-
pabilities of SVC as an error concealment technique [1]. Nine
original video sequences are encoded using two spatially scal-
able layers, with a base layer in QVGA format (320 × 240
pixels) and an enhancement layer in VGA format (640× 480
pixels). A wide variety of contents is covered by the video
clips with several genres such as documentary, sports, out-
doors and news reports. We simulate a loss in the enhance-
ment layer for one second and use data from the base layer
to conceal the loss. Two SVC-based error-concealment tech-
niques are simulated using the base layer upscaled to VGA.
The “patch” technique replaces only the damaged areas in
the frame, whereas the “switch” technique replaces the whole
frame as soon as loss is detected. For comparison, an equiv-
alent H.264/MPEG-4 AVC stream is added to the experiment
and distorted under the same conditions as the SVC streams.
A buffer-repetition AVC-based error-concealment technique
is used to compare the behaviour of single-layer coding to
multi-layer coding. Finally, several combinations of bitrate

and number of frames per second are used for the base layer,
in order to determine the best tradeoff between the two layers
under a global bitrate constraint for the whole stream.

The second experiment (T2) studies with more details
the influence of bitrate and quality repartition among the two
scalable layers [2] on 11 video sources (9 of them are com-
mon to T1). The same QVGA-VGA configuration was used,
under constant QP scenarios for the two layers. A total of 16
SVC scenarios were studied and compared to 4 VGA AVC
and 4 upscaled QVGA AVC scenarios. The third experiment
(T3) explores the influence of impairment temporal distribu-
tion on the perceived quality [3]. We use two constant QP
scenarios extracted from T2 combined with the “switch” error
concealment technique from T1, and simulate various combi-
nations of length, number and interval between impairments.
Finally, the fourth experiment (T4) focuses on the influence
of the source content on perceived quality under SVC coding
distortions only [2]. A total of 60 source contents are encoded
using the same SVC and upscaled AVC QVGA scenarios as
in T2. Ten video sequences are common between T2 and
T4. The additional 50 clips used in T4 extend the variabil-
ity of contents by including action scenes, sequences with
scenecuts, high and low contrast, human faces and figures,
animated clips, complex motion structures and small objects.

All four experiments were conducted under viewing con-
ditions following the ITU BT.500 recommendation regard-
ing lighting, display and room setup. The Absolute Category



Rating with Hidden Reference (ACR-HR) protocol was used
with a 5-level scale, following the ITU P.910 recommenda-
tion. The original video material was converted from high
quality HD sequences to VGA using a reference downscal-
ing algorithm [4], making sure that the change in aspect ratio
did not affect the aspect of the pictured scenes. The videos
were then encoded using the JSVM Reference Software for
scalable streams [4], and the JM Reference Software for AVC
streams [5]. The notation T1 to T4 denotes the chronological
order in which the experiments were conducted.

The subjective datasets are available for download at the
address reported in [6]. The observer votes are provided along
with the MOS values per Processed Video Sequence (PVS),
per Hypothetical Reference Circuit (HRC) and per source
content (SRC). The video data is also available through a
dedicated FTP server.

3. ALIGNING EXPERIMENTS ON A COMMON
QUALITY SCALE

Despite its popularity, the ACR test methodology has a major
drawback. It is not possible to directly compare the outcomes
of different tests to each other. Indeed, it has been identi-
fied that human subjects tend to rate a stimulus relatively to
the range spanned in the whole test [7]. This phenomenon,
known as the corpus-effect, is caused by the fact that the ob-
servers have to calibrate their judgement of quality using an-
chor conditions, which are not explicitly displayed when rat-
ing a stimulus. Thus, the observers calibrate their judgement
using data from the test itself, making their ratings relative to
the current experiment.

It is possible to compare the outcomes from several ACR
experiments, by aligning them on a common quality scale.
The experiments have to share a set of common configura-
tions, in order to determine how to project the votes on the
common scale. Several contributions have considered this
problem using different approaches. In [8], Pinson and Wolf
present the approach used in the VQEG Multimedia test plan
to align the outcomes on a single scale. The average score
obtained over all experiments for the common set is first pro-
cessed. This set of “Grand Means” is then used as a common
scale onto which the single outcomes are mapped using a lin-
ear function.

A similar approach is presented by Garcia and Raake [7],
where a reference test is selected as the reference quality
scale. The outcomes of the remaining tests are mapped on
this reference scale, using a set of common stimuli. The ref-
erence test is chosen as the one covering the widest range of
qualities and types of distortions in order to provide a robust
calibration.

