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Abstract

This thesis describes an automatic evaluation approach for estimating the quality of

stereo displays and vision systems using image features. The method is inspired by

the human visual system. Display of stereo images is widely used to enhance the

viewing experience of three-dimensional (3D) visual displays and communication sys-

tems. Applications are numerous and range from entertainment to more specialized

applications such as: 3D visualization and broadcasting, robot tele-operation, object

recognition, body exploration, 3D teleconferencing, and therapeutic purposes. Con-

sequently, perceived image quality is important for assessing the performance of 3D

imaging applications.

There is no doubt that subjective testing (i.e., asking human viewers to rank

the quality of stereo images) is the most accurate method for quality evaluation. It

reflects true human perception. However, these assessments are time consuming and

expensive. Furthermore, they cannot be done in real time. Therefore, the goal of

this research is to develop an objective quality evaluation methods (computational

models that can automatically predict perceived image quality) correlating well with

subjective predictions that are required in the field of quality assessment.

I believe that the perceived distortion and disparity of any stereoscopic display
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Abstract iii

are strongly dependent on local features, such as edge (non-uniform) and non-edge

(uniform) areas. Therefore, in this research, I propose a No-Reference (NR) objective

quality assessment for coded stereoscopic images based on segmented local features

of artifacts and disparity. Local feature information such as edge and non-edge area

based relative disparity estimation, as well as the blockiness, blur, and the zero-

crossing within the block of images, are evaluated in this method. A block-based

edge dissimilarity approach is used for disparity estimation. I use the Toyama stereo

images database to evaluate the performance and to compare it with other approaches

both qualitatively and quantitatively.
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Chapter 1

Introduction

The rapid development of three-dimensional (3D) vision technology has led to an

increased interest in 3D image capture, process [21], display [7], and transfer over the

Internet [42]. Most of these 3D vision technologies have involved generating stereo

vision systems (i.e., a pair of cameras is used for capturing images) because of higher

accuracy and capacity of handling real-time data [45]. Moreover, stereoscopic dis-

plays are desired for complex and realistic medical and health images. [41]. However,

stereo vision systems contain a large amount of data which requires a huge storage ca-

pacity or high transmission bandwidth. As an example, a stereoscopic uncompressed

HDTV channel may cost up to one Gbit/s transmission bandwidth [33]. Due to poor

transmission channels, transmission errors or data dropping may occur, which lead

to an imperfect image quality and distortion of the received video data. Therefore,

digital image compression (JPEG, JPEG2000, MPEG2, H.264 or similar lossy image

compression) is required for saving bandwidth and for minimum storage space [6].

Lossy image compression techniques may solve this problem, but introduce image

1



2 Chapter 1: Introduction

aritifacts like blockiness, blurring and ringing, which degrade the visual quality of

an image. Therefore, perceived image quality assessment is required to ensure the

applied compression techniques and the levels of compression.

1.1 Problem Motivation

The importance of the perceived quality measurement is required for many image

processing applications such as compression, acquisition, restoration, enhancement,

and reproduction [6; 38]. These applications involve trade-offs between the process-

ing systems resources and the visual quality reproductions. In order to make these

trade-offs efficient, a perfect image quality assessment is required. The most common

methods for assessing image quality is subjective assessment [16] (i.e., ask human

viewers to rank the quality of an image) because it directly reflects human percep-

tion. However, the subjective experiments are expensive and time consuming [39],

and cannot be performed in real time systems because they require expensive in-

struments and human viewers. As a result, an objective (i.e., mathematical model)

image quality evaluation method [35] that correlates well with human perception is

desired. Moreover, there is demand for a precise mathematical model that can assess

the quality of images without reference images (i.e., uncompressed original images)

which is required for the end user. In addition, most of the widely used mathemati-

cal methods do not correlate well with human visual characteristics [12]. Under the

above circumstances, a no-reference (NR) objective quality assessment metric that

correlates well with human perception is desired. The NR method can be used for

adjusting image quality, optimization, or for benchmark image-processing systems
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Figure 1.1: Image Quality Assessment: Subjective and Objective

and algorithms. Figure 1.1 shows an image quality assessment scenario, where two

primary methods of image quality assessment are shown: subjective and objective

methods. In the figure above we can see that the subjective evaluations are depen-

dent on human voting, whereas the objective evaluations are developed by extracting

image features.

The objective of my thesis is to develop a NR objective quality assessment method

for coded stereoscopic images. The function of Human Visual System (HVS) is to

extract structural or edge information from the viewing field of an object [22]. There-

fore, humans are very sensitive to edge information, and the distortions they perceive

are dependent on local features such as uniform (i.e, area with less edges) and non-
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uniform (i.e, area with more edges) areas. Images are the combinations of different

edges and the pixels of an image have strong dependencies between each other, espe-

cially when they are close in space. Thus, 3D depth perception is strongly dependent

on objects/structures or textures edges of stereo images. Therefore, the goal is to

predict the perceptual quality of stereoscopic images using local features: uniform

and non-uniform areas and the relative disparity estimation.

1.2 Outline of Thesis

The thesis is organized as follows. Chapter 1 gives a general introduction and

the motivation of my work. The required background and the past work on quality

assessment are reviewed in Chapter 2. Chapter 3 describes my approach and the

techniques to construct an automatic NR objective method for stereoscopic image

quality assessment. The results and the discussion of my algorithm are given in

Chapter 4. Finally, Chapter 5 concludes the thesis. Future work is also mentioned in

the same chapter.



Chapter 2

Background and Related Work

2.1 Image Quality Assessment

Image quality assessment plays an important role in various image processing ap-

plications. Image quality is defined by an individual who views the image and the

qualities of an image itself [3]. Human observer opinions are affected by complex phys-

ical and psychological parameters, while the quality of an image depends on various

image features. Images are subject to distortions during acquisition, communication,

processing and reproduction [38]. Therefore, to maintain, control and to enhance

the quality of an image, quality evaluation is important, which is not easy to accom-

plish [37]. The image quality assessment is an approach to measure the quality of an

image i.e., combining the effect of image distortion, quantification, and accumulation

into a single score. It is either subjective or objective. Figure 2.1 shows the different

assessment methods of image quality.

5
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Figure 2.1: Image quality assessment methods

2.1.1 Subjective Assessment

Subjective quality assessment [35] is a method of ranking the quality of an image

by human viewers. This is a straightforward approach for assessing the picture qual-

ity of digitally coded pictures. Over the years, a number of subjective assessments

have been conducted, but few of them have emerged because of limited resources

or failure to meet the standards defined by video quality experts group (VQEG) for

FR-TV Phase II test [35]. Carefully designed and conducted subjective assessments

offer direct and reliable prediction performance of a system being tested [15], but

they inevitably have their own shortcomings. Subjective assessments are often very

expensive and time consuming [22].

In the Media Information and Communication Technology (MICT) laboratory [25],

the University of Toyama, Japan, conducted a subjective experiment on 24 bit per

pixel RGB color stereoscopic images. The image database consists of 10 stereo-
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Figure 2.2: Reference stereoscopic images [25]

scopic image pairs. The stereo pairs are Car, Cattle, Flower, Goat, Mongyo, Women,

Ningyou, Peacock, Saboten, and Flower2 (see Figure 2.2). Seven different levels of

compression were applied for each of the images. There are 70 symmetric and 420

asymmetric coded image pairs of size 640 × 480. In the symmetric stereoscopic cod-

ing, an equal level of compression is applied to the left and right images whereas

in the asymmetric coding, the compression level of the two images is different. The

seven compression levels or the quality scales (QS: 10, 15, 27, 37, 55, 79, and the

reference/original) were selected for the JPEG encoder [18]. QS (10–79) correspond

to very low to high bit rates. Each level of compression was applied to both in
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Figure 2.3: Histogram of MOS scores: (a) Symmetric, (b) Asymmetric.

Figure 2.4: Standard deviations of MOS scores: (a) Symmetric, (b) Asymmetric.

left and right stereo image pairs. According to the recommendation of the Interna-

tional Telecommunication Union (ITU) for still-image coding [16], the quality scale

was divided into five categories. Each category was assigned with a single numerical

value of adjectives “Bad =1”, “Poor=2”, “Fair=3”, “Good=4”, and “Excellent=5”.

The human viewers were asked to provide their assessments on a discrete quality

scale. Mean opinion scores (MOSs) were then computed for each stereo image after

the screening of post-experiment results according to ITU-R 500-10 recommenda-
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tion [16]. A detailed description about the experimental method and procedure is

given in Appendix A. The MOS histogram and the standard deviations for all MOSs

of symmetric and asymmetric images are shown in Figure 2.3 and Figure 2.4, re-

spectively. Both histograms indicate that the image database covers all ranges of

quality scale (i.e., the MOS scores from 1 to 5). Figure 2.4 shows the variation of

MOS scores (subjective quality) for various compression levels. For my research, I am

using the MICT stereo image database to evaluate the performance of my objective

(i.e., mathematical) quality assessment technique. Therefore, I will be referring these

stereo image pairs throughout my thesis and appendixes.

2.1.2 Objective Image Quality Assessment

An objective assessment is a computational method for predicting the perceived

quality of images without actual human viewers. According to Wang et al. [38] “an

objective image quality model predicts the image quality sensation of an average human

observer”. In other words, the strong correlation between the subjective observations

and the objective quality metrics is essential when developing an objective metric.

Therefore, the goal of an objective image quality assessment is to achieve a good

correlation with the subject’s opinion for compressed images. There are three types

of objective image quality measures: Full-Reference (FR), Reduced-Reference (RR),

and No-Reference (NR). The schematic diagrams of three different objective methods

are shown in Figure 2.5.

Full-Reference Method: In a full-reference method [38], reference images are re-

quired to assess the quality of distorted images. Most of the quality assessment meth-
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Figure 2.5: Objective image quality assessment models

ods belong to this category. However, in most of the real-time applications reference

images are unavailable so a FR metric is not useful for those applications.

Reduced-Reference Method: In a reduced-reference method [38], partial infor-

mation of the reference images is required to predict the visual quality of distorted

images. This method is used as a substitute of FR method.

