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The evolution of advanced radio transmission tech-
nologies for third and future generation mobile ra-
dio systems has paved the way for the delivery of 
mobile multimedia services. This is further enabled 
through contemporary video coding standards, such 
as H.264/AVC, allowing wireless image and video 
applications to become a reality on modern mobile 
devices. The extensive amount of data needed to re-
present the visual content and the scarce channel 
bandwidth constitute great challenges for network 
operators to deliver an intended quality of service. 
Appropriate metrics are thus instrumental for ser-
vice providers to monitor the quality as experienced 
by the end user. This thesis focuses on subjective and 
objective assessment methods of perceived visual 
quality in image and video communication. The con-
tent of the thesis can be broadly divided into four 
parts.

Firstly, the focus is on the development of image 
quality metrics that predict perceived quality degra-
dations due to transmission errors. The metrics fol-
low the reduced-reference approach, thus, allowing 
to measure quality loss during image communication 
with only little overhead as side information. The 
metrics are designed and validated using subjective 
quality ratings from two experiments. The distortion 
assessment performance is further demonstrated 
through an application for filter design.

The second part of the thesis then investigates 
various methodologies to further improve the qua-
lity prediction performance of the metrics. In this re-

spect, several properties of the human visual system 
are investigated and incorporated into the metric 
design. It is shown that the quality prediction per-
formance can be considerably improved using these 
methodologies.

The third part is devoted to analysing the im-
pact of the complex distortion patterns on the 
overall perceived quality, following two goals. Firstly, 
the confidence of human observers is analysed to 
identify the difficulties during assessment of the 
distorted images, showing, that indeed the level of 
confidence is highly dependent on the level of visual 
quality. Secondly, the impact of content saliency on 
the perceived quality is identified using region-of-
interest selections and eye tracking data from two 
independent subjective experiments. It is revealed, 
that the saliency of the distortion region indeed has 
an impact on the overall quality perception and also 
on the viewing behaviour of human observers when 
rating image quality.

Finally, the quality perception of H.264/AVC co-
ded video containing packet loss is analysed based 
on the results of a combined subjective video qua-
lity and eye tracking experiment. It is shown that 
the distortion location in relation to the content sa-
liency has a tremendous impact on the overall per-
ceived quality. Based on these findings, a framework 
for saliency aware video quality assessment is pro-
posed that strongly improves the quality prediction 
performance of existing video quality metrics.
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Although nature commences with reason and ends in experience it is 
necessary for us to do the opposite, that is to commence with experience 
and from this to proceed to investigate the reason. 

Leonardo da Vinci 
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Abstract
The evolution of advanced radio transmission technologies for third and

future generation mobile radio systems has paved the way for the delivery of
mobile multimedia services. This is further enabled through contemporary
video coding standards, such as H.264/AVC, allowing wireless image and
video applications to become a reality on modern mobile devices. The
extensive amount of data needed to represent the visual content and the
scarce channel bandwidth constitute great challenges for network operators
to deliver an intended quality of service. Appropriate metrics are thus
instrumental for service providers to monitor the quality as experienced by
the end user. This thesis focuses on subjective and objective assessment
methods of perceived visual quality in image and video communication.
The content of the thesis can be broadly divided into four parts.

Firstly, the focus is on the development of image quality metrics that
predict perceived quality degradations due to transmission errors. The
metrics follow the reduced-reference approach, thus, allowing to measure
quality loss during image communication with only little overhead as side
information. The metrics are designed and validated using subjective qual-
ity ratings from two experiments. The distortion assessment performance
is further demonstrated through an application for filter design.

The second part of the thesis then investigates various methodologies
to further improve the quality prediction performance of the metrics. In this
respect, several properties of the human visual system are investigated and
incorporated into the metric design. It is shown that the quality prediction
performance can be considerably improved using these methodologies.

The third part is devoted to analysing the impact of the complex distor-
tion patterns on the overall perceived quality, following two goals. Firstly,
the confidence of human observers is analysed to identify the difficulties
during assessment of the distorted images, showing, that indeed the level
of confidence is highly dependent on the level of visual quality. Secondly,
the impact of content saliency on the perceived quality is identified using
region-of-interest selections and eye tracking data from two independent
subjective experiments. It is revealed, that the saliency of the distortion
region indeed has an impact on the overall quality perception and also on
the viewing behaviour of human observers when rating image quality.

Finally, the quality perception of H.264/AVC coded video containing
packet loss is analysed based on the results of a combined subjective video
quality and eye tracking experiment. It is shown that the distortion location
in relation to the content saliency has a tremendous impact on the overall
perceived quality. Based on these findings, a framework for saliency aware
video quality assessment is proposed that strongly improves the quality
prediction performance of existing video quality metrics.
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Preface

This Ph.D. thesis reports about my work within the field of perceptual quality
metric design and visual saliency modelling for image and video communications.
The research has been conducted at the School of Engineering at the Blekinge
Tekniska Högskola (BTH), Karlskrona, Sweden.

Parts of the work have been conducted during two independent research visits
at international universities. The first visit of about two months duration took
place at the School of Computing and Mathematics at the University of Western
Sydney, Sydney, Australia. The second visit of about three months duration was
conducted at the Image and Video Communication Department at the University
of Nantes, Nantes, France. Full funding for both visits has been awarded by BTH.

The majority of research results that are summarised within this thesis have
previously been reported in international journals and conference proceedings.
Furthermore, parts of the work have been reported in a Licentiate thesis entitled
”Perceptual Quality Metric Design for Wireless Image and Video Communica-
tion”, also published at BTH.
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1 Introduction

T he human visual system (HVS) is often considered to be the most promi-
nent of our sense organs to obtain information from the outside world [1].

Without our sight we would live in darkness and we would not be able to appre-
ciate the beauty of the world around us. During all phases of human evolution
our eyes were adapted to observing a natural environment. This has changed
only in recent decades with the deployment of many visual technologies, such as
television, cinema, computer screens, and most recently mobile phones. These
ubiquitous technologies now strongly influence our everyday work and private life
and many people, especially of the younger generation, have difficulties imagining
a time before these technologies were available. Hence, we are getting more and
more used to not just looking at the natural environment around us, but rather
at artificial reproductions of it, in terms of digital images and videos. This is es-
pecially enabled through recent advances in communication technologies, such as
the Internet and third generation mobile radio networks, which allow distribution
and sharing of visual content in an ubiquitous manner.

The range of image and video processing systems that facilitate visual re-
productions of the real world is broad and includes image and video acquisition,
compression, enhancement, and communication systems [2]. These systems are
usually designed based on a compromise between technical resources and the vi-
sual quality of the output. Since we are accustomed to impeccable quality of the
real world environment, we are biased to expect also a certain degree of quality
from its digital visual representations. However, the quality is often reduced due
to many influencing factors, including, capture, compression, transmission, and
display of the image or video. These processes potentially introduce distortions
into the visual content resulting in a reduction of perceived quality. This is often
due to the naturalness of the visual scene being impaired, meaning, that struc-
tures are changed or introduced that are not observed when looking at a real
world environment. The degradation in quality depends highly on the type and
severeness of the artifact introduced by the different processing steps.

Visual content and service providers are thus particularly interested in mea-
suring the quality loss introduced in any of the processing steps involved, which is
instrumental for guaranteeing a certain level of visual experience to the observer.
This is especially crucial for wireless network providers [3], as the wireless channel
constitutes an unreliable and unpredictable medium that can cause severe degra-
dations to the transmitted signal. The scarce bandwidth of the wireless channel
in conjunction with the large amount of image and video data comprise a highly
complex and intricate scenario. Thus, the deployment of wireless image and video



2 1 Introduction

communication services is considerably more difficult, compared to the traditional
voice services, for which reliable communication networks have been in place for
many years.

One of the major challenges in communication systems, and in particular wire-
less services, is therefore the design of networks that fulfill the stringent Quality of
Service (QoS) requirements of wireless image and video applications to guarantee
a certain Quality of Experience (QoE) to the end-user [4–6]. In order to mon-
itor the quality of the wireless communication services, appropriate metrics are
needed that are able to accurately quantify the end-to-end visual quality as per-
ceived by the user. The resulting metrics can then be utilised to perform efficient
link adaptation and resource management techniques to fulfill the stringent QoS
requirements. Traditional link layer metrics, such as signal-to-noise ratio (SNR)
and bit error rate (BER), have been widely used to perform this task but were
found to not suitably reflect the subjectively perceived quality [7], as the impact
of transmission errors on the visual signal may vary drastically depending on the
location of the errors in the bit stream.

Considering the above, new paradigms in quality metric design for wireless
image and video communications need to be established [8, 9]. The aim of this
thesis is to contribute to this goal by developing perceptual quality metrics that
are able to accurately quantify end-to-end visual quality of wireless image and
video communication services. In comparison to quality assessment for applica-
tions such as compression, the communications context represents a considerably
more difficult task, which is mainly due to three reasons. Firstly, the computa-
tional complexity of the quality metrics needs to be low as the processing power in
mobile devices is usually limited, as compared to, for instance, desktop comput-
ers. Secondly, the original image or video is typically not available at the receiver
where the quality assessment takes place. As such, the quality assessment needs
to be conducted on either, just the received image/video, or based on some addi-
tional side information from the original image/video that is sent over the channel.
Lastly, the distortion patterns caused by transmission errors can be highly com-
plex with respect to the artifact types that they contain, their distributions, and
their strengths, thus, drastically complicating the quality assessment prediction
as compared to the usually more uniform and globally distributed source coding
distortions.

The complex distortion patterns give also rise to another phenomenon that
we investigate in this thesis, namely, visual attention to the distortions and their
interaction with the visual content. The motivation being, that localised distor-
tions may have a larger impact on the overall perceived quality of a visual scene
if they appear in a perceptually interesting or important region. On the contrary,
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distortions appearing in a region that observers find of low interest may not im-
pact as severely on the perceived quality degradations. For this reason, we also
set our focus in this thesis on the effects of visual attention and their benefits for
visual quality assessment.

This introduction serves to provide the reader with the necessary background
to follow the work that has been conducted in this thesis. Each of the topics
discussed could fill entire books and in order to not burst the scope of the thesis,
we are forced to limit our focus on the information that is relevant in the context
of this work. In Section 1.1, we motivate the need for perceptual quality metrics
by highlighting the drawbacks of conventional image metrics. In Sections 1.2,
we then discuss subjective visual quality assessment methods and previous work
conducted in this field. A classification of objective visual quality assessment
methods is given in Section 1.3 followed by a survey of visual quality metrics
in Section 1.4. In Section 1.5, a brief introduction to visual attention is given
and the potential benefits for visual quality assessment are discussed. In Section
1.6, we then discuss visual quality assessment in the context of image and video
communications and define the framework that is considered in the scope of
this thesis. The introduction is concluded in Section 1.7 with a summary of
contributions and an overview of the thesis.

1.1 The downside of conventional image metrics

With the increasing appearance of digital visual media, the growing need for
objective quality assessment that correlates well with subjectively perceived quality
has been recognised as an instrumental tool for system design and optimisation.
Especially in recent years, the efforts in visual quality assessment have increased
considerably, leading to a number of quality metrics that have been proposed in the
literature. However, this research field is considered to be still immature, as there
are no widely accepted image quality metrics (IQM) and video quality metrics
(VQM) that work well under a wide range of different conditions [10]. On the
contrary, in the fields of speech and audio there are two standardised and widely
accepted methods, the Perceptual Evaluation of Speech Quality (PESQ) [11]
and the Perceptual Evaluation of Audio Quality (PEAQ) [12], respectively. One
reason for this might be that the HVS, and the higher level cognitive visual data
processing, is to a great part not fully understood yet and thus cannot easily be
emulated by an objective algorithm. Thus, the traditional fidelity metrics such as
the mean squared error (MSE) and the related peak signal-to-noise ratio (PSNR)
are still predominantly used for monitoring system performance and for system
optimisation. With the advances in perceptual quality assessment, however, the
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acceptance of visual quality metrics as an alternative to PSNR is slowly becoming
a reality.

To fully understand the benefits of perceptual quality metrics, it is conducive
to investigate the properties of the traditionally used metrics, such as PSNR, and
identify their shortcomings in relation to prediction of perceived visual quality. In
the following, we provide a short discussion, emphasising why PSNR is generally
not suitable as a perceptual quality metric.

Images and videos are presented on a digital device in a pixel-based fashion,
where each pixel is represented by a luminance value and corresponding chromi-
nance values. Unless the resolution of the visual representation is really coarse
(which is nowadays rarely the case), the HVS does not recognise the pixels as
single entities but rather perceives structures and objects in the scene that are
composed of the pixels. This does not only apply for the visual content of the
scene but also for potential distortions that are introduced. For this reason, per-
ceptual quality metrics should not aim on quantifying the perceived annoyance of
visual distortions on a pixel-by-pixel basis, as this does not represent the way the
HVS works. The widely used PSNR, however, assesses the fidelity between two
images 𝐼1(𝑥, 𝑦) and 𝐼2(𝑥, 𝑦) on a pixel-by-pixel basis as

PSNR = 10 log
𝜂2

MSE
(1)

where 𝜂 is the maximum pixel value, typically 255. The MSE is given as

MSE =
1

𝑋𝑌

𝑋∑
𝑥=1

𝑌∑
𝑦=1

[𝐼1(𝑥, 𝑦)− 𝐼2(𝑥, 𝑦)]
2 (2)

with 𝑋 and 𝑌 denoting the horizontal and vertical image dimensions, respectively.
The simple, pixel-based difference calculation is computationally very efficient,
however, it is also the main reason why PSNR and MSE exhibit in many cases
a poor correlation with perceived visual quality. This is to say that PSNR does
not generally perform badly, which is why it has thus far been so widely used,
especially in the image and video coding community [13]. However, there are
certain circumstances where PSNR fails heavily as a quality metric, which is
illustrated by the following two examples.

The images in Fig. 1 show the undistorted reference image ’Boris’ in the
middle and two processed versions of the same image, one on either side. The
image to the left has been subjected to an intensity shift, where each pixel has
been darkened slightly. Clearly, this processing step does not impact much, if at
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Intensity shift Reference JPEG compression

Figure 1: Reference image ’Boris’ and two processed versions of it.

Table 1: Image quality metrics for image ’Boris’.

Artifact PSNR [dB] Δ𝑁𝐻𝐼𝑄𝑀 MOS𝑁𝐻𝐼𝑄𝑀

Intensity shift 23.55 0.002 99.598

JPEG compression 23.952 0.805 13.547

all, on the perceived quality of the image. The image to the right, on the other
hand, has been compressed using the Joint Photographic Experts Group (JPEG)
encoder at a compression ratio of about 0.06. The resulting distortions in terms
of strong blocking artifacts are clearly visible in the image. When comparing the
two processed images to the left and to the right, it is apparent that the quality
loss due to the JPEG coding is substantially larger in comparison to the quality
loss due to the intensity shift.

The PSNR values computed between the reference image and the respective
processed images as presented in Fig. 1 are shown in Table 1. The PSNR metric is
measured in decibels (dB) with a higher value indicating higher similarity between
two images. It can be seen, that the PSNR values of the two processed images
are almost the same, indicating that the differences between the reference image
and the respective processed images are nearly the same. In fact, the slightly
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higher PSNR value for the JPEG coded image even suggests, that this image
is more similar to the reference image than the intensity shifted image. This is
obviously not the case from a perceptual point of view. The large discrepancy
between the PSNR values and the perceived quality loss can be attributed to the
difference in nature of the two distortions. The intensity shift did not change any
of the structural properties of the image whereas the blocking artifacts, caused by
the JPEG encoding, introduced highly unnatural artifacts that strongly impair the
structure of the underlying image content and result in loss of spatial information
[14,15]. Due to the pixel-based analysis, this structural change is not accounted
for by PSNR.

In addition to the PSNR metric in Table 1, we also provide values for the dif-
ference of the Normalised Hybrid Image Quality Metric (NHIQM) between the two
images, Δ𝑁𝐻𝐼𝑄𝑀 , and its related predicted mean opinion score, MOS𝑁𝐻𝐼𝑄𝑀 .
We designed this metric [16] to capture structural distortions in image and video
content, in particular in the context of transmission errors. A larger Δ𝑁𝐻𝐼𝑄𝑀

value indicates stronger structural differences between the images, whereas a
larger MOS𝑁𝐻𝐼𝑄𝑀 , on a scale from 0 to 100, represents better perceived quality
of the processed image. It can be observed that both Δ𝑁𝐻𝐼𝑄𝑀 and MOS𝑁𝐻𝐼𝑄𝑀

are able to distinguish well between the different levels of perceptual quality of the
processed images in relation to the reference image. The metric will be explained
in detail in Chapter 3.

Another simple example, highlighting the inapplicability of PSNR as a quality
metric, is given with respect to the images in Fig. 2 and the corresponding metric
values in Table 2. The image to the left is a visually lossless compressed version
of the reference image ’Trollsjö’. The image to the right is a horizontally mirrored
version of the image to the left. The process of mirroring the image obviously
does not impair the perceived quality whatsoever. However, when consulting the
PSNR values in Table 2 it can be observed, that the metric is much lower for
the mirrored image as compared to the image with normal orientation. As with
the earlier example, this is a deficit that can be attributed to the pixel-based
comparison between the images, not taking into account the underlying structure
of the visual content. The perceptual quality metric, Δ𝑁𝐻𝐼𝑄𝑀 , and the predicted
mean opinion score, MOS𝑁𝐻𝐼𝑄𝑀 , on the other hand are largely unaffected by the
mirroring of the image and predict the same perceived quality for both images.

The above examples highlight a few problems that PSNR and other pixel-
based metrics experience. As a result of neglecting the visual content and the
different distortion types that can occur, the pixel-based metrics generally perform
poorly when quality is assessed across different visual content and across different
distortion types [17]. For these reasons, pixel-based metrics usually disqualify for
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Normal orientation Horizontally mirrored

Figure 2: A perceptually lossless coded version of the image ’Trollsjö’ of normal
orientation and a horizontally mirrored version of it.

Table 2: Image quality metrics for image ’Trollsjö’.

Artifact PSNR [dB] Δ𝑁𝐻𝐼𝑄𝑀 MOS𝑁𝐻𝐼𝑄𝑀

Normal orientation 47.156 0.004 98.992

Horizontally mirrored 13.713 0.004 98.981

perceptual assessment of image and video quality.

1.2 Subjective visual quality assessment

The simple, pixel-based metrics discussed above can generally be considered as
kind of a ’worst case’ scenario in relation to prediction of perceived visual quality.
On a scale measuring the performance in predicting perceptual quality, these
metrics therefore represent the lower end. On the other hand, human observers
are generally considered to be the best judges of visual quality and subjective
assessment methods are considered to be the most reliable measures of perceived
visual quality [18]. Subjective assessment methods are thus often considered as
a ’ground truth’ for quality prediction and hence, form the upper end of a quality
prediction performance scale. The aim of objective visual quality measures is then
to be as close as possible to the upper end of the scale, thus reflecting well the
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quality perception of a human observer.
For IQM and VQM to predict perceived visual quality well, subjective quality

ratings are thus needed for the metric design and validation. These are usually
obtained by conducting image and video quality experiments, involving a number
of human observers that rate the quality of the stimuli presented to them. The
resulting mean opinion scores (MOS), as an average over all observers, then
constitute a subjective measure of perceived visual quality. There are several
international standards that specify in detail the procedures for subjective image
and video quality experiments, that should be followed to obtain valid outcomes
in terms of MOS.

1.2.1 Subjective testing standards

Two of the most widely used standards are specified by the International Telecom-
munication Union (ITU). The Radiocommunications sector of the ITU (ITU-R)
specifies procedures for television pictures in Rec. BT.500-11 [19] including both
single and double stimulus methods. In the single stimulus continuous quality
evaluation (SSCQE) method, the quality of the distorted stimulus is rated with-
out any reference to the original stimulus. On the other hand, both the reference
and the distorted stimuli are rated using the double stimulus continuous quality
scale (DSCQS). Similarly, procedures for multimedia applications are defined in
Rec. P.910 [20] by the Telecommunications sector of the ITU (ITU-T), includ-
ing an absolute category rating (ACR) for single stimulus assessment and the
degradation category rating (DCR) for double stimulus assessment.

It is because of these specific procedures that subjective quality experiments
are widely accepted measures of perceptual quality. However, these procedures
also require a careful design process, which makes subjective experiments usually
tedious and time consuming. Therefore, subjective experiments are usually not
feasible for deployment in most real world applications, such as quality monitoring
in a video broadcasting scenario. The results of subjective quality experiments in
terms of MOS are instrumental though, for the design and validation of percep-
tual IQM and VQM. In addition, they provide valuable insight into human visual
perception of natural image and video content in the presence and absence of
distortions.

1.2.2 Subjective visual quality studies

With the turn of the century it has been increasingly realised that efficient and
accurate visual quality metrics can only be achieved through a thorough under-
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standing of human visual perception in relation to visual media [21]. For this
reason, several subjective studies were conducted to evaluate the impact of vari-
ous system parameters on visual perception.

Yu et al. [22] studied the impact of viewing distance on quality perception and
found, that there is no significant difference between two tested viewing distances.
Barkowsky et al. [23] evaluated the effect of image presentation time on the final
MOS. It was found that MOS from shorter presentation times can accurately
be predicted from MOS given after longer presentation times. Bae et al. [24]
investigated the trade-off between spatial resolution and quantisation noise and
found, that human observers prefer, to some degree, a lower resolution to reduce
the visibility of the compression artifacts.

Hauske et al. [25] performed early studies on the influence of different quan-
tisation parameters (QP) and frame rates in H.264/AVC coded video on the
resulting quality. More recently, De Simone et al. [26] studied the perceptual
quality of H.264/AVC coded video containing packet loss. Pinson et al. [27]
compared the subjective quality differences between H.264/AVC and MPEG-2 for
high definition television, confirming the common belief that H.264/AVC provides
similar quality at half the bit rate. It was shown though, that this is only given
at bit rates below 18 Mbit/s.

Zhai et al. [28] found that perceived quality is affected in descending order of
significance by the encoder type, video content, bit rate, frame rate, and frame
size. The detectability of synthetic blocking, blur, ringing, and noise artifacts
has been studied by Farias et al. [29] in a series of experiments. Amongst other
findings, it was concluded that error visibility and perceived annoyance are highly
correlated. The visibility of different types of noise in natural images has been
evaluated by Winkler and Süsstrunk [30], who concluded that the noise thresholds
increase significantly with image activity.

Pastrana-Vidal et al. [31] showed in their study, that overall perceived video
quality can be estimated from independent spatial (sharpness) and temporal (flu-
idity) quality judgements. Huynh-Thu and Ghanbari [32] studied the impact of
temporal artifacts in video and found that quality perception is more severely
affected by jitter as compared to jerkiness artifacts. Liu et al. [33] investigated
the impact of various packet loss patterns, considering the loss length, frequency,
and temporal location based on PSNR measures. It was concluded that quality
decreases linearly with loss length and is additive with respect to the number
of losses. Cermak [34] surveyed people about the acceptable number of artifact
occurrences in consumer video. It came out that on average consumers would
not accept artifacts to be more frequent than once an hour, unless, the service
cost is substantially reduced.
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These studies highlight the many influencing factors that impact on the human
perception of visual quality. Incorporating all these factors into a quality metric
would likely result in a metric that reflects well the human visual perception of
quality. However, such a metric would also be highly complex and computationally
expensive, thus finding little use in many applications that have stringent limits
on computational complexity.

1.2.3 Public subjective visual quality databases

To support reproducible research and to allow for quality metric design and valida-
tion, several image and video quality databases have been made publicly available
in recent years. These databases usually consist of the stimuli that were presented
during the subjective experiment and the quality scores that were obtained from
the human observers.

Probably the most widely used image quality databases are the MICT database
[35], the IRCCyN/IVC database [36], and the LIVE database [37], which are
based on the assessment of distorted images mainly containing source coding
artifacts and artificial artifacts such as white noise. More recently the elaborate
TID image quality database has been made available [38], which covers a wide
range of artifacts and provides MOS based on hundreds of observers. The latest
image quality databases are the CSIQ [39], containing images with source coding
distortions and artificial noise, and the WIQ [40] database. The latter has been
made available by our group and contains images with complex distortion patterns
caused by the simulation model of a wireless link. The test images and the
subjective experiment procedures related to the WIQ database are explained in
detail in Chapter 2. More information about the WIQ database can also be found
in Appendix A.

For many years, the FRTV Phase I database [41] by the Video Quality Experts
Group (VQEG) was the only available video quality database and has thus exten-
sively been used for VQM design and validation. This has changed very recently
with several video quality databases being made publicly available. The NYU
database contains videos with packet loss distortions [42]. Two LIVE video qual-
ity databases are further available of which one database [43] contains videos with
both compression and transmission distortions whereas the other database [44] is
focused on wireless communications distortions. More recently, the EPFL-PoliMi
video quality database [45] has been made available, focussing on transmission
distortions. The latest release is the EPFL 3D video quality database [46], allow-
ing for upcoming 3D VQM to be designed and validated on.
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1.3 Classification of objective visual quality assessment

Both, the image metrics discussed in Section 1.1 and the subjective experiments
introduced in Section 1.2 have their advantages and disadvantages. The former
facilitates computationally efficient, automated assessment, which comes at the
expense of low perceptual quality prediction performance. Subjective experiments,
on the other hand, provide an accurate measure of perceived visual quality but
are very tedious and not applicable in real-time. The aim of perceptual IQM
and VQM design is to bridge the gap between the two methods and combine
the advantages of automated assessment, omitting human interaction, with an
accurate quality prediction performance. The design philosophies that are followed
to achieve this goal are numerous and depend on the intended application of the
quality metric. To shed some light on the different design methods we provide in
the following a classification of visual quality metrics, in line with the philosophy
of the classification presented in [47].

Visual quality metrics can generally be defined with respect to three different
main factors that are considered in the metric design process:

1. The underlying knowledge and assumptions about the HVS.

2. The scope of visual distortions that are accounted for by the quality metric.

3. The information that is available from the undistorted reference stimulus.

This distinction is depicted in Fig. 3, with the three main factors being emphasised
by the grey boxes.

Factor 1: Human visual system. Perceptual visual quality metrics aim to
mimic the perception of a human observer and as such, it is intuitive to incorporate
characteristics of the HVS into the metric design process [48, 49]. This can be
done to different degrees of complexity, ranging from only simple approximations
of some relevant HVS properties to very complex systems incorporating accurate
models of the HVS. In general one can say, that more complex systems often
result in better quality prediction performance, which comes at the cost of higher
computational cost.

As suggested in [47], HVS-based metrics are generally designed with respect
to either a bottom-up or a top-down philosophy. Following the former approach,
the functionalities of the different HVS components [1,50] are emulated by com-
putational algorithms and integrated into a holistic model of perceived quality.
The aim of this approach is to build a computational model that functions in a
similar way as the integral parts of the HVS that are involved in quality perception.
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Figure 3: Classification of objective visual quality assessment methods [47].

On the other hand, metrics following the top-down philosophy do not aim
to simulate each HVS component independently, but are based on high level
assumptions about quality processing in the HVS. An example for this is the
assumption that the HVS is adopted to extract structural information, rather
than pixel information [14]. As such, the HVS is treated as a black box and the
input-output relation is focused on, instead of the functionalities of the HVS.

The border between the two philosophies is blurry and quality metrics can
incorporate both, specific functionalities of the HVS and also high level assump-
tions about the quality perception in the HVS. Considering the best of both worlds
might lead to improved quality prediction performance.