In the four experiments presented in this paper, we used
a slightly different approach to align the ratings on a com-
mon quality scale. Our main goal was to provide an approach
suitable for the regular activities in a subjective quality as-

sessment laboratory. In the two mentioned contributions, the
set of experiments was planed at once and the design of the
common set was included in the initial effort. For our exper-
iments, we did not have such an insight on the upcoming test
campaigns. Each experiment was designed as an extension of
the previous ones and choices were made in their design after
analysing the results of the previous experiments. The experi-
mental material was constructed in successive rounds and the
content of T4 was not known when T1 was designed. There-
fore, it was not possible for us to design an optimal common
set of configurations for the four datasets.

As a result, the common set was designed progressively,
including significant parts of the previous experiments in each
new experiment. Table 1 gives an overview of the number of
common PVS between each pair of experiments. As one can
see, T2 shares the highest number of PVS with the three other
experiments. Therefore we use this experiment as a refer-
ence and map the votes of the three other experiments onto
the scale of T2.

The design of the common set is a critical step. In [8],
Pinson and Wolf draw a list of constraints to address in order
to build a reliable common set. It is specified that the com-
mon set should span the entire range of contents and qualities
included in all the experiments, and that the common PVS
should be evenly distributed along the quality scale. Figure
1 shows the distribution of the common PVS in our four ex-
periments. We observe that the full MOS scale is covered and
that the PVS are evenly distributed along the scale. An ex-
ception has to be made of the common PVS between T3 and
T4, for which the middle of the scale is not properly covered.
This is one of the motivations for choosing T2 as a reference
experiment, as we can use it as an intermediate between T3
and T4. The number of configurations to include in the com-
mon set is recommended to be comprised between 10% and
20% of the total number of PVS in a subjective test. Including
less configurations might lead to a less robust fitting, whereas
including more configurations introduces a bias in the data.
In our experiments, T2 shares between 7% and 17% of com-
mon PVS with the three other tests. Considering the number
of HRC and SRC we needed to test in the main parts of the
experiment, we had to choose to decrease the number of com-
mon PVS in order to keep the duration of a test session under
the acceptable limit for observers. However, we assume that
the highly linear tendency of the relation between common
PVS and the full coverage of the quality scale provides a reli-
able fitting between the experiments.

In order to avoid adding more bias in the data, the merging
process must be carried out carefully. Before merging several
experiments on a single quality scale, one should remove the
duplicates formed by the common configurations. A common
way to perform this step is to keep either the version of the
PVS that was contained in the reference experiment, or the
closest PVS to the grand mean in case the experiments are
aligned on a mean quality scale. In our case, we kept the votes



for the PVS from T2, which is our reference experiment.

After merging experiments, one gains access to new com-
parisons, for instance between different types of distortion or
different source contents. Such as presented in [2], an exam-
ple of new comparison is the possibility to use 4 HRC from
T4 to predict the behaviour of a source in terms of quality
on the 20 SVC HRC from T2. Also, by comparing the PVS
from T1 and T2, one can observe that an upscaled QVGA
AVC stream encoded with a QP of 26 is equivalent to sev-
eral two-layers configurations impaired by different loss pat-
terns. However, the upscaled version only needs an aver-
age bitrate of 0.84 Mb/s to be encoded, which is about half
the bitrate needed to transmit one of the equivalent two-layer
streams. This result illustrates the tradeoff between AVC and
SVC when no network impairments appear. Additionally,
links between the loss of quality due to network impairments
and coding distortions can be drawn by comparing the out-
comes of T2 to the outcomes of T3. For instance, we observed
that two impairments of 32 frames separated by an interval
of 64 frames in a SVC stream encoded with a QP0 of 44 and
QP1 of 32 are equivalent in terms of quality to an AVC stream
encoded with a QP of 38 with no impairments. These three
observations illustrate how comparisons on the relative and
combined influence of coding distortions and packet loss can
be evaluated by merging multiple tests on a common quality
scale. The merged data is available for download with more
details on the alignment procedure at the address in [6].

A critical aspect of inter-experiment comparison is then
how to assess the statistical significance of the difference be-
tween configurations. Intervals of confidence are usually em-
ployed to perform this verification for single experiments, and
often confirmed using student t-tests. For merged experi-
ments, these statistical tools might not be perfectly suited.
Stimuli from different experiments have not necessarily been
evaluated by the same number of observers. The paired stu-
dent t-test allows to compare two mean values obtained from
populations with different sizes, which makes it an accept-
able statistical tool for comparing MOS obtained from differ-
ent experiments. However, the observations made from this
type of data should always be considered as indications and
not indisputable conclusions.