No-Reference Method: The method that does not require any reference to assess

the quality of a distorted image is known as a NR method [38]. In many real-time

applications, the reference image is not available, and a no-reference or “blind” quality

assessment approach is desirable. Moreover, a human observer can assess the quality



Chapter 2: Background and Related Work 11

of a distorted image without the use of any reference image. However, developing an

objective NR quality measurement metric is difficult due to the limited knowledge of

HVS. Therefore, a NR quality assessment is reliable only when the prior knowledge

about the image distortion is available [30]. My thesis focus on this method.

2.2 Image Artifacts

Image artifacts or distortions can be defined as any features that appear in com-

pressed images, but do not exist in the reference image. Due to many reasons, ex-

cessive image compression may cause image artifacts such as blocking, blurring, and

ringing [17]. Some of these artifacts are easily detectable, but few are always out of

balance. However, in my research, I will consider the following two major artifacts of

coded images.

2.2.1 Blocking Artifacts

The most common artifact in digital compressed images is blockiness [17; 40],

which appears as a small square block all over the image. Blockiness arises when

a Discrete Cosine Transform (DCT) [29] based compression algorithm uses a high

compression ratio. In DCT data are presented as a sum of cosine functions of various

magnitudes and frequencies. The DCT quantitized an image by combining a large

amount of image data into a small number of coefficients. In a DCT-based coder,

an image is divided into several blocks of 8 × 8 pixels. Each of the blocks is then

encoded, from the top left corner to keep only the important information of an image.

As it processes forward from the upper left hand corner, the blocks are encoded with
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(a) (b)

Figure 2.6: Image artifact: (a) Reference image [25] (b) JPEG Compressed Image
with blockiness

fewer and fewer bits and finally, the whole image is DCT quantized [29]. During

compression, the DCT coefficients of zeros are discarded without affecting the quality

of the image. The compression rate and the quality of an image depend on the level

of quantization of the DCT coefficients [29].

From a technical point of view, blockiness occurs due to the discontinuity at

block boundaries which is generated during block-based quantization of a DCT-based

coder. During compression the DCT transform operates on blocks of M × N(row ×

column) pixels; as a consequence, horizontal and vertical lines at the edges of the

DCT boundaries (i.e., blockiness) are exhibited in compressed images. The presence

of a periodic 8× 8 edge structure in an image is called blocking artifact. A reference

image and the image with blocking artifacts are shown in Figure 2.6.
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(a) (b)

Figure 2.7: Image artifact: (a) Reference image [25] (b) Blurred Image using Gaussian
low-pass filter with 5×5 Pixels

2.2.2 Blur Artifacts

Blurring [17; 23] reduces the sharpness of edges within an image. The image

becomes smoother than the reference image and causes “vague dark smudges” around

the sharp edges. Blur reduces the contrast of an image. Therefore, the visibility of

small objects are reduced and making it difficult to clearly view the details of the

image. Blur is normally the worst artifact in most images [40]. Excessive image

compression may cause this distortion. In a DCT-coded image, blur appears due

to the truncation or quantization of high frequency DCT coefficients which smooth

the image signal of a block [29]. Human eyes are good to spot the smoothness and

blur artifacts that are occurred frequently in compressed images. Figure 2.7 gives an

example of blur artifacts.



14 Chapter 2: Background and Related Work

2.3 Disparity Estimation

Disparity estimation is an essential step in stereo images [24]. Stereo vision con-

sists of two images (left and right views) captured by two closely-located cameras.

The distance between the cameras is approximately the distance between two eyes.

These views constitute a stereo pair and can be perceived as a 3D/virtual view by

human observers. In a stereo vision, disparity is estimated by extracting features from

the left image and locating the corresponding features in the right image to perceive

disparity information. The relative pixels shifting from the left to the right of images

are called disparity, which is inversely proportional to the depth of the corresponding

feature points in the scene.

Disparity map construction algorithms can be divided into two groups: local and

global algorithms. The local algorithms deal with small neighbourhoods of points of

search areas whereas the global algorithms deal with image lines or entire images [6].

Local algorithms are efficient but they are sensitive to locally ambiguous regions

(for example, to regions with a homogeneous structure). Global algorithms are less

sensitive to such regions; however, they are more computationally intensive. The

block-matching algorithm belongs to the group of local algorithms and is the simplest

in realization and performance. Currently, in the field of disparity estimation, the

block-based matching [17] (i.e., the global algorithm) has attracted much attention

because of its better performance and effective implementation. The idea of block

matching is to segment the target image into fixed-size blocks and find the best

matches into the reference image. It determines disparity by comparing a small

region (block) around a point in the first image with regions on the second image.
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The sum of squares of differences of intensities and the sum of absolute differences of

intensities are widely used used in measuring block similarities [36].

Eslami et al. [9] developed a different block-based method for the image distortion

search called “sparse” representations of image data (i.e., where most information is

packed into a small number of samples) that employ different weights to the smooth

and high contrast areas of an image. In fixed-sized block matching (FSBM) [17], the

original image is divided into fixed-sized blocks and similar blocks within the reference

image disrespecting its location are found. These approaches fail in low texture

areas. It has been proven that larger block-size increases not only the robustness but

also the magnitude of errors. A hybrid approach of block-based matching is called

region-based matching [4]. It allows more accurate estimation of pixel displacement.

Region-based schemes are attractive because of their comparability with the HVS

characteristics and follow the standards of image compression techniques.

By considering the limitations of the aforementioned approaches, I propose a

simple block-based edge dissimilarity measure which considers the edge differences

between the left image to the corresponding right image to measure the relative

disparity. The details of my disparity assessment algorithm are discussed in chapter 3.

2.4 Objective Quality AssessmentMethods Review

A large number of objective metrics have been developed that are capable of

mimicking subjective assessment to measure the visible differences between a pair of

images [33; 39; 31; 5]. Considering this wide range of applications, I have separated

the objective research into two main categories: first, the methods that consider only
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Figure 2.8: NR research scope

statistical or mathematical measurement (i.e., the image features extraction), and,

second, methods that consider the HVS characteristics. In my approach, I consider

mathematical measures with incorporation of HVS, that is, image feature extraction

using HVS characteristics. A diagram of my proposed approach is shown in Figure 2.8.

Mathematical Model Metrics

Most of the objective metrics consider the statistical or mathematical measure-

ment for finding the image artifacts. The mean squared error (MSE) [14] and the peak

signal-to-noise ratio (PSNR) [12] are the most widely used pixel-based image quality

metrics. These techniques are simple and fast, but widely criticized for not corre-

lating well with human visual perception and require reference images [38]. PSNR
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is a simple pixel-based comparison method whereas MSE is designed on statistical

features for finding differences between reference and original images. They do not

consider the relationship between pixels. Although MSE or PSNR are considered as

a quality metrics but these are not consistent with the HVS as they measure every

pixel within with equal priority. In addition, no information of structure, contrast,

visibility, etc. are considered in these methods. These metrics consider the power of

the error signal, but not how it affects the image. In reality pixels at different position

create various effects on the HVS. Since image quality is strongly based on subjective

observations, these metrics rarely work accurately on quality judgement.

MSE is the differences between corresponding pixels of the reference and the dis-

torted images and it can be defined as:

MSE =
1

M ×N

M,N
∑

m=1,n=1

|I(m,n)− Id(m,n)|2 (2.1)

where M×N is image size. I(m,n) and Id(m,n) represent pixels of reference and

distorted images, respectively.

PSNR maps the MSE in a logarithmic way which is defined as:

PSNR = 10log10
MAXI

MSE
(2.2)

where MAXI is the maximum value that a pixel can have. As an example, the

MAX value for a 8-bit grayscale image is 255.

PSNR is a popular and widely used metric to evaluate and quantify performance of

image processing algorithms. But it exhibits weak performance in perceived image

quality assessment due to pixel-wise error computation. Human vision is sensitive to

contrast sensitivity of an image. Therefore, these mathematical models do not always

correlate with human perception and fail to predict the perceived quality of an image.
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I ran several experiments to analyze the prediction performance of MSE and PSNR

over MOS. In order to show the performance of MSE over MOS for different level

of compression of three stereoscopic image pairs e.g., Cattle, Saboten and Women

(stereo images from the MICT database [25]) are given in the Figures 2.9, 2.10,

and 2.11. These figures show increasing and decreasing trends for MOS and MSE

scores respectively for low level of compressions (i.e., increasing bit rate) for the three

different images. However, the relationship between MOS and MSE are not always

inversely proportional. For example, in Figure 2.9(a) the MSE of the stereoscopic

coded pairs (37-27) (indicate the compression level for left and right images, respec-

tively) and (37-37) are different but their MOS scores are almost equal. Stereo pairs

(37-79) and (37-Ref) give similar results. Figure 2.9 (c) and (d) show a similar trend

among the pairs (79-37), (79-55), and (79-79) and in Figure 2.9 (d) between the stereo

pairs (Ref-55) and (Ref-79). From the figures above we can see the large variation of

MSE for different compression levels, whereas the MOS show a small variations for

the same compression ratio. Subsequently, Figure 2.10, and 2.11 give similar trends

but not exactly in the same coded levels of combinations which have already been

discussed. Figure 2.9 (b) shows that variations of MSE and MOS between the stereo

pairs (55-15), and (55-27) are high and low, respectively. This is because the MOS

scores are strongly dependent on the texture contents of an image. So, it has been

proven that MSE, a widely used mathematical approach, does not truly reflect human

perception or the subjective score. Similarly, PSNR does not reflect true subjective

because it depends on MSE. A similar results for PSNR are shown in appendix A.

An accurate objective image quality model predicts the image quality sensation of
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Figure 2.9: MSE and MOS of different coding levels for Cattle stereo pair

an average human observer, so a good objective model must exploit the knowledge of

the HVS. In the following subsection, the development of HVS-based quality metrics

are reviewed and discussed.
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Figure 2.10: MSE and MOS of different coding levels for Saboten stereo pair

HVS-based Feature Metrics

As image quality assessment should depend on the assessments made by humans,

a better understanding of features of the HVS should lead to more effective compar-

isons [28], which in turn will assess more realistic and reliable perception. Recently,

a great deal of effort has been made to the development of visual models that take

advantage of the known characteristics of the HVS [33; 14; 10]. The aim of the HVS-
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Figure 2.11: MSE and MOS of different coding levels for Women stereo pair

based objective assessments are to evaluate how strong the distorted information is

perceived by the metric, according to the characteristics of the HVS. However, most of

these proposed approaches require the original image as a reference, therefore, these

metrics can not be used in real time applications.