Factor 2: Visual distortions. Depending on what distortion types are ac-
counted for, perceptual quality metrics can further be classified into general
purpose metrics and application specific metrics. General purpose models, also
sometimes referred to as universal models, do not make any specific assumptions
regarding the distortions in the visual content. As such, these metrics often focus
on general features, such as natural scene statistics [51], and usually follow a HVS
related design, with the aim of deployment in a wide range of applications.

On the contrary, application specific metrics have particular knowledge about
distortions or make assumptions about distortions that can be expected in the
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visual content. This knowledge generally helps to simplify the metric design
and to improve quality prediction performance for the particular application. This
comes at the cost of worse performance when deployed in a different context than
the one that the metric has been intended for. An example of application specific
metrics are blocking metrics that are designed to specifically measure distortions in
JPEG coded images. These metrics would perform poorly if used, for instance, to
assess JPEG2000 coded images, which contain considerably different distortions.

Factor 3: Reference information. The amount of reference information that
is available from an original image or video is a crucial design aspect of any visual
quality metric. In this respect, ’original image/video’ refers to an image/video that
is considered to be distortion-free and of perfect quality and can, as such, be used
as a reference to evaluate the quality degradations in a distorted image/video.
Generally one can say that a higher amount of reference information facilitates
easier metric design and promises better quality prediction performance. This
is one reason why full-reference (FR) metrics are predominantly designed, where
the entire original image/video is used as a reference for quality prediction of the
distorted image/video. Clearly, the scope of these metrics is limited to scenarios
where the reference image/video is available at the quality predictor, which is
typically not the case in a communication context.

On the contrary to the FR approach, reference information is omitted entirely
in no-reference (NR) metric design, where the quality is assessed solely on the
distorted image/video. These methods are consequently often referred to as
’blind’ metrics. Even though it is usually no problem for the HVS to judge the
quality of a visual scene, it is in fact a highly difficult task for objective algorithms,
as strong assumptions have to be made about what is actually considered to be
perfect quality. For this reason, the efforts devoted to NR quality assessment have
thus far focused on application specific metrics, such as blocking or blur metrics,
and only little advances have been made towards universal NR quality predictors.

As a compromise between the FR and NR methods, reduced-reference (RR)
quality metrics take into account only a subset of the reference information. As
such, not the whole original image is accounted for but instead a set of extracted
features. These features, along with the related features extracted from the
distorted image/video, are then used for quality prediction. Metrics based on the
RR approach thus combine the advantages of the FR and NR approaches, by
avoiding the necessity for the entire reference image/video to be available and by
considering some reference information to support the quality prediction task. In
addition, RR metrics facilitate prediction of quality loss during a processing step,
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unlike NR metrics that quantify absolute quality. This is of particular interest
in a communications context, where the quality loss during transmission can
be identified. The bandwidth needed for the RR information to be sent from
transmitter to receiver becomes then a crucial metric design aspect.

1.4 A brief history of objective visual quality assessment

To provide an overview of the advances in visual quality assessment thus far,
we highlight in the following some of the milestones and review some of the
major contributions. After surveying the early works, we look in particular at
the advances in FR, NR, and RR quality assessment. In order to not burst the
scope of this thesis, the survey is by no means considered to be complete and
the more interested reader is referred to other survey publications [7, 52–57] for
further discussions and references.

1.4.1 Early works and HVS-based metrics

Early work goes back several decades with quality models being developed for
monochrome images by Mannos and Sakrison [58] and for monochrome video
sequences by Lukas and Budrikis [59]. The field then experienced significant ad-
vances in the 1990’s and at the turn of the century, with fundamental work on
elaborate HVS-based quality models. The Visible Differences Predictor (VDP) by
Daly [60] measured image fidelity as a function of display parameters and viewing
conditions. The VDP was later adapted by Bradley [61] particularly for wavelet-
based applications. Teo and Heeger [62] proposed a distortion measure based
on the steerable pyramid transform [63] and contrast normalisation. Van den
Branden Lambrecht and Verscheure [64] defined a multi-channel model of human
spatio-temporal vision, specifically parameterised for video coding applications.
The more general Sarnoff model proposed by Lubin [65] measures Just-Noticeable
Differences (JND) in visual stimuli, based on psychophysical principles of human
visual discrimination performance. Winkler proposed a Perceptual Distortion Met-
ric (PDM) both for colour images [66] and for colour video [67], based on several
properties of the HVS, including colour perception. The Digital Video Quality
(DVQ) metric by Watson et al. [68] is based on an elaborate HVS model and
was reported to perform similarly well to the Sarnoff JND model. Martens [69]
performed multidimensional modelling to account for different factors that impact
on the overall quality judgement. This was based on the hypothesis that the map-
ping from joint multidimensional attributes to a single overall quality judgement
may vary considerably between human observers.
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Parallel to the tremendous efforts towards finding plausible models of human
visual perception, research efforts were still ongoing towards simple numerical
metrics [70]. This was likely motivated by the high computational complexity of
the HVS models and the computational constraints of most image and video pro-
cessing systems. Towards the end of the 1990’s, the trend then moved somewhat
away from the elaborate HVS-based metrics (bottom-up approach) towards more
engineering inspired metrics that often incorporate some high level assumptions
about the HVS (top-down approach).

1.4.2 Advances in full-reference quality assessment

In the past decade, several FR metrics have been proposed that are expected to
have a good correlation with human perception due to the availability of the ref-
erence image/video. Even though these metrics find only little use for application
in a communication context, we include some major contributions in this review
for completeness.

The Picture Quality Scale (PQS) by Yamashita et al. [71] is based on a num-
ber of spatial and temporal features extracted from video, including jitter, flicker,
noise, and blur. A blockiness detector for MPEG coded video is proposed by Tan
and Ghanbari [72]. Besides the blocking artifact extraction this metric also in-
corporates a simple perceptual model. The Structural Similarity (SSIM) index by
Wang et al. [14] is based on the assumption that the HVS is adapted to extraction
of structural rather than pixel information. The SSIM index is nowadays probably
the most widely used image quality metric which can be attributed to its well bal-
anced compromise between complexity and quality prediction performance. The
Visual Information Fidelity (VIF) criterion by Sheikh and Bovik [73] approaches
the quality prediction problem from an information theoretic viewpoint [74]. The
VIF criterion has been developed in the same group as the SSIM index and is
actually often superior to SSIM, which comes at the cost of higher computational
complexity. The Visual Distortion Gauge by Lin et al. [75] is based on local con-
trast changes and has been found to be particularly effective in measuring blur
artifacts and luminance fluctuations. The Visual Signal-to-Noise Ratio (VSNR)
by Chandler and Hemami [76] deploys a two-stage approach, with the first stage
determining a distortion detection threshold. If the distortions are suprathreshold,
then the VSNR is computed based on perceived contrast and global precedence
properties of the HVS. The Most Apparent Distortion (MAD) metric by Larson
and Chandler [77] is based on the presumption that the HVS deploys different
strategies for determining image quality, depending on if the visual distortions are
near-threshold or suprathreshold. Thus, the model accounts for a detection-based
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strategy in high quality images and an appearance-based strategy in low quality
images. The metric proposed by Li and Bovik [78] extends the existing SSIM in-
dex by a three-stage model to account for different categories of regional content;
smooth regions, textured regions, and edge regions.

Most recently, the impact of temporal dynamics in video, both from a content
and a distortion perspective, have increasingly been addressed in quality metric
design. A temporal correction factor is deployed in the work by Ou et al. [79],
in addition to a compression distortion metric, to account also for the impact of
frame rate on the overall perceived quality. The metric by Liu et al. [33] accounts
for both, degradations through source coding and packet loss. Several factors are
integrated into the metric with regards to their impact on the overall perceived
quality, including the loss length, the loss severity, loss location, the number of
losses, and the loss patterns. The temporal variations of distortions are accounted
for in the work by Ninassi et al. [80] by deploying short-term and long-term
temporal pooling techniques. In particular, the short-term pooling was identified
to be essential for improving the quality prediction performance of the metric. The
Temporal Trajectory Aware Video Quality Measure (TetraVQM) by Barkowsky et
al. [81] also mainly focuses on temporal issues, including frame freezes and skips,
frame rate reduction, influence of scene cuts, and the tracking of the visibility of
distorted objects. The Motion-based Video Integrity Evaluation (MOVIE) index,
by Seshadrinathan and Bovik [82] involves both spatial and temporal distortion
measures, but focuses in particular on evaluating motion quality along computed
motion trajectories.

1.4.3 Advances in no-reference quality assessment

Given the considerably more difficult task of quality prediction without any ref-
erence, there have not been as many successful attempts to define NR quality
metrics, in comparison to the number of FR models that have been proposed.
In order to make the NR metric design more amenable, most models are in fact
developed to serve particular applications for which the expected distortions are
known.

A NR quality metric for JPEG images is proposed by Wang et al. [83]. The
metric focuses on blocking artifacts, given their predominance in JPEG com-
pressed images, and takes blur indirectly into account. The quality prediction
performance of the work in [83] has been considerably improved by Horita et
al. [84] through the introduction of local feature computations. A simple quality
model for MPEG-4 coded video, based on frame rate and bit rate measures, has
been proposed by Koumaras et al. [85]. A NR VQM based on the differences
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of local regions between two consecutive frames is proposed by Yang et al. [86].
These differences are weighted according to the temporal activity in the video. A
quality metric based on motion characteristics and content classification is pro-
posed by Ries et al. [87] for H.264 coded, low-resolution video sequences. Liu et
al. [88] proposed a quality metric for JPEG and JPEG2000 coded images, based
on localised gradient statistics.

In addition to these application specific NR quality metrics, there are also
numerous metrics that are based on single feature or artifact measures. The most
commonly addressed artifacts include blocking [89–91], blur [92,93], ringing [94],
and sharpness [95–97]. A metric combining synthetic blocking, blur, and noise
artifacts is proposed in [98].

Artificial neural networks (ANN) have been found to perform well in predicting
visual quality, based on either NR or RR features as input. Gastaldo et al. [99]
developed a circular backpropagation (CBP) network for quality assessment of
MPEG-2 video. Mohamed and Rubino [100] utilised a random neural network
(RNN) for packet video quality assessment. Le Callet et al. [101] designed a
quality predictor based on a convolutional neural network (CNN).

Another class of NR metrics [102, 103] makes unconventional use of data
hiding techniques by means of watermarking [104]. A watermark is an image
or pattern invisibly embedded into a host image and has been traditionally used
for purposes such as copyright protection. In the context of quality assessment,
however, the watermark is used to assess the quality of its host image based on the
assumption that the host undergoes the same distortions as the watermark. This
class of metrics is often referred to as ’pseudo NR’, since no reference information
is needed from the original image but instead, the watermark needs to be known.

The survey of NR quality assessment reveals that most metrics proposed thus
far are application specific or even artifact specific, which shows that it is still a
long way towards truly universal NR image quality metrics.

1.4.4 Advances in reduced-reference quality assessment

Reduced-reference quality assessment is of particular interest in scenarios where
the reference image or video is not available, as is the case in image and video
communications. Unlike NR methods, RR quality assessment allows for mea-
surement of quality changes between an original and a distorted image or video,
rather than judging the absolute quality. These might be some of the reasons why
RR quality assessment received increased interest in recent years. The methods
proposed thus far reported promising results in terms of quality prediction perfor-
mance, being in many cases competitive with FR quality assessment with only a
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fraction of the reference information at hand. The amount of overhead in terms
of RR information of course becomes a crucial metric design issue.

Probably the most widely used RR metric is the General Model of the Video
Quality Model (VQM) by Pinson and Wolf [105]. The metric is said to be general
purpose and applicable for various types of coding and transmission systems. The
RR information is composed of the VQM and a set of calibration parameters.
The total bandwidth needed for the RR information is 14% of the bandwidth of
the uncompressed video sequence, of which 9.3% are for the VQM parameters
and 4.7% for the calibration parameters. The metric proposed by Wang and
Simoncelli [106] is based on a natural image statistic model in the wavelet domain.
The method utilises a 3-scale and 4-orientation steerable pyramid decomposition
[63] and the Kullback-Leibler distance (KLD) to quantify the difference of the
wavelet coefficients. The quality prediction performance of the metric is very
good and the RR side information is small, consisting of only 18 different feature
measures (162 bits). However, the computational complexity of the metric is very
high. The work proposed by Li and Wang [107] actually builds upon the design
philosophy of the metric in [106] and improves its performance by introducing a
divisive normalisation transformation that is in alignment with the de-correlation
of neural responses in the early visual system.

The particularity of the metric by Masry et al. [108] is its scalability between
an FR and an RR metric. As such, the bandwidth for the RR features can be
traded off with the quality prediction performance, depending on the application.
The metric by Yamada et al. [109] estimates the PSNR based on representative
luminance values. The PSNR estimation is shown to work well but, of course,
the agreement with subjectively perceived quality is questionable. The RR metric
by Gunawan and Ghanbari [110] is based on local harmonic strength, focussing
particularly on blocking and blur artifacts. The RR information comprises of 320
features of 8 bits each. The C4 criterion proposed by Carnec et al. [111], is maybe
the only HVS-based quality model following the RR approach. The performance
has been tested on several image quality databases and was found to be compa-
rable to state-of-the-art FR metrics. However, the C4 metric is computationally
highly complex. An unconventional RR quality assessment method based on dis-
tributed source coding is presented by Chono et al. [112]. Here, a feature vector
is extracted from the original image and in order to reduce the RR size, only its
Slepian-Wolf bit stream is transmitted to the receiver. The receiver can then cor-
rectly reconstruct the feature vector using the received image as side information.
Lin et al. [113] propose a model for packet loss visibility. It was found that packet
loss visibility is highly dependent on scene cuts and camera motion.

The methods discussed above all have one drawback in common, they face the
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problem that the RR information needs to be communicated as side information
to the quality predictor. Depending on the RR size, this might be a particular
problem in wireless communication networks where the bandwidth is scarce. To
avoid this problem of sending the features separate from the reference over the
channel, the concept of quality aware images has been introduced by Wang et
al. [114] which is based on watermark embedding into the image or video frames.
Unlike the other data hiding techniques discussed earlier, this method does not use
the embedded watermark for quality evaluation at the receiver side. Instead the
watermark itself contains the RR information which then only has to be extracted
at the quality predictor. Therewith, no overhead is introduced and no ancillary
channel for transmission of side information is needed. Of course, the capacity of
the watermark is directly related to its visibility in the image and thus, the RR
information is desired to be as small as possible.

1.5 Visual attention for quality assessment

Although the number and range of visual quality metrics that have been proposed
thus far is large, most of them do not take into account an integral part of the
HVS that can be assumed to have a major impact on the perception of overall
perceived image and video quality. This HVS property is referred to as visual
attention (VA) [115] and consists of higher cognitive processing deployed to reduce
the complexity of scene analysis. For this purpose, a subset of the available visual
information is selected by shifting the focus of attention across the visual scene
to the most salient objects. It is because of the VA mechanisms that the HVS is
able to cope with the abundant amount of visual information that it is confronted
with at any instant in time.

Incorporating models of VA into visual quality assessment can thus be assumed
to be very beneficial, since the viewer may be more likely to detect artifacts in
highly salient regions, as compared to regions of low saliency. This is further
supported by the fact that the input stage of the HVS, the retina, is highly space
variant in sampling and processing of visual signals. The highest accuracy is
located in the central point of focus, the fovea, and strongly diminishes towards
the periphery of the visual field. As such, distortions in highly salient regions
may be perceived in more detail and consequently, as being more annoying than
distortions in regions of low saliency.

Given the potential relevance of VA for quality assessment, we will in the
following give a brief introduction to the field and highlight in particular the
aspects that are of interest in the given context of this thesis.
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1.5.1 Visual attention

The main purpose of VA is to direct our gaze to the objects of interest in the visual
scene, which is facilitated using rapid, saccadic eye movements. The attentional
shift is guided by two main cues, namely, bottom-up and top-down. The former
is fast, saliency driven, and independent of a particular task. It is understood
that the bottom-up VA is performed in a pre-attentive manner across the visual
field [116]. It is thus driven ’automatically’ by certain low-level features that are
experienced as visually salient. Top-down attention, on the other hand, is highly
dependent on the viewing task and as such, it is typically slower and requires
a voluntary effort to shift the gaze. Top-down attention is considered to have a
modulatory effect on bottom-up attention [117] and as such, the two mechanisms
together achieve that the most relevant information is continuously favoured at
the expense of less relevant information.

Visual attention is guided by a large number of different low-level and high-
level attributes [118]. Low-level attributes include, amongst others, colour, shape,
size, and motion of objects. High-level attributes are based on semantic in-
formation and include, for instance, faces and written text [119]. Earlier work
suggests that the pre-attentive, salient features are predominant in guiding atten-
tion [120], however, more recent work indicates that higher-level objects in fact
have a stronger impact on VA [121].

Besides the visual attributes, VA has also been found to be highly dependent
on the viewing task [122]. For instance, if a visual scene is observed without any
task given, then the viewing behaviour is different as compared to the case where
a particular search goal is followed. In the context of visual quality assessment,
such a search goal could be the detection of visible distortions in natural scenes.
Top-down attention, which mainly accounts for the task influence [123], has been
investigated comparably less as compared to bottom-up attention, and is thus not
as well understood. This is partly due to top-down cues being strongly driven by
higher cognitive processes, whereas the saliency of the visual stimulus considerably
supports the understanding of bottom-up attention.

It is well known that what we look at does not necessarily represent what
we attend [118]. We can, for instance, gaze at a particular point in the visual
field, but consciously attend another point in the periphery. Despite this fact, eye
tracking and VA were found to be strongly interlinked [116] and thus, eye track-
ing experiments [124] are widely used to measure overt VA of human observers.
Saliency maps (SM) created from eye tracking data are instrumental as a ground
truth for the design and validation of VA models.
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1.5.2 Visual attention models

Visual attention models aim to predict the attentional behaviour of human ob-
servers when viewing a visual scene. Generally, these models are not able to
predict the sequential order of human fixations, the scanpath, but are limited to
predicting the locations and objects that humans focus on [125,126].

Many VA models were inspired by early works such as the feature integration
theory by Treisman and Gelade [127], the guided search by Wolfe et al. [120],
or the neural-based architecture by Koch and Ullman [128]. Especially the latter
model constituted a theoretical basis for biologically plausible models incorporat-
ing characteristics of the HVS known to contribute to VA, such as multiple-scale
processing, contrast sensitivity, and center surround processing. Probably the
most widely used bottom-up VA model following this paradigm is the one by Itti
et al. [129], which is based on the neuronal architecture of the early visual system,
where multiple-scale image features are combined into a topographical SM. Le
Meur et al. [130] also proposed a biologically inspired bottom-up VA model that
predicts SM based on a three stage model including a visibility, a perception, and
a grouping stage. A spatio-temporal model is proposed by Marat et al. [131] by
accounting for the static and temporal pathways in the HVS.

Despite the plausibility of designing VA models inspired by the HVS, there is a
strong trend towards content-based models [132–137]. These approaches usually
incorporate different visual factors that are known to attract attention, such as the
low-level and high-level attributes discussed in Section 1.5.1. Other VA models
are based on Bayesian [138, 139], information theoretic [140, 141], or statistical
approaches [142]. A nonparametric model based on only few assumptions about
the VA mechanisms in the HVS and entirely trained from eye movement data is
described in [143].

Only few models thus far have focused on top-down attentional processes
[144, 145], mainly because they are relatively less well understood compared to
bottom-up attentional processes. The model proposed by Ma et al. [146] accounts
for bottom-up and top-down processes by combining spatio-temporal features
with higher level semantic attributes through the deployment of a face detection
algorithm.

There has also been several works that predict the level of perceived inter-
est [147–149] or the level of importance [150,151]. Regions or objects that receive
a high level of interest are often referred to as region-of-interest (ROI) or object-
of-interest. These models are typically based on a segmentation of the image or
video frames into areas of different levels of interest. In the simplest case, the
visual scene is separated into a ROI and a background. Each of these regions
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is then assigned a level of interest. The design and validation of these models
is performed in fundamentally different ways. Osberger et al. validate their im-
portance prediction model [150] and their ROI prediction model [148] using gaze
patterns recorded from eye tracking. Pinneli and Chandler [149], on the other
hand, instructed a number of observers to rate the perceived levels of interest
of different objects in an image, where the different objects were defined using
segmented images of the Berkeley Segmentation Dataset and Benchmark [152].
The former approach assumes that the level of interest is strongly related to
bottom-up, saliency driven visual cues, whereas the latter approach assumes a
more top-down, task-driven relationship. The connection between the overt at-
tention process of eye movements and the conscious decision process of interest
selection has been studied in [153–156]. All works agree that there is a strong
correlation between eye movements and the ROI selections. For this reason, ROI
are sometimes determined from SM by defining appropriate thresholds for the
different levels of interest [157].

In summary, the majority of the proposed models is concerned with bottom-up
rather than top-down VA cues. Unlike with visual quality metrics, many of the VA
models actually account for colour in images and video. This is essential for a VA
model to perform well, as it has been shown [158] that human fixation locations
differ considerably between coloured and grey scale versions of the same image.
It should also be noted, that none of the VA models for video take into account
auditory attention, even though auditory and visual information can be expected
to have a strong interaction [159,160].

1.5.3 Integration of visual attention into quality metrics

The integration of VA models into quality assessment is motivated by the generally
accepted fact that VA is one of the most important features of the HVS and
should thus not be neglected in visual quality metrics. As humans usually focus
on highly salient regions in an image or video, outside these regions our sensitivity
to distortions is considerably reduced. As such, they may be perceived as less
annoying and may have a lower impact on the overall perceived quality. As a
consequence, integrating visual saliency and perceptual distortion features may
be crucial for improving IQM and VQM. However, most of today’s visual quality
metrics ignore the influence of these factors and weight distortions equally over
the entire visual space.

In recent years, however, there has been increased efforts to evaluate the
potential benefits of VA and saliency models for quality assessment [161]. The
results reported generally agree that the incorporation of saliency information
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into quality metrics results in a significant improvement of the agreement with
perceived visual quality. Cavallaro and Winkler [162] improved an image quality
metric based on low-level features by integrating semantic information in terms of
face segmentation. Maeder [163] and Moorthy and Bovik [164] reported quality
prediction performance improvements by taking into account importance maps
and appropriate pooling techniques. The modulatory aftereffects of VA have
been found by Lu et al. [165] to improve quality assessment techniques. Barland
and Saadane [151] improved a blur and ringing based quality metric for JPEG2000
by integrating an importance map into the distortion feature extraction. The Itti
model [129] together with higher-level sematic information, such as face and text
detection, have been integrated into a quality metric by You et al. [166], resulting
in a very competitive performance to other contemporary quality metrics. Ma
et al. [167] used a saliency predictor [136] to improve existing IQM and VQM
considerably. Feng et al. [168] and Liu et al. [169], respectively, improved visual
quality metrics and distortion visibility prediction models in the presence of packet
loss. The importance of incorporating auditory cues into attention models was
revealed in the subjective study on audiovisual attention by Lee et al. [170]. It
was found, that the sound source attracts VA and as a consequence, the visual
distortions in the regions far from the source are less perceived as compared to
the distortions in the sound-emitting regions.

Despite the general agreement regarding the added value of VA models in
quality assessment, there was also work that reported that no clear benefits from
VA towards improved quality models could be identified [171]. This was tested
for, using various pooling functions to integrate the saliency information with
the distortion features. However, the study was based on gaze patterns obtained
during quality assessment task and as such, the SM that were used do not directly
reflect the content saliency but instead the viewing strategy of human observers
when judging image quality. This may have a strong impact on the outcomes of
the study and in fact, Larson et al. [172] have shown that greater improvement
of quality metrics can be achieved when using eye tracking data recorded under
task-free rather than task-based (quality assessment task) condition.

These results show that the incorporation of VA into quality metrics is a
delicate process that needs to be carefully conducted. Personally, we believe
that the benefits are also highly application dependent. More improvement is, for
instance, expected in the case of localised rather than global distortions. We have
also found that the added value is considerably higher in the case of video [173]
rather than image [174] applications. This is mainly due to the continuous changes
of the visual content in video and thus the more dynamic attention shifts and
distortion fluctuations as compared to images.
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One major challenge with the incorporation of VA into quality assessment is
also the availability of a reliable saliency ground truth. For this reason, many of
the above methods use possibly erroneous VA models instead of more reliable SM
based on eye tracking data. To overcome this problem and to further advance
this field of research, two eye tracking databases have recently been made freely
available to the research community. The Visual Attention for Image Quality
(VAIQ) database [175] has been released by our group at the Blekinge Institute
of Technology, Sweden, in cooperation with the University of Western Sydney,
Australia. The ’TUD Image Quality Database: Eye-Tracking Release 1’ [176] has
been released by Delft University of Technology, The Netherlands. The VAIQ
database provides gaze patterns for three well known image quality databases,
the MICT [35], the IRCCyN/IVC [36], and the LIVE [37] database. The TUD
database provides gaze patterns for the LIVE database [37]. The overlap between
the images used in the two eye tracking experiments further permits the com-
parison of SM created from gaze patterns of two independent viewer populations
in different countries. These SM can, for instance, be analysed regarding their
consistency between the two groups of viewers, which may lead to more insight
regarding the reliability of the SM as a ground truth for quality metric design.

1.6 Quality assessment framework for image and video com-
munications

In this thesis, we focus on subjective and objective quality assessment methods
for image and video communications, and in particular wireless communications.
The scarce channel bandwidth, the low computational power of mobile handheld
devices, and the complex error patterns caused by the unreliable wireless channel
constitute a difficult scenario with respect to measuring visual quality degrada-
tions as perceived by the end user. The aim is thus not to develop general purpose
models but rather to limit our efforts to models that perform well in the communi-
cations context. As we are interested in estimating the quality loss that occurred
during transmission, rather than the absolute quality of the received image or
video, we thus focus on the design of RR quality metrics that use only a small
amount of low-bandwidth features as reference information.

The general framework considered in this thesis is given in Fig. 4. Here,
the integral parts of a wireless communication system are illustrated, comprising
of a source en-/decoder, channel en-/decoder, (de)modulator, and the wireless
channel. The dark-grey boxes determine the system components that need to be
deployed to conduct the RR visual quality assessment. At the transmitter, a set of
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Figure 4: Framework for reduced-reference visual quality assessment in a wireless
communication system.

low-bandwidth features is extracted from the reference image or video, 𝐼𝑟, which
are sent as side information over the channel either, in-band as an additional
header or in a dedicated control channel. A corresponding set of features is
extracted from the received image or video, 𝐼𝑑, and used along with the recovered
reference features to assess the quality degradation incurred during transmission.
The RR quality metric (QM) may then facilitate link adaption techniques such
as adaptive coding and modulation, power control, or automatic repeat request
strategies.

Clearly, the diverse nature of the transmission errors and the strict bandwidth
limitations of the channel are crucial aspects of the model design. A competitive
quality metric is thus required to account for the complex distortion patterns
while keeping the amount of RR as low as possible. Suitable pooling functions
at the transmitter may thus be deployed to further condense the RR information.
The complex error patterns due to the transmission errors further suggest the
consideration of visual content saliency to be integrated into the metric design,
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as distortions in highly salient regions may be perceived to be more annoying as
compared to distortions in regions of low saliency.

The general framework in Fig. 4 is adopted in Chapters 3, 6, 7, and 8, for the
different models that are designed in the respective chapters. The components
that are common in all cases are emphasised in Fig. 4 with the grey background.
For convenience, these components are in later figures summarised by a single
block named ’Wireless link’.