4. OBJECTIVE METRICS PERFORMANCE

In this section we present possible exploitations of the four
subjective datasets, focused on metric design and improve-
ment. To this end, we analyse the accuracy of three common
quality metrics under SVC coding distortions, transmission
errors and error-concealment artifacts. The three metrics in-
volved are the PSNR, the VQM and the TetraVQM.
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Fig. 1. Relation between the common stimuli scores between the
four experiments. Each dot corresponds to a PVS MOS. The solid
lines represent the linear approximations, while the dotted lines rep-
resent the identity function (perfect alignment).

4.1. Tested quality metrics and motivation

The PSNR is calculated on the luminance component of the
videos. In order to get a single value for a whole video se-
quence, we calculate the arithmetic average of all individual
frame PSNR values. This simplistic quality metric only looks
at pixel differences between a reference and a distorted stim-
uli. It does not take into account the properties of the Human
Visual System and its performance is known to be relatively
lower than perceptual metrics. Nevertheless it remains a pop-
ular method and the scores expressed in decibels (dB) are usu-
ally well understood by a large community.

The VQM is used in its full-reference version with the
general model [9]. This metric is known as one of the most
effective for predicting the human rating behaviour for most
digital video delivery systems. It takes into account spatial
and temporal artifacts and source content information for the
calculation of the quality scores. Nevertheless, the authors
acknowledge that it was not designed to handle artifacts due
to packet-loss or error-concealment.

The TetraVQM is based on the VQM and adds consider-
ations about the possible pausing and skipping introduced by
transmission over lossy networks [10]. It is therefore able to
predict a particular type of error concealment, which consists
in displaying the last non-impaired frame until the distortions
due to packet-loss disappear. A spatial distortion module is
also included as in the classic VQM, which should allow the
metric to detect spatial artifacts due to switching to the base
layer.

We would like to emphasize that our goal in this section
is not to criticize the performance of these metrics on our
datasets. We are particularly aware that the two perceptual
metrics were not designed with the scenarios we consider in



mind. On the opposite, we aim at illustrating the potential
for improvement of these metrics using the four presented
datasets.

4.2. SVC coding artifacts

The T2 dataset can be used to evaluate the performance of
objective metrics in predicting the quality perceived by the
observers under SVC coding artifacts. Our dataset covers a
wide range of quality levels, with QP values comprised be-
tween 26 and 44 for both layers. Eleven video sequences are
involved, ensuring a fair variability of contents.
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Fig. 2. Difference in MOS values between pairs of HRCs, compared
to the difference in metric score on the same pairs of HRCs. Similar
behaviour have been observed for the VQM.

Our goal in this section is to show that in some cases, two
significantly different PVS in terms of MOS can obtain very
similar metric scores. Therefore we look at the differences be-
tween pairs of HRCs, first in terms of MOS, then in terms of
metric score, such as illustrated in Figure 2. Comparing pairs
of HRCs allows us to have more data points to support our
analysis (i.e. 16× (16−1)/2 pure SVC HRC pairs). Further-
more it allows us to analyse results in the original scale of the
metrics (e.g. in dB for the PSNR), whereas a direct compar-
ison of PVS MOS values would require a fitting, and the re-
sults would not be linked to a realistic scale. One can observe
that the mismatch between MOS and metric score does not
evolve with the magnitude of the difference between HRCs.
Therefore, we report only the maximum mismatch between
difference in MOS and difference in metric score, under the
constraint that the measured difference is below 5% of the
quality range covered by the metric. Table 2 reports the max-
imum values for MOS difference observed for each content,
as well as the average over the 11 contents. For an average of
0.052 dB in PSNR, an average of 1.101 on the MOS scale can
be observed in the worst case over the 11 contents. This rep-
resents more than 20% of the MOS scale, which illustrates the
inaccuracies of the metric. Similar results can be observed for
the VQM and the TetraVQM, although surprisingly a slight
difference in favour of the PSNR can be noticed.

In the case of coding distortions only, the main parameters
influencing the perceived quality are the QP values. Under
constant QP coding, the distortion level is relatively constant
throughout the sequence and its impact on the judgement of

Table 2. Maximum difference between pairs of HRC in terms of
MOS and metric score.