Recently, extensive research into designing objective metric based on artificial

neural network has done. Gastaldo et al. [11] proposed a neural network based
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objective metric using PSNR. They present their quality assessment on a circular

back-propagation neural network model. Though the performance of their metric is

good, it was not verified widely by other databases. Horita et al. [14] introduced a

FR metric for stereoscopic color images by considering the HVS. They considered all

the components such as luminance and color of the CIELab color space (i.e., colors

are considered as combinations of red and yellow, red and blue, green and yellow,

and green and blue). Image impairments were quantified by the differences of coded

and reference images. The MSE algorithms were used in their metrics for finding the

pixel distortions. Gorley et al. [12] developed a point matching technique to identify

the contrast and the luminance changes between the left and the right images. Most

of these metrics were developed based on the structural similarity [22], segmentation

and/or quality-awareness [34]. Therefore, they fail when the reference image or at

least the partial information of the reference image is unavailable.

Wang et al. [39] designed their metric by finding two major image artifacts, block-

iness and blur within an image. The image impairments were identified from the

shifting of the left and right image pair. The major draw back of their metric is

high computational cost. A similar approach was proposed by Sazzad et al. [31]

where the metric was developed to find the texture areas of an image. However, the

metric was developed for 2D image quality assessment. In the region-based match-

ing [4], researchers investigated the sensitivity of the human eyes for occluded regions.

Marziliano et al. [23] presented a NR blur metric by measuring average edge tran-

sition widths, and this blur measure was used to predict the quality of JPEG2000

compressed images.
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Many researchers proved the sensitivity of human eye on image features such as

occluded, edge, or smooth regions of an image [14; 4]. Some of them focused on the

brightness, contrast, or structural similarities [40; 9] of an image. A similar approach

was developed by Sazzad et al. [32] where three local features: edge, plain (i.e.,

uniformly colored areas), and textured areas have been considered to find the image

impairments. Their metric has a large number of parameters, which poses a danger

of over-fitting the metric. Moreover, the computational cost of their metric is very

high.

The discussion above implies that for the past few decades, a lot of research has

been done in the field of 2D objective image quality assessment [33; 6; 39], but no com-

parable effort has been taken towards the quality assessment of stereoscopic images.

More specifically, very little research has been done on NR stereo image assessment

by considering the HVS. Emerging 3D technologies still require a larger number of

quality metrics and methodologies by taking into account the fundamental character-

istics of the HVS and typical distortions of stereoscopic image content. Therefore, I

strongly believe that my research would be recognized as a great contribution in the

field of 3D imaging.



Chapter 3

Implementation

This chapter begins with an analysis of the design requirements followed by a

detailed description of design and development procedures of my objective image

quality assessment model. My algorithm consists of two parts: first, finding image

artifacts in a stereo pair, and, second disparity estimation for the image pair. I am

taking blockiness and blur as major image artifacts because these are the most visible

distortions in compressed images. The preprocessing stage of my method is block-

based segmentation which is discussed first and then the details of my algorithm are

given in the following sections.

3.1 Design Motivation

Image compression creates artifacts which degrade the visual quality of an im-

age [38]. In theory, the visual artifacts of an image increase with an increased rate

of compression (i.e., decreasing bit rate, the number of bits per pixel (bpp) used

24
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during image compression). However, the relationship between the artifacts and the

level of compressions (i.e., different bit rates) depends on the texture contents of an

image [26]. In order to verify this relationship, I ran several experiments to analyze

the degradation of images which cause visual difficulty i.e., appearance of image ar-

tifacts for various compression and texture levels within the images. For instance,

JPEG coding introduces blockiness within the “University of Manitoba” image (see

Figure 3.1 (a)) that contains a variety of textures such as uniform and non-uniform

(a) Reference image; Image taken from [1] (b) Compressed image; QS = 10

(c) A small portion of an uniform area (d) A small portion of a non-uniform area

Figure 3.1: Variation of Perceived Distortion (uniform and non-uniform areas)
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areas. Out of all edge and non-edge areas in Figure 3.1(a). I analyze a small portion

of uniform and non-uniform areas which are represented by the top-right rectangular

box and the bottom-right rectangular box (dotted line), respectively. A high level of

compression (i.e., lowest bit rate, QS10) is applied to the image. See Figure 3.1(b).

The result shows the blocking artifacts is more visible to uniform areas compared to

that the non-uniform areas (see the corresponding areas in the compressed image)

even though the level of compression is equal. In order to study the relationship

more extensively, I apply four levels of compression (QS: 50, 25, 15, and 10) to the

image and consider expanded views of the portions of non-uniform and uniform areas

(consider the rectangular box areas) for each level of compression which are shown in

Figure 3.1(c) and 3.1(d), respectively. The range of QS is between 0 to 100 (i.e., bit

rate range from 0.01 bpp to 2 bpp). More specifically QS10, 25, and 60 indicate 0.5,

0.75, and 1 bpp, respectively [26]. QS0 and QS100 indicate the worst (i.e, very high

level of compression) and the best quality (i.e, very low level of compression) of am

image, respectively. These two figures indicate that perceived distortions for these

areas are not similar even if the compression levels are equal. In details, blocking

artifacts are more visible in uniform areas compared to the non-uniform areas (see

Figure 3.1 (c)(iii) and (d)(iii), and also Figure 3.1 (c)(iv) and (d)(iv)). Similarly, the

blur artifacts are more visible in the non-uniform areas compared to uniform areas

see Figures (c)(iii) and (d)(iii), and also Figures 3.1 (c)(iv) and (d)(iv)). There-

fore, the results indicate that visibility of image artifacts is strongly depended on

the texture similarity of the area. Thus, I studied the effect of overall image qual-

ity (subjective quality score) not only for various level of compression but also for
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symmetric/asymmetric coded stereoscopic images.

3.1.1 Effects of Bit rates on Image Quality

In order to explain image quality for various bit rates, I took two stereo images

e.g., Car and Saboten (stereo image pairs from the MICT database [25]) to present

a comparative analysis of MOS versus compression levels i.e., different bit rates.

Coding levels versus overall image quality for the two sample pairs of images are

shown in Figures 3.2, and 3.3. The figures indicate that the image quality (MOS

score) increases with an increasing bit rate for both images with a few exceptions.

At the points (37-55, and 37-79) of Figure 3.2 and (55-27, and 55-37) of Figure 3.3,

one view(left or right) of the stereoscopic image pairs are coded with high JPEG

compression level of QS37 and/or QS27. Therefore, the corresponding views contain

large artifacts, primarily the blockiness and blur artifacts, can not be reduced by

using high quality view for the rest of a pair. Moreover, the Car and Saboten images

contain some uniform and non-uniform areas where blockiness and blur artifacts are

more visible for uniform and non-uniform areas, respectively. Consequently, even

though the average bit rate is increasing for those image pairs, subjective quality

score remains fixed. Therefore, the results suggest that quality score not only depend

on the level of compressions but also the texture contents of an image has large impact

on perceived image quality, especially in the range of medium to high bit rate (i.e.,

coding level, QS37 and above). However, the quality trend increases with increasing

of bit rate specifically at low bit rate range (i.e., coding level up to less than QS37).
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Figure 3.2: MOS score for different coding combinations: (a) Car (b) Saboten

3.1.2 Effect of Symmetric/asymmetric Compression on Im-

age Quality

I investigated symmetric and asymmetric coded image pairs , to study the effect

of subjective quality score. I use Cattle and Women stereo pairs (stereo image pairs

from the MICT database [25]) for my description. Figures 3.4, and 3.5 show overall

image quality scores and the coding levels of different symmetric and asymmetric



Chapter 3: Implementation 29

Figure 3.3: MOS score for different coding combinations: (a) Car (b) Saboten

pairs for the stereo images Cattle and Women. These two figures indicate that the

relationship between the perceived quality and the average bit rate is not linear

for stereoscopic images. In Figure 3.4, the quality scores of the asymmetric coded

pair (37-27) is higher compare to that of the symmetric coded pair (37-37), even

though the average bit rate for asymmetric pair (37-27) is lower than the symmetric

pair (37-37). Also in Figure 3.5, the quality scores of the asymmetric coded pair

(55-37) is higher compare to the symmetric coded pair (55-55), even though the
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average bit rate for the asymmetric pair (55-37) is lower than the symmetric pair

(55-55). The results presented in [33] shows that the perceived image quality of

a stereo pair is approximately the average of high and low quality scores for that

pair and the overall perceived quality follows the low quality score of a stereo pair.

However, the MICT Lab’s subjective data do not support that statement. Rather

the subjective score of a stereo pair strongly depends on the texture contents of

an image pair. Moreover, the overall image quality of a stereo pair follows a low

score when the the level of compressions (i.e., in low bit rate range) is very high.

The above explanation shows the deviance. It also shows that asymmetric coding

is better compared to the symmetric for coded stereoscopic image pairs to reduce

average bit rate without compromising the perceptual quality of an image. Thus

the symmetric (79-79)/asymmetric (79-55) scores are approximately of equal quality

for both Cattle and Women images (see Figure 3.4 and 3.5). Although the result

presented in [33] suggests that symmetric coding is better for coded stereoscopic

image pairs, the MICT’s data suggest that asymmetric coding is better compared to

symmetric pairs for coded stereoscopic images.