1.7 Thesis overview

The diagram in Fig. 5 provides an overview of the thesis and the interdependen-
cies between the different chapters. The content of the thesis can be broadly
divided into four parts. Part I consists of Chapters 2-4 and presents the design
and validation of RR image quality metrics for wireless communications. Part
II comprises of Chapters 5-8 and is concerned with the optimisation of the RR
metrics presented in Part I. Chapter 8 also extends the metric design to incorpo-
rate visual saliency by means of ROI. Thus, Chapter 8 leads into Part III, which
addresses in Chapters 9-11 VA and confidence of human observers during image
quality assessment. Part IV comprises of Chapters 12-14 and addresses the impact
of visual content saliency on the perceived annoyance of packet loss distortions
in natural video sequences.

The following section shortly discusses the research methodology that is com-
monly deployed throughout the thesis. Section 1.7.2 then briefly introduces each
chapter and summarises its contributions. Finally, a few remarks regarding nota-
tion in this thesis are given in Section 1.7.3.

1.7.1 Research methodology

The research methodology that is applied in each of the three parts generally
involves the following three steps:

1. Subjective experiments: As human observers are still considered to be
the most accurate source of perceptual data, we conducted several subjec-
tive experiments to obtain reliable ground truths for the model design. In
particular, two image quality experiments were conducted for Part I and an
ROI experiment was performed within Part II. A combined eye tracking and
image quality experiment was undertaken for Part III and a combined eye
tracking and video quality experiment was conducted to obtain a subjective
ground truth for Part IV.
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2. Subjective data analysis: The outcomes of the subjective experiments are
instrumental for the design of visual quality metrics and saliency models.
However, they also provide valuable insight into the human visual perception
of natural image and video content in the presence of structural distortions.
As such, a detailed analysis of the data obtained from the subjective ex-
periments generally precedes the objective modelling in each of the four
parts.

3. Objective modelling: The final goal of each part is to determine objective
models that are able to predict human ratings, typically quality ratings. In
this respect, we develop original quality prediction models but also models
that aim on improving existing quality metrics, for instance, by incorporating
saliency information into metrics that do not account for this phenomenon.

1.7.2 Summary and contributions

The content of all chapters in this thesis are briefly summarised in the following
and the respective contributions of each chapter are highlighted:

∙ Chapter 1: The introduction provides a current overview of the field of
visual quality research. In particular, an up-to-date survey of visual quality
assessment is presented, highlighting the advances from early works to the
latest contributions in the field. Additionally, recent work related to the
benefits of VA in quality assessment are briefly discussed. Parts of Chapter
1 have been published as [55].

∙ Chapter 2: Two subjective image quality experiments were conducted in-
volving a total of 60 human observers. The experiment outcomes reveal
valuable insight into the human visual perception of transmission distortions
in natural image content. The test images and the MOS are made freely
available to the research community in the Wireless Imaging Quality (WIQ)
database (see also Appendix A). Unlike any of the other publicly avail-
able databases (see Section 1.2.3), the test images in our database contain
complex distortion patterns caused by a simulation model of a wireless link.
Parts of Chapter 2 have been published as [16,40].

∙ Chapter 3: Reduced-reference image quality metrics, namely, the Nor-
malised Hybrid Image Quality Metric (NHIQM) and the perceptual rele-
vance weighted 𝐿𝑝-norm, are designed and validated using the subjective
experiment results from Chapter 2. This work is a continuation of the work
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presented in [177]. The extensions to the previous work include modifica-
tions of feature extraction algorithms, the deployment of alternative feature
pooling strategies, an extreme value normalisation of perceptual relevance
weights, a detailed statistical analysis of the objective features in the image
content, and the derivation of individual mapping functions for the designed
metrics. Furthermore, the concept of metric training and validation has not
been considered in the previous work and the metrics were not compared to
other contemporary quality metrics. Both these shortcomings are addressed
in this chapter. Parts of Chapter 3 have been published as [16,178].

∙ Chapter 4: The applicability of NHIQM for de-blocking filter design of
H.263 coded video is analysed to highlight the effectiveness of the metric.
It is shown, that NHIQM is able to distinguish between different quality
levels and to quantify changes of different artifacts due to the filtering
process. Parts of Chapter 4 have been published as [179].

∙ Chapter 5: A multiobjective optimisation framework is proposed to de-
termine the optimal perceptual relevance weights of feature-based image
quality metrics. The effectiveness of the framework is demonstrated with
NHIQM showing that the quality prediction performance can be consider-
ably improved while generalisation ability is maintained. Parts of Chapter
5 have been published as [180].

∙ Chapter 6: An artificial neural network (ANN) using structural features
as input is proposed. The ANN predicts well the perceived visual quality
of natural images with transmission distortions while having a strong gen-
eralisation ability. It is shown that the ANN performs equally well with
RR features as input as well as with NR features. The network is of low
computational complexity as only few neurons are needed for the metric
computation. Parts of Chapter 6 have been published as [181].

∙ Chapter 7: Multi-resolution structural feature extraction using the Gaus-
sian pyramid decomposition is proposed for objective quality assessment.
The resulting metric shows a superior performance in comparison to its
single-resolution versions presented in Chapter 3. Parts of Chapter 7 have
been published as [182,183].

∙ Chapter 8: A subjective experiment is reported that we conducted to
identify ROI in the reference images of the quality experiments introduced
in Chapter 2. The experiment outcomes provide interesting insight into
the ROI selection behaviour of human observers and the ROI selections are
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made publicly available to the research community (see also Appendix B). A
ROI awareness framework is further proposed that is shown to improve the
prediction performance of existing image quality metrics. Parts of Chapter
8 have been published as [174,184,185].

∙ Chapter 9: Two eye tracking experiments are reported in which gaze
patterns of human observers were recorded when viewing natural image
content. One experiment was conducted under natural viewing conditions
(task-free) and the other experiment under image quality assessment task.
In the latter experiment, additional information was collected in terms of
confidence scores and response times. The recorded gaze patterns of both
experiments constitute valuable information with respect to human viewing
behaviour, both under task-free and task-based conditions. The gaze pat-
terns from the task-free eye tracking experiment are made freely available in
the Visual Attention for Image Quality (VAIQ) database (see also Appendix
C). Parts of Chapter 9 have been published as [186].

∙ Chapter 10: The confidence of human observers during image quality
assessment is analysed in detail. For this purpose, the quality scores, confi-
dence scores, and response times of the task-based eye tracking experiment
in Chapter 9 are analysed in detail. A prediction model of human observer
confidence is further proposed that provides additional reliability informa-
tion about MOS, as a complement to widely computed confidence intervals.
Parts of Chapter 10 have been published as [187].

∙ Chapter 11: The task-free and task-based eye tracking data are analysed in
detail. The former data is analysed with respect to the inter-observer vari-
ability when viewing natural image content. The latter data is investigated
regarding the relative impact of the perceived level of interest and of struc-
tural distortions on the viewing behaviour during image quality assessment.
Parts of Chapter 11 have been published as [153,156,188,189].

∙ Chapter 12: A combined eye tracking and quality assessment experiment is
reported that we performed to determine the perceived level of annoyance
of localised packet loss distortions in relation to the underlying content
saliency in natural video sequences. Parts of Chapter 12 have been published
as [190].

∙ Chapter 13: The annoyance scores and the eye tracking data recorded in
the experiment from Chapter 12 are analysed in detail. The results discussed
in this chapter are considered to be highly valuable in two respects. Firstly,
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to gain a better understanding of the interdependence between content
saliency and localised transmission distortions onto perceived visual quality.
Secondly, to incorporate saliency information into existing and future VQM
for better agreement with human perception. Parts of Chapter 13 have
been published as [190].

∙ Chapter 14: We present a simple saliency awareness model for existing
VQM. The model is non-intrusive, meaning that the actual metric does not
need to be changed. The improvement of quality prediction performance
based on the saliency awareness model is shown on a contemporary VQM.
Parts of Chapter 14 have been published as [173].

1.7.3 Some remarks

In general, the aim of perceptual visual quality assessment is to evaluate the
quality of a visual signal, either as an absolute measure or relative to a reference
signal. In relation to the latter, the quality does not necessarily have to be worse
than the reference, for instance, in the case of processing through image and
video enhancement systems. However, in this thesis, we consider models that only
estimate the quality loss of one visual signal as compared to a reference signal,
based on the valid assumption that there is generally no quality enhancement
performed during transmission. Therefore, the reference signal is considered to
be distortion free and of perfect quality and any changes in the received signal
are considered to degrade the perceived level of quality to some degree.

In this respect, the reference signal is in the remainder of the thesis labelled
with 𝑟 and the distorted signal is labelled with 𝑑. In the scope of this thesis,
the distorted stimuli all contain degradations to some degree. In a real world
application, not every transmitted signal would necessarily contain distortions.

The reader may have noticed the terms ’distortion’ and ’artifact’ that have
been used throughout the introduction. The term ’distortion’ is here considered
to be a general degradation of the reference signal, not specifying any particular
type. The term ’artifact’, on the other hand, is here used to denote a particular
kind of distortion, for instance, blocking, blur, or noise.
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2 Subjective Wireless Imaging Quality Assessment

F or the RR image quality metric design, a ground truth is needed in terms
of subjective quality scores. However, the publicly available image quality

databases (see Section 1.2.3) generally focus on compression distortions and ar-
tificial artifacts, such as white noise, and are thus not suitable for quality metric
design in wireless image communication. For this purpose, we conducted subjec-
tive image quality experiments in two independent laboratories to obtain quality
scores for a number of natural images with transmission distortions.

The first experiment was conducted at the Western Australian Telecommu-
nications Research Institute (WATRI) in Perth, Australia, and is in the following
referred to as experiment E1. The second experiment took place at the Blekinge
Institute of Technology (BIT) in Ronneby, Sweden, and is in the following referred
to as experiment E2. Both experiments were designed according to the guidelines
outlined in Rec. BT.500-11 [19] of the ITU-R.

In the following sections, the creation of the test images used in the experi-
ments is discussed, the experiments are explained in detail, and the experiments’
outcomes are presented along with a statistical analysis.

2.1 Creation of test images

2.1.1 System under test

To create the distorted images from a number of undistorted reference images,
we consider in the scope of this thesis a particular realisation of the wireless link
model as shown in Fig. 4. In particular, the JPEG format was chosen to source
encode the images prior to transmission. It is noted that JPEG is a lossy image
coding technique using a block discrete cosine transform (DCT) based algorithm,
thus, facilitating an easy transition to state-of-the-art DCT-based video codecs,
such as H.264/AVC [191]. Due to the quantisation of DCT coefficients, artifacts
may already be introduced during source encoding. A (31, 21) Bose-Chaudhuri-
Hocquenghem (BCH) code was then used for error protection purposes [192]
and binary phase shift keying (BPSK) for modulation. An uncorrelated Rayleigh
flat fading channel in the presence of additive white Gaussian noise (AWGN)
was implemented as a simple model of the wireless channel [193]. Severe fading
conditions may cause bit errors or burst errors in the transmitted signal which
are beyond the correction capabilities of the channel decoder and as a result,
distortions may be induced in the decoded image in addition to the ones purely
caused by the source encoding. To produce severe transmission conditions, the
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average bit energy to noise power spectral density ratio 𝐸𝑏/𝑁0 was chosen as 5
dB.

It should be noted, that the system under test is a particular realisation of the
wireless link outlined in Section 1.6. However, the image quality metrics proposed
in this thesis can be easily adopted to other specific system components, given
that suitable test images and subjective data (MOS) are available, which are
crucial for the metric design. This may for instance include an extension from
JPEG to JPEG2000 or to measuring spatial artifacts in video, such as H.264/AVC.

2.1.2 Reference and distorted images

A set of seven reference images, ℐ𝑅, of dimension 512×512 pixels and represented
in grey scale was chosen to cover a variety of textures, complexities, and contents.
The reference images are shown in Fig. 6. The system under test, as explained
in Section 2.1.1, was utilised to create a large number of distorted images. Two
sets of fourty distorted images each, ℐ1 and ℐ2, were then selected to be used in
the two subjective experiments E1 and E2, respectively. The images were chosen
such as to cover a wide variety of artifacts and also a broad range of severities
for each of the artifacts, from almost invisible to highly distorted. Thus, the sets
of test images incorporate distortions near the JND regime to artifacts widely
covering the suprathreshold regime [194].

2.1.3 Artifacts observed in the distorted images

The system under test as outlined in Section 2.1.1 turned out to be beneficial
with respect to generating impaired images with a broad range of distortion types,
severities, and distributions. Specifically, the range of artifacts spanned beyond
those typically induced by source encoding such as blocking and blur but also
comprised of ringing, block intensity shifts, lost blocks, and combinations thereof.
These artifacts are briefly discussed in the following. In addition, some example
images are shown in Fig. 7 to illustrate the observed artifacts.

Blocking: Blocking artifacts are inherent with block-based image and video
compression techniques, such as JPEG or H.264/AVC. Blocking (sometimes also
referred to as blockiness) can be observed as surface discontinuity at block bound-
aries and is a consequence of the independent quantisation of the individual blocks
of pixels. In particular, in DCT-based image and video compression, blocking is
present on the 8× 8 block borders due to independent quantisation of the DCT
coefficients. Blocking artifacts are illustrated in Fig. 7 (a) and (b).
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Lena Mandrill Peppers
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Figure 6: Reference images used in experiments E1 and E2.

Blur: Blur artifacts relate to the loss of spatial detail of visual content and are
typically observed as texture blur. In addition, blur (sometimes also referred to as
blurriness) may be observed due to a loss of semantic information that is carried
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(a) (b) (c)

(d) (e) (f)

Figure 7: Examples of distorted test images showing different artifacts: (a) ’Lena’
with blocking, (b) ’Mandrill’ with blocking, (c) ’Goldhill’ with blur in 8×8 blocks,
(d) ’Elaine’ with ringing, (e) ’Peppers’ with ringing and block intensity shifts, and
(f) ’Barbara’ with a combination of severe artifacts.

by the shapes of objects in an image. In this case, edge smoothness relates to a
reduction of edge sharpness and contributes to blur. In relation to compression,
blur is a consequence of the coarse quantisation of frequency components and
the associated suppression of high-frequency coefficients. Global blur artifacts are
prevalent in discrete wavelet transform (DWT) based codecs such as JPEG2000.
In case of JPEG compression, blur is usually observed within the 8 × 8 blocks
rather than on a global scale. Blur artifacts are illustrated in Fig. 7 (c).

Ringing: The artifact of ringing appears to the human observer as periodic
pseudo edges around the original edges of the objects in an image. Ringing is
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caused by improper truncation of high-frequency components, which in turn can
be noticed as high-frequency irregularities in the reconstruction. Ringing is usually
more evident along high contrast edges, especially if these edges are located in
areas of smooth textures. Ringing artifacts are illustrated in Fig. 7 (d) and (e).

Block intensity shifts and lost blocks: In general, masking occurs when the
visibility of a stimulus is reduced due to the presence of another stimulus [18].
In this context, intensity shifts in parts of an image, or the whole image, may
result in either a darker or brighter appearance of the area as compared to the
original image and thus cause a change in visibility of the visual content. These
artifacts may appear in the presence of strong multipath fading in wireless image
communication and are in the following referred to as block intensity shifts. In
the worst case, entire image blocks are lost resulting in parts of the image being
black. Block intensity shifts are illustrated in Fig. 7 (e) and (f).

2.2 Details of experiments E1 and E2

2.2.1 Laboratory environments

The general viewing conditions in both experiments were arranged as specified
in the ITU-R Rec. BT.500-11 [19] for a laboratory environment. The room for
experiment E1 was equipped with two 17” cathode ray tube (CRT) monitors of
type Sony CPD-E200 and for experiment E2 a pair of 17” CRT monitors of type
DELL and Samtron 75E was used. The ratio of inactive screen luminance to peak
luminance was kept below a value of 0.02. The luminance ratio of the screen when
displaying black in a dark room to displaying peak white was approximately 0.01.
The display brightness and contrast was set up with picture line-up generation
equipment (PLUGE) according to Recommendations ITU-R BT.814 [195] and
ITU-R BT.815 [196]. The calibration of the screens was performed with the
calibration equipment ColorCAL from Cambridge Research System Ltd. [197],
England, while the DisplayMate software [198] was used as pattern generator.

Due to its large impact on the artifact perceivability, the viewing distance
must be taken into consideration when conducting a subjective experiment. The
viewing distance is in the range of four times (4H) to six times (6H) the height
H of the stimulus, as stated in Rec. ITU-R BT.1129-2 [199]. The distance of 4H
was selected here in order to provide better image details to the viewers.
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2.2.2 Viewer panels

It is recommended by the ITU-R [19] that the number of observers participating
in a subjective image quality experiment should not be lower than 15. The VQEG
even recommends to involve at least 24 viewers [200, 201]. To satisfy these con-
straints, 30 viewers participated in each experiment, E1 and E2. All participants
were non-experts, meaning, that they were not professionally involved in image
quality assessment at their work. In order to support consistency and eliminate
systematic differences among results at the different testing laboratories (WATRI
and BIT), similar panels of test subjects in terms of occupational category, gen-
der, and age were established. In particular, 25 males and 5 females, participated
in experiment E1. They were all university staff and students and their ages were
distributed in the range of 21 to 39 years with the average age being 27 years.
In the second experiment, E2, 24 males and 6 females participated. Again, they
were all university staff and students and their ages were distributed in the range
of 20 to 53 years with the average age being 27 years.

2.2.3 Test procedures

Different test methodologies are provided in detail in [19] to best match the
objectives and circumstances of the assessment problem. The methodologies
are mainly classified into two categories, as double-stimulus and single-stimulus.
In double-stimulus, the reference image is presented to the viewer along with
the test image. On the other hand, in single-stimulus, the reference image is
not explicitly presented and may be shown transparently for the experimenter
to evaluate judgement consistency of the subject. As we focus on RR metric
design in this thesis, where partial information related to the reference image
is available, we chose to deploy a double-stimulus method, the double-stimulus
continuous quality scale (DSCQS). Moreover, DSCQS has been shown to have
low sensitivity to contextual effects [19, 202]. Contextual effects occur when the
subjective rating of an image is influenced by presentation order and severity of
impairments. This relates to the phenomenon that test subjects may tend to give
an image a lower score than it might have normally been given if its presentation
was scheduled after a less distorted image.

In both experiments E1 and E2, the test sessions were divided into two sec-
tions. The duration of each section was well under 30 minutes and consisted of a
stabilisation and a test trial. The stabilisation trials served as a warm-up to the
actual test trial in each section for the participants to familiarise themselves with
the test mechanism. In addition, one training trial was conducted at the very
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beginning of the test session to demonstrate the range of artifacts to be expected
during the actual test and to explain the test procedure to the viewers. The scores
obtained during the training and stabilisation trials were not processed but only
the scores given during the test trials. In order to reduce the viewers’ fatigue, a
15 minutes break was given between sections.

Given the DSCQS method, pairs of images 𝐴 and 𝐵 were presented in alter-
nating order to the viewers for assessment, with one image being the undistorted
reference image and the other being the distorted test image. The participants
were asked to judge the quality of both images. In this respect, the undistorted
image served as a reference to judge the quality of the distorted image. However,
the participants were not told which image was the reference. As the DSCQS
method is quite sensitive to small quality differences, it is well suited to not just
cope with highly distorted test images (suprathreshold level) but also with cases
where the quality of the original and the distorted image is very similar (JND
level).

The grading was performed on a continuous scale ranging from 0-100. As a
general guide for the participants, the adjectival categories of the 5-point scale
(Excellent, Good, Fair, Poor, Bad) were additionally presented along the contin-
uous scale. Given the pair of images 𝐴 and 𝐵, the viewers were requested to
assess their quality by placing a mark on each quality scale. As the reference and
distorted image appeared in pseudo random order, 𝐴 and 𝐵 may have referred
to either the reference image or the distorted image, depending on the actual
arrangement of images in an assessment pair.

2.2.4 Post-processing of subjective scores

Let 𝑠𝑟(𝑛, 𝑘) and 𝑠𝑑(𝑛, 𝑘) denote the scores of the 𝑛𝑡ℎ viewer for the 𝑘𝑡ℎ refer-
ence image and distorted image, respectively. Given these scores, we compute a
difference score as follows

Δ𝑠(𝑛, 𝑘) = ∣𝑠𝑟(𝑛, 𝑘)− 𝑠𝑑(𝑛, 𝑘)∣ (3)

which can be interpreted as a quality degradation of the distorted image in relation
to the reference image and as such, a higher Δ𝑠(𝑛, 𝑘) relates to a stronger quality
degradation. By subtracting this value from the maximum of the quality scale as
follows

𝑠(𝑛, 𝑘) = 100−Δ𝑠(𝑛, 𝑘) (4)

we obtain a score that is positively related to the quality of the distorted image,
with a higher 𝑠(𝑛, 𝑘) indicating a higher subjectively perceived quality.
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To obtain a single score for each image, the difference scores Δ𝑠(𝑛, 𝑘) are
averaged over all 𝑁 viewers for the 𝑘𝑡ℎ image as follows

DMOS𝑘 =
1

𝑁

𝑁∑
𝑛=1

Δ𝑠(𝑛, 𝑘) (5)

which is known as the Differential Mean Opinion Score (DMOS). Similarly to the
difference scores, the scores 𝑠(𝑛, 𝑘) are combined to the Mean Opinion Scores
(MOS) as follows

MOS𝑘 =
1

𝑁

𝑁∑
𝑛=1

𝑠(𝑛, 𝑘). (6)

In the remainder of this thesis we use the MOS. It should be emphasized here,
that the MOS typically represents the accumulated scores in single stimulus quality
assessment, where only the distorted image is rated. However, we use the term
MOS here to distinguish these values from the DMOS and to indicate that a
higher score relates to higher subjective quality.

2.3 Evaluation of experiments E1 and E2

The outcomes of the subjective experiments are discussed in the following by
means of a statistical analysis. In this respect, a concise representation of the sub-
jective data can be achieved by calculating conventional statistics like the mean,
variance, skewness, and kurtosis of the related distribution of opinion scores. The
statistical analysis of this data reflects the fact that perceived quality is a subjec-
tive measure and hence may be described statistically.

2.3.1 Statistical measures

Let the MOS value for the 𝑘𝑡ℎ image in a set 𝒦 of size 𝐾 be denoted here as 𝜇𝑘.
Then, we have

𝜇𝑘 =
1

𝑁

𝑁∑
𝑛=1

𝑠(𝑛, 𝑘) (7)

where 𝑁 is the number of viewers. The confidence interval (CI) associated with
the MOS of each examined image is given by

[𝜇𝑘 − 𝜖𝑘, 𝜇𝑘 + 𝜖𝑘]. (8)
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The deviation term 𝜖𝑘 in (8) can be derived from the standard deviation 𝜎𝑘 and
the number 𝑁 of viewers and is given for a 95% CI according to [19] by

𝜖𝑘 = 1.96
𝜎𝑘√
𝑁

(9)

where the standard deviation 𝜎𝑘 for the 𝑘𝑡ℎ image is defined as the square root
of the variance

𝜎2
𝑘 =

1

𝑁 − 1

𝑁∑
𝑛=1

(𝑠(𝑛, 𝑘)− 𝜇𝑘)
2. (10)

The skewness 𝛽 measures the degree of asymmetry of data around the mean
value of a distribution of samples and is defined by the second and third central
moments 𝑚2 and 𝑚3, respectively, as

𝛽 =
𝑚3

𝑚
3/2
2

(11)

where the 𝑙𝑡ℎ central moment 𝑚𝑙 is defined as

𝑚𝑙 =
1

𝑁

𝑁∑
𝑛=1

(𝑠(𝑛, 𝑘)− 𝜇𝑘)
𝑙. (12)

The peakedness of a distribution can be quantified by the kurtosis 𝛾, which
measures how outlier-prone a distribution is. The kurtosis is defined by the second
and fourth central moments 𝑚2 and 𝑚4, respectively, as

𝛾 =
𝑚4

𝑚2
2

. (13)

It should be mentioned that the kurtosis of the normal distribution is 3. If
the considered distribution is more outlier-prone than the normal distribution
(leptokurtic), it results in a kurtosis greater than 3. On the other hand, if it is
less outlier-prone than the normal distribution (platykurtic), it gives a kurtosis
less than 3. A distribution of scores is usually considered to be approximately
normal if the kurtosis is between 2 and 4.

2.3.2 Statistical analysis of the subjective data

Figures 8(a)-(b) show the scatter plots of MOS for E1 and E2, respectively. The
40 images in each experiment are ordered with respect to decreasing MOS. It can
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Figure 8: Perceived quality ordered according to decreasing MOS with error bars
indicating the 95% CI for: (a) E1 and (b) E2.

be seen from the figures that the material presented to the viewers resulted in a
wide range of perceptual quality ratings indeed for both subjective experiments.
As such, both experiments contained the extreme cases of excellent and bad
image quality while the intermediate quality decreases approximately linearly in
between. It is also observed that the spread of ratings around the MOS in terms
of the 95% CI is generally narrower for the images at the upper and lower end of
the perceptual quality scale.

Figures 9(a)-(d) show the MOS, variance, skewness, and kurtosis, respectively,
for each image that was rated in the two subjective experiments. The image sam-
ples in all four figures are, as in Fig. 8, ordered with respect to decreasing MOS. In
addition to the image samples the figures depict the related fits to these statistics,
which reveal good agreement among the data for the two subjective experiments,
as the fits progress closely in the same manner over the ordered image samples.
This indicates that the two experiments have been very well aligned with each
other and also that the two viewer panels, even though originating from different
countries, seem to have given a similar range of quality scores for the test images
they have been shown.

Figure 9(a) depicts the MOS for the impaired images along with a linear fit
through this data. It can be seen from the figure, that the linear fit for both
experiments are very close, suggesting that the set of image samples used in the
two independent experiments at WATRI and BIT comprised of a similar range of
quality impairments.
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Figure 9: Statistics of opinion scores for the distorted test images: (a) MOS, (b)
Variance, (c) Skewness, and (d) Kurtosis.

Figure 9(b) shows the variance of all opinion scores for each image sample.
The variance can be regarded as a measure of how much the viewers agree on
the perceived quality of a certain image sample. The smaller the variance, the
more pronounced the agreement between all viewers. It can clearly be seen that
the variance is relatively small for images that have obtained either excellent or
bad subjective quality ratings. In contrast, in the region where perceptual quality
of the impaired images ranges between good and poor, the variance tends to be
larger with the peak at about the middle of the quality range. This result indicates
that the viewers appear to be rather sure whether an image sample is of excellent
or bad quality while opinions about images of average quality differ to a wider
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extent. These conclusions are supported by the 95% CI shown in Fig. 8(a)-(b),
which are narrower for images rated as being excellent and bad. It should be
noted though, that the narrower CI and analogously the lower variance, at either
end of the quality scale are to some degree also a result of the scale limits [203].
In this respect, it is of interest to evaluate the impact of the observers’ confidence
on the quality scores given. This issue is looked at in Chapter 10, where additional
confidence scores are introduced to complement the CI.

Figure 9(c) shows the skewness of the opinion score distribution for each image
sample. In the context of the subjective ratings of image quality, a negative or
positive skewness translates to the subjective scores being more spread towards
lower or higher values than the MOS, respectively. For the images that were
perceived as being of high quality, the negative skewness indicates that subjective
scores tend to be asymmetrically spread around the MOS towards lower opinion
scores and thus, that a number of viewers gave significantly lower quality scores
as compared to the MOS. In the other extreme of image quality being perceived
as bad, the positive skewness points to an asymmetrically spread around the MOS
towards higher opinion scores. However, the positive skewness is not as distinct
as the negative skewness at the high quality end, suggesting that the agreement
of low quality was higher as compared to the agreement about high quality. The
asymmetry in subjective scores for the extreme cases of excellent and bad quality
is thought to be due to the rating scale being limited to 100 and 0, respectively. As
such, subjective scores have to approach the maximal and minimal possible rating
from below or above, respectively. The skewness of around zero for the middle
range of qualities reveals that the subjective scores seem to be symmetrically
distributed with respect to MOS.