Metric Video Content δ MOS δ Metric

PSNR

ShadowBoxing 1.296 0.062
Stream 1.333 0.086
Skatefar 0.962 0.076
Family 0.592 0.004

AVERAGE 1.101 0.052

VQM

ShadowBoxing 1.296 0.005
Stream 1.777 0.024
Skatefar 1.555 0.010
Family 1.777 0.029

AVERAGE 1.461 0.021

TetraVQM

ShadowBoxing 1.555 0.195
Stream 1.296 0.020
Skatefar 1.592 0.185
Family 1.111 0.016

AVERAGE 1.262 0.134

observers can be extracted easily. As a result, one could imag-
ine that a bitstream-based quality metric could perform well
in this context. However, as soon as packet-loss artifacts are
to expect, the performance of such a model would decrease
rapidly, as we will illustrate in the next section.

4.3. Error-concealment techniques

Error concealment is a post processing added by the de-
coder when detecting irregularities in the bitstream. As a
result, parametric quality measures based on bitstream analy-
sis might not be able to anticipate it, as no information about
the error-concealment technique is usually included in the
bitstream. Perceptual metrics are more likely to identify the
artifacts due to error concealment, as they look at the PVS
directly. In our previous work [1], we identified significant
differences between the local SVC concealment (patch) and
global SVC concealment (switch). Here we want to question
the ability of the metrics to identify these differences. To
this end, Figure 3 displays the differences between the two
SVC-based error concealment techniques, both in terms of
MOS and metric score, for the three metrics. The experi-
ment includes 4 configurations for the base layer with 15 and
30 frames per second and a bitrate equal to 120 kbps and
200 kbps. One can easily observe that the metrics are not able
to reproduce the difference in MOS between the local and
global concealemnt techniques. Additionally, it seems that
the behaviour of the metrics cannot be easily predicted, as no
particular pattern appears in the figure.

We are aware that the involved metrics were not built to
cope with SVC-based error concealment. Unlike frame paus-
ing or skipping, the patch and switch methods introduce only
blurring in the concealed frames. In case of a difference in the
number of frames per second between the two layers, tempo-
ral discontinuities are also introduced, which are perceived as



quite disturbing by the observers, as shown in our previous
work. The metrics do not seem to capture the impact of these
discontinuities, possibly because the amount of blurring is not
severe enough.
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Fig. 3. Difference in terms of MOS and in terms of metric score be-
tween the “patch” and the “switch” error-concealment techniques.
Each point corresponds to one PVS. “+”: base layer encoded at
120 kbps, 15 fps; “�”: 200 kbps, 15 fps; “©”: 120 kbps, 30 fps;
“♦”: 200 kbps, 30 fps. Similar results have been observed for the
PSNR.

4.4. Impairment temporal distribution

It is well accepted that the distribution of artifacts due to net-
work impairments has an influence on the perceived qual-
ity. The T3 dataset was designed to determine the parame-
ters involved in a SVC based-scenario where the switch error-
concealment technique is used to conceal impairments. In our
previous work [3], we identified that the main parameters in-
volved in the perception of quality in this context are the num-
ber of frames displayed from the base layer, the quality of the
base layer itself and the number of impairment events.

This experiment was designed in a systematic way to
facilitate the extraction of models for the influence of the
impariment distribution on the perceived quality. The influ-
ence of each parameter can be analysed both independently
and jointly with the other parameters. This dataset is there-
fore particularly suited for the design of an hybrid model,
analysing both the bitstream to identify missing packets and
encoding parameters, and the decoded video to determine the
severity of the loss and get indications on the performance of
the error-concealment technique.

4.5. Influence of source content

The T4 dataset uses the same SVC conditions as T2, on a
set of 60 source contents covering a wide range of genres and
complexity levels. In our previous work [2], we identified sig-
nificant differences in terms of MOS between different source
contents under the same coding conditions. A preliminary
analysis of the behaviour of the PSNR on these datasets ex-
hibited a common mismatch with the MOS which commonly
reached one MOS category after a conventional third-order
fitting. This early observation suggests that the source char-
acteristics in this context have an impact on the performance

of the quality metrics. Our dataset can therefore be used to
train the metrics on a wide set of source contents and improve
the way the characteristics of the source are taken into account
in their models.

5. DISCUSSION AND CONCLUSION

In this paper we presented four subjective video datasets and
their possible exploitation for the design and improvement of
objective quality metrics. We showed that the influence of
error-concealment artifacts was particularly difficult to pre-
dict using the considered metrics. We also identified possi-
ble directions to improve the metrics in their ability to handle
Scalable Video Coding under network impairments.
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