It is clear from the above study that perceived image artifacts are strongly de-

pendent on local features such as uniform and non-uniform areas. Moreover, it has

already been established that the primary function of the HVS is to extract structural

or edge information from the viewing field, and the HVS is highly adapted for edge

detection [31]. Thus, I believe that the human perception is strongly dependent on

objects, structures or textures of stereo image content. Therefore, the purpose of

my thesis is to develop a new stereoscopic image quality metric both for symmetric
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Figure 3.4: MOS score for different symmetric and asymmetric coding combinations
of Cattle images

and asymmetric coded images by considering artifacts/distortion measures with the

incorporation of HVS characteristics. A NR objective stereoscopic image quality as-

sessment method is proposed based on artifacts and disparity measures distinctly for

uniform and non-uniform areas. My thesis is an important extension of the research

in [2]. It presents a modified version of the algorithm not only by reducing the number

of parameters but also reducing the chance of over-training the metric by using too

many parameters. These two important factors will reduce the computational cost

significantly and make my algorithm more robust. The block diagram of my proposed

model is shown in Figure 3.6.
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Figure 3.5: MOS score for different symmetric and asymmetric coding combinations
of Women images

3.2 Metric Design and Development

The goal is to predict the perceived quality of stereoscopic images without human

viewers. A stereoscopic image consists of two views: left and right. An efficient

2D compression technique, such as JPEG coder, can be applied independently both

on left and right images to compress the stereo pair. Since JPEG is a block-based

DCT coding technique, both blocking and blurring artifacts may be created during

the quantization of the DCT coefficients. Blur increases significantly when the level

of compression is high (i.e., low bit rate per second). Thus, the higher the blur,

the smoother the image signal is which causes the reduction of signal edge points.

Consequently, the average edge point detection of a block give more insight about

the relative blur in an image. Here, zero-crossing [17]; an edge detecting technique is

used to detect every pixel of an image into edge or non-edge pixel. The edge detection
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Figure 3.6: NR Objective Quality Evaluation Model

is a technique to identify the changes of image brightness that can be grouped into

two categories: gradient and Laplacian. The gradient detects edges by looking at

the maximum and minimum values of the first derivative of an image, whereas the

Laplacian searches for zero-crossings in the second derivative to find edges. In order

to explain the effect of number of zero-crossing on compression levels, I consider two

images, Cattle and Women. The total number of zero-crossing points (i.e., the total

number of pixels where zero-crossing occurs) of the two images for different coding

levels are shown in Figure 3.7. The results show that zero-crossing points decrease

with a decreasing bit rate (i.e., coding levels, QS 55 to 10). This result suggest that

blur artifacts of an image can be estimated by the detection of zero-crossing points

of the image. Although the effect of overall image coding artifacts for an asymmetric

image pair depends on the visual appearance of the artifact, where blockiness are more

disturbing than blur [31], I take the maximum blockiness and blur values between

the left and right views of a stereo pair. Therefore, I consider the higher blockiness
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Figure 3.7: Effect of number of zero-crossing on coding levels for Cattle and Women
images. Reference images from the MICT database [25]

and the lower zero-crossing values between the two views. For simplicity, only the

luminance component is considered to make quality prediction of the color stereo

images. The details of my segmentation algorithm to classify an image into uniform

and non-uniform areas is discussed in the following section. Subsequently, the artifacts

and disparity measures are described in the later sections.

3.2.1 Block-based Segmentation

A block-based segmentation [43; 44] algorithm is used to classify the edge and non-

edge areas of an image. At first, I design a simple pixel classification algorithm to

classify every pixel of the image into edge, or non-edge pixel. Initially, the standard

deviation (STD) of pixel values at each location is estimated within its 3×3 and
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5× 5 neighbourhood. For all corners pixels, I take into account only available pixels

for the measures. A large window increases the probability of sufficient intensity

variation, but it reduces the selectivity of finding correct disparities, especially in

areas with depth discontinuities. The adaptive window technique [27], adjust the

disparity of points near the target over the window size. This may solve the issue

but the computational cost goes high. Therefore, to reduce computational cost, I am

considering 3 × 3 and 5 × 5 neighbourhoods of pixels only. Let STD3×3(m,n), and

STD5×5(m,n) be the standard deviated images of 3 × 3 and 5 × 5 neighbourhoods,

respectively. I then calculate absolute difference, Da(m,n) by the following equation:

Da(m,n) = |STD3×3(m,n)− STD5×5(m,n)|, (3.1)

where m = 1, 2,....M and N = 1,2,....N. Here, M and N are the total number of rows

and column i.e., image size. Subsequently, I calculate STD of Da(m,n) by

D =

√

√

√

√

1

M ×N

M×N
∑

i=1

(Da −Dai)
2 (3.2)

where Dai is the Da value for each pixel or image sample and Da is the average

absolute difference of Da. I then use the following algorithm to classify edge and

non-edge pixels of the image.

P (m,n) =















1 if Da(m,n) >= D

0 otherwise

where “1” and “0” denote edge and non-edge pixels respectively. Secondly, we classify

each block (8×8) of the image into either uniform or non-uniform block by using the

following equation:

Let
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Sum = ne + nn (3.3)

where ne and nn are respectively the number of edge and non-edge pixels per (8×8)

block. Therefore, the “Sum” is the total number of pixels per block.

if
(

ne

Sum
> thn

)

then the block is “uniform”

else the block is “non− uniform”

where “thn” is the algorithmic threshold. The threshold is estimated empirically.

Details can be found in Section 4.

3.2.2 Artifacts Measure

Perceived quality of a coded image could be degraded by blockiness and blur. I

consider both blockiness and blur in the spatial domain (i.e., the image space, in

which a change in position in pixels directly corresponds to a change in position in

the scene). Here, the “blockiness” of a block (i.e., 8 × 8 pixels) is calculated by

averaging the absolute difference across a block boundary whereas blur is measured

by the averaging the edge points within that block. Blur smooths the image signal

within a block causing the reduction of edge points. Therefore, the higher the blur

the smoother the image signal is. Consequently, average edge point detection within a

block gives more insight about the relative blur of that image. Thus, the zero-crossing

technique can be used to detect edge points of an image to measure blur of an image.

To measure these two major artifacts the following steps are followed:

• At first, I calculate the blockiness and zero-crossing of each block of the stereo

image pair separately (left and right images).
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• In the second, I apply the block (8×8) based segmentation algorithm to the left

and right images separately to classify uniform, and non-uniform blocks within

the images.

• I calculate the average value of blockiness and zero-crossing separately for the

edge, and non-edge blocks (for uniform and non-uniform areas) for each of the

stereo pair.

• The total blockiness and zero-crossing of a stereo image pair is cacluated by tak-

ing the maximum blockiness and the minimum zero-crossing between the left

and right of a stereo image pair. A detailed explanation of choosing the maxi-

mum blockiness and the minimum zero-crossing value is given in the evaluation

chapter.

• Finally, I update the total blockiness and zero-crossing values with weighting

factors by using the PSO algorithm.

The mathematical features, blockiness and zero-crossing within a block of an image

are calculated both in horizontal and in vertical direction, respectively. For horizontal

direction: Let the test image signal be I(m, n) for m ∈ [1, M] and n ∈ [1, N], image

signal difference for in horizontal direction is calculated by

dh(m,n) = I(m,n+ 1)− I(m,n), (3.4)

n ∈ [1, N-1] and m ∈ [1, M]

Blockiness of a block (8×8) in the horizontal direction is estimated by

Bbh =
1

8

8
∑

i=1

|dh(i, 8j)| (3.5)
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where “i” and “8j” are respectively number of row and column position, and j = 1,

2, 3, ...(N/8).

For the horizontal zero-crossing (ZC):

dh−sign(m,n) =



































1 if dh(m,n) > 0

−1 if dh(m,n) < 0

0 otherwise

(3.6)

Where dh−sign(m,n) is the sign identification of dh(m,n).

dh−mul(m,n)

= dh−sign(m,n)× dh−sign(m,n + 1) (3.7)

Where dh−mul(m,n) is the multiplication between two adjacent column of the sign

identification signal dh−sign(m,n). I define for n ∈ [1, N-2]:

zh(m,n) =















1 if dh−mul(m,n) < 0

0 otherwise

(3.8)

Here zh(m,n) indicates horizontal zero-crossing for a pixel (m,n). The value “1”

indicates zero-crossing and “0” indicates no zero-crossing. The size of zh(m,n) is

M × (N − 2).

The horizontal zero-crossing of a block (8× 8), ZCbh, is calculated as follows:

ZCbh =
8

∑

i=1

8
∑

j=1

zh(i, j) (3.9)

Thus, I can calculate blockiness and zero-crossing of each available block of the left

and right images.

For the vertical direction: I calculate a difference signal along each vertical line:

dv(m,n) = I(m+ 1, n)− I(m,n), (3.10)
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n ∈ [1, N] and m ∈ [1, M-1]

Similarly, the vertical features of blockiness (Bbv) and zero-crossing (ZCbv) of the

block are calculated. Therefore, the overall features Bb and ZCb per block are given

by:

Bb =
Bbh +Bbv

2
, ZCb =

ZCbh + ZCbv

2
(3.11)

Consequently, the average blockiness value of uniform, and non-uniform areas of the

left image are calculated by:

Ble =
1

Ne

Ne
∑

b=1

Bbe (3.12)

Bln =
1

Nn

Nn
∑

b=1

Bbn (3.13)

where Ne, and Nn are the number of uniform, and non-uniform blocks of the image,

respectively. Similarly, the average blockiness values of Bre, and Brn for the right

image are calculated.

Accordingly, the average zero-crossing values of ZCle, and ZCln for the left image

are estimated by:

ZCle =
1

Ne

Ne
∑

b=1

ZCbe (3.14)

ZCln =
1

Nn

Nn
∑

b=1

ZCbn (3.15)

Similarly, the average zero-crossing values of ZCre, and ZCrn for the right image are

calculated. I then calculate the total blockiness and zero-crossing features of uniform,

and non-uniform areas of the stereo image. For the total blockiness features (Be, and
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Bn) of a stereo image, I consider the maximum values for a pair by using following

algorithm:

Be/n (Bl, Br) = max(Bl, Br) (3.16)

However for zero-crossing features (ZCe, and ZCn), I estimate the minimum values

of a stereo image pair by using the following equation:

ZCe/n (ZCl, ZCr) = min(ZCl, ZCr) (3.17)

Finally, the overall blockiness and zero-crossings of each stereo image pair are calcu-

lated by

B = Be
w1 · Bn

w2 (3.18)

Z = ZCe
w3 · ZCn

w4 (3.19)

where w1, and w2 are the weighting factors for the blockiness of uniform, and non-

uniform areas and also w3, and w4 are the weighting factors for zero-crossing which

are calculated by optimization algorithm.

3.2.3 Disparity Estimation

To measure disparity, I use a simple fixed size block matching approach to segment

the target image into fixed size of blocks and then finding each block of the left image

to that the corresponding area of the right image for that stereo image pair.