Figure9(d) provides the kurtosis for each impaired image sample. It can be
seen from the figure, that the distribution of subjective scores for some of the
images scoring high MOS values in both experiments give kurtosis values much
greater than of a normal distribution. This is evidence for outliers, meaning, that
a few of the viewers gave a low image quality rating whereas the majority of
viewers agreed on a high image quality. With the progression of images towards
decreasing MOS, the associated kurtosis fits quickly level out around the value
3, pointing to a normal distribution of the opinion scores around MOS. It is
interesting to point out, that the high kurtosis in the high quality end does not
occur at the bad quality end. This means that the entire viewer panel agreed on
the bad quality images with no outlier scores being present. This result is also
evident in the skewness distribution where the decline towards lower values at
the high quality end is much more pronounced as compared to the incline of the
skewness at the low quality end.
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3 Reduced-Reference Quality Metrics for Wireless
Imaging

I n this chapter, we discuss the design and validation of image quality metrics for
deployment in wireless imaging systems. The metrics follow the RR approach

(see Section 1.3), thus enabling to measure quality loss during transmission. The
metrics are designed to measure the impact of the complex distortion patterns, as
observed in wireless imaging, on the perceived visual quality. A low overhead in
terms of RR information and a low computational complexity were further metric
design issues.

We describe the development process of two feature-based image quality met-
rics, namely, the Normalised Hybrid Image Quality Metric (NHIQM) and the per-
ceptual relevance weighted 𝐿𝑝-norm. The metrics are based on the extraction
of a number of structural features related to the artifacts observed in wireless
imaging applications. Both metrics follow the same design philosophy and mainly
distinguish each other in the pooling of the features.

An overview of the RR visual quality assessment framework (see Fig. 4)
adapted to the deployment of the feature-based metrics is shown in Fig. 10.
Here, the features are extracted from the image both at the transmitter and at
the receiver. In case of NHIQM, these features are combined in an additional
pooling stage, whereas the pooling is omitted when using the 𝐿𝑝-norm. The RR
information from the transmitter is communicated to the receiver either in-band
as an additional header, in a dedicated control channel, or embedded in a wa-
termark [114]. A difference computation between the reference and distorted RR
information then constitutes a measure of distortions that have been induced dur-
ing image communication. Curve fitting techniques are then deployed to relate
the distortion measure to perceived visual quality.

In the following sections, the feature extraction and quality metric design are
discussed in detail. Suitable mapping functions are additionally derived to es-
tablish a relationship between the objective artifact measures and the perceived
quality degradation. Comparison of the designed quality metrics with other con-
temporary quality metrics reveals the superior quality prediction performance of
the proposed metrics in the context of wireless imaging applications.

3.1 Structural feature extraction algorithms

Given the set of artifacts observed in the distorted images (see Section 2.1.3),
algorithms for feature extraction are deployed to capture the amount by which
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Figure 10: Reduced-reference quality assessment using NHIQM or the perceptual
relevance weighted 𝐿𝑝-norm.

each of the artifacts is present in the images. The selection of the algorithms
is driven by three constraints; a reasonable accuracy in capturing the character-
istics of the associated artifact, a representation of the feature that incurs low
overhead in terms of RR information (conserve bandwidth), and computational
inexpensiveness (conserve battery power). Within these constraints we selected
a number of feature extraction algorithms to measure and quantify the presence
of the related artifacts. The feature metrics, along with the artifacts that they
account for, are listed in Table 3 and are described in the following sections.

3.1.1 Feature 𝑓1: block boundary differences

The first feature metric 𝑓1 is based on the algorithm by Wang et al. [83] and
comprises of three measures. The first measure, 𝐵, estimates blocking as average
differences between block boundaries. Two image activity measures (IAM), 𝐴 and
𝑍, are applied as indirect means of quantifying blur. The former IAM computes
absolute differences between in-block image samples and the latter IAM computes
a zero-crossing rate. All three measures are computed in both horizontal and
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Table 3: Image features, related artifacts, and feature extraction algorithms.

Feature Related artifact Ref.

𝑓1 Block boundary differences Blocking [83]

𝑓2 Edge smoothness Blur [204]

𝑓3 Edge-based image activity Ringing [205]

𝑓4 Gradient-based image activity Ringing [205]

𝑓5 Image histogram statistics Block intensity shifts [177]

vertical direction over the whole image and are combined in a pooling stage as

𝑓1 = 𝛼+ 𝛽𝐵𝛾1𝐴𝛾2𝑍𝛾3 (14)

where the parameters 𝛼 = −245.9, 𝛽 = 261.9, 𝛾1 = −0.024, 𝛾2 = 0.016,
and 𝛾3 = 0.006 were estimated in [83] using MOS from subjective experiments.
Despite the two IAM incorporated in 𝑓1, we found that this metric accounts
particularly well for blocking artifacts in JPEG compressed images. This might be
due to the magnitude of 𝛾1, being relatively large compared to 𝛾2 and 𝛾3, giving
the blocking measure a higher impact on the metric 𝑓1.

3.1.2 Feature 𝑓2: edge smoothness

The extraction of feature metric 𝑓2 relates purely to measuring blur artifacts and
follows the work of Marziliano et al. [204]. It accounts for the smoothing effect
of blur by measuring the distance between edges. It was found that it is sufficient
to measure the blur along vertical edges as compared to computation on all
edges, which allows for saving computational complexity. A Sobel filter is applied
to detect vertical edges in the image and the edge image is then horizontally
scanned. For pixels that correspond to an edge point, the local extrema in the
corresponding image are used to compute the edge width. The edge width then
defines a local measure of blur. Finally, a global blur measure is obtained by
averaging the local blur values over all edge locations. This metric was chosen
to complement the IAM in 𝑓1 since it does not just account for in-block blur but
rather contributes a global blur measure.



3.1 Structural feature extraction algorithms 47

3.1.3 Features 𝑓3 and 𝑓4: image activity

Ringing artifacts are observed as periodic pseudo-edges around original edges, thus
increasing the activity within an image. The feature metrics 𝑓3 and 𝑓4 provide an
indirect means of measuring ringing artifacts and are based on two IAM by Saha
and Vemuri [205].

Here, 𝑓3 quantifies image activity (IA) based on normalised magnitudes of
edges in an edge image 𝐵(𝑖, 𝑗) as

𝑓3 =
100

𝑋 ⋅ 𝑌
𝑋∑

𝑥=1

𝑌∑
𝑦=1

𝐵(𝑥, 𝑦) (15)

where 𝑋 and 𝑌 denote the image dimensions. Since 𝑓3 does not depend on the
direction of the edge, it also very well complements the blocking measure in 𝑓1,
which is purely designed to measure on the 8×8 block boundaries in JPEG coded
images.

On the other hand, 𝑓4 measures IA in an image 𝐼(𝑥, 𝑦) based on local gradients
in both vertical and horizontal direction as

𝑓4 =
1

𝑋 ⋅ 𝑌

(
𝑋−1∑
𝑥=1

𝑌∑
𝑦=1

∣𝐼(𝑥, 𝑦)− 𝐼(𝑥+ 1, 𝑦)∣

+

𝑋∑
𝑥=1

𝑌−1∑
𝑦=1

∣𝐼(𝑥, 𝑦)− 𝐼(𝑥, 𝑦 + 1)∣
)
. (16)

In [205], the IAM were evaluated and 𝑓4, in particular, has been found to
quantify IA very accurately. We have further identified that both 𝑓3 and 𝑓4
account well for measuring ringing artifacts and also other high frequency changes
within the image.

3.1.4 Feature 𝑓5: image histogram statistics

Finally, feature metric 𝑓5 accounts for block intensity shifts and lost blocks. Block
intensity shifts may result in parts of the image or the whole image to appear either
darker or brighter as compared to the original image. As such, we found that a
simple computation of the standard deviation in the first-order image histogram
provides an adequate measure of both block intensity shifts and lost blocks. We
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have thus deployed feature metric 𝑓5 as

𝑓5 =
1000

𝑋 ⋅ 𝑌

√√√⎷ 1

𝐺

𝐺∑
𝑔=0

(ℎ𝑔 − ℎ)2 (17)

where ℎ𝑔 denotes the number of pixels at grey level 𝑔, ℎ denotes the mean grey
level, and 𝐺 denotes the maximum grey level, here 255.

Feature metric 𝑓5 is an adapted version of the algorithm by Kusuma [177]. In
particular, the algorithm was modified to be less dependent on the image size by
including a normalisation factor based on the number of pixels in the image.

3.2 Feature normalisation

The magnitudes of the different feature extraction algorithms 𝑓𝑖 are generally
in very different ranges and thus, particular feature values may have a different
meaning. As a consequence, weighting of the features to explore their perceptual
relevance is not straightforward as the feature magnitude ranges inherently impact
on the values of the feature weights. Therefore, we perform an extreme value
normalisation [206] of the features which then allows for a more convenient and
meaningful comparison of the contribution of each normalised feature 𝑓𝑖 to the
overall metric, as they are then taken from the same value range as

0 ≤ 𝑓𝑖 ≤ 1. (18)

Specifically, let us distinguish among 𝐼 different image features. The related
feature values 𝑓𝑖, 𝑖 = 1, 2, . . ., 𝐼, shall be normalised as

𝑓𝑖 =

𝑓𝑖 − min
𝑘=1,2,...,𝐾

(𝑓𝑖,𝑘)

𝛿𝑖
, 𝑖 = 1, 2, . . ., 𝐼. (19)

These features were extracted from all 𝐾 images used in the subjective experi-
ments E1 and E2, including all reference images and distorted images. Further-
more, the normalisation factor 𝛿𝑖 in (19) is given by

𝛿𝑖 = max
𝑘=1,2,...,𝐾

(𝑓𝑖,𝑘)− min
𝑘=1,2,...,𝐾

(𝑓𝑖,𝑘). (20)

As far as the extreme value normalised features defined by (19) are concerned,
it should be mentioned that the boundary conditions apply to those normalised
feature values 𝑓𝑖,𝑘 which are associated with the feature values 𝑓𝑖,𝑘 of the images
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Table 4: Relative contribution of the feature metrics to the overall computational
cost of the quality metrics.

Feature metric 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5

Computational cost 15.44% 47.41% 29.28% 7.73% 0.14%

used in the experiments. In a practical system, it may also be beneficial to clip
the normalised feature values that are actually calculated in a real-time wireless
imaging application to fall in the interval [0, 1] as well. For instance, severe
signal fading in a wireless channel can result in significant image impairments at
particular times causing the user-perceived quality to fall in a region where the
HVS is saturated to notice further degradation.

3.3 Computational cost of the feature metrics

The computational complexity of the image quality metrics presented in this chap-
ter is of particular concern in the context of wireless image communications. The
relative burden of each of the feature extraction algorithms on the computational
complexity of the quality metric is thus of great interest. Therefore, we present in
Table 4 the relative contribution of each feature metric to the computational cost
of the overall quality metric. The table shows the percentage of computation
time of each feature metric in relation to the overall computation time of the
quality metric.

It can be observed that feature 𝑓2 takes up about half of the computation time
of the quality metric. This is followed by feature 𝑓3, which contributes almost a
third of the computational complexity. Feature 𝑓1 exhibits about half of the cost
of 𝑓3 and feature 𝑓4 has approximately half of the complexity of feature 𝑓1. These
features all have a considerable contribution to the computational complexity of
the quality metric. This is different for feature 𝑓5, which impacts only marginally
on the overall computational cost.

3.4 Feature metrics performance analysis

In order to gain deeper knowledge and understanding about the feature extraction,
we examine the extent to which different features are present in the stimuli and
quantify a relationship between the feature metrics and MOS. Given the context
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of RR metric design in wireless imaging, where we are interested in the difference
between the quality of the received image as compared to the quality of the
transmitted image, we consider in the following the magnitude of normalised
feature differences

Δ𝑓𝑖 = ∣𝑓𝑟,𝑖 − 𝑓𝑑,𝑖∣, 𝑖 = 1, 2, . . . , 5 (21)

where 𝑓𝑟,𝑖 and 𝑓𝑑,𝑖 denote the 𝑖𝑡ℎ feature value of the reference image and the
distorted image, respectively.

3.4.1 Feature magnitudes over MOS

Figures 11(a)-(b) show the magnitudes of the normalised feature differences Δ𝑓𝑖
for the image samples that were presented in E1 and E2. For each experiment,
the related 40 feature differences are ranked with respect to image samples of
decreasing MOS (see the MOS in Fig. 8). It can be seen from Fig. 11(a)-(b)
that the wireless link scenario indeed induced all five features but with differ-
ent degrees of severity. While feature differences are almost absent for the image
samples of high perceptual quality ratings, the feature differences tend to increase
with decreasing MOS. Especially the level of Δ𝑓1, relating to blocking contained
in the image samples, shows the widest spread and becomes more pronounced
when progressing from images of excellent to bad perceptual quality. A similar
behavior is observed for edge-based image activity Δ𝑓3 but appears not as pro-
nounced as for Δ𝑓1. As far as the remaining three features are concerned, these
become less prevalent for most of the images but large for some of the stimuli.
In particular, gradient-based image activity Δ𝑓4 and intensity masking Δ𝑓5 occur
very distinctively with selected image samples while being almost absent from the
majority of image samples.

3.4.2 Feature statistics

As with the MOS gathered from the subjective experiments, the statistical analysis
may be extended to the actual feature differences in order to obtain a better
understanding of the underlying objective quality degradations. However, overall
statistics for the whole set of data, instead of image dedicated statistics, are
presented hereafter. For all five feature differences Δ𝑓𝑖, the mean, variance,
skewness, and kurtosis have been computed over all images that have been shown
in experiments E1 and E2. The results of all statistics are presented for both
experiments in Tables 5 and 6.
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Figure 11: Magnitude of differences between the normalised features for all images
ranked according to decreasing MOS: (a) E1 and (b) E2.

From comparison of the two tables one can observe that for all four statistics
and for all five feature differences, the magnitudes of the values are very much
in alignment between the two experiments E1 and E2. This indicates that the
stimuli, in terms of the distorted test images, had similar characteristics in both
experiments. Thus, not only the subjective data is in alignment but also the
composition of objective features among the test material. In particular, it can
be seen from both tables that the mean of the blocking differences dominates
over the other features. This is a direct result of the JPEG source encoding of
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Table 5: Statistics of magnitudes of feature differences Δ𝑓𝑖 for E1.

Δ𝑓1 Δ𝑓2 Δ𝑓3 Δ𝑓4 Δ𝑓5

Mean 0.253 0.120 0.102 0.053 0.022

Variance 0.043 0.017 0.014 0.015 0.009

Skewness 0.627 1.425 1.124 3.518 6.015

Kurtosis 2.082 4.120 3.241 15.010 37.466

Table 6: Statistics of magnitudes of feature differences Δ𝑓𝑖 for E2.

Δ𝑓1 Δ𝑓2 Δ𝑓3 Δ𝑓4 Δ𝑓5

Mean 0.263 0.094 0.115 0.049 0.061

Variance 0.029 0.013 0.010 0.021 0.035

Skewness 1.066 2.495 1.072 5.461 3.785

Kurtosis 4.056 9.531 3.843 32.434 17.063

which it is well known that blocking artifacts are dominant over other artifacts
such as blur. The mean values of feature differences Δ𝑓4 and Δ𝑓5 are particularly
small, however, these features exhibit instead a very high skewness and kurtosis as
compared to the other features. Clearly, this quantifies the progression of feature
differences in the stimuli as shown in Fig. 11(a)-(b) with Δ𝑓4 and Δ𝑓5 being
either negligibly small or distinctively large.

3.4.3 Feature cross-correlations

Even though the feature metrics were selected to account for a particular artifact,
one may expect some overlap in quantifying the different artifacts. To further
understand the performance of the feature metrics in comparison to each other,
Tables 7 and 8 show the Pearson linear correlation coefficient between each of
the feature metrics for both E1 and E2, respectively. In this context, the cross-
correlation measures the degree to which two features are simultaneously affected
by a certain type and severity of an artifact. As expected, the auto-correlation of
a feature with itself exhibits the maximum magnitude of 1.

It can be seen from the tables that the cross-correlations between the features
vary strongly in their magnitudes. A particularly pronounced cross-correlation can
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Table 7: Correlations between feature differences for E1.

Δ𝑓1 Δ𝑓2 Δ𝑓3 Δ𝑓4 Δ𝑓5

Δ𝑓1 1.000 0.625 0.821 0.016 0.027

Δ𝑓2 1.000 0.440 0.649 0.112

Δ𝑓3 1.000 0.056 −0.061

Δ𝑓4 1.000 0.000

Δ𝑓5 1.000

Table 8: Correlations between feature differences for E2.

Δ𝑓1 Δ𝑓2 Δ𝑓3 Δ𝑓4 Δ𝑓5

Δ𝑓1 1.000 0.376 0.640 −0.014 0.115

Δ𝑓2 1.000 0.486 0.753 0.316

Δ𝑓3 1.000 0.323 −0.272

Δ𝑓4 1.000 0.170

Δ𝑓5 1.000

be observed between feature metrics Δ𝑓1 (block boundary differences) and Δ𝑓3
(edge-based IA) for both E1 and E2. This is thought to be due to both metrics
being based on measuring edges of an image. However, it should be noted again
that feature metric Δ𝑓1 only considers the 8 × 8 block borders of the JPEG
encoding whereas feature metric Δ𝑓3 quantifies image activity based on edges
in all spatial locations and directions. Furthermore, feature metrics Δ𝑓2 (edge
smoothness) and Δ𝑓4 (gradient-based IA) exhibit pronounced cross-correlations
in the test sets of both experiments which may be a result of both metrics being
designed to quantify smoothness in images based on gradient information. As for
feature metric Δ𝑓5 (image histogram statistics), it can be seen that this metric
is only negligibly correlated to any of the other feature metrics. This is a highly
desired result since the feature metrics other thanΔ𝑓5 should be widely unaffected
by intensity shifts.

3.5 Reduced-reference quality metric design

In the following sections, we describe in detail the RR quality metric design which
is based on the feature extraction algorithms outlined in Section 3.1. In this
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Figure 12: Overview of the reduced-reference feature-based image quality metric
design. The blocks outside the grey area constitute the integral parts of the
quality metric whereas the blocks inside the grey area are only deployed during
metric training.

respect, the quality ratings obtained in the subjective experiments are instrumental
for the transition from subjective to objective quality assessment.

3.5.1 Metric training and validation

As foundation of the metric design, the 80 images in ℐ1 (E1) and ℐ2 (E2) from
the two experiments were organised into a training set ℐ𝑇 containing 60 images
and a validation set ℐ𝑉 containing 20 images. For this purpose, 30 images were
taken from ℐ1 and 30 images from ℐ2 to form ℐ𝑇 while the remaining 10 images
of each set compose ℐ𝑉 . Accordingly, a training set and a validation set were
established with the corresponding MOS, here referred to as MOS𝑇 and MOS𝑉 .
The training sets, ℐ𝑇 and MOS𝑇 , are then used for the actual metric design.
The validation sets, ℐ𝑉 and MOS𝑉 , are used to evaluate the metrics ability to
generalise to unknown images.

3.5.2 Metric design overview

The different parts of the RR perceptual quality metric design are shown in the
block diagram in Fig. 12. Here, the blocks outside the grey area constitute the
integral parts of the perceptual image quality metric, whereas the blocks enclosed
by the grey area are deployed only during metric training. A brief summary of the
design process is given in the sequel with reference to this figure.
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The first key operation in the transition from subjective to objective percep-
tual image quality assessment is executed within the process of feature weights
acquisition. As a prerequisite of weights acquisition, the different features of the
transmitted and received image are extreme value normalised to allow for a mean-
ingful weight association. As the RR design is focused on detecting distortions
between the reference image and the distorted image, the weights acquisition is
performed with respect to the feature differences Δ𝑓𝑖, 𝑖 = 1, 2, . . ., 5. Given the
MOS values MOS𝑇 for the images in the training set ℐ𝑇 and the related feature
differences Δ𝑓𝑖 for each image, correlation coefficients between subjective ratings
and feature differences are computed as weights 𝑤𝑖, 𝑖 = 1, 2, . . ., 5, to reveal
the relevance of each feature to the subjectively perceived quality. It is then
straightforward to compute a feature-based image quality metric Φ by applying
a pooling function to condense the information. Here, two metrics are proposed,
namely Δ𝑁𝐻𝐼𝑄𝑀 and the perceptual relevance weighted 𝐿𝑝-norm. The former
metric is particularly efficient in reducing the RR information into a single value
before transmission. The latter metric consolidates the features at the receiver
and therefore allows for tracking of individual artifacts at the cost of larger RR
information.

The second essential component in moving from subjective to objective quality
assessment relates to the curve fitting block as shown in Fig. 12. Its inputs are
the MOS values MOS𝑇 for the images in the training set ℐ𝑇 and the values
of the perceptual quality metric Φ for each of these images. The relationship
between subjective quality given by MOS𝑇 and objective quality represented by Φ,
is then modeled by a suitable mapping function 𝑓(Φ). The parameters of potential
mapping functions can be obtained by using standard curve fitting techniques.
The selection of suitable mapping functions is typically based on both goodness
of fit measures and visual inspection of the fitted curve. The obtained mapping
function 𝑓(Φ) can then be used to calculate predicted MOS values, MOSΦ, for
given values of the quality metric Φ.

3.5.3 Perceptual relevance of features

The Pearson linear correlation coefficient 𝜌𝑃 has been chosen to reveal the extent
by which the individual feature differences contribute to the overall perception
of image quality. In this sense, it captures prediction accuracy referring here to
the ability of a feature difference to predict the subjective ratings with minimum
average error. Given a set of 𝐾 data pairs (𝑢𝑘, 𝑣𝑘), the Pearson correlation is
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given by

𝜌𝑃 =

𝐾∑
𝑘=1

(𝑢𝑘 − 𝑢̄)(𝑣𝑘 − 𝑣)√
𝐾∑

𝑘=1

(𝑢𝑘 − 𝑢̄)2

√
𝐾∑

𝑘=1

(𝑣𝑘 − 𝑣)2

(22)

where 𝑢𝑘 and 𝑣𝑘 are the feature difference and the subjective rating related to
the 𝑘𝑡ℎ image, respectively, and 𝑢̄ and 𝑣 are the means of the respective data
sets.

This choice is motivated by the fact that the correlation coefficient explicitly
characterises the association between two variables, which are given here by pairs
of ratings and difference feature metrics. The sign of the correlation value may
be neglected as it only represents the direction (increase/decrease) in which one
variable changes with the change of the other variable. In view of the above, the
absolute values of the Pearson linear correlation coefficients 𝜌𝑃 are computed as
the perceptual weights 𝑤𝑖 of the related features. A higher correlation coefficient
then corresponds to a feature that more significantly contributes to the overall
quality as perceived by the viewer, while a lower correlation coefficient means less
perceptual significance. Also, if the correlation coefficient approaches the zero
value, the relationship between the perceptual quality and the examined feature
is not strongly developed.

Table 9 shows the values of the Pearson linear correlation coefficients, or
feature weights, that were obtained for each of the five feature differences Δ𝑓𝑖,
𝑖 = 1, 2, . . ., 5, for the training set when correlated to the associated MOS𝑇 values.
Accordingly, block boundary differences (Δ𝑓1) appear to be the most relevant
feature followed by edge-based image activity (Δ𝑓3), edge smoothness (Δ𝑓2),
image histogram statistics (Δ𝑓5), and gradient-based image activity (Δ𝑓4). This
indicates that blocking is the most annoying artifact followed by ringing due to
edge-based image activity, blur, block intensity shifts, and ringing due to gradient-
based image activity. Similar findings have also been made by Farias et al. [207]
who observed that blocking is more annoying than blur. The same group also
found [208] that ringing is the least annoying artifact. This agrees with our
feature metric Δ𝑓4 which also received the smallest weight. On the other hand,
the feature metric Δ𝑓3 deployed here measures ringing as well but received a
higher weight. We believe that this outcome can be related to Δ𝑓3 having a
strong correlation with Δ𝑓1 (see Tables 7 and 8), thus not only accounting for
ringing but also for blocking artifacts.

It should be noted here that the relevance weights in Table 9 were obtained for
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Table 9: Perceptual relevance weights of feature differences Δ𝑓𝑖 for the images
in the training set.

Metric Δ𝑓1 Δ𝑓2 Δ𝑓3 Δ𝑓4 Δ𝑓5

Weight 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5

Value 0.819 0.413 0.751 0.182 0.385

the particular case of JPEG source encoding where blocking artifacts are predom-
inant over other artifacts such as blur. This may also contribute to the higher
correlation weights for the edge-based features Δ𝑓1 and Δ𝑓3 as compared to
the gradient-based features Δ𝑓2 and Δ𝑓4. Hence, the relevance weights may
not be purely related to the perceptual relevance but also to the particular arti-
facts that are observed in the visual content. As such, one may obtain different
relevance weights in case of other source encoders, such as JPEG2000. To de-
rive these weights, appropriate JPEG2000 encoded image sets and corresponding
MOS from subjective experiments would be needed, which is outside the scope
of this thesis.

3.5.4 Normalised Hybrid Image Quality Metric

Unlike the Hybrid Image Quality Metric (HIQM) as described in [177], the Nor-
malised Hybrid Image Quality Metric (NHIQM) proposed here for feature pooling
uses the normalised features and the respective perceptual relevance weights in-
stead. The NHIQM metric is defined as a weighted sum of the extreme value
normalised features as

𝑁𝐻𝐼𝑄𝑀 =

𝐼∑
𝑖=1

𝑤𝑖𝑓𝑖 (23)

where 𝑤𝑖 denotes the relevance weight of the associated feature 𝑓𝑖. Clearly, this
RR metric is particularly beneficial for objective perceptual quality assessment in
wireless imaging, as the RR information is represented by only one single value for
a given image. Accordingly, NHIQM can be communicated from the transmitter
to the receiver whilst imposing very little stress on the bandwidth resources.

In order to measure quality degradations during image communication, NHIQM
can be calculated for both the reference image 𝐼𝑟 (the transmitted image) and the
possibly distorted image 𝐼𝑑 (the received image), resulting in the corresponding
values 𝑁𝐻𝐼𝑄𝑀𝑟 and 𝑁𝐻𝐼𝑄𝑀𝑑 at the transmitter and receiver, respectively.
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Provided that the 𝑁𝐻𝐼𝑄𝑀𝑟 value is communicated to the receiver, structural
differences between the images at both ends can then simply be represented by
the absolute difference

Δ𝑁𝐻𝐼𝑄𝑀 = ∣𝑁𝐻𝐼𝑄𝑀𝑟 −𝑁𝐻𝐼𝑄𝑀𝑑∣. (24)

Thus, not only the absolute quality of the received image can be measured but
also any quality loss that occurred during image transmission.

3.5.5 Perceptual relevance weighted 𝐿𝑝-norm

In the Δ𝑁𝐻𝐼𝑄𝑀 pooling step, all considered features are combined in a single
value. This is advantageous with respect to RR overhead, however, valuable infor-
mation may get lost about the degradation of each of the features deployed in the
metric. For this purpose, we consider a second pooling method, the 𝐿𝑝-norm, also
referred to as Minkowski metric. The 𝐿𝑝-norm is a distance measure commonly
used to quantify similarity between two signals or vectors. In image processing it
has been applied, for instance, with the percentage scaling method [209] and the
combining of impairments in digital image coding [210]. The Minkowski summa-
tion has further been deployed as a pooling function representing a good trade-off
between performance and complexity [211].

In this paper, we incorporate the relevance weighting for the extreme value
normalised features into the calculation of the 𝐿𝑝-norm. This modification of the
𝐿𝑝-norm is defined as

𝐿𝑝 =

[
𝐼∑

𝑖=1

𝑤𝑝
𝑖 ∣𝑓𝑟,𝑖 − 𝑓𝑑,𝑖∣𝑝

] 1
𝑝

(25)

where 𝑓𝑟,𝑖 and 𝑓𝑑,𝑖 denote the 𝑖
𝑡ℎ feature value of the reference and the distorted

image, respectively.
The Minkowski exponent 𝑝 can be determined experimentally [209] or, alter-

natively, the Minkowski exponent 𝑝 can be assigned a fixed value. In both cases,
a higher value of 𝑝 increases the impact of the dominant features on the overall
metric. In the limit of 𝑝 approaching infinity, we obtain

𝐿∞ = max
𝑖=1,2,...,𝐼

∣𝑓𝑟,𝑖 − 𝑓𝑑,𝑖∣ (26)

meaning that the largest absolute feature value difference solely dominates the
norm. We found [178] that values beyond 𝑝 = 2 do not improve the quality
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prediction performance of the modified 𝐿𝑝-norm given in (25). We believe that
this characteristic is because of the perceptual relevance weights obtained for each
feature inherently accounting for the dominance of the particular features. In the
sequel, we therefore consider the modified 𝐿𝑝-norm for Minkowski exponents of
𝑝 = 1 and 𝑝 = 2 only.

Although the perceptual relevance weighted 𝐿𝑝-norm belongs to the class of
RR metrics, it requires more transmission resources compared to Δ𝑁𝐻𝐼𝑄𝑀 , as
all feature values considered in the metric need to be communicated from the
transmitter to the receiver. On the other hand, the information about each of the
feature degradations may provide further insights into the channel induced dis-
tortions. Hence, overhead may be traded off at the expense of a reduction about
structural degradation information by neglecting feature metrics that received low
perceptual relevance weights.

3.5.6 Mapping to predicted MOS

In a final step, a regression analysis is performed to find suitable prediction func-
tions to map the image quality metrics, Φ, onto predicted MOS, MOSΦ. This
procedure inherently serves two important purposes. Firstly, the prediction func-
tion maps the range of a quality metric onto the range of the subjective scores
from the experiment, facilitating prediction of the subjective scores. This is an
important step as, typically, different metrics create predictions in different value
ranges and as such, the actual metric value may not have much meaning if it is
not put in relation to subjective scores.

Secondly, due to non-linear quality processing in the HVS, measured artifacts
and perceived quality do not necessarily follow a linear relationship. To be more
precise, within the suprathreshold regime of artifacts, human observers tend to
make a more pronounced distinction between two quality levels of weakly dis-
torted images as compared to two quality levels of two strongly distorted images.
To account for this phenomenon, a mapping function is applied to translate a
perceptual quality metric Φ into predicted MOS, MOSΦ, as follows:

MOSΦ = 𝑓(Φ). (27)

Within the scope of this thesis, we take into account different classes of
mapping functions that we consider as possible candidates for the mapping to
predicted MOS. In particular, we consider the following four classes of mapping



60 3 Reduced-Reference Quality Metrics for Wireless Imaging

functions:

MOSΦ ≜

⎧⎨⎩

𝑚∑
𝑗=0

𝑝𝑗 ⋅ Φ𝑗 Polynomial

𝑚∑
𝑗=0

𝑢𝑗 ⋅ 𝑒𝑣𝑗Φ Exponential

𝑙1
1+𝑒−𝑙2(Φ−𝑙3) Logistic

𝑘1 ⋅ Φ𝑘2+𝑘3 Power

(28)

where the parameters of the prediction functions are to be determined through
curve fitting based on the experimental data from the training set. These four
classes of mapping functions have been chosen as candidates for quality prediction
due to the following reasons:

∙ Polynomial functions provide sufficient flexibility to support simple empirical
prediction.

∙ Exponential and power functions are imposed to enable a good fit to ex-
perimental data over the middle-to-upper range of the quality impairment
measure [59] and may be less prone to overfitting compared to functions
with many parameters, such as higher order polynomials.

∙ Logistic functions facilitate the mapping of quality impairment measures into
a finite interval. They produce scale compressions at the high and low
extremes of quality while progressing approximately linear in the range be-
tween these extremes.

Standard curve fitting techniques have been used to deduce the parameters of
the mapping functions that mathematically describe best the relationship between
subjective ratings and perceptual quality metric with respect to a given goodness
of fit measure. The goodness of fit between MOS and predicted MOS can be
specified by either of the following statistics:

∙ Squared correlation coefficient R2 captures the degree by which variations
in the MOS values are accounted for by the fit. It can assume any value in
the interval [0, 1] with a good fit being close to 1.

∙ Root mean squared error (RMSE) is referred to as the standard error of the
fit, with a better fit indicated by a smaller RMSE.
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∙ Sum of squared errors (SSE) represents the total deviation between predicted
MOS and MOS from the experiments. The smaller the SSE value, the better
the fit.

The Matlab Curve Fitting Toolbox was used to find the parameters of the
considered mapping functions. The mapping functions have been derived for
both Δ𝑁𝐻𝐼𝑄𝑀 and the perceptual relevance weighted 𝐿𝑝-norm, however, as
they exhibited very similar properties, detailed results are in the following only
presented for Δ𝑁𝐻𝐼𝑄𝑀 . The results are provided in Table 10 along with the
different goodness of fit measures. A visual examination of the fitted mapping
functions is supported by Fig. 13-16, which also show the 95% CI for each fit. It
should be highlighted here again, that a larger value of Δ𝑁𝐻𝐼𝑄𝑀 corresponds to
a stronger quality degradation and thus, to a lower MOS value.

As far as the polynomial functions are concerned, it can be seen from Table 10
that the linear polynomial results in poor goodness of fit measures, as it does not
take into account the non-linearity of quality processing in the HVS. Regarding
the quadratic and cubic polynomials, it could be concluded at first sight, when
looking only at the goodness of fit statistics, that both of them perform similarly
well as the exponential functions. However, visual inspection of Fig. 13 suggests
the opposite, as the good fit applies only for the given data range but tends to
diverge outside this range. An increase of the perceptual quality metric beyond
the value of 0.8 would actually increase the predicted MOS again in case of the
quadratic polynomial (see Fig. 13 (b)) and would predict ’negative’ MOS values in
case of the cubic polynomial (see Fig. 13 (c)). As higher-degree polynomials may
result in even more severe overfitting, the class of polynomials is in the remainder
of this chapter not considered anymore as a suitable mapping function.

In contrast to the polynomial functions, favorable fitting has been obtained for
all three considered exponential mapping functions, not only in terms of goodness
of fit measures but also confirmed by visual inspection (see Fig. 14). However,
it can be observed that the triple exponential function performs similarly to the
exponential function but at the price of a larger computational complexity due to
its more involved analytical expression. As such, the triple exponential function
is not considered further.

As for the logistic mapping function, the goodness of fit measures indicate
a rather poor fit to the data from the subjective experiments. Especially, the
compression at the high end of the quality scale produces disagreement with the
MOS (see Fig. 15). The power function was found to behave very similarly to
the double exponential function, which is apparent both in the goodness of fit
measures and also through visual inspection of the fitting curve (see Fig. 16).
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Table 10: Mapping functions 𝑓(Φ) = MOS𝑁𝐻𝐼𝑄𝑀 , Φ = Δ𝑁𝐻𝐼𝑄𝑀 , and their
goodness of fit.

Type Function Parameters 𝑅2 RMSE SSE

Polynomial 𝑝1Φ+𝑝0 𝑝1=−97.8 0.71 12.78 9472

𝑝0=77.45

𝑝2Φ
2+𝑝1Φ+𝑝0 𝑝2=149.5 0.79 11.07 6982

𝑝1=−199.4

𝑝0=87.88

𝑝3Φ
3+𝑝2Φ

2+𝑝1Φ+𝑝0 𝑝3=−493.9 0.82 10.17 5792

𝑝2=672.2

𝑝1=−338.3

𝑝0=94.87

Exponential 𝑢1𝑒
𝑣1Φ 𝑢1=88.79 0.79 10.76 6714

𝑣2=−2.484

𝑢1𝑒
𝑣1Φ+𝑢2𝑒

𝑣2Φ 𝑢1=69.76 0.83 10.01 5612

𝑣1=−1.719

𝑢2=32.05

𝑣2=−17.39

𝑢1𝑒
𝑣1Φ+𝑢2𝑒

𝑣2Φ+𝑢3𝑒
𝑣3Φ 𝑢1=63.18 0.80 11.12 6678

𝑣1=−3.056

𝑢2=−175

𝑣2=0.1434

𝑢3=198.2

𝑣3=0.041

Logistic 𝑙1/[1+𝑒−𝑙2(Φ−𝑙3)] 𝑙1=100 0.72 12.63 9263

𝑙2=−4.613

𝑙3=0.262

Power 𝑘1 ⋅ Φ𝑘2+𝑘3 𝑘1=−120.5 0.82 10.06 5764

𝑘2=0.28

𝑘3=128.2
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Figure 13: Polynomial mapping functions: (a) linear, (b) quadratic, and (c) cubic.

Due to the strong performance of both the double exponential and the power
function, we considered these mapping functions as strong candidates for the
mapping to predicted MOS. However, an analysis of the mapped metric values
for the validation set revealed that the prediction performance did not match the
performance on the training set and was in fact rather poor. As such, the double
exponential and the power fit may to some degree introduce overfitting. For this
reason, we neglect these mapping functions and consider the exponential function
as the best compromise with respect to the goodness of fit measures and the
resulting metric’s ability to generalise to the validation set. Similar observations
were also made for the perceptual relevance weighted 𝐿1-norm and 𝐿2-norm.
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Figure 14: Exponential mapping functions: (a) exponential, (b) double exponen-
tial, and (c) triple exponential.

3.6 Quality prediction performance

In the following sections, the quality prediction performance of Δ𝑁𝐻𝐼𝑄𝑀 and
the perceptual relevance 𝐿𝑝-norm is analysed in detail for both, the actual metric
values and also the corresponding predicted MOS. The metrics’ quality prediction
performance is further compared to the performance of a selection of state-of-
the-art image quality metrics.
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Figure 15: Logistic mapping function.
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Figure 16: Power mapping function.

3.6.1 Image quality metrics for performance comparison

We selected contemporary and widely used image quality metrics for a perfor-
mance comparison with the proposed feature-based Δ𝑁𝐻𝐼𝑄𝑀 and the 𝐿𝑝-norm.
Specifically, the reduced-reference image quality assessment (RRIQA) technique
proposed in [106] is chosen as a prominent member of the class of RR metrics.
From the class of FR metrics we chose the structural similarity (SSIM) index [14],
the visual information fidelity (VIF) criterion [73], the visual signal-to-noise ra-
tio (VSNR) [76], and the peak signal-to-noise ratio (PSNR) [212] to be used
for performance comparison. It is noted that FR metrics would not be suitable
for the considered image communication scenario but rather serve to benchmark
prediction performance, which can be expected to be high due to the utilisation
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of the reference image. A brief summary of each of the metrics is given in the
following.

RRIQA: This metric [106] is based on a natural image statistic model in the
wavelet domain. The image distortion measure is obtained from the estimation
of the KLD between the marginal probability densities of wavelet coefficients in
the subbands of the reference and distorted images as

D = log2

(
1 +

1

𝐷0

𝐾∑
𝑘=1

∣𝑑𝑘(𝑝𝑘∥𝑞𝑘)∣
)

(29)

where the constant 𝐷0 is used as a scaler of the distortion measure, 𝑑𝑘(𝑝𝑘∥𝑞𝑘)
denotes the estimation of the KLD between the probability density functions 𝑝𝑘

and 𝑞𝑘 of the 𝑘𝑡ℎ subband in the transmitted and received image, and 𝐾 is the
number of subbands. The overhead needed to represent the RR information is
given as 162 bits [106].

SSIM: The SSIM index [14] is based on the assumption that the HVS is highly
adapted to the extraction of structural information from the visual scene. As
such, SSIM predicts structural degradations between two images based on simple
intensity and contrast measures. The final SSIM index is given by

SSIM(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇2
𝑥 + 𝜇2

𝑦 + 𝐶1)(𝜎2
𝑥 + 𝜎2

𝑦 + 𝐶2)
(30)

where 𝜇𝑥,𝜇𝑦 and 𝜎𝑥,𝜎𝑦, denote the mean intensity and contrast of image signals
𝑥 and 𝑦, respectively, and 𝜎𝑥𝑦 denotes the covariance between 𝑥 and 𝑦. The
constants 𝐶1 and 𝐶2 are used to avoid instabilities in the structural similarity
comparison that may occur for certain mean intensity and contrast combinations
(𝜇2

𝑥 + 𝜇2
𝑦 = 0, 𝜎2

𝑥 + 𝜎2
𝑦 = 0).

VIF: The VIF criterion [73] approaches the image quality assessment problem
from an information theoretical point of view. In particular, the degradation of
visual quality due to a distortion process is measured by quantifying the informa-
tion available in a reference image and the amount of this reference information
that can be still extracted from the distorted image. As such, the VIF criterion
measures the loss of information between two images. For this purpose, natural
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scene statistics and, in particular, Gaussian scale mixtures (GSM) in the wavelet
domain, are used to model the images. The proposed VIF metric is given by

VIF =

∑
𝑗∈𝑠𝑢𝑏𝑏𝑎𝑛𝑑𝑠 𝐼(

−→
𝐶𝑁,𝑗 ;

−→
𝐹 𝑁,𝑗 ∣𝑠𝑁,𝑗)∑

𝑗∈𝑠𝑢𝑏𝑏𝑎𝑛𝑑𝑠 𝐼(
−→
𝐶𝑁,𝑗 ;

−→
𝐸𝑁,𝑗 ∣𝑠𝑁,𝑗)

(31)

where 𝐼(⋅) represents the mutual information,
−→
𝐶 denotes the GSM, 𝑁 denotes

the number of GSM used, 𝑠 is a random field of positive scalars, and
−→
𝐸 and−→

𝐹 denote the visual output of a HVS model, respectively, for the reference and
distorted image.

VSNR: The VSNR [76] metric deploys a two-stage approach based on near-
threshold and suprathreshold properties of the HVS to quantify image fidelity.
The first stage determines whether distortions are visible in an image. For this
purpose, contrast thresholds for distortion detection are determined using wavelet-
based models of visual masking. If the distortions are below the threshold, the
quality of the image is assumed to be perfect and the algorithm is terminated.
If the distortions are visible, a second stage implements perceived contrast and
global precedence properties of the HVS to determine the impact of the distortions
on perceived quality. The final VSNR metric is then given as

VSNR = 20 log10

(
𝐶(I)

𝛼 𝑑𝑝𝑐 + (1− 𝛼)
𝑑𝑔𝑝√

2

)
(32)

where 𝐶(I) denotes the root-mean-squared contrast of the original image I, 𝑑𝑝𝑐
and 𝑑𝑔𝑝 are, respectively, measures of perceived contrast and global precedence
disruption, and 𝛼 is a weight regulating the relative contributions of 𝑑𝑝𝑐 and 𝑑𝑔𝑝.

PSNR: Image fidelity is an indication about the similarity between the reference
and distorted images and measures pixel-by-pixel closeness between those pairs.
The PSNR [212] is the most commonly used fidelity metric. It measures the
fidelity difference of two image signals 𝐼𝑟(𝑥, 𝑦) and 𝐼𝑑(𝑥, 𝑦) on a pixel-by-pixel
basis as

PSNR = 10 log
𝜂2

MSE
(33)

where 𝜂 is the maximum pixel value, here 255. The MSE is given as

MSE =
1

𝑋𝑌

𝑋∑
𝑥=1

𝑌∑
𝑦=1

[𝐼𝑟(𝑥, 𝑦)− 𝐼𝑑(𝑥, 𝑦)]
2 (34)
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Table 11: Computational complexity of the quality metrics and amount of refer-
ence information needed.

Metric Computation Reference

Type Name time/image information

RR Δ𝑁𝐻𝐼𝑄𝑀 1.55 s 17 bits

𝐿𝑝-norm 1.55 s 85 bits

RRIQA 7.12 s 162 bits

FR SSIM 0.37 s Full image

VIF 0.92 s Full image

VSNR 0.33 s Full image

PSNR 0.05 s Full image

where 𝑋 and 𝑌 denote horizontal and vertical image dimensions, respectively.
Despite being an FR metric, PSNR usually does not correlate well with the visual
quality as perceived by a human observer [10] as discussed in Section 1.1.

3.6.2 Computational complexity and amount of reference information

In the following, we discuss the computational complexity of the considered met-
rics and the amount of reference information that is needed in order to assess the
quality of a test image. The details are summarised in Table 11.

The computational complexity is measured in terms of the time that each of
the metrics needs to assess the quality of a single image in our sets ℐ1 and ℐ2.
Here, we have computed each metric over all 80 images and then determined the
average time. The metrics were run on a laptop computer containing an Intel
T2600 Dual Core processor with 2.16GHz and 4GB of RAM. In order to allow for
a fair comparison, the publicly available Matlab implementation of each metric
was used even though there may be other implementations available for some of
the metrics. It can be seen from Table 11 that the computational complexity of
all FR metrics is lower as compared to the RR metrics. Amongst the FR metrics,
PSNR outperforms by far the other considered metrics in terms of computational
complexity. Regarding the RR metrics, it is observed that both Δ𝑁𝐻𝐼𝑄𝑀 and
𝐿𝑝-norm are significantly less complex than RRIQA.

In the context of wireless imaging, the amount of reference information needed
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for quality assessment determines the overhead of data that needs to be trans-
mitted over the channel along with the actual image. From Table 11 one can
see that the reference information is significantly lower for both Δ𝑁𝐻𝐼𝑄𝑀 and
𝐿𝑝-norm as compared to RRIQA. The particularly small reference information for
Δ𝑁𝐻𝐼𝑄𝑀 results from the fact that only a single value 𝑁𝐻𝐼𝑄𝑀𝑟 needs to be
transmitted. On the other hand, with the 𝐿𝑝-norm five features need to be trans-
mitted resulting in a five times higher overhead. However, as discussed in Section
3.5.5, the number of features used may be traded off with the transmission over-
head by neglecting features of low perceptual relevance. As for the FR metrics,
the reference image is needed for the quality assessment and as such, the size of
the image determines the amount of reference information. Independent of the
image size, however, the amount of reference information would be magnitudes
higher as compared to the RR metrics.

3.6.3 Prediction performance indicators

To quantify the quality prediction performance of the metrics, we follow the
recommendations by the VQEG [200,202], which define the following three quality
prediction performance indicators:

∙ Prediction accuracy: the ability of a quality metric to predict subjective
quality ratings with low error.

∙ Prediction monotonicity: the degree to which the objective quality pre-
dictions agree with the relative magnitudes of the subjective quality ratings.

∙ Prediction consistency: the degree to which the quality metric maintains
prediction accuracy over the range of test images, thus, revealing the metrics
robustness to different image content and a variety of artifacts.

As recommended in [200, 202], the prediction accuracy is determined using
the the Pearson linear correlation coefficient 𝜌𝑃 (see Eq. (22)) and the root mean
squared error (RMSE), which is given as

𝑅𝑀𝑆𝐸 =

√√√⎷ 1

𝐾 − 𝑑

𝐾∑
𝑘=1

𝜖2(𝑘) (35)

with 𝐾 denoting the number of images, 𝑑 representing the number of degrees of
freedom (the number of coefficients) in the mapping function, and 𝜖(𝑘) being the
prediction error between MOS and predicted MOS computed as

𝜖(𝑘) = MOS(𝑘)−MOSΦ(𝑘). (36)
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The Spearman rank order correlation coefficient 𝜌𝑆 is adopted as a measure
of prediction monotonicity [202] as follows:

𝜌𝑆 =

𝐾∑
𝑘=1

(𝜒𝑘 − 𝜒̄)(𝛾𝑘 − 𝛾)√
𝐾∑

𝑘=1

(𝜒𝑘 − 𝜒̄)2

√
𝐾∑

𝑘=1

(𝛾𝑘 − 𝛾)2

(37)

where 𝜒𝑘 and 𝛾𝑘 denote the ranks of the predicted scores and the subjective
scores, respectively, and 𝜒̄ and 𝛾 are the midranks of the respective data sets.
This measure is used to quantify if changes (increase or decrease) in one variable
is followed by changes (increase or decrease) in another variable, irrespective of
the magnitude of the changes.

Finally, the outlier ratio (OR), 𝑟0, is computed to measure prediction consis-
tency [200]. A predicted MOS, MOSΦ, is defined as an outlier if

∣𝜖(𝑘)∣ = ∣MOS(𝑘)−MOSΦ(𝑘)∣ > 2 ⋅ 𝜎ℳ𝑛(𝑘) (38)

where 𝜎ℳ𝑛
denotes the standard error of the MOS as follows:

𝜎ℳ𝑛(𝑘) =
𝜎ℳ(𝑘)√

𝑁
(39)

and with 𝜎ℳ being the standard deviation of the MOS over all 𝑁 viewers. The
OR then relates the number of outliers 𝑅0 to the total number of metric values
𝑅 in the set as

𝑟0 =
𝑅0

𝑅
. (40)

Here, we have 𝑅 = 60 for the training set and 𝑅 = 20 for the validation set.

3.6.4 Analysis of prediction function parameters

Exponential prediction functions have been derived for Δ𝑁𝐻𝐼𝑄𝑀 , 𝐿1-norm, and
𝐿2-norm to map the metric values onto predicted MOS (see Section 3.5.6). As not
all metrics behave the same, the exponential function may not be the best choice
for every image quality metric. For this reason, we derived prediction functions
for each of the other image quality metrics introduced in Section 3.6.1 taking
into account the same constraints as for Δ𝑁𝐻𝐼𝑄𝑀 ; the goodness of fit, visual
inspection of the fitting curve, and generalisation ability to unknown images. To
evaluate the benefits of the perceptual relevance weight, we have further included
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Table 12: Parameters of prediction functions for the image quality metrics (Φ in
the prediction function denotes the respective metric).

Metric Mapping Parameters

Type Name Type Function 𝑎 𝑏 𝑐

RR Δ𝑁𝐻𝐼𝑄𝑀 Exponential 𝑎 ⋅ 𝑒𝑏⋅Φ 88.79 −2.484 −
Δ∗

𝑁𝐻𝐼𝑄𝑀 Exponential 𝑎 ⋅ 𝑒𝑏⋅Φ 85.66 −1.91 −
𝐿1-norm Exponential 𝑎 ⋅ 𝑒𝑏⋅Φ 87.63 −1.839 −
𝐿2-norm Exponential 𝑎 ⋅ 𝑒𝑏⋅Φ 90.21 −2.82 −
RRIQA Linear 𝑎 ⋅ Φ+𝑏 −8.348 90.64 −

FR SSIM Power 𝑎 ⋅ Φ𝑏+𝑐 50.96 11.7 40.76

VIF Exponential 𝑎 ⋅ 𝑒𝑏⋅Φ 4.292 2.886 −
VSNR Linear 𝑎 ⋅ Φ+𝑏 2.06 10.77 −
PSNR Logistic 𝑎

1+𝑒−𝑏⋅(Φ−𝑐) 143 0.07 36.29

the Δ𝑁𝐻𝐼𝑄𝑀 metric computed for all weights being equal to 1 (𝑤𝑖 = 1), which
is denoted here as Δ∗

𝑁𝐻𝐼𝑄𝑀 .

Table 12 presents the mapping functions and its related parameters for all
considered metrics. Apart fromΔ𝑁𝐻𝐼𝑄𝑀 , 𝐿1-norm, and 𝐿2-norm, the VIF metric
was also found to be most suitably mapped with an exponential function. In the
case of SSIM, the power function actually nicely mapped the metric onto predicted
MOS without introducing any signs of overfitting on the training data. A simple
linear fit was found to work best for both RRIQA and VSNR, indicating that
these metrics already take into account the non-linear quality processing in the
HVS. Finally, the logistic function was determined as the most suitable mapping
function for PSNR.

The desired result from the mapping is a linear relationship between the MOS
and the predicted MOS. As an example, Fig. 17 shows a scatter plot of the MOS
versus MOS𝑁𝐻𝐼𝑄𝑀 , the predicted MOS for Δ𝑁𝐻𝐼𝑄𝑀 , for both the training and
validation set. In addition, a linear function has been fitted to the data set and is
presented along with the 95% CI. It can be seen that the fitting curves for both
the training and validation set produce the desired linear relationship between
predicted MOS and MOS.



72 3 Reduced-Reference Quality Metrics for Wireless Imaging

0 20 40 60 80 100
0

20

40

60

80

100

MOS
NHIQM

M
O

S

Image sample
Linear fit
CI (95%)

(a)

0 20 40 60 80 100
0

20

40

60

80

100

MOS
NHIQM

M
O

S

Image sample
Linear fit
CI (95%)

(b)

Figure 17: MOS versus predicted MOS, MOS𝑁𝐻𝐼𝑄𝑀 , for: (a) training set and
(b) validation set.

3.6.5 Quality prediction performance

The quality prediction performance of the considered quality metrics on both train-
ing and validation set is evaluated using the performance indicators introduced
in Section 3.6.3. The performance indicators are presented in Table 13. Here,
the prediction accuracy is quantified by the Pearson linear correlation coefficient,
𝜌𝑃 , for both the actual metric values and also the predicted MOS. The generally
higher Pearson correlation on the predicted MOS indicates the linearisation of the
relationship between the objective and subjective quality scores. Furthermore,
the prediction monotonicity is measured using the Spearman rank order correla-
tion coefficient, 𝜌𝑆 . As all mapping functions are strictly monotonic increasing
or decreasing, the Spearman correlation is in fact the same for both the actual
metric value and the predicted MOS. Thus, we present the Spearman correlation
coefficient only for the predicted MOS. Finally, the RMSE and the OR, 𝑟0, are
presented for the predicted MOS.

The numerical results in Table 13 show strong quality prediction performance
of Δ𝑁𝐻𝐼𝑄𝑀 , 𝐿1-norm, and 𝐿2-norm in all indicators. In particular, the pro-
posed metrics clearly outperform the other quality metrics in prediction accu-
racy and monotonicity. The prediction consistency is comparable to the better
ones amongst the comparison metrics. This strong performance of Δ𝑁𝐻𝐼𝑄𝑀 ,
𝐿1-norm, and 𝐿2-norm is worth highlighting, as these metrics base the quality
prediction on only a single or a few numerical values, as compared to the FR met-
rics, which use the entire reference image for quality assessment. Furthermore,
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Table 13: Quality prediction performance of the image quality metrics and the
corresponding predicted MOS.