In other words, the displacement between x-coordinates in the left and right views

is referred to as disparity in this algorithm. The stereoscopic images in the database

that I considered are epipolar rectified images. The displacement between the left and
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Figure 3.8: Disparity estimation approach

right view of a stereo pair is restricted in the horizontal direction only. A block-based

edge dissimilarity measurement approach, i.e., the edge differences within the search

block of a stereo pair, is proposed for relative disparity estimation. The principle of

my disparity estimation is to divide the left image into non overlapping fixed-sized

(8×8) blocks with classification of uniform and non-uniform blocks. A disparity value

for each block of the left image is estimated by searching the minimum difference zero-
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crossing (DZC) value for that corresponding block in the right image. To reduce the

computational cost, the searching is restricted within ±128 pixels and one dimensional

(horizontal direction) only. The disparity estimation approach is shown in Figure 3.8.

The figure shows the value of minimum DZC of a block is 6. Here zero-crossing

(horizontal and vertical) of a block is estimated according to Section 3.2.2 where,

“1” and “0” indicate zero-crossing (edge) and not zero-crossing (non-edge) points,

respectively. Consequently, the relative disparities in my algorithm for non-uniform

(edge) and uniform (non-edge) areas are evaluated by averaging the DZC values.

In order to measure disparity, firstly, the segmentation algorithm is applied to

left image only to classify non-edge and edge blocks. Secondly, block-based DZC is

estimated in the two corresponding blocks between the left and right images. Thirdly,

I average the DZC rate values separately for non-edge and edge blocks. Finally,

the values are updated with some weighting factors. ZCl, and ZCr are the zero-

crossing of a block in the left image and the corresponding block in the right image,

respectively. The DZC of the block can be estimated by the following equation:

DZC = ZCl ⊕ ZCr (3.20)

Subsequently, the DZC rate (DZCR) is calculated by:

DZCR =
1

8× 8

∑

DZC (3.21)

For the horizontal direction: let ZClh, and ZCrh be the horizontal zero-crossing

of a block in the left image and the corresponding search block in the right image,

respectively. The DZCh of the block is estimated by the following equation:
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DZCh = ZClh ⊕ ZCrh (3.22)

where the symbol⊕ indicates logical Exclusive-OR operation. Thus, we can calculate

DZCh rate (DZCRh) of the 8×8 block by

DZCRh =
1

8× 8

∑

DZCh (3.23)

Therefore, the average DZCRh (AZCh) for uniform, and non-uniform blocks of the

left image are calculated by

AZChe
=

1

Ne

Ne
∑

e=1

DZCRhe
(3.24)

AZChn
=

1

Nn

Nn
∑

e=1

DZCRhn
(3.25)

where Ne, and Nn are respectively the number of uniform, and non-uniform blocks

of the left image.

For vertical direction: similarly, we can calculate AZCve , and AZCvn . Subse-

quently, the total disparity features for uniform, AZCe and non-uniform, AZCn areas

are estimated by the following equation:

AZCe =
AZChe

+ AZCve

2
, AZCn =

AZChn
+ AZCvn

2
(3.26)

Finally, the overall disparity feature is estimated by

DZ = AZCe
w5 · AZCn

w6 (3.27)

· is the multiplication of two values where w5, and w6 are respectively the weighting

factors of the disparity features for uniform, and non-uniform areas.



44 Chapter 3: Implementation

3.2.4 Features Combination

Finally, in my algorithm all features, both artifacts and disparity, are combined

to construct a stereoscopic quality prediction model. The following equation is used

to combine the artifacts and disparity features in my proposed NR stereo quality

assessment metric:

S = α(DZ) + βB · Z (3.28)

where α, and β are the model parameters. The model parameters and weighting

factors (w1 to w6) must be estimated by an optimization algorithm with the subjective

test data. The proposed method performance is also studied without disparity by the

following equation:

S = α + βB · Z (3.29)

I consider a logistic function according to VQEG recommendation as a non-linear

property between the human perception and the physical features [35]. Finally, the

obtained MOS prediction, MOSp, is given by the following equation.

MOSp =
4

1 + exp[−1.0217(S − 3)]
+ 1 (3.30)

Here, the PSO algorithm is used to optimize the model’s parameters and the weighting

factors [19].
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Evaluation

To evaluate the performance of my proposed quality assessment model, I followed

the standard performance evaluation procedures of VQEG for FR-TV Phase II test-

ing [35]. The standard was developed for calculating the prediction error between

a mathematical model and subjective scores (i.e., human viewers opinion). A short

description of the standard performance evaluation procedures of VQEG is given at

the beginning of this chapter. I consider the following important criteria for the eval-

uation of my proposed model:

• Threshold estimation of my proposed block-based segmentation algorithm.

• Significance of considering the maximum blockiness between left and right im-

ages of a stereo pair.

• Significance of considering the minimum zero-crossing between the left and right

images of a stereo pair.

45
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• Effect of different block sizes and search areas on disparity estimation.

• Performance evaluation according to VQEG.

• Comparison with other methods.

4.1 VQEG’s Standard Performance Evaluation Pro-

cedures

According to the VQEG [35], the performance of an objective quality model is

characterized by three prediction attributes:

• Accuracy — is the ability to predict the distortions between MOS and MOSp.

In an ideal case, the relationship between the MOS and MOSp is expected to be

linear. Figure 4.1 illustrates the hypothetical relationships between the MOS

and the MOSp for two models. Model-I is more accurate than the Model-II

because most of the images evaluations are reasonably closer to the straight

line.

• Monotonicity — is the degree to which the model’s predictions agree with the

relative magnitudes of subjective quality ratings. The prediction monotonicity

is the extent of agreement between the subjective test and the objective model

for variations in picture quality. As an example, viewers rank image A for many

different levels of compressions where it implies the picture quality gets better

when the level of compression is minimal. A monotonic objective model should

give the same result, but it does not follow the trend even though they are
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Model-I ( accurate) Model-II (not accurate)

Figure 4.1: Two hypothetical models with different prediction accuracy [30]

Model-I (non monotonic) Model-II (monotonic)

Figure 4.2: Two hypothetical models with different prediction monotonicity [30]

mathematically equivalent. Figure 4.2 illustrates the hypothetical relationships

between the MOS and the MOSp for two models. Model-I has a better Pearson

correlation than Model-II, but it falsely predicts degradation in picture quality

in two events when the assessors actually see an improvement in picture quality.

Therefore, in terms of monotonicity, Model-II is better than Model-I.

• Consistency — is the degree to which the model maintains prediction accuracy

over the range of all types of images or for a subset of images. An objective
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Model-I (consistent) Model-II (inconsistent)

Figure 4.3: Two hypothetical models with different prediction consistency [30].

model should perform well over a wide range of test images with minimum

prediction error. Figure 4.3 shows two hypothetical models with MOS and the

MOSp, and in terms of consistency, model-I is more consistent than model-II.

The followings are the performance evaluation metrics recommended by VQEG for

objective quality assessment model:

Metric 1: Pearson Correlation Coefficient (CC) between objective (MOSp) and

subjective (MOS) scores. MOSp is the mean opinion score prediction that is the

output of objective (i.e., mathematical) model and whereas MOS is the mean opinion

score of human assessments. This metric provides an evaluation of prediction accuracy

which can be defined as:

CC =

∑N
i=1

(

MOS(i)−MOS
) (

MOSp(i)−MOSp

)

√

∑N
i=1

(

MOS(i)−MOS
)2

√

∑N
i=1

(

MOSp(i)−MOSp

)2

(4.1)

where the index i denotes the image sample and N denotes the total number of

samples.
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Metric 2: Spearman Rank Order Correlation Coefficient (SROCC) between objec-

tive (MOSp) and subjective (MOS) scores. It is considered as a measure of prediction

monotonicity and it is defined by:

SROCC = 1−
6
∑N

i=1
(MOS(i)−MOSp(i))

2

N(N2 − 1)
(4.2)

where 6 is a constant (it is always used in the formula).

The prediction monotonicity is the extent of agreement between the subject test and

the objective model in terms of the sign of change in picture quality.

Metric 3: Outlier Ratio (OR) represents number of “outlier-points” to the total

points N. It is considered as a measure of prediction consistency, which can be defined

by the following equation:

OR =
(total number of outliers)

N
(4.3)

where an outlier is a point for: |MOS(i)−MOSp(i)| > 2×σ(MOS(i)),

where σ(MOS(i)) represents the standard deviation of the individual scores associ-

ated with the image sample i. The individual scores are approximately normally

distributed and therefore twice the σ value represents the 95% confidence interval.

Thus, 2× σ(MOS(i)) value represents a good threshold for defining an outlier point.

It is desirable that an objective model performs well over a wide range of test con-

ditions. In other words, besides having the prediction error as small as possible,

consistency in the magnitude of the prediction error is also preferable.

Metric 4: Average absolute prediction error (AAE) between objective (MOSp)

and subjective (MOS) scores is defined by:

AAE =
1

N

N
∑

i=1

|MOS(i)−MOSp(i)| (4.4)
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Metric 5: Root Mean Square Error (RMSE) between objective (MOSp) and

subjective (MOS) scores is defined by:

RMSE =

√

√

√

√

1

N

N
∑

i=1

(MOS(i)−MOSp(i))
2 (4.5)

Metric 4, and 5 are also considered as a measure of prediction accuracy.

An excellent objective model should exhibit good accuracy, monotonicity, and

consistency in predictions. The measurement of prediction accuracy and monotonicity

can be measured by Pearson correlation and Spearman rank order correlation metrics,

whereas the consistency can be evaluated by the number of outlier points.