Metric Predicted MOS

Name 𝜌𝑃,𝑇 𝜌𝑃,𝑉 𝜌𝑃,𝑇 𝜌𝑃,𝑉 𝜌𝑆,𝑇 𝜌𝑆,𝑉 𝑅𝑀𝑆𝐸𝑇 𝑅𝑀𝑆𝐸𝑉 𝑟0,𝑇 𝑟0,𝑉

RR Metrics

Δ𝑁𝐻𝐼𝑄𝑀 0.843 0.841 0.892 0.888 0.867 0.892 10.579 14.035 0.583 0.7

Δ∗
𝑁𝐻𝐼𝑄𝑀 0.795 0.781 0.859 0.909 0.848 0.899 12.015 11.593 0.6 0.55

𝐿1-norm 0.833 0.842 0.873 0.897 0.854 0.901 11.406 12.895 0.65 0.7

𝐿2-norm 0.845 0.846 0.886 0.884 0.875 0.89 10.733 13.245 0.6 0.75

RRIQA 0.821 0.772 0.821 0.772 0.786 0.758 13.328 15.878 0.617 0.55

FR Metrics

SSIM 0.582 0.434 0.697 0.628 0.558 0.347 16.733 18.498 0.7 0.9

VIF 0.713 0.727 0.789 0.788 0.813 0.729 14.486 13.892 0.817 0.7

VSNR 0.766 0.696 0.766 0.696 0.686 0.501 15.015 16.176 0.7 0.7

PSNR 0.742 0.712 0.751 0.705 0.638 0.615 15.413 14.835 0.633 0.65

the high quality prediction performance is given for both the training set and the
validation set, indicating good generalisation ability of the exponential mapping
function.

The higher Pearson linear correlation coefficients of Δ𝑁𝐻𝐼𝑄𝑀 as compared
to Δ∗

𝑁𝐻𝐼𝑄𝑀 on both the training and validation sets indicate the importance
of the perceptual relevance weights with respect to the actual quality metric.
After mapping to predicted MOS, these benefits are not as pronounced since the
exponential prediction functions of these two metrics are fairly similar, as can be
seen from the mapping parameters in Table 12.

Amongst the metrics used for comparison, RRIQA shows the best quality
prediction performance. Thus, the four RR metrics in the test outperform the
FR, which exemplifies that the presence of the reference image at the quality
assessor is not necessarily a must to achieve good quality prediction performance.
This, however, may come at the cost of computational complexity during RR
acquisition, as can be observed from Table 11, where the FR metrics have lower
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complexity as compared to the RR metrics. In particular RRIQA exhibits a high
computational complexity in comparison to all other metrics.

Within the set of FR metrics, VIF outperforms the other metrics in predic-
tion accuracy and monotonicity, followed by VSNR and PSNR. In fact, PSNR
shows the best prediction consistency performance amongst all FR metrics. It is
interesting to note that the difference between the VIF and VSNR metrics to the
PSNR metric is not as big as one might expect, even though PSNR is usually
considered to perform poorly as a predictor of subjective quality. Furthermore,
SSIM shows a somewhat lower quality prediction performance in all indicators in
comparison to the other quality metrics.

The numerical results in Table 13 show that Δ𝑁𝐻𝐼𝑄𝑀 , 𝐿1-norm, and 𝐿2-
norm have very similar quality prediction performance in all four indicators. Con-
sidering the similarity of these performance indicators and the lower RR overhead
of Δ𝑁𝐻𝐼𝑄𝑀 compared to the 𝐿𝑝-norm, one may in fact consider Δ𝑁𝐻𝐼𝑄𝑀 to
provide the best overall solution for RR quality assessment in wireless imaging.
However, the perceptual relevance weighted 𝐿𝑝-norm still offers the advantage of
communicating information about particular feature differences and the related
artifact severities.

Although the quality prediction performance of the proposed metrics is com-
parably higher to the other metrics, there may be still room for improvement.
For this reason, different methodologies are discussed in Chapters 5, 6, 7, and
8, which were deployed with the aim to further enhance the quality prediction
performance of the feature-based quality metrics.
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4 Performance Assessment of a Deblocking Filter
Using NHIQM

B efore moving on to the various techniques deployed to improve the feature-
based quality metrics, we conclude the first part of this thesis by discussing

an application of NHIQM for deblocking filter design in video sequences. The
deployment of NHIQM for deblocking filter design, as presented in this chapter,
serves to illustrate the applicability of the proposed feature-based quality metrics
in other contexts than image communication and to highlight the performance of
NHIQM and in particular the feature metrics involved.

The most widely used video codecs, such as those based on the H.263,
H.264/AVC, and MPEG-4 [213] format recommended by the ITU-T and ISO/IEC,
provide efficient data compression as needed by mobile video applications. How-
ever, a common problem of these codecs is the introduction of blocking artifacts.
These impairments to the original video sequence are due to quantisation of the
DCT coefficients and motion estimation associated with block-based codecs. In
H.264 this problem is reduced by an in-loop deblocking filter [214]. However, for
other codecs like H.263, a post filter is needed to reduce blocking artifacts, such
as the one recommended in H.263 App. III [215]. In this respect, image and video
quality metrics play an important role to support a justified selection of suitable
filters and the best filter settings.

Although NHIQM and the relevance weighted 𝐿𝑝-norm were designed with
the aim to measure image quality degradations in a communication system, the
use of these metrics is not necessarily restricted to this particular application.
In this chapter, we thus use NHIQM to assess the performance of an adaptive
deblocking filter [216], which was developed for H.263 coded video sequences
as an alternative to the reference filter recommended in H.263 App. III [215].
The deblocking filter is designed to reduce blocking artifacts but at the same
time faces the problem of introducing blur during the filtering process. Thus, the
overall quality of the filtered video is a compromise between blocking and blur
artifacts. Given the scope of distortions, NHIQM is considered to be a suitable
metric to objectively assess the relative trade-off between the structural artifacts.
In the given context of video sequences, NHIQM is used as a spatial quality
assessor measuring structural distortions on a frame-by-frame basis.

In the following, we will briefly introduce the deblocking filter [216] and explain
the test conditions considered here. This is followed by a visual inspection of the
video sequences and by a detailed discussion of the quality prediction results
obtained with NHIQM.
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L1 L2 L3

Figure 18: Filter levels with reference to 8×8 blocks of pixels.

4.1 Adaptive deblocking filter for H.263 encoded video

The adaptive deblocking filter that is examined in this chapter has been presented
in [216]. This filter operates as a post-processing step after a hybrid differential
pulse code modulation (DPCM) transform codec that uses 8×8 blocks for spatial
decorrelation, as is given with H.263 and MPEG-4. The filter is adapted according
to the level of compression, with higher compression resulting in increased filtering.
The filter can be adjusted in two ways; the level of filtering and the filter strength.
The level of filtering refers to the amount of pixels of each block that are being
processed. Here, we apply filtering to the luminance data in three levels as follows:

L1: Only the first tier of border pixels in every 8×8 block is filtered.

L2: The first and second tier of pixels in every 8×8 block are filtered.

L3: The entire 8×8 pixels in every block are filtered.

For illustration the three levels of filtering are shown in Fig. 18.
The strength of the filter refers to how much low-pass filtering a certain com-

pression level results in, where the compression level is related to the quantisation
parameter (QP). The different filter strengths are achieved by adding an offset to
the QP value at the input of the filter weight generator. The following four filter
strengths S0-S3 are examined in this chapter:

S0: Deblocking filtering is not performed.

S1: Nominal strength is used.

S2: An offset of 4 is added.

S3: An offset of 6 is added.
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4.2 Test conditions

For the performance assessment of the deblocking filter we selected three different
video sequences, namely, ’Cart’, ’Foreman’, and ’Mobile’, and compressed them
using the H.263 codec. The video sequences comprised of 150 frames and were
given in 176×144 pixels quarter common intermediate format (QCIF) at 15 frames
per second (fps). The sequences have very different motion characteristics, with
’Cart’ having high motion, ’Foreman’ having medium motion, and ’Mobile’ having
low motion. Each sequence has been encoded at two different bit rates of 48 kb/s
and 96 kb/s. Given the constant bit rates, one can expect a stronger presence of
blocking artifacts in videos containing higher motion.

Each video sequence has been subjected to the different filtering conditions. In
particular, the three filter levels (L1, L2, L3) have been deployed in all nine possible
combinations with the three filter strengths (S1, S2, S3), in addition to the case
where the deblocking filtering is not performed (S0). For all these sequences,
the reference deblocking filter of H.263 App. III [215] has been switched off.
For comparison, one additional sequence has been produced using the App. III
deblocking filter instead of the adaptive filter. Thus, given the two bit rates, a
total of 22 test sequences has been created for each content.

The quality of the video sequences has been measured by computingΔ𝑁𝐻𝐼𝑄𝑀

(see (24)) on a frame-by-frame basis between the H.263 encoded sequences
and their corresponding reference sequences. The final metric values were then
mapped to predicted MOS, MOS𝑁𝐻𝐼𝑄𝑀 , using the exponential prediction func-
tion derived in Section 3.5.6. In addition to the overall quality, each individual
feature 𝑓𝑖 has been recorded for more in depth analysis of the particular artifacts
that occur in the video sequences. Both MOS𝑁𝐻𝐼𝑄𝑀 and the features 𝑓𝑖 were
then averaged over the total number of frames of each sequence to obtain overall
quality and artifact measures for the sequences.

4.3 Visual quality of video frames

To visualise the effect of filter level on the ability of the adaptive filter to reduce
blocking artifacts, Fig. 19 shows samples of the 72𝑛𝑑 frame of video sequence
’Cart’ encoded at a bit rate of 48 kb/s (𝑄𝑃 =29), filter strength S1, and differ-
ent filter levels. The zoomed version is also given for each of the frame samples
to facilitate a more detailed observation. It should be mentioned that the zoomed
frames have been produced using the pixel replication technique which is a special
case of nearest neighbour interpolation [217]. Distortions due to this zoom op-
eration have not been observed for the considered frame samples. Furthermore,
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Figure 19: Frame samples of video sequence ’Cart’ (left column) and their zoomed
versions (right column) for bit rate 48 kb/s, filter strength S1, and different filter
levels. Top to bottom: No filtering, L1, L2, L3, H.263 App. III.
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the video frame samples are used here as a means of visualisation, however, the
filtering effects were in fact more pronounced when comparing the actual played
back video sequences.

It can be seen in Fig. 19 that an increase in filter level from no filtering to level
L1 gives the most perceptual improvement. This is especially apparent in the areas
around the left back wheel of the cart. The blocking artifact can be clearly seen in
the non-filtered sample in the top row of the figure. Implementing filter level L1,
the samples in the second row are now much smoother, with the blocking largely
reduced. An additional increase in the filter level does not appear to improve the
perceptual quality for those samples. In fact, the filter level L3 increasingly starts
to introduce blur to the video, as can be seen from the fourth row of the figure.
Finally, it can be observed that with the H.263 App. III deblocking filter some
degree of blocking still remains but overall the performance is comparable to the
examined adaptive filter suggested in [216].

4.4 Structural feature metrics

From the visual inspection of the video frames one could observe that the adap-
tive deblocking filter indeed reduces the blocking artifacts but at the same time
introduces blur to some degree at higher filtering levels. To quantify the degree
to which these artifacts are present in the videos we recorded the difference of
the five features that are part of NHIQM; blocking 𝑓1, blur 𝑓2, edge-based IA 𝑓3,
gradient-based IA 𝑓4, block intensity shifts 𝑓5 (see Section 3.1).

The feature differences computed on the sequences ’Cart’, ’Foreman’, and
’Mobile’ are presented in Fig. 20, Fig. 21, and Fig. 22, respectively. It can be
observed that the most significant reduction in the blocking feature 𝑓1 is obtained
when changing from no deblocking filtering being performed (S0) to nominal filter
strength (S1). This is true for all three contents but applies particularly to the
’Cart’ sequence, where blocking was most severe due to the high motion. Further
increase in filter strength produces only minor blocking decrease. Analogously
to the decrease in blocking, the blur feature metric 𝑓2 increases most with the
transition from no filtering (S0) to the nominal filter strength (S1). Higher filter
strengths impact only little on the blur metric 𝑓2.

As far as the filter levels are concerned, similar conclusions can be drawn to
the ones from the visual inspection of the video frames (see Section 4.3). The blur
feature metric 𝑓2 predicts larger amounts of blur with increasing filter levels. Even
though the blocking reduces for all three levels with an increase of filter strength,
the absolute magnitude of blocking increases with higher filter levels from, for
instance, a value below 0.3 in Fig. 20(a) to a value above 0.3 in Fig. 20(c). This
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Figure 20: Extreme value normalised feature differences for the video sequence
’Cart’ of bit rate 48 kb/s for the four different filter strengths S0, S1, S2, and S3
and for: (a) filter level L1, (b) filter level L2, and (c) filter level L3.

effect is due to the algorithm deployed here for the blocking artifact extraction [83]
which not only accounts for blocking but also indirectly considers some degree of
blur. As such, an increase of blur with higher filter levels may cause the feature
metric 𝑓1 to settle at higher values.

The three remaining features 𝑓3, 𝑓4, and 𝑓5, are largely unaffected by the
blocking and blur artifacts that are traded off by the different filter settings. This
is particularly true for the block intensity shift feature 𝑓5, which is not affected
at all by both the filter level and the filter strength. This is a highly desirable
result, as the block intensity shift measure should not be triggered by any of the
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Figure 21: Extreme value normalised feature differences for the video sequence
’Foreman’ of bit rate 48 kb/s for the four different filter strengths S0, S1, S2, and
S3 and for: (a) filter level L1, (b) filter level L2, and (c) filter level L3.

artifacts that are present in the filtered video sequences. As such, the computation
of feature metric 𝑓5, and possibly 𝑓3 and 𝑓4, could be considered for exclusion
from the metric computation in this particular application.

4.5 NHIQM-based quality prediction

The quality prediction results in terms of MOS𝑁𝐻𝐼𝑄𝑀 are presented in Fig. 23
for all three contents, all filter settings, and for the two bit rates. From this figure,
it can be generally concluded that the video quality improves with the increase of
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Figure 22: Extreme value normalised feature differences for the video sequence
’Mobile’ of bit rate 48 kb/s for the four different filter strengths S0, S1, S2, and
S3 and for: (a) filter level L1, (b) filter level L2, and (c) filter level L3.

filter strength from S0 to S3 and on the other hand, decreases with the increase
of filter level from L1 to L3. The latter phenomenon can be related to the blur
that is introduced with higher filter levels, which is particularly given for filter
level L3. It can also be seen that the increase in quality between the different
filter strengths is generally higher for the lower bit rate of 48 kb/s, which would
be due to the stronger blocking artifacts at lower bit rates that provide the filter
with a larger room for improvement.

For comparison, the MOS𝑁𝐻𝐼𝑄𝑀 for the H.263 App. III deblocking filter
are provided in Table 14. It can be seen that the performance of the adaptive



4.5 NHIQM-based quality prediction 83

S0 S1 S2 S3
40

50

60

70

80

90

Filter strength

M
O

S
N

H
IQ

M

L1
L2
L3

’Cart’, 96 kb/s

S0 S1 S2 S3
40

50

60

70

80

90

Filter strength
M

O
S

N
H

IQ
M

L1
L2
L3

’Cart’, 48 kb/s

S0 S1 S2 S3
40

50

60

70

80

90

Filter strength

M
O

S
N

H
IQ

M

L1
L2
L3

’Foreman’, 96 kb/s

S0 S1 S2 S3
40

50

60

70

80

90

Filter strength

M
O

S
N

H
IQ

M

L1
L2
L3

’Foreman’, 48 kb/s

S0 S1 S2 S3
40

50

60

70

80

90

Filter strength

M
O

S
N

H
IQ

M

L1
L2
L3

’Mobile’, 96 kb/s

S0 S1 S2 S3
40

50

60

70

80

90

Filter strength

M
O

S
N

H
IQ

M

L1
L2
L3

’Mobile’, 48 kb/s

Figure 23: Predicted MOS, MOS𝑁𝐻𝐼𝑄𝑀 , for all filter levels (L1, L2, L3) and
filter strengths (S0, S1, S2, S3).
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Table 14: Predicted video quality for the H.263 App. III deblocking filter using
MOS𝑁𝐻𝐼𝑄𝑀 .

Bit MOS𝑁𝐻𝐼𝑄𝑀

rate ’Cart’ ’Foreman’ ’Mobile’

48 kb/s 62.02 70.96 88.78

96 kb/s 72.8 80.96 94.45

filter with filter level L1 and filter strength S3 (see Fig. 23) is similar to the H.263
App. III filter for the sequences ’Cart’ and ’Foreman’. However, the H.263 App. III
filter outperforms the adaptive filter on the ’Mobile’ sequence. This particular
sequence has a highly textured background which may cause the performance of
the adaptive filter to drop.

It is worth highlighting that the quality prediction performed with NHIQM has
been very consistent for the different video sequences, the filter parameters, and
the bit rates. In particular, the improved quality with increasing filter strength and
the reduced quality with increasing filter levels is consistently predicted for all three
sequences and for both bit rates, as can be observed from Fig. 23. Furthermore,
NHIQM consistently predicts the quality of the 96 kb/s sequences better than the
corresponding 48 kb/s sequences. In this respect it is noted that the evaluation
presented here was based solely on the predicted MOS, MOS𝑁𝐻𝐼𝑄𝑀 , and no
formal subjective tests have been conducted to support the validity of the results
presented. However, when watching the video sequences, the four people that
were involved in this particular project all agreed, that MOS𝑁𝐻𝐼𝑄𝑀 very well
reflected the perceived quality differences due to the different filter settings. It
was further agreed on that the different feature metrics very suitably captured the
trade-off between the reduced blocking artifacts and the introduced blur artifacts.
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I n Chapter 3, feature weights were derived for each of the feature extraction
algorithms to account for the perceptual relevance of the associated artifacts

that are measured. These weights were established in a very intuitive, but rather
ad-hoc manner, by taking the correlation of the respective feature metric with
subjectively perceived quality. As such, these weights inherently take into account
that some artifacts are perceived as being more annoying than others. However,
the interdependence between the different feature metrics and the related artifacts
is not taken into account, as each of the weights is derived independently.

To take into account the inter-dependance between the features, we deploy
in this chapter a multiobjective optimisation (MOO) approach [218] that facili-
tates finding the optimal weights of all features simultaneously. In this way, the
mutual impact of the artifacts on perceptual image quality can be accounted for
and deeper insights into the perceptual relevance of common artifacts observed
in wireless imaging are gained. The ultimate goal being to improve the quality
prediction performance of the feature-based image quality metrics. The optimisa-
tion of the weights on a particular set of images (the training images), however,
strongly bears the risk of overfitting the quality metric. For this reason, we further
aim on maintaining the metric’s generalisation ability during the optimisation of
the weights.

In the following sections, we first introduce the MOO framework that we pro-
pose for optimisation of feature-based image quality metrics, taking into account
the design goals mentioned above. This framework is then deployed to determine
the optimal weights for NHIQM, resulting in an improvement of quality predic-
tion performance on the training set while maintaining generalisation ability to
the validation set.

5.1 Multiobjective optimisation framework

Optimisation in general is concerned with minimisation of an objective, subject
to a set of decision variables. However, the performance of a system cannot al-
ways be quantified by a single number. Therefore, MOO is concerned with the
optimisation of multiple, often conflicting objectives [218]. Two objectives are
said to be conflicting when a decrease in one objective leads to an increase in the
other. A MOO problem can be transformed into a single-objective optimisation,
for instance, by defining an objective as a weighted sum of multiple objectives.
However, it is recommended to preserve the full dimension of the MOO and in-
stead perform a two stage process [219]. In the first step, the design space is
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reduced to a set of optimal trade-offs between the objectives by determining the
Pareto optimal (noninferior) solutions, which have the characteristic that one ob-
jective can only be optimised at the cost of another. However, although a Pareto
optimal solution should always be a better compromise than the solutions it dom-
inates, not all Pareto optimal solutions may be acceptable solutions. Therefore,
in the second step the best trade-off solution is chosen from the set of Pareto
optimal solutions under consideration of system design aspects [218].

5.1.1 Pareto optimal feature weights

Considering the above, we conduct a two step MOO, as it allows for taking
into account our two conflicting objectives of optimising the quality prediction
accuracy while maintaining the generalisation ability of the metric. The first step
is to determine the Pareto optimal solutions and then chose the best compromise
solution that best satisfies the constraints that we impose on the final metric.

We define a decision vector w = [𝑤1, . . ., 𝑤5] ∈ 𝕎 ⊂ ℝ5 containing the
feature relevance weights 𝑤𝑖, 𝑖 ∈ {1, 2, . . ., 5}. The range of the weights in the
decision space 𝕎 is constrained to 𝑤𝑖 ∈ [0, 1]. Given the above aims, we define
two objectives as

∙ Objective 𝑂𝐴: maximise image quality prediction accuracy on a training
set of images.

∙ Objective 𝑂𝐺: maximise generalisation performance to a validation set of
images.

For this purpose, we utilise the two sets of images that we introduced earlier (see
Sec. 3.5.1), the training set ℐ𝑇 containing 60 images and the validation set ℐ𝑉
containing 20 images. As with the derivation of the perceptual relevance weights
in Section 3.5.3, the corresponding MOS sets, MOS𝑇 and MOS𝑉 , again play a
vital role in determining the optimal feature weights.

Objective 𝑂𝐴 defines the metric’s ability to predict MOS with minimal error
and is measured as the Pearson linear correlation coefficient between a quality
metric and the MOS as follows:

𝜌𝑃,𝑇 =

∑
𝑘(Φ𝑇 (𝑘)− Φ𝑇 )(ℳ𝑇 (𝑘)−ℳ𝑇 )√∑

𝑘(Φ𝑇 (𝑘)− Φ𝑇 )2
√∑

𝑘(ℳ𝑇 (𝑘)−ℳ𝑇 )2
(41)

where Φ𝑇 and ℳ𝑇 are used here to denote the quality metric and MOS on the
training set, respectively.
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Optimising the weights based only on objective 𝑂𝐴 would likely overtrain the
metric, meaning, it would work very well on the training set but not on a set of
unknown images. Therefore, the second objective 𝑂𝐺 defines the metric’s ability
to perform quality prediction on a set of unknown images. We compute it as the
absolute difference of the Pearson linear correlation coefficient on the training set,
𝜌𝑃,𝑇 , and the validation set, 𝜌𝑃,𝑉 , as follows:

Δ𝜌𝑃 = ∣𝜌𝑃,𝑇 − 𝜌𝑃,𝑉 ∣. (42)

Thus, minimising Δ𝜌𝑃 assures that the prediction accuracy on the training and
validation set are as close as possible and hence, the generalisation ability of the
metric is maintained. Given the two objectives, we define the objective vector as

O(w) =

(
𝑂𝐴(w)

𝑂𝐺(w)

)
=

(−∣𝜌𝑃,𝑇 ∣
Δ𝜌𝑃

)
. (43)

Here, the minus sign before the objective 𝑂𝐴 is used to adapt this objective to
a minimisation problem as defined in the following section. Thus, by minimising
−∣𝜌𝑃,𝑇 ∣ we inherently maximise the Pearson linear correlation coefficient.

The decision vector w is evaluated by assigning it an objective vector O in
the objective space 𝕆 as: 𝕎 → 𝕆 ⊂ ℝ2. This is illustrated in Fig. 24 for both
a two-dimensional decision space and objective space (in the actual optimisation,
the decision space has five dimensions, relating to the number of feature weights
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to be optimised). Here, a decision vector w is optimal in the Pareto sense, if it is
assigned a noninferior solution on the Pareto optimal front. The Pareto optimal
front is enclosed by 𝑂̂𝐴 and 𝑂̂𝐺, which are the independent optimal solutions
for the respective objectives 𝑂𝐴 and 𝑂𝐺. The other noninferior solutions are
considered optimal trade-offs between the two objectives.

5.1.2 Goal attainment

We determine the noninferior solutions using the goal attainment method pro-
posed in [220]. Here, goals O∗ = (𝑂∗

𝐴 𝑂∗
𝐺)

𝑇 are specified, which can be
interpreted as the desired level of the corresponding objectives. This requires suf-
ficient intuitive understanding of the problem to know what values one would like
to attain for each of the objectives, which we have from the earlier feature-based
quality metric design (see Section 3). We then define the MOO problem as

𝑃𝐺 :

{
𝑚𝑖𝑛 𝑧
𝑠.𝑡. O(𝑤)− 𝝀 ⋅ 𝑧 ≤ O∗ (44)

where 𝑧 is an unrestricted scalar variable which serves to minimise the two
objectives 𝑂𝐴 and 𝑂𝐺 simultaneously using sequential quadratic programming
[221]. The magnitude of 𝝀 = (𝜆𝐴 𝜆𝐺)

𝑇 determines how close the objectives
(𝑂𝐴(𝑤) 𝑂𝐺(𝑤))

𝑇 are to the goals (𝑂∗
𝐴 𝑂∗

𝐺)
𝑇 . As is typically done [218], we set

𝜆𝐴 and 𝜆𝐺 to the absolute value of the goals

𝜆𝐴 = ∣𝑂∗
𝐴∣ and 𝜆𝐺 = ∣𝑂∗

𝐺∣. (45)

The quantity 𝝀 ⋅ 𝑧 then corresponds to the degree of under- or overattainment of
the goals O∗.

5.2 Application to NHIQM

In this section, we apply the MOO framework to NHIQM to determine the Pareto
optimal weights for the five features included in the metric. We first determine
all Pareto optimal solutions within a feasible range of the two objectives and then
discuss two optimal trade-off solutions.

5.2.1 Pareto optimal solutions

We use our knowledge from the previous metric design discussed in Chapter 3
to define the goals 𝑂∗

𝐴 and 𝑂∗
𝐺. In particular, we set a fixed goal 𝑂∗

𝐴 = −0.87
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Figure 25: Pareto optimal front for NHIQM.

and define a range of goals 𝑂∗
𝐺 ∈ [0.001, 0.1]. Higher values than 0.1 were not

considered for 𝑂𝐺 since generalisation would be too weak. In fact, we found that
the weights can be optimised to have a prediction accuracy on the training set
that is well beyond 0.87, however, this is achieved at the cost of a very poor
generalisation ability of the metric.

The noninferior solutions in terms of the Pareto optimal front are shown in
Fig. 25 with the generalisation objective (Δ𝜌𝑃 ) given on the abscissa and the
prediction accuracy objective (−∣𝜌𝑃,𝑇 ∣) given on the ordinate. One can see that
prediction accuracy on the training set improves as the generalisation objective
is relaxed. This is an expected result, as the optimisation process overtrains the
metric on the training set when a lower prediction accuracy on the validation
set is permitted. It should be noted though, that the loss in generalisation over
the length of the abscissa is large (∣0.001 − 0.1∣ = 0.099) compared to the gain
in prediction accuracy over the corresponding interval on the ordinate (∣0.869 −
0.857∣ = 0.012).

The Pareto optimal weights corresponding to the noninferior solutions are
shown in Fig. 26. The weights of three features are clearly dominating, namely,
feature 𝑓1 (relating to blocking artifacts), feature 𝑓3 (relating to ringing artifacts
measured through edge-based IA), and feature 𝑓5 (relating to block intensity
shifts). The weights for feature 𝑓4 (relating to ringing artifacts measured through
gradient-based IA) are small over the whole range. The magnitudes of all these
weights are fairly in line with the correlation weights obtained in Section 3.5.3.
More unexpected, however, are the weights of the feature metric 𝑓2 (relating
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Figure 26: Pareto optimal weights for NHIQM.

to blur artifacts), which are zero or negligibly small over the whole range of
noninferior solutions. This might be due to blocking being usually perceived as
more annoying than blur but also due to the nature of the JPEG codec, that
mainly produces blocking rather than blur artifacts. This result is particularly
interesting since, due to the negligible size of the weights 𝑤2, one may disregard
the feature metric 𝑓2 in the computation of the overall quality metric. Thus,
given the complexity of the feature metric 𝑓2 (see Section 3.3), approximately
47% savings in computational cost can be achieved. In the case of deploying the
𝐿𝑝-norm, the overhead is further reduced, as the feature metric 𝑓2 is not included
in the RR information.

Given the noninferior solutions it is up to the system designer to make a choice
as to which solution represents the most suitable trade-off under consideration
of the system constraints. In the following, we discuss two representative solu-

tions referred to as S1 and S2 resulting in the metrics Δ
(𝑆1)
𝑁𝐻𝐼𝑄𝑀 and Δ

(𝑆2)
𝑁𝐻𝐼𝑄𝑀 ,

respectively. For both metrics, we further derived predicted MOS, MOS
(𝑆1)
𝑁𝐻𝐼𝑄𝑀

and MOS
(𝑆2)
𝑁𝐻𝐼𝑄𝑀 , following the procedure as outlined in Section 3.5.6.

5.2.2 Solution S1: Optimal trade-off for Δ𝑁𝐻𝐼𝑄𝑀

Solution S1 was selected with respect to an optimal trade-off for Δ𝑁𝐻𝐼𝑄𝑀 ,
disregarding the exponential mapping to MOS𝑁𝐻𝐼𝑄𝑀 . When consulting the
Pareto optimal front in Fig. 25, it can be seen that the gain in prediction accuracy
∣𝜌𝑃,𝑇 ∣ is small in comparison to the loss in generalisation Δ𝜌𝑃 , as one proceeds
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Figure 27: Pearson correlation 𝜌𝑃 of MOS and MOS𝑁𝐻𝐼𝑄𝑀 .

along the abscissa. For this reason, and also since we want to prevent the metric
from overfitting on the training set, the optimal trade-off for Δ𝑁𝐻𝐼𝑄𝑀 has been
chosen at Δ𝜌𝑃 = 0.001, representing the smallest value for Δ𝜌𝑃 and thus, the

best generalisation ability of the metric Δ
(𝑆1)
𝑁𝐻𝐼𝑄𝑀 . The corresponding Pareto

optimal weights 𝑤
(1)
𝑖 are then obtained as

𝑤
(1)
1 =0.98, 𝑤

(1)
2 =0, 𝑤

(1)
3 =0.31, 𝑤

(1)
4 =0.1, 𝑤

(1)
5 =0.39. (46)

This set of weights provides direct insight into the perceptual relevance of wireless
imaging artifacts, since we only considered the linear relationship between the
weights, as given in Δ𝑁𝐻𝐼𝑄𝑀 , rather than the non-linearity of MOS𝑁𝐻𝐼𝑄𝑀 .

5.2.3 Solution S2: Optimal trade-off for MOS𝑁𝐻𝐼𝑄𝑀

Given the previous results, solution S2 was chosen with respect to an optimal
trade-off for MOS𝑁𝐻𝐼𝑄𝑀 . Here, for each Δ𝑁𝐻𝐼𝑄𝑀 relating to the noninferior
solutions in Fig. 25, a curve fitting has been conducted to derive a prediction
function and map the metric to predicted MOS. The prediction accuracies, 𝜌𝑃 , for
all predicted MOS are presented in Fig. 27 for both the training and the validation
set. One can see that 𝜌𝑃 for the training set continuously increases with Δ𝜌𝑃 .
The validation set, however, has a maximum of 𝜌𝑃 at Δ𝜌𝑃 = 0.026 and has thus

been chosen as the best trade-off for MOS
(𝑆2)
𝑁𝐻𝐼𝑄𝑀 . The corresponding Pareto
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Table 15: Quality prediction performance of the optimised metrics Δ
(𝑆1)
𝑁𝐻𝐼𝑄𝑀 and

Δ
(𝑆2)
𝑁𝐻𝐼𝑄𝑀 in comparison to Δ𝑁𝐻𝐼𝑄𝑀 .

Metric Predicted MOS

Name 𝜌𝑃,𝑇 𝜌𝑃,𝑉 𝜌𝑃,𝑇 𝜌𝑃,𝑉 𝜌𝑆,𝑇 𝜌𝑆,𝑉 𝑅𝑀𝑆𝐸𝑇 𝑅𝑀𝑆𝐸𝑉 𝑟0,𝑇 𝑟0,𝑉

Δ
(𝑆1)
𝑁𝐻𝐼𝑄𝑀 0.857 0.856 0.899 0.879 0.875 0.898 10.245 13.61 0.55 0.65

Δ
(𝑆2)
𝑁𝐻𝐼𝑄𝑀 0.866 0.84 0.909 0.886 0.876 0.892 9.76 14.051 0.583 0.6

Δ𝑁𝐻𝐼𝑄𝑀 0.843 0.841 0.892 0.888 0.867 0.892 10.579 14.035 0.583 0.7

optimal weights 𝑤
(2)
𝑖 are given by

𝑤
(2)
1 =0.91, 𝑤

(2)
2 =0, 𝑤

(2)
3 =0.64, 𝑤

(2)
4 =0.06, 𝑤

(2)
5 =0.62. (47)

5.2.4 Evaluation of the optimal trade-off solutions

The quality prediction performance of the metrics Δ
(𝑆1)
𝑁𝐻𝐼𝑄𝑀 and Δ

(𝑆2)
𝑁𝐻𝐼𝑄𝑀 and

their corresponding predicted MOS is shown in Table 15. The metrics are also
compared to Δ𝑁𝐻𝐼𝑄𝑀 to evaluate the gain of the optimal weights as compared
to the correlation-based weights.

It can be seen from the table that both Δ
(𝑆1)
𝑁𝐻𝐼𝑄𝑀 and Δ

(𝑆2)
𝑁𝐻𝐼𝑄𝑀 are improved

in prediction accuracy, as compared to Δ𝑁𝐻𝐼𝑄𝑀 . Especially Δ
(𝑆1)
𝑁𝐻𝐼𝑄𝑀 exhibits

a nice generalisation performance, as the Pearson correlation in the training set
and validation set are almost the same. The fairly small improvement indicates
that the correlation weights incorporated in Δ𝑁𝐻𝐼𝑄𝑀 , in fact, already performed
well in representing the perceptual relevance of the corresponding features.

As for the other performance indicators, it can be observed that they are
fairly comparable between the three considered metrics. However, it should be

emphasised here that the comparable performance of Δ
(𝑆1)
𝑁𝐻𝐼𝑄𝑀 and Δ

(𝑆2)
𝑁𝐻𝐼𝑄𝑀

has been achieved without contribution of the blur metric. Hence, by disregard-
ing the blur metric, valuable computational complexity can be saved, without
sacrificing quality prediction performance.

The presented MOO framework has been shown to successfully improve the
quality prediction performance of NHIQM while considerably reducing its compu-
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tational complexity. However, the framework is considered to be generally appli-
cable to feature-based image quality metrics. In fact, in Chapters 7 and 8 it will
be shown that the MOO framework is also beneficial for the weight determination
of a multiple-scale and a ROI-based image quality metric, respectively.
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6 Artificial Neural Network Based Quality Metric

T he RR quality metrics described in Chapter 3 deploy three steps to perform
the transition from the structural feature metrics to the objectively predicted

quality. Perceptual relevance weights are determined independently for each fea-
ture metric, in a pooling stage the weighted features are then condensed into a
single quality metric, and finally the metric is mapped to predicted MOS using an
exponential prediction function determined through regression analysis. To bet-
ter account for the interdependence of the features and the related artifacts, the
MOO framework, discussed in Chapter 5, was then deployed to simultaneously
determine the feature relevance weights. In this chapter, we take this one step
further by combining the simultaneous determination of the feature weights with
the subsequent pooling and mapping stage. This is realised using an artificial
neural network (ANN) to perform the quality prediction task [222,223].

In analogy to the biological nervous system, an ANN consists of a number
of neurons that communicate with each other through weighted connections.
Each neuron in an ANN consists of an input (the equivalent to the dendrite in
the nervous system) to receive information and an output (the equivalent to the
axon in the nervous system) to forward information to other neurons. The level
with which the data is ’fired’ is determined by an activation function. Given this
structure, ANN can be trained to find associations between an input signal and
the corresponding desired response, by adjusting the weights between the network
elements, the neurons. In this chapter, we consider a particular ANN, the feed-
forward neural network (FFNN), also known as the multilayer perceptron [224].
Such an FFNN consists, in fact, of multiple layers of logistic regression models that
are successively interconnected with each other. Thus, the mapping to predicted
MOS, independently conducted in our earlier metrics, is an integral part of the
ANN-based metric.

In the context of quality assessment, ANN have previously been used to map
a set of objective features to predicted MOS. Mohamed and Rubino [100] have
deployed random neural networks for video quality prediction based on codec and
channel specific input parameters, such as bit rate, frame rate, and packet loss.
Gastaldo et al. [223] designed a neural network based on simple input features
such as signal energy, covariance, and entropy. Both works concluded that the
deployed ANN performed well in the quality prediction task. In our work, we
use the structural features (see Section 3.1) extracted from the image content as
network input to an FFNN to predict the MOS from the subjective experiments
E1 and E2.

An overview of the RR visual quality assessment framework (see Fig. 4)
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Figure 28: Reduced-reference quality assessment using an artificial neural network.

adapted to the deployment of the ANN-based metric is shown in Fig. 28. As
with the perceptual relevance weighted 𝐿𝑝-norm, features are extracted both at
the transmitter and at the receiver, disregarding a subsequent pooling step. The
differences between the transmitted and received features are then fed into the
ANN to perform the quality prediction task. Alternatively, the distorted features
can be used as network input, thus, omitting the feature extraction at the trans-
mitter. It is shown that this NR design of the ANN results in similar performance
to the RR approach.

In the following sections, we discuss the FFNN architecture, the network train-
ing, and the evaluation of the prediction performance results. Since ANN are a
very involved topic, covering a wide range of different network topologies, learning
paradigms, and application scenarios, we focus here on the crucial facts needed
to understand the particular feature-based ANN quality metric design deployed in
this thesis.

6.1 Feed-forward neural network architecture

In general, an FFNN consists of multiple layers, in particular, an input layer, an
output layer, and one or several hidden layers. Each of the layers contains various
amounts of hidden units, the neurons. These are processing units composed of
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Figure 29: Fully-connected two-layer neural network structure.

a summation part and an activation function. In a fully-connected network, all
neurons in a hidden layer have a weighted interconnection to the neurons in the

previous and successive layer. The outputs of the (𝑛 − 1)-th layer, 𝑜
(𝑛−1)
𝑙 , then

serve as input to the 𝑛-th layer, where they are combined as

𝑎
(𝑛)
𝑙 = 𝑤

(𝑛)
𝑙,0 +

𝐼∑
𝑖=1

𝑤
(𝑛)
𝑙,𝑖 ⋅ 𝑜(𝑛−1)

𝑙 (48)

where 𝑤
(𝑛)
𝑙,𝑖 and 𝑤

(𝑛)
𝑙,0 denote the weights and the biases, respectively, of the 𝑙-th

neuron in the 𝑛-th layer, and 𝑎
(𝑛)
𝑙 are referred to as the corresponding activations.

Each of the activations is then transformed using a differentiable activation func-

tion ℎ
(𝑛)
𝑙 (⋅) to yield

𝑜
(𝑛)
𝑙 = ℎ

(𝑛)
𝑙 (𝑎

(𝑛)
𝑙 ). (49)

A fully-connected two-layer network architecture with 𝐽 neurons in the first layer
and 𝐾 neurons in the second layer is illustrated in Fig. 29. Here, 𝑓𝑖 denotes the
𝑖𝑡ℎ out of 𝐼 features at the network input.

The choice of the right number of layers in an ANN and the number of neurons
within each layer is crucial with respect to the network’s prediction performance.
Networks of too high complexity tend to overfit the data to the training set and
thus, exhibit weak generalisation performance. On the other hand, networks of too
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low complexity might result in large errors for both training and generalisation. It
is, however, known that any continuous function can be approximated sufficiently
well by a two-layer network architecture, given a non-linear, differentiable transfer
function and sufficient neurons in the first layer, and a linear transfer function
in the second layer [225]. In view of this finding, we designed a fully-connected
two-layer FFNN containing one hidden layer with multiple neurons and one output
layer with a single neuron. The differentiable bipolar sigmoid function was chosen
as the activation function for all neurons in the hidden layer

ℎ(1)(𝑎
(1)
𝑗 ) =

𝑒𝑎
(1)
𝑗 − 𝑒−𝑎

(1)
𝑗

𝑒𝑎
(1)
𝑗 + 𝑒−𝑎

(1)
𝑗

. (50)

A linear activation function was used for the single output neuron

ℎ(2)(𝑎
(2)
1 ) = 𝑎

(2)
1 . (51)

Given the above network topology, the predicted MOS, MOSΦ, is computed
by the FFNN as

MOSΦ ≜ 𝑜
[2]
1 = ℎ(2)

(
w(2) ⋅ ℎ(1)

(
W(1)f+w

(1)
0

)
+ 𝑤

(2)
1,0

)
(52)

with f = [𝑓𝑖]5×1 being the feature input vector, W(1) = [𝑤
(1)
𝑗,𝑖 ]𝐽×5 being the

matrix of weights in the first layer, w(2) = [𝑤
(2)
1,𝑗 ]1×𝐽 being the vector of weights

in the second layer, and w
(1)
0 = [𝑤

(1)
𝑗,0 ]𝐽×1 and 𝑤

(2)
1,0 representing the biases of the

respective layers.
There is no strict design rule regarding the number 𝐽 of neurons in the hid-

den layer and thus, we considered different numbers of neurons to find the best
prediction performance of the network with respect to both prediction accuracy
and generalisation ability.

6.2 Network training

Unlike for optimisation, where defined mathematical expressions are used to solve
a given problem, iterative numerical procedures are used in the case of ANN to
train the network’s performance of associating a given input to a desired output.
In unsupervised learning, the weights and biases are modified in response to the
network inputs only, whereas in supervised learning, the network outputs 𝑜 are
compared to targets 𝑡. The procedure for supervised learning is illustrated in
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Figure 30: Supervised training of the artificial neural network.

Fig. 30. Here, the error between the output and the target is fed back into the
network and is used in an iterative procedure to adjust the weights and biases
of the network to decrease the errors. We use the MOS from the training set
of the subjective experiments E1 and E2, MOS𝑇 , as targets for comparison with
the predicted MOS, MOSΦ, obtained as network output. As such, the network is
trained using dedicated input-target pairs (f𝑇 (𝑚),MOS𝑇 (𝑚)), with f𝑇 (𝑚) being
a vector of all 5 features corresponding to training image 𝑚.

6.2.1 Gradient descent optimisation using error backpropagation

Error backpropagation (EBP) was created by generalising the Widrow-Hoff learn-
ing rule [226] to multiple-layer networks and non-linear differentiable activation
functions. It utilises efficiently the gradient descent algorithm to minimise the
error between the 𝑘-th network output 𝑜(𝑚, 𝑘) and the target 𝑡(𝑚, 𝑘) as

𝑒(𝑚, 𝑘) = 𝑜(𝑚, 𝑘)− 𝑡(𝑚, 𝑘). (53)

Similar to regression, the sum-of-squares error function for a particular training
sample 𝑚 and for all 𝐾 network outputs

𝐸𝑚 =
1

2

𝐾∑
𝑘=1

𝑒2(𝑚, 𝑘) (54)

is used as a performance measure of the error. When EBP is deployed in batch
mode, the error functions 𝐸𝑚 are summed up over all 𝑀 training samples before
further processing as follows:

𝐸(w) =
𝑀∑

𝑚=1

𝐸𝑚(w). (55)
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In each iteration, one can then distinguish between two major stages that are
performed in the EBP algorithm. In a first stage, the gradient of the sum-of-
squares error function is evaluated with respect to the network weights w as

∇𝐸(w) =
𝛿𝐸

𝛿w
. (56)

For this purpose, the errors are step-by-step propagated back through the network
and the derivatives of the errors are computed at each step. In the second stage,
the derivatives are then used to adjust the network weights to move a small step
into the steepest direction of the negative gradient

w(𝜏+1) = w(𝜏) − 𝛾∇𝐸(w(𝜏)) (57)

with 𝛾 being the learning rate that regulates the step length of each iteration in
the direction of the negative gradient.

Although the gradient descent based weight updates intuitively seem like a
reasonable methodology, there are in fact other algorithms using Newton-based
methods that are more robust and faster than the gradient descent based meth-
ods. The Newton-based methods also have the advantage that the error function
decreases in each iteration, unless the weight vector arrives at a local or global
minimum. A Newton-based algorithm that we used for network training is dis-
cussed in the following section.

6.2.2 Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm (LMA) [227, 228] interpolates between the
Gauss–Newton algorithm (GNA) and the gradient descent algorithm (GDA).
Newton-based methods in general use the Hessian matrix for the weights up-
date, which contain computationally challenging second order derivatives. The
GNA is an adapted Newton method that avoids the computation of second order
derivatives by approximation of the Hessian matrix H through Jacobian matrices
J as

H = J𝑇 J. (58)

The LMA further has the advantage that it is more robust than the GNA, which
means that it usually finds a solution, even if it starts far off the final minimum.
For these reasons we deployed the LMA to perform the minimisation of the error
function.

The difference of the LMA to the GDA explained earlier mainly lies in the
weights update, which is given for the LMA as

w(𝜏+1) = w(𝜏) − [J𝑇 J+ 𝜇I]−1J𝑇 e (59)
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with J being the Jacobian matrix, I being the identity matrix, e being a vector of
network errors, and 𝜇 being a damping factor. In analogy to (57), the learning
rate of the LMA is given as

𝛾 = [J𝑇 J+ 𝜇I]−1 (60)

and the gradient is computed as

∇𝐸 = J𝑇 e. (61)

The damping factor 𝜇 given in (59) regulates the trade-off between the Gauss-
Newton like behaviour and the gradient descent like behaviour of the LMA. If 𝜇
is zero, the method boils down to the GNA. On the other hand, if 𝜇 is large, the
LMA converts to a GDA with a small step size. Generally, the GNA is faster and
more accurate near an error minimum, so the aim is to shift towards Newton’s
method as quickly as possible. For this purpose, 𝜇 is decreased in each iteration
when the error function is decreased and 𝜇 is only increased when a tentative
step would result in an increase of the error function. This way, the performance
function will always be reduced at each iteration of the algorithm.

6.2.3 Bayesian regularisation

Due to the relatively low number of images and related MOS that we have avail-
able in our training set, the networks capability to generalise to unknown data
is restricted. Therefore, special methods have to be used to improve the gen-
eralisation of the network. The most widely used techniques are early stopping
and Bayesian regularisation. The former method is typically recommended for
larger data sets, as the data needs to be divided into three subsets, a training,
validation, and test set. On the other hand, Bayesian regularisation only needs a
training and a test set and is therefore preferably used on smaller data sets. For
this reason, we used Bayesian regularisation in conjunction with the LMA to train
our network.

The aim of deploying regularisation is to create smoother network outputs that
are less prone to overfitting on the training data. This is encouraged by adding a
penalty term Ψ to the error function to yield the regularised error function

𝐸𝑟𝑒𝑔 = 𝐸 + 𝜈Ψ (62)

where the parameter 𝜈 controls the influence of the penalty term Ψ in relation to
the error function 𝐸. Networks that provide a good fit on the training data will
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result in a small value for 𝐸 whereas networks that produce smooth outcomes
will exhibit a small value of Ψ. To trade-off these conflicting characteristics, the
network training is performed using the regularised error function 𝐸𝑟𝑒𝑔.

A simple and widely adopted penalty term is referred to as weighted decay
[229]. It consists of the sum of squares of all 𝑄 weights 𝑤𝑞 (including biases) in
the network and is given as follows:

Ψ =
1

2

𝑄∑
𝑞=1

𝑤2
𝑞 . (63)

To get the best performance with Bayesian regularisation during training, we
scaled both network inputs and targets to fall in the range [−1, 1]. In a post-
processing step the MOS have been reverted to fall into their original interval
[0, 100].

6.3 Network performance evaluation

In this section, we first evaluate the performance of the designed ANN with
respect to a varying number of neurons in the hidden layer. We then present
the trained network weights and evaluate the quality prediction performance of
the network using the prediction performance indicators introduced in Section
3.6.3. The evaluation is discussed with respect to two different network inputs
that we consider here; the feature differences Δ𝑓 between the reference and
distorted features (RR deployment of the ANN) and the distorted features 𝑓𝑑 (NR
deployment of the ANN). The resulting networks are in the following referred to
as ANNΔ𝑓 and ANN𝑓𝑑 , respectively.

6.3.1 Impact of the number of hidden neurons

We varied the number of neurons in the hidden layer between 1 and 8 and trained
the network for each case using the methodology outlined in Section 6.2. The
features and MOS corresponding to the training set ℐ𝑇 (see Section 3.5.1) were
used here for the network training and the related quantities from the validation
set ℐ𝑉 were used to validate the network. The quality prediction performance of
the resulting ANN was then analysed by computing the Pearson linear correlation
coefficient 𝜌𝑃 between the network output, the predicted MOS, and the corre-
sponding MOS. The results are shown in Fig. 31(a) and Fig. 31(b) for ANNΔ𝑓

and ANN𝑓𝑑 , respectively.
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Figure 31: Pearson linear correlation coefficient 𝜌𝑃 between predicted MOS and
MOS for varying numbers of neurons in the first layer and two different network
inputs: (a) difference features Δ𝑓 and (b) distorted features 𝑓𝑑.

It can be seen that for both cases, the prediction accuracy raises by increasing
the number of neurons from 1 to 4 and levels out for a number of neurons larger
than 4. Furthermore, the performance on the training set and the validation
set are very close, which is true for both ANNΔ𝑓 and ANN𝑓𝑑 and also for all
considered numbers of neurons. This is a strong indication that the Bayesian
regularisation performed well in preventing the network from overfitting.

6.3.2 Trained network weights

Given the very similar prediction performance at a lower network complexity, we
consider the networks ANNΔ𝑓 and ANN𝑓𝑑 with 𝐽 = 4 neurons in the hidden layer
as the preferred choice over the other networks with 𝐽 > 4 neurons in the hidden
layer. Thus, only the matrices and vectors containing the final weights and biases
of the trained networks with 𝐽 = 4 neurons are presented in the following. The
weights and biases for ANNΔ𝑓 are given in (64)-(66) as follows:

∙ Weights of the first layer for ANNΔ𝑓 :

W
(1)
Δ𝑓 =

⎛⎜⎜⎝
−0.934 −0.861 −0.453 0.035 0.742
0.323 −1.43 0.373 −0.855 −0.009
0.435 −0.888 0.862 −0.098 0.416
1.496 0.274 −0.565 0.315 −0.44

⎞⎟⎟⎠ (64)
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∙ Weights of the second layer for ANNΔ𝑓 :

w
(2)
Δ𝑓 =

(−0.768 1.031 −1.415 −1.5
)

(65)

∙ Biases of the first and second layer for ANNΔ𝑓 :

w
(1)
0,Δ𝑓 =

⎛⎜⎜⎝
−0.459
−0.364
0.399
1.126

⎞⎟⎟⎠ , 𝑤
(2)
1,0,Δ𝑓 = 0.133 (66)

The weights and biases for ANN𝑓𝑑 are given in (67)-(69) as follows:

∙ Weights of the first layer for ANN𝑓𝑑 :

W
(1)
𝑓𝑑

=

⎛⎜⎜⎝
0.24 0.627 0.932 0.253 −0.07
−1.79 −0.333 −0.178 2.231 −0.568
0.049 1.087 0.174 −0.205 −0.253
0.74 0.444 1.138 −2.443 0.492

⎞⎟⎟⎠ (67)

∙ Weights of the second layer for ANN𝑓𝑑 :

w
(2)
𝑓𝑑

=
(−0.752 1.837 0.608 1.577

)
(68)

∙ Biases of the first and second layer for ANN𝑓𝑑 :

w
(1)
0,𝑓𝑑

=

⎛⎜⎜⎝
−0.453
0.242
−0.357
0.474

⎞⎟⎟⎠ , 𝑤
(2)
1,0,𝑓𝑑

= −0.863 (69)

The presented weights are not as easily interpretable as, for instance, the
weights obtained through optimisation (see Section 5.2). However, they are given
here for completeness and also to show that in fact for both ANNΔ𝑓 and ANN𝑓𝑑 ,
all network weights and biases are contributing to the overall computation of the
predicted MOS. This does not necessarily have to be the case, as we found that
for 𝐽 > 4 neurons in the hidden layer, the number of redundant weights increased.
This was apparent in the weights either being trained to be equal to zero or in
multiple rows of weights having exactly the same values. This is another indicator
for the good performance of the regularisation method and can be related to the
constant prediction accuracy for 𝐽 ≥ 4.
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Table 16: Quality prediction performance of the artificial neural network based
metric using as input either the difference features Δ𝑓 (reduced-reference) or the
distorted features 𝑓𝑑 (no-reference).

Network 𝜌𝑃,𝑇 𝜌𝑃,𝑉 𝜌𝑆,𝑇 𝜌𝑆,𝑉 𝑅𝑀𝑆𝐸𝑇 𝑅𝑀𝑆𝐸𝑉 𝑟0,𝑇 𝑟0,𝑉

ANNΔ𝑓 0.932 0.931 0.919 0.936 8.087 9.78 0.417 0.55

ANN𝑓𝑑 0.932 0.931 0.926 0.937 8.543 8.812 0.45 0.55

6.3.3 Quality prediction performance

The prediction performance indicators computed between the predicted MOS and
the MOS are given for both networks ANNΔ𝑓 and ANN𝑓𝑑 in Table 16. It can
be seen that both networks perform in all performance indicators comparably

better to the previously discussed metrics, Δ𝑁𝐻𝐼𝑄𝑀 , 𝐿𝑝-norm, Δ
(𝑆1)
𝑁𝐻𝐼𝑄𝑀 , and

Δ
(𝑆2)
𝑁𝐻𝐼𝑄𝑀 . This may be attributed to the more complex relationship between the

features that is accounted for by the larger number of weights. It may further be
a result of the combined feature weighting, feature pooling, and metric mapping,
which has been performed in independent steps in the previous metrics.

It should also be highlighted, that ANNΔ𝑓 and ANN𝑓𝑑 perform similarly well in
all indicators. This is particularly interesting, since ANN𝑓𝑑 found this association
between the input features and the subjectively perceived quality solely on the
distorted features, not being given any reference information regarding the original
image content. This suggests that information about the changes in the structural
information is not necessarily needed to enhance prediction performance of the
ANN. Thus, one may deploy the ANN as an NR image quality predictor to save
the feature extraction on the reference image, as well as transmission overhead
in terms of the reference feature values. However, this comes at the cost of
not being able to predict the quality loss that occurs during transmission as no
information about the original image quality is given.
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7 Multiple-Scale Quality Assessment

T he feature-based quality metrics presented thus far incorporate multiple high
level assumptions of the HVS, such as, the extraction of structural informa-

tion, the perceptually varying significance of different distortion types, and the
non-linear quality processing. In this chapter, we extend these models with an
integral characteristic of the HVS, namely, multiple-scale processing.

The integration of multiple-scale processing into quality assessment is mo-
tivated by the well known fact that the HVS is adapted to visual information
processing at different scales [1]. This evolutionary adaption arises from the na-
ture of the environment around us, which contains objects of all different sizes.
Objects may also be located at varying distances, changing the size of their ap-
pearance. The multiple-scale processing in the HVS suggests also an objective
multiple resolution analysis of images, to not miss information in the image due
to single resolution analysis. In relation to image quality, one may suspect that
distortions are also perceived differently at given scales. The Gaussian pyramid is
a convenient and computationally efficient multi-resolution image representation
that mirrors the multiple scales of processing in the HVS well [230]. It has there-
fore been widely used before to perform image analysis at multiple resolutions.