4.2 Threshold Estimation for Block-based Segmen-

tation

Table 4.1: Number of edge pixels and ne/Sum

ne 6 7 8 9 10 11 12 13 14 15
ne/Sum 0.094 0.109 0.125 0.141 0.156 0.172 0.186 0.203 0.219 0.234
thn 3.2.1 – 0.10 0.10 0.13 0.13 0.16 0.16 0.19 0.19 0.22

The threshold value (“thn”) of my block-based segmentation algorithm is esti-

mated empirically within the range of 0 and 1. I empirically selected five different

“thn”s (0.10, 0.13, 0.16, 0.19, and 0.22) for all images. Table 4.1 helps to describe

the relationship between the number of edge pixels and the threshold values. The
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table shows the total number of edge pixels, ne and value of ne/Sum for a block

size of (8 × 8). According to the block-based segmentation algorithm 3.2.1, the

threshold,“thn” = 0.10 indicates that if a block contains 7 or more edge pixels, the

block is a non-uniform block otherwise it is uniform. Similarly, thresholds, “thn” =

0.13 and 0.16 indicate a block is non-uniform if the total number of edge pixels is

more than 8 and 10, respectively. Using these threshold values (“thn”) the perfor-

mances of block-based segmentation algorithm for two reference images (Cattle and

Women from the MICT database [25]) are shown in Figures 4.4 and 4.5. The dark

and the white blocks represent uniform and non-uniform areas, respectively, in the

segmented images. The figures indicate sufficient segmentation performance. These

figures also indicate that low level pixel variations areas are uniform areas (dark

blocks) and the other areas are non-uniform areas (white blocks). The segmentations

performance are empirically similar for each of the five different thresholds as can be

seen in Figures 4.4 and 4.5. I estimated the best suitable threshold that helped to

increase quality prediction. The optimum threshold for a metric can be estimated by

comparing the performances of that algorithm for the different threshold values where

the value of AAE and OR between MOS and MOSp is minimum [35]. In order to

identify the best suitable algorithmic threshold between the five values, I consider the

MICT’s subjective stereo images database and divided the database into two parts

for training and testing. The training database consists of five randomly selected

reference stereo pairs (from the total ten) and all of their different combinations of

symmetric/asymmetric coded stereo images (245 stereo pairs). The testing database

consists of the other five reference stereo pairs and their symmetric/asymmetric coded
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Table 4.2: Threshold performances based on AAE and OR

thn
Training Testing

AAE OR AAE OR
0.07 0.297 0.065 0.338 0.049
0.10 0.289 0.061 0.339 0.040
0.13 0.276 0.061 0.334 0.040
0.16 0.291 0.069 0.347 0.049
0.19 0.317 0.078 0.350 0.057

versions (245 stereo pairs). There is no overlap between training and testing. A ten-

fold cross validation [20] was used to generate the training and testing datasets. I

compared the performance of my algorithm for all these different threshold values.

Since the goal of the segmentation is to improve quality prediction, I have esti-

mated all weighting factors (w1 to w6) and method parameters (α, and β) for each

threshold value separately by an optimization algorithm within the training images

database. The optimization algorithm is used to find the best suitable value from

the sets of available alternatives. Here the Particle Swarm Optimization (PSO) [19]

algorithm was used to optimize the parameters and weighting factors. It is one of

the popular optimization techniques. Though genetic algorithms have proven to be a

useful method of optimization for difficult and discontinuous multidimensional engi-

neering problems, in many cases PSO is able to accomplish the same goal as genetic

algorithm within a shorter calculation time and with stable convergence character-

istics [8]. Like genetic algorithms, PSO must also have a fitness evaluation function

that takes the agent’s position and assigns to it a fitness value. Subsequently, I have

calculated the AAE and OR for all training and testing images that are shown in Ta-

ble 4.2. Therefore, for all cases (in Table 4.2), the best performance was obtained for
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Figure 4.4: Segmented Cattle image for various thresholds. Reference Cattle image
from the MICT database [25]

a threshold value of “thn” = 0.13. The obtained model’s parameters and weighting

factors by the PSO algorithm for the threshold value of my training database (MOS

scale, 1-5) are shown in Table 4.3. I selected the threshold “thn” = 0.13 based on

MOSp performances of the training and testing image databases which indicated the

highest quality prediction performance (see Table 4.2).
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Figure 4.5: Segmented Women image for various thresholds. Reference Women image
from the MICT database [25]

4.3 Significance of considering the maximum block-

iness of a stereo pair

In this section, I discuss the reason for choosing the maximum blockiness of a

stereo pair of my objective model. The goal is to measure the maximum possible

blockiness within a stereo pair so, the metric can correlate well with human view-

ers perception without actual human input. Moreover, the model is developed both

for symmetric and asymmetric images. In order to count the highest degradation,

I consider the maximum blockiness between the left and the right views. In order

to explain the consideration of the maximum blockiness, I took three stereo images,
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Cattle, Women, and Saboten (stereo images from the MICT database [25]) for my

description. Coding levels versus blockiness of the three types of stereo images are

shown in Figures 4.6, 4.7, and 4.8. I consider both the highest and average blockiness

between the two views. These Figures show variations of blockiness with the increas-

ing of bit rate. The highest and the average blockiness are considered between the two

views. The results show that the blockiness variation is higher in case of maximum

number of blockiness compared to that of the average blockiness for increasing of bit

rate. The normalized MOS (NMOS) versus blockiness (N-blockiness) with increasing

bit rate for two types of stereo images are shown in Figures 4.9, and 4.10. The Cod-

ing levels (L,R: 79-10, 79-15, 79-27, 79-37, 79-55, 79-79, 79-Ref), and (L,R: Ref-10,

Ref-15, Ref-27, Ref-37, Ref-55, Ref-79, Ref-Ref) in the Figures 4.9, and 4.10 indicate

increasing bit rate. Although NMOS scores show an increasing trend with decreasing

N-blockiness, the consideration of maximum blockiness correlates better with NMOS

compared to average blockiness. Therefore, the results above suggest that consid-

eration of the maximum blockiness is more justified than the average blockiness for

developing an objective model.

4.4 Significance of Considering the minimum zero-

crossing of a Stereo Pair

An analysis for choosing the minimum zero-crossing value between the left and

the right of a stereo pair is given in this section. Earlier in this chapter (see Section 3

for artifacts measure), it has been discussed that the average edge point detection
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Figure 4.6: Blockiness versus different coding levels for Cattle image pairs

within the image blocks give better insight of blur measurement within an image.

Consequently, the zero-crossing scores show a decreasing (i.e., increasing blur) trend

with the increasing compression rate. Therefore, there is a direct relationship with the

transition of zero-crossing and the over-all blur within an image. In order to study the

relationship, I took three types of stereo images, Cattle, Women, and Saboten (stereo

images from the MICT database [25]). Normalized MOS (NMOS) versus zero-crossing

(Nzero-crossing) of the three types of stereo images are shown in Figures 4.11, 4.12,
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Figure 4.7: Blockiness versus different coding levels for Women image pairs

and 4.13. I considered both the minimum and the average zero-crossing value of

the stereo pairs. These Figures show that the minimum zero-crossing measures are

closer to the NMOS score compared to that of the average zero-crossing. In addition,

the zero-crossing scores show an increasing trend for increasing bit-rate (i.e., high

compression ratio). Therefore, the results indicate that the minimum zero-crossing is

more justified than the average zero-crossing to develop the prediction metrics.
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Figure 4.8: Blockiness versus different coding levels for Saboten image pairs.

4.5 Effect of different block size and search areas

on disparity estimation

In order to identify the most suitable block-size and search area for my block-

based disparity estimation, I compared the effect of different block sizes and search

areas on disparity estimation. I considered three different block sizes, 4×4, 8×8, and

16×16, and three different search areas, ±32 pixels, ±64 pixels, and ±128 pixels for
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Figure 4.9: Normalized MOS versus blockiness for different Cattle image pairs

Figure 4.10: Normalized MOS versus blockiness for different Women image pairs

my objective model evaluation. I used the Cattle and Peacock stereo image pairs in

my explanation (stereo images from the MICT database [25]). The disparity maps of

reference Cattle pair for block size 4×4, 8×8, and 16×16 with all three search areas

are shown in Figures 4.14, 4.15, and 4.16, respectively. Similarly for the Peacock pair,

the disparity maps are shown in Figures 4.17, 4.18, and 4.19, respectively. The grey
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Figure 4.11: Normalized MOS versus zero-crossing of different Cattle image pairs for
coding levels: (a) L,R: Ref-10, Ref-15, Ref-27, Ref-37, Ref-55, Ref-79, Ref-Ref, (b)
L,R: 79-10, 79-15, 79-27, 79-37, 79-55, 79-79, 79-Ref

Figure 4.12: Normalized MOS versus zero-crossing of different Women image pairs
for coding levels: (a) L,R: Ref-10, Ref-15, Ref-27, Ref-37, Ref-55, Ref-79, Ref-Ref,
(b) L,R: 79-10, 79-15, 79-27, 79-37, 79-55, 79-79, 79-Ref

colors in the disparity maps are indicated by vertical bars in the right side for each

of the figures and estimated depths of the image pairs. Here suitable block sizes and

search area are estimated empirically. These Figures show that the performance of
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Figure 4.13: Normalized MOS versus zero-crossing of different Saboten image pairs
for coding levels: (a) L,R: Ref-10, Ref-15, Ref-27, Ref-37, Ref-55, Ref-79, Ref-Ref,
(b) L,R: 79-10, 79-15, 79-27, 79-37, 79-55, 79-79, 79-Ref

the disparity algorithm is sufficient for the block size 8×8 with search area of ±128

pixels. The disparity maps of symmetric and asymmetric coded stereoscopic pairs

for Cattle images are respectively shown in Figures 4.20, 4.21, A.10, and 4.23. Fig-

ures 4.20, and 4.21 show that the performance of disparity estimation is degraded

with increasing compression levels (i.e., decreasing in bit rate) for symmetric coded

pairs. These two figures indicate that the performance of symmetric pair (10-10) is

lowest compared to the pairs (27-27), (55-55), and (Ref-Ref). Figures 4.20, 4.21, A.10,

and 4.23 are also indicated that disparity estimation performance is better for sym-

metric pairs compared to asymmetric pairs. Figures A.10, and 4.23 also show that

estimation performance is degraded for increasing level of compression levels. For

example, in Figure A.10 the disparity estimation performance of the asymmetric pair

(Ref-79) is better than the asymmetric pair (55-37).

Although the block-based disparity algorithm is simple but the problem arises to
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Figure 4.14: Disparity map of reference Cattle image (symmetric pair) for block size,
4×4 with the three different search areas. Cattle image form the MICT database [25]

localize the disparities accurately. The large search space increases the probability of

sufficient intensity variation but introduces ambiguities and mismatches. Therefore,

it reduces the selectivity of finding correct disparities, especially in the areas with

depth discontinuities. Furthermore, the edge points detection may be a more suitable

measure irrespective of search area but this idea might not be useful in real-time

disparity estimation. On the other hand, my algorithm in unstructured regions (e.g.,

uniform areas) may lead to ambiguity and mismatches because the same region in the
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Figure 4.15: Disparity map of reference Cattle image (symmetric pair) for block size,
8×8 with the three different search areas. Cattle image form the MICT database [25]

left image will match equally well with many other similar blocks in the right image.

4.6 Model Performance Evaluation According to

VQEG

To measure the prediction performance of my objective model qualitatively, I

follow the standard performance evaluation procedure recommended in VQEG [35],
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Figure 4.16: Disparity map of reference Cattle image (symmetric pair) for block size,
16×16 with the three different search areas.

where mainly linear correlation coefficient (CC), average absolute prediction error

(AAE), root mean square prediction error (RMSE), and outlier Ratio (OR) between

predicted objective scores (MOSp) and subjective scores (MOS) were used for evalua-

tion. In order to verify the permanence of my model, I consider the MICT stereoscopic

image database. The database is divided into two parts for training and testing (see

Section 4.2). The method’s parameters and weighting factors are obtained for the

quality scales (scale, 1-5) by using the PSO algorithm for all of the training images
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Figure 4.17: Disparity map of reference Peacock image (symmetric pair) for block size,
4×4 with the three different search areas. Peacock image form the MICT database [25]

Table 4.3: Method parameters and weighting factors for quality scale, 1-5

α = 58.064452 β = -51.026118
w1 = 0.036062 w2 = 0.00513 w3 = 0.010634
w4 = -0.026979 w5 = -0.017522 w6 = 0.013169

shown in Table 4.3. Same parameters are chosen for the rest of the pairs within the

image database for testing. In order to measure the performance of my proposed

model quantitatively as well as justification of the estimated image features in the

model, I consider the following prediction performances:
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Figure 4.18: Disparity map of reference Peacock image (symmetric pair) for block
size, 8×8 with the three different search areas.

• Method with disparity

– Proposed model (i.e., considering blockiness, zero-crossing, and disparity)

using the features combining Equation 3.28

– Method considering only blockiness and disparity using the following equa-

tion to combine the individual features:

S = α(DZ) + βB (4.6)
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Figure 4.19: Disparity map of reference Peacock image (symmetric pair) for block
size, 16×16 with the three different search areas.

– Method considering only zero-crossing and disparity using the following

equation to combine the individual features:

S = α(DZ) + βZ (4.7)

• Method without disparity

– Method considering blockiness, and zero-crossing using the following equa-

tion to combine the individual features 3.29

Method considering only blockiness by using the following features com-
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Figure 4.20: Disparity map of reference and coded Cattle image (symmetric pairs)
for block size, 8×8 and search areas, ±128 pixels.

bining equation:

S = α + βB (4.8)

– Method considering only zero-crossing using the following equation to com-

bine the individual features:

S = α + βZ (4.9)
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Figure 4.21: Disparity map of coded Cattle image (symmetric pairs) for block size,
8×8 and search areas, ±128 pixels.

• Other methods

– Method considering blockiness, zero-crossing, and disparity with linear

weighting (i.e., linear weighting approach) by the following equation to

combine the individual features:

S = α(DZ) + βB · Z (4.10)
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Figure 4.22: Disparity map of coded Cattle image (asymmetric pairs) for block size,
8×8 and search areas, ±128 pixels.

Figure 4.23: Disparity map of coded Cattle image (asymmetric pairs) for block size,
8×8 and search areas, ±128 pixels.

where,

B = w1 · Be + w2 ·Bn (4.11)

Z = w3 · ZCe + w4 · ZCn (4.12)
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and

DZ = w5 · AZCe + w6 · AZCn (4.13)

– Method considering the blockiness and zero-crossing of a stereo pair and

measure the quality score of the left and the right views independently,

and average them without disparity, “2D quality mean” [13]

The evaluation results of all above mentioned methods are summarized in Ta-

bles 4.4, 4.5, and 4.6. The Table shows that the proposed model’s performances for

every one of the evaluation metrics are quite sufficient both for the training and the

testing datasets. It has also been observed from the Table 4.4 that the proposed

method provides sufficient prediction accuracy (higher CC), and sufficient prediction

consistency (lower OR). Tables 4.4 and 4.5 also show that the model performances are

superior compared to without disparity. Whereas, “2D quality mean” performance is

not sufficient even when compared to without the disparity approach (i.e., considering

only blockiness and zero-crossing) (see Tables 4.5, and 4.6).

Table 4.4: Methods’ evaluation results for training and testing (Scale, 1-5) with
disparity

Methods Training
CC AAE RMSE OR

Proposed model 0.964 0.276 0.336 0.061
Only blockiness with disparity 0.867 0.529 0.664 0.086

Only zero-crossing with disparity 0.897 0.484 0.578 0.110
Testing

Proposed model 0.940 0.339 0.413 0.040
Only blockiness with disparity 0.833 0.537 0.724 0.106

Only zero-crossing with disparity 0.804 0.578 0.707 0.102
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Table 4.5: Methods’ evaluation results for training and testing (Scale, 1-5) without
disparity

Methods Training
CC AAE RMSE OR

Blockiness and zero-crossing without disparity 0.953 0.322 0.401 0.074
Only blockiness without disparity 0.705 1.037 1.199 0.367

Only zero-crossing without disparity 0.883 0.515 0.610 0.110
Testing

Blockiness and zero-crossing without disparity 0.932 0.349 0.432 0.053
Only blockiness without disparity 0.705 1.041 1.196 0.359

Only zero-crossing without disparity 0.814 0.595 0.719 0.114

Table 4.6: Other methods’ evaluation for training and testing (Scale, 1-5)

Methods Training
CC AAE RMSE OR

Linear weighting with disparity 0.843 0.580 0.705 0.089
Linear weighting without disparity 0.830 0.561 0.656 0.114

2D quality mean 0.912 0.432 0.55 0.078
Testing

Linear weighting with disparity 0.804 0.578 0.707 0.102
Linear weighting without disparity 0.765 0.649 0.828 0.183

2D quality mean 0.89 0.40 0.534 0.057

Although, the incorporation of disparities measure to the FR stereo quality method [5]

indicate poor results, my proposed method (with relative disparity) indicate better

results when compared to without disparity (i.e., considering both blockiness and

zero-crossing). It is clear from Tables 4.4, and 4.5 that all methods performances with

disparity are superior compared to without disparity. Therefore, the relative dispar-

ity measure which is considered in my proposed method can be a significant measure

for 3D quality prediction. In order to understand the significance of estimated image

features (i.e., blockiness and zero-crossing), I consider the above mentioned methods
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Table 4.7: Evaluation results comparison (Scale, 1-5)

Method Training
CC AAE RMSE OR

Proposed, NR 0.964 0.276 0.336 0.061
Method, NR[31] 0.966 0.292 0.367 0.069
Method, FR[5] 0.945 0.310 0.381 0.065

2D quality mean, FR (by using [22] 0.917 0.410 0.521 0.089
Testing

Proposed, NR 0.94 0.33 0.41 0.040
Method, NR[31] 0.935 0.350 0.421 0.065
Method, FR[5] 0.929 0.370 0.441 0.082

2D quality mean, FR (by using [22]) 0.913 0.450 0.521 0.102

which used both features, blockiness and zero-crossing individually with and without

disparity. It is clear from Tables 4.4, and 4.5 that the performance of the method con-

sidering only zero-crossing is better when compared to the method considering only

blockiness both for with and without disparity. Therefore, the zero-crossing feature

is more significant compared to blockiness feature for quality prediction. Proposed

model’s weighting factors also show the deviance. Weighting factors (w3, and w4)

of zero-crossing are higher compared to weighting factors (w1, and w2) of blockiness

(see Table 4.3). Although my proposed model’s features combined equation use expo-

nential weighting (see Equations 3.18, 3.27, and 3.28) I consider linear weighting (see

Equations 4.10, 4.11, and 4.13) and and study the performance in order to understand

the justification of exponential weighting. It is clear from Tables 4.4, and 4.6 that

the proposed model performance with exponential weighting is far better compared

to linear weighting. Therefore, using an exponential function for combining features

gives superior performance.
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The MOS versus MOSp of my proposed model for training and testing images are

respectively shown in Figures 4.24 (a), and 4.24 (b). The symbols ∗ and± respectively

indicate MOSp points for the databases of training and testing. The MOSp points ∗

and the error bars of ±2 standard deviation intervals of each different stereo images

are shown in Figures 4.25, 4.6, and 4.6. Error bars show the ±2 standard deviation

interval of the MOS. The Figures indicate the predictions consistently performed well

in almost similar nature on a variety of image contents.

Figure 4.24: MOS versus MOSp of my proposed model.

4.7 Performance Comparison

In this section, I compare the performance of my proposed model against the

recently published NR model [31]. The method in [31] used three local features (edge,

flat, and texture) and the MICT database. My proposed model’s evaluation results
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Figure 4.25: The MOSp performances on texture variety of stereo pairs over the
quality range. The predictions points ∗ and ± 2 standard deviation intervals are
shown for each stereo pair.

on the same database are shown in Table 4.7. Table 4.7 shows that the performance

of my proposed model is superior compared to the published method both for the

training and testing databases. As a comparison, I can compare the performance of
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Figure 4.26: The MOSp performances on texture variety of stereo pairs over the
quality range. The predictions points ∗ and ± 2 standard deviation intervals are
shown for each stereo pair. Stereo image pairs from the MICT database [25]

my proposed method against the recently published FR method presented in [5]. I

evaluate the performance of the method with the same database (MICT database).