In [183], we proposed a multiple-scale extension of NHIQM by computing
Δ𝑁𝐻𝐼𝑄𝑀 in each level of the Gaussian pyramid decomposition, with a subsequent
pooling across pyramid levels. Within the level pooling, weights were deployed to
account for the perceptual relevance of each pyramid level. This approach resulted
in a considerable improvement in quality prediction performance for NHIQM and
was found to also improve the prediction performance of other quality metrics,
such as SSIM and PSNR. However, the performance gain of NHIQM was achieved
at the cost of having to compute an elaborate amount of feature metrics, in
fact, 5 features for each level involved. Furthermore, this approach did not take
into account that not every feature computation may be necessary within each
pyramid level. Finally, the interdependence between the perceptual relevance of
the features and the pyramid levels was disregarded as the feature weights and
level weights were obtained independently from each other.

In contrast to this work, we utilise in this chapter the MOO framework outlined
in Chapter 5.1 to achieve three goals: 1) create a multiple-scale feature-based
quality metric with high quality prediction performance and good generalisation
ability, 2) lower the metric’s complexity as compared to the metric proposed
in [183] by reducing the number of features that need to be computed in each
Gaussian pyramid level, and 3) account for the interdependence between feature
and level relevance weights.
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Figure 32: Reduced-reference quality assessment using the multiple-scale feature-
based quality metric.

An overview of the RR visual quality assessment framework (see Fig. 4),
adapted to the multiple-scale feature-based quality metric (MSFQM), is pre-
sented in Fig. 32. In analogy to the perceptual relevance weighted 𝐿𝑝-norm
the features need to be transmitted over the channel. On the contrary to the
𝐿𝑝-norm, however, a multi-resolution decomposition is deployed in terms of the
Gaussian pyramid before the actual feature extraction. The pooling stage at the
transmitter is omitted, as we found that it is crucial to keep information regarding
the structural degradations for each pyramid level [183]. The respective Gaussian
pyramid decomposition and feature extraction is conducted at the receiver and
the reference and distorted multiple-scale features are then pooled, yielding the
MSFQM.

In the following, we summarise the Gaussian pyramid decomposition and dis-
cuss the level-based feature extraction, the pooling, and the optimisation of the
perceptual relevance weights. A thresholding is introduced that was deployed to
further reduce the computational complexity of the metric at minimal impact on
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Figure 33: Full Gaussian pyramid decomposition.

the quality prediction performance.

7.1 Gaussian pyramid creation

The Gaussian pyramid is a convenient multi-resolution image representation that
mirrors the multiple scales of processing in the HVS [230]. A full Gaussian pyramid
decomposition is illustrated in Fig. 33 along with the level numbering and image
dimensions for each level. In the following, an efficient iterative algorithm for the
pyramid generation is summarised from [231].

The pyramid consists of 𝐿+1 levels with the image 𝑔0 in the bottom being the
original image in full resolution 𝑁×𝑁 . The higher level images 𝑔𝑙, 𝑙 = 1, 2, . . ., 𝐿,
are low-pass filtered and sub-sampled versions of the underlying images. The
low-pass filtering is performed using a generating kernel 𝜎(𝑚,𝑛) of size 5 × 5
pixels. The size has been chosen with respect to filtering performance and low
computational cost. Sub-sampling is done by a factor of two. Therewith, each
image 𝑔𝑙 is obtained from its predecessor 𝑔𝑙−1 as

𝑔𝑙(𝑢, 𝑣) =
2∑

𝑚=−2

2∑
𝑛=−2

𝜎(𝑚,𝑛) ⋅ 𝑔𝑙−1(2𝑢+𝑚, 2𝑣 + 𝑛). (70)

For simplicity, the generating kernel is made separable

𝜎(𝑚,𝑛) = 𝜎(𝑚) ⋅ 𝜎(𝑛). (71)
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Furthermore, the one-dimensional patterns 𝜎(𝑚) and 𝜎(𝑛) are constrained to be
normalised

2∑
𝑚=−2

𝜎(𝑚) =

2∑
𝑛=−2

𝜎(𝑛) = 1 (72)

and must be symmetric
𝜎(𝑖) = 𝜎(−𝑖). (73)

The density of image pixels is reduced by four from one level to the next level up.
Hence, an additional constraint called equal contribution requires all pixels at a
given level to contribute the same total weight of 1/4. The above constraints are
satisfied when

𝜎(0) = 𝑎

𝜎(1) = 𝜎(−1) =
1

4
(74)

𝜎(2) = 𝜎(−2) =
1

4
− 𝑎

2

where 𝑎 = 0.4. It should be noted that the algorithm was slightly modified to fit
our original image size of 512× 512 pixels.

For the multi-resolution analysis we considered a maximum of six Gaussian
pyramid levels. Taking the original image resolution and the sub-sampling of factor
two into account, the highest level in the pyramid has a resolution of 16×16 pixels.
Images of higher levels were not taken into account since the feature extraction
algorithms do not work on such a small number of pixels. Figure 34 shows an
illustrative example of the multi-resolution levels for a distorted ’Lena’ image.
Corresponding error maps are presented in Fig. 35 to further visualise the impact
of the Gaussian pyramid on the distortions in the content. For better visualisation
the downsampled images were expanded to original size using the pixel replication
technique [217]. As one would expect, the Gaussian filter introduces some blur
into higher level images.

7.2 Multiple-scale feature extraction

The five structural feature metrics 𝑓𝑖 (see Section 3.1) are independently com-
puted in all Gaussian pyramid levels, resulting in a large number of features. For
this reason, we will in the following adopt a feature notation as 𝑓𝑖,𝑙. Here, the
subscript 𝑖, 𝑖 = 1, 2, . . ., 𝐼, denotes the 𝑖𝑡ℎ out of 𝐼 = 5 feature metrics and
subscript 𝑙, 𝑙 = 0, 1, . . ., 𝐿, denotes the 𝑙𝑡ℎ out of 𝐿 + 1 = 6 Gaussian pyramid
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(a) (b) (c)

(d) (e) (f)

Figure 34: First six Gaussian pyramid levels of a distorted ’Lena’ image: (a) 𝑔0
(512 × 512), (b) 𝑔1 (256 × 256), (c) 𝑔2 (128 × 128), (d) 𝑔3 (64 × 64), (e) 𝑔4
(32× 32), and (f) 𝑔5 (16× 16)).

levels. For instance, feature 𝑓2,0 would be the blur metric 𝑓2, computed in the
base level 𝑔0 of the Gaussian pyramid.

To assess the structural degradation in each pyramid level, the features 𝑓𝑟,𝑖,𝑙
and 𝑓𝑑,𝑖,𝑙 are, respectively, computed in the reference image and the distorted
image and subsequently combined using a pooling function. In order to keep the
RR information small it would be sensible to pool the reference features, 𝑓𝑟,𝑖,𝑙,
independently from the distorted features, 𝑓𝑑,𝑖,𝑙. However, we found [183] that
it is crucial to preserve the information about structural degradation for each
pyramid level. For this reason, we compute difference features within all Gaussian
pyramid level as follows

Δ𝑓𝑖,𝑙 = ∣𝑓𝑟,𝑖,𝑙 − 𝑓𝑑,𝑖,𝑙∣. (75)

Given the above, we have a total of 30 difference features Δ𝑓𝑖,𝑙 which may
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(a) (b) (c)

(d) (e) (f)

Figure 35: Error maps between the distorted images in Fig. 34 and the correspond-
ing reference images: (a) 𝑔0 (512× 512), (b) 𝑔1 (256× 256), (c) 𝑔2 (128× 128),
(d) 𝑔3 (64× 64), (e) 𝑔4 (32× 32), and (f) 𝑔5 (16× 16)).

contribute to the multiple-scale quality metric MSFQM. The number of features
included in the metric impacts directly on the computational complexity of the
metric and also determines the size of the RR information. Thus, it is desired
to reduce the number of features by only taking into account the most relevant
features at a given pyramid level.

7.3 Multiple-scale feature-based quality metric

The feature differences are pooled into the MSFQM metric which is in the follow-
ing denoted as Θ𝑀𝑆𝐹 . Similar to the NHIQM and 𝐿𝑝-norm metrics, we introduce
perceptual relevance weights 𝑤𝑖,𝑙 for all difference features Δ𝑓𝑖,𝑙, taking into ac-
count that not all features, and thus the related structural degradations, have the
same impact on perceived quality. The feature weights will also serve to eliminate
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the features that are of low relevance to MSFQM. Finally, a simple pooling func-
tion is defined as a weighted 𝐿1-norm over all features across all pyramid levels
to yield

Θ𝑀𝑆𝐹 =

𝐿∑
𝑙=0

𝐼∑
𝑖=1

𝑤𝑖,𝑙 ⋅Δ𝑓𝑖,𝑙. (76)

The pooling function in (76) has intentionally been kept simple to put no restric-
tions and bias on the optimisation process which will in the following be used to

determine the optimal feature weights 𝑤
(𝑜𝑝𝑡)
𝑖,𝑙 .

7.4 Optimisation of the perceptual relevance weights

The MOO framework as outlined in Section 5.1 is deployed here to determine the

optimal feature relevance weights 𝑤
(𝑜𝑝𝑡)
𝑖,𝑙 for MSFQM. The MOO is conducted

with respect to the same objectives 𝑂𝐴 and 𝑂𝐺 of improving the prediction
accuracy on the training set ℐ𝑇 while maintaining the generalisation ability to the
validation set ℐ𝑉 , respectively. The Pearson linear correlation is here computed
between MSFQM and the MOS from the subjective experiments as

𝜌𝑃 =

∑
𝑘(Θ𝑀𝑆𝐹,𝑘 −Θ𝑀𝑆𝐹 )(ℳ𝑘 −ℳ)√∑

𝑘(Θ𝑀𝑆𝐹,𝑘 −Θ𝑀𝑆𝐹 )2
√∑

𝑘(ℳ𝑘 −ℳ)2
. (77)

Unlike in Section 5.1, we do not define a range of goals for objective 𝑂𝐺,
since we want this objective to be very small to obtain a good generalisation for
MSFQM. Thus, the goals are defined here as 𝑂∗

𝐴 = −0.9 and 𝑂∗
𝐺 = 0.001 and

the magnitudes 𝜆𝐴 and 𝜆𝐺 are as in (45) set to the absolute value of the goals.

The optimal weights 𝑤
(𝑜𝑝𝑡)
𝑖,𝑙 determined from the MOO are shown in Fig. 36.

It should be emphasised again, that these weights are considered to be optimal
in a Pareto sense as we considered two conflicting objectives 𝑂𝐴 and 𝑂𝐺 in the
MOO, where one objective can only be optimised at the cost of the other.

One can see from the Fig. 36, that in each level there are some features
dominating over the other features providing, to some extent, insight into the
impact on perceived quality of a feature at a given scale. For instance, the
feature 𝑓1 (relating to blocking artifacts) and the edge-based IA 𝑓3 (relating to
ringing artifacts) seem to have a strong impact up to level 𝑔3. The feature 𝑓2
(relating to blur artifacts) on the other hand dominates in the levels 𝑔4 and 𝑔5
which may be due to the blur induced through the Gaussian filtering in the higher
pyramid levels. However, in general it seems that the feature metrics which are
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Figure 36: Optimal feature weights for six Gaussian pyramid levels (the dashed
line indicates a threshold 𝜏 = 0.25).

based on sharp edges, 𝑓1 and 𝑓3, dominate over the feature metrics that are based
on measuring smooth transitions and gradients, 𝑓2 and 𝑓4. This is in line with
the previous results for NHIQM (see Section 3.5.3) and its optimised versions (see
Section 5.2). More surprising are the small weights for the feature 𝑓5 which may
be due to this block intensity shifts being indirectly accounted for by the other
metrics in higher levels of the Gaussian pyramid.

7.5 Thresholding and feature elimination

It can be observed from Fig. 36 that many of the 30 weights are either zero
or very close to zero. This may be related to the phenomenon that too many
features would cause overfitting of the data to the training set [224]. The small
magnitudes of some of the weights suggests, that the related features are of
low importance to the overall metric MSFQM and thus, one can consider them
for further elimination. This in turn results in computation of less features and
therewith savings in valuable computational complexity and RR overhead. For
this purpose, we introduce a weight thresholding as follows

𝑤
(𝑜𝑝𝑡)
𝑖,𝑙 = 0 for 𝑤

(𝑜𝑝𝑡)
𝑖,𝑙 ≤ 𝜏. (78)
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Thus, all weights 𝑤
(𝑜𝑝𝑡)
𝑖,𝑙 below threshold 𝜏 are set to zero and the related features

𝑓𝑖,𝑙 are omitted from the metric computation. The resulting metric, that was

subjected to a particular threshold 𝜏 , is denoted as Θ
(𝜏)
𝑀𝑆𝐹 . The compromise

between prediction performance and savings in computational complexity of the
metric with regards to different thresholds 𝜏 is discussed in the following section.

7.6 Quality prediction performance

The quality prediction performance of MSFQM is evaluated for different thresholds
𝜏 , using the quality prediction performance indicators from Section 3.6.3. For each

Θ
(𝜏)
𝑀𝑆𝐹 an exponential prediction function has been derived through curve fitting

and the related predicted MOS, MOS
(𝜏)
𝑀𝑆𝐹𝑄𝑀 , have been computed. The quality

prediction performance indicators for both Θ
(𝜏)
𝑀𝑆𝐹 and MOS

(𝜏)
𝑀𝑆𝐹𝑄𝑀 are presented

in Table 17 for the training (T) and validation (V) sets. In addition to the quality
prediction performance, the table also presents the number of discarded features
(DF) and the number of discarded levels (DL) for a particular threshold 𝜏 . A
discarded feature corresponds to a weight that has been set to zero by either the
MOO or the thresholding. A level is discarded if all features within the level are
discarded and if there is no higher pyramid level.

Table 17 shows that only 4 features are zero if no thresholding is used. As the
threshold 𝜏 increases, more features are discarded from the metric computation.
It should be observed that up to 𝜏 = 0.25, the loss in prediction performance
is minimal as compared to the number of discarded features. In particular, for
𝜏 = 0.25 only 9 out of 30 features need to be computed. We also do not need to
compute any feature in level 𝑔5 and can thus discard this level. This means for
𝜏 = 0.25, savings in computational complexity are large as compared to loss in
prediction performance. However, if we further increase 𝜏 the loss in prediction
performance as compared to the number of discarded features increases. Given
the above, a threshold of 𝜏 = 0.25 is thus considered to give the best compromise

solution for MOS
(𝜏)
𝑀𝑆𝐹𝑄𝑀 . The residual feature weights 𝑤

(0.25)
𝑖,𝑙 for a threshold

of 𝜏 = 0.25 are summarised in Table 18. In addition, the prediction performance

indicators of the resulting metric MOS
(0.25)
𝑀𝑆𝐹𝑄𝑀 are highlighted with bold font in

Table 17 and the threshold 𝜏 = 0.25 is illustrated in Fig. 36 by the horizontal
dashed line.

In summary, the quality prediction performance of the MSFQM metric is im-
proved in comparison to NHIQM and in fact, performs almost as well as the
neural network based metric (see Chapter 6). The better performance of MS-
FQM compared to NHIQM comes at the cost of a higher complexity and larger
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Table 17: Quality prediction performance indicators for Θ
(𝜏)
𝑀𝑆𝐹 and MOS

(𝜏)
𝑀𝑆𝐹𝑄𝑀

when applying different thresholds 𝜏 .

Θ
(𝜏)
𝑀𝑆𝐹 MOS

(𝜏)
𝑀𝑆𝐹𝑄𝑀

𝜏 DF DL 𝜌𝑃,𝑇 𝜌𝑃,𝑉 𝜌𝑃,𝑇 𝜌𝑃,𝑉 𝜌𝑆,𝑇 𝜌𝑆,𝑉 𝑅𝑀𝑆𝐸𝑇 𝑅𝑀𝑆𝐸𝑉 𝑟0,𝑇 𝑟0,𝑉

0 4 0 0.893 0.893 0.926 0.933 0.914 0.947 8.819 10.078 0.483 0.6

0.1 15 0 0.892 0.899 0.926 0.936 0.912 0.952 8.834 10.033 0.483 0.55

0.15 16 0 0.892 0.9 0.926 0.936 0.912 0.952 8.836 10.03 0.483 0.55

0.2 18 0 0.892 0.903 0.924 0.936 0.913 0.952 8.93 10.119 0.483 0.5

0.25 21 1 0.89 0.902 0.921 0.934 0.908 0.953 9.071 11.072 0.483 0.55

0.3 22 1 0.878 0.901 0.917 0.921 0.898 0.959 9.329 11.812 0.533 0.55

0.35 23 1 0.878 0.898 0.917 0.919 0.898 0.959 9.335 11.931 0.533 0.6

0.65 24 1 0.879 0.896 0.917 0.917 0.896 0.955 9.32 12.016 0.533 0.6

0.75 25 1 0.861 0.904 0.902 0.901 0.883 0.944 10.08 11.489 0.533 0.5

0.8 26 1 0.858 0.883 0.901 0.89 0.879 0.926 10.138 12.19 0.55 0.7

0.85 27 1 0.598 0.685 0.692 0.783 0.759 0.741 17.027 13.438 0.833 0.6

Table 18: Remaining feature weights for Θ(0.25).

𝑔0 𝑔1 𝑔2 𝑔3 𝑔4 𝑔5

𝑓1 0.848 0 0.908 0 0 0

𝑓2 0 0 0 0 1 0

𝑓3 0.727 0 0.999 0.755 0 0

𝑓4 0.293 0.608 0.325 0 0 0

𝑓5 0 0 0 0 0 0

RR information, due to the Gaussian pyramid decomposition and nine instead of
five extracted features. However, the combined MOO and thresholding procedure
drastically reduced the number of features, as compared to a full set of features
being extracted in each level, at only small cost of quality prediction performance.
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8 Region-of-Interest Based Quality Assessment

T he image quality metrics proposed in the earlier chapters all compute the
quality scores based on the assumption that the content over the entire

natural scene is of equal interest to the observer. Thus, it is implicitly assumed
that distortions in different regions of the image contribute equally to an overall
quality perception of the image, with respect to the interest of the content. It
is, however, well known that natural scenes typically contain objects and regions
that are of particularly high interest to an observer. Such regions-of-interest (ROI)
include, for instance, humans and especially their faces, animals, and written text.
One can therefore expect that distortions appearing in an ROI would have a larger
impact on perceived quality degradations as compared to distortions appearing
in the remainder of the image, the background (BG). This would be particularly
true in the context of localised distortions caused by transmission errors, as we
consider in the scope of this thesis, in comparison to global distortions resulting
from source coding artifacts.

Given the above, we discuss in this chapter a framework to incorporate ROI
awareness into existing image quality metrics. In this respect, the metrics are
independently computed in the ROI and the BG to obtain quality measures for
each region. The ROI and BG metrics are then subjected to a weighted pooling,
resulting in an ROI aware quality metric. The framework does not require the code
of an existing metric to be changed since the metrics are independently computed
in their original form on both, the ROI and the BG. The MOO framework discussed
in Section 5.1 is once again used to determine the optimal weights for ROI and
BG metrics to improve the quality prediction accuracy and generalisation ability
of the resulting metric. The benefits of applying the ROI framework is evaluated
using NHIQM and two other image quality metrics, of which all do not take into
account the impact of content saliency on the perception of structural distortions.

In analogy to MOS serving as a ground truth for image quality metric design,
the design of the ROI framework needs to be based on a reliable ground truth with
regards to the ROI in the test images. In this respect, we rule out automatic ROI
detection algorithms, as they may cause possible ROI detection errors and thus,
cause errors in the subsequent quality metric design. For this reason we conducted
a subjective experiment for ROI identification, in which human observers were
instructed to select ROI in the images they were presented. These subjectively
selected ROI were then used as a basis for the ROI aware metric design.

In the following, we present the subjective ROI experiment that we conducted
and analyse its outcomes. We then discuss the ROI awareness framework and
evaluate the benefits of deploying it on three contemporary image quality metrics.
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8.1 Subjective region-of-interest selections

We conducted a subjective ROI experiment which we refer to as experiment E3. In
this experiment, human observers were asked to select ROI in the reference images
that we used in the subjective quality experiments E1 and E2 (see Fig. 6). These
hand-labelled ROI reveal insight as to which regions in the reference images are of
particular interest to human observers. More importantly, they serve as a reliable
ROI ground truth, similar to MOS being a quality ground truth, upon which
to design ROI aware image quality metrics. In the following, the procedures of
experiment E3 are discussed and the outcomes are analysed.

8.1.1 Details of experiment E3

We conducted the subjective ROI experiment at BIT in Ronneby, Sweden. As
with the quality experiments, E1 and E2, we had 30 non-expert viewers who
participated, of which 17 were male and 13 were female. The viewers were
presented the same set of reference images ℐ𝑅 that we used in experiments E1
and E2. The images were displayed on a 19” DELL screen at a viewing distance
of 4 times the height of the images. The viewers’ task was to select a region
within each of the images that was of particular interest to them.

One training image was presented in order to explain the simple selection
process and two stabilisation images were presented for the viewers to adapt to
the selection process. The viewers were then presented the seven reference images
in ℐ𝑅. We did not put any restrictions on the size of the ROI to be selected other
than that the selected region needed to be a subset of the whole image. For
simplicity, we considered only rectangular shaped ROI and allowed for only one
ROI selection per image. We further allowed the viewers to re-select an ROI
in case of dissatisfaction with the selected ROI. We did not impose any limits
regarding the time needed for the ROI selection, however, given the simplicity
of the ROI selection process most viewers were able to conduct the experiment
within a few minutes.

The outcomes of the experiment enabled us to identify a subjectively deter-
mined ROI for each image in ℐ𝑅 and ultimately to deploy the ROI-based metric
design framework, as proposed in Section 8.2. The experiment results are analysed
in detail in the following sections.

8.1.2 ROI selections

The 30 ROI selections that we obtained for each reference image are visualised
in Fig. 37. Here, all ROI selections have been added to the image as an intensity
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Barbara Elaine Goldhill

Lena Mandrill Peppers

Tiffany

Figure 37: All 30 ROI selections for each of the reference images in ℐ𝑅 superim-
posed with an intensity shift.

shift and as such, a brighter area relates to more overlapping ROI and thus a
higher interest in that particular region. In order to enhance the visualisation
of the ROI, the images have been darkened before adding the ROI. For further
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reference, the coordinates of all ROI selections are also listed in Appendix B.
As one would expect, faces were of particular interest to the viewers and were

thus primarily selected as the ROI. However, the size of the area in the image
that is covered by the face seems to play an important role. If a whole person is
shown in the image (for instance ’Barbara’), then the whole face is mostly chosen
as the ROI. On the other hand, if most of the image is covered by the face (for
instance ’Mandrill’ or ’Tiffany’), then often details in the face are chosen rather
than the whole face. In the case of ’Mandrill’, such details mainly comprised of
the eyes and the nose, whereas for ’Tiffany’, along with the eyes the mouth was
chosen most frequently.

In the case of a more complex scene, like ’Peppers’, the agreement on an ROI
between the viewers is by far less pronounced than in the case where a human or
a human face is present. Here, different viewers have chosen different peppers as
ROI or selected the three big peppers in the centre of the image. Most attention
has actually been drawn to the two stems of the peppers, which may be due to
their prominent appearance on the otherwise fairly uniform skins of the peppers.
The disagreement between viewers is also apparent for a natural scene, such as
’Goldhill’. Only the man walking down the street seemed to be of interest to
many viewers. Otherwise, varying single houses have been selected frequently as
well as the whole block of houses.

8.1.3 Statistical analysis

In order to gain more insight into the characteristics of the ROI selections we
further analyse the ROI locations and ROI dimensions using simple statistics, such
as the mean 𝜇 and the standard deviation 𝜎 of the ROI coordinates in horizontal
and vertical direction. The results for the mean 𝜇 are summarised in Fig. 38 and
for the standard deviation 𝜎 in Fig. 39. Here, 𝑥 denotes the horizontal coordinate
and 𝑦 the vertical coordinate with the origin being in the bottom left corner of
the image. Furthermore, 𝑥𝐶 and 𝑦𝐶 denote the ROI centre coordinates and 𝑥Δ

and 𝑦Δ denote the ROI dimensions in 𝑥-direction and 𝑦-direction, respectively.
The labels on the abscissa denote the first letters of the reference images in ℐ𝑅
(see Fig. 37).

In Fig. 38(a) it can be seen that the mean 𝜇𝐶 of the ROI centre coordinates,
𝑥𝐶 and 𝑦𝐶 , is around the image centre for most of the images. This may be
somewhat expected since the salient region is often placed around the centre of
a natural scene when, for instance, taking a photograph. The only exception
here is the ’Barbara’ image, for which the mean ROI is significantly shifted to
the upper right corner towards the face. It is also worth noting that 𝑥𝐶 for the
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Figure 38: Mean 𝜇 over all 30 ROI selections for: (a) centre coordinates and (b)
horizontal (x-coordinate) and vertical (y-coordinate) dimensions.
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Figure 39: Standard deviation 𝜎 over all 30 ROI selections for: (a) centre coor-
dinates and (b) horizontal (x-coordinate) and vertical (y-coordinate) dimensions.

image ’Mandrill’ lies exactly in the horizontal centre of the image, which can be
explained by the axis of symmetry of the ’Mandrill’ face being centrally located
in the horizontal direction.

Figure 38(b) reveals that the mean ROI dimensions, 𝜇Δ, for most images are
very similar in both 𝑥- and 𝑦-direction. Interestingly, the ’Mandrill’ image reveals
much larger dimensions which is caused by many viewers selecting the whole face
or the nose as ROI of considerable size. The large extent of the 𝑦-coordinate in
the case of the ’Peppers’ image is due to many selections of either all three big
peppers or selections of the long pepper on the left.

The standard deviations 𝜎𝐶 of the ROI centre coordinates in Fig. 39(a) reveal
information about the agreement of the viewers as to where the ROI is located,
similar to CI with regard to MOS in subjective quality experiments. In this respect,
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a larger standard deviation, and thus a lower agreement, indicates that there
may be either no dominant ROI or that there are multiple ROI present in the
visual content. Given the above, the small values in case of ’Elaine’, ’Lena’,
and ’Tiffany’ further support earlier observations that faces are of strong interest
to the viewers and that the agreement between viewers is high. On the other
hand, larger standard deviations like for ’Goldhill’ and ’Peppers’ suggest that the
identification of a dominant ROI is not as clear and thus, that the agreement
between the viewers is lower. An exception is again given by the ’Barbara’ image
which comprises of a face but has, on the contrary, also the highest standard
deviations. This may be due to the face being located in the periphery of the
image and also due to other objects being present that some viewers found of
interest, such as the object on the table to the left. With respect to the ’Mandrill’
image it is interesting to point out the difference between the standard deviations
in 𝑥- and 𝑦-directions. One can see that there is a strong agreement, that the
ROI is located on the horizontal centre of the image, however, the agreement is
low as to the vertical location of the ROI. This was also observed in the visual
inspection of the ROI where many selections where found for the eyes, the nose,
and the whole face, all of them being located on the horizontal centre but spread
in the vertical direction.

Finally, comparing Fig. 39(b) to Fig. 39(a) reveals that the disagreement