Table 4.7 shows that the performance of my proposed model is better even compared
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Figure 4.27: The MOSp performances on texture variety of stereo pairs over the
quality range. The predictions points ∗ and ± 2 standard deviation intervals are
shown for each stereo pair. Stereo image pairs from the MICT database [25]

to the FR method [5]. Some researchers claim that 3D stereo quality measure of a

stereo pair can be estimated by using a 2D objective quality method (i.e., averaging

2D quality of the left and right views). According to this idea, I compared the

performance of my proposed method against the popular FR, objective method for

2D quality assessment method in [22]. I also evaluated the performance of the method

on the same database (MICT database). Table 4.7 shows that the performance of my

proposed model is better compare to the method in [22]. It is clear from this result

that a 2D quality metric is not enough good for 3D quality prediction. Therefore,

it is clear from Figures 4.24 and Table 4.4 that my proposed method performance is

sufficient.

In order to compare the prediction performance of my proposed method with other

methods (see Section 4.6), I considered three different levels of compressions for each

of the reference stereo pairs. The levels of compression are high, medium and low,

which are compression levels (QS10-QS15), (QS55-QS37) and (Ref-Ref) respectively.

Figures 4.28– 4.37 show the MOSp performances of various methods for all refer-

ence pairs. The MOS values and the error bar of ± standard deviation intervals for
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Figure 4.28: Performance of various methods for Car image with ± 2 standard devi-
ation intervals.
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Figure 4.29: Performance of various methods for Cattle image with ± 2 standard
deviation intervals.

each compression level are also shown in these figures. The figures indicate that the

performance of my proposed method is sufficient and better compared to the other

evaluated methods. They also indicate that my method is consistent with not only
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Figure 4.30: Performance of various methods for Monguy image with ± 2 standard
deviation intervals.
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Figure 4.31: Performance of various methods for Goat image with ± 2 standard
deviation intervals.

different type of images but also various level of compressions.
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Figure 4.32: Performance of various methods for Flower image with ± 2 standard
deviation intervals.
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Figure 4.33: Performance of various methods for Ningyo image with ± 2 standard
deviation intervals.
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Figure 4.34: Performance of various methods for Saboten image with ± 2 standard
deviation intervals.
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Figure 4.35: Performance of various methods for Women image with ± 2 standard
deviation intervals.
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Figure 4.36: Performance of various methods for Peacock image with ± 2 standard
deviation intervals.
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Figure 4.37: Performance of various methods for Flower2 image with ± 2 standard
deviation intervals.
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Conclusion and Future Work

5.1 Conclusion

This thesis provides a description and analysis of various methods for objective

image quality assessment. In my related work, I have reviewed several objective qual-

ity assessment metrics and discussed their limitations for not being consistent with

human visual perception. I have reviewed the methods that consider the human vi-

sual characteristics and discussed their limitations. In order to verify the relationship

of image features and HVS, I ran several experiments to analyze the degradation of

images for different levels of compression and various contents of images. By consid-

ering the limitations of these existing methods, I proposed a new metric for quality

assessment based on image features: edge and non-edge areas within the image, which

have promising advantages over traditional image quality assessment approaches.

The main contribution of this thesis is the development of a NR objective quality

assessment metric, which can be used not only for blind image quality assessment but

83
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also for real time disparity estimation. Two major artifacts in compressed images,

blockiness and blur are addressed in this thesis and the test results of my proposed

method illustrates the sufficient consistency with human visual perception. The eval-

uation also shows that my method is very compatible with human assent scores for

all different types of images and various level of compressions. In summary, I have

made the following important contributions:

• I have developed a fully automated NR image quality assessment metric which

can assess the quality of processed images without human intervention. My pro-

posed method exhibits excellent consistency and compatibility with subjective

assessment.

• My metric can blindly estimate the quality of images of the distortion during

image processing or transmission such as 3DTV or HDTV streaming or broad-

casting.

• My metric can also be used to identify two major artifacts, blockiness and blur

of compressed images. Therefore, my metric can be embedded into JPEG or

JPEG2000 coders.

• My algorithm can also be used in real time disparity estimation.

The scarcity in NR stereoscopic image quality assessment and the necessity of 3D

depth estimation influenced me to develop such an algorithm. I strongly believe that

my research would be recognized as an important contribution in the field of 3D

imaging and it can be used for benchmark image-processing system.
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5.2 Future Work

There are many possibilities for the development of innovative metrics for NR

quality assessment. Due to the limited knowledge of HVS for predicting the quality

of images, the quality assessment metric is still validated by subjective databases. A

major improvement can be done by ensuring the good quality subjective assessment.

In this thesis, I have proposed a method to estimate image artifacts or distortions

by using image features. I have pointed out that the blockiness and blur as a major

artifacts because they are the most common artifacts or JPEG or JPEG2000 coder.

In future, this approach can be applied for any other coded images irrespective of

image artifacts or compression techniques.

The improved approach may also include color information which may lead to

better quality prediction accuracy. In the next step, 3D video quality assessment

is possible by incorporation of the temporal dependency between adjacent images

(frames) of the video. Another direction for the future research is to evaluate the

disparity in real time application of the enhanced image. Furthermore great improve-

ments can be achieved by studying my existing method for real time depth estimation

in 3D scene recognition.
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Supporting Graphs

A.1 PSNR vs MOS Graphs

A.2 Disparity Map
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Figure A.1: PSNR versus MOS
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Figure A.2: PSNR versus MOS

Figure A.3: PSNR versus MOS
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Figure A.4: Disparity map of Cattle image pairs with various block-sizes and search
areas. Image pair from the MICT database [25]
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Figure A.5: Disparity map of Saboten image pair with various block-sizes and search
areas. Image pair from the MICT database [25]
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Figure A.6: Disparity map of Flower image pair with various block-sizes and search
areas. Image pair from the MICT database [25]
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Figure A.7: Disparity map of Goat image pair with various block-sizes and search
areas. Image pair from the MICT database [25]
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Figure A.8: Disparity map of Flower2 image pair with various block-sizes and search
areas. Image from the MICT database [25]
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Figure A.9: Disparity map of Mongyu image pair with various block-sizes and search
areas. Image from the MICT database [25]
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Figure A.10: Disparity map of Ningyo image for various block-sizes and search areas.
Image from the MICT database [25]



Appendix B

Subjective Experiment: VQEG

Description

In my thesis, I consider subjective assessment data to evaluate the performance

of my mathematical (objective) method. The subjective experiment was conducted

in the Media Information and Communication Technology (MICT) laboratory [25],

the University of Toyama, Japan on 24 bit/pixel RGB color stereoscopic images. A

double stimulus impairment scale (DSIS) method was used in the subjective experi-

ment. The test format is shown in Figure B.1. Both distorted (Ai, Bi) and reference

(Ar, Br) images were displayed sequentially in the method. At the end of the presen-

tation, the subject was asked to assess the annoyance he/she felt over all perceptual

quality on the distorted stereo image with respect to the reference stereo one. The

impairment scale contained five categories marked with adjectives and numbers as

follows: “Imperceptible =5”, “Perceptible but not annoying =4”, “Slightly annoying

=3”, “Annoying =2” and “Very annoying =1”. Twenty-four non-expert subjects (12
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Figure B.1: Double Stimulus Impairment Scale (DSIS) test format [16]

males and 12 females, age range: 19-32 years) were shown the database; most of them

were college/university student. A 10-inch auto stereoscopic, LCD (SANYO) display

(resolution: 640 × 480) was used in this experiment to display the stereoscopic im-

ages and the subjects were instructed about the limited horizontal viewing angle to

perceive 3D image correctly. Mean opinion scores (MOSs) were then computed for

each stereo image after the screening of post-experiment results according to ITU-R

Rec. 500-10 [16]. The subjective test conditions and parameters are summarized in

Table B.1.

Table B.1: Subjective test conditions and parameters [25]

Method DSIS
Evaluation scales 5 Grades (Impairment scales)

Reference stereo pairs 10, (640×480 pixels) 24-bit/pixel, RGB
Coder JPEG

Coding parameters QS: 10, 15, 27, 37, 55, and 75
Subjects 24 (Non expert, students)
Display 10-inch, LCD 3D Auto stereoscopic

Display resolution 640×480 pixels (LR: 320 × 480 pixels)
Display Technology Image-Splitter

Input signals RGB (Switching 2D/3D)
Viewing distance 4H (H = Picture height)
Room illumination Dark
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Glossary

AAE Average absolute prediction error.

CC Correlation Coefficient

DCT Discrete Cosine Transformation presents data as a sum of cosine functions of

various magnitudes and frequencies.

DSIS Double Stimulus Impairment Scale. A method for subjective image quality

assessment.

Edge can be defined as image features which identify the variation of images. Math-

ematically, an ideal edge is a discontinuity of the spatial grey value of the image

plane.

HVS model A model used for image processing and computer vision experts to deal

with biological and psychological for simplifying the behaviours of a complex

human visual characteristic.

97



98 Appendix C: Glossary

ITU International Telecommunication Union.

JPEG encoder A software module for JPEG image compression based on discrete

cosine transformation.

Image Segmentation is the process to distinguish image features from other ob-

jects and from its background. It identifies each individual pixel to see whether

it belongs to an object of interest or not.

Lossy Image Compression A method which reduces a file size by removing in-

formation from the original source for lower transmission bandwidth and/or

storage capacity.

MOS Mean Opinion Score. The mean opinion score is the human assessment of

perceived image quality after compression, which expressed as a single score

from 1 to 5. The quality scale (1 to 5) indicates form the lowest to highest

quality measurement of an image.

MICT Media Information and Communication Technology laboratory, University of

Toyoma, Japan.

MOSp Mean Opinion Score Predicted. MOS score given by a mathematical model

without actual human viewers.

MSE Mean Square Error. MSE is the cumulative squared error between the com-

pressed and the original image [37].

OR Outlier Ratio.



Appendix C: Glossary 99

PSNR Peak Signal to Noise Ratio. PSNR measures how closely a distorted image

resembles a reference image.

PSO Particle Swarm Optimization. An optimization technique inspired by social

analogy without detailed knowledge of the problem to be optimized. In PSO

algorithm, there is a swarm of particles moving in an n-dimensional problem

space, where each particle represents a potential solution and adjusts its position

according to experience and neighbours.

QS Quality Scale. A measurement for the quality evaluation of an image features by

human observer, rather than the mathematical differences of each pixel.

SROCC Spearman Rank Order Correlation Coefficient.

VQEG Video Quality Experts Group.

Zero-crossing an edge detector that looks for the variation of pixels where the

intensity of the image changes.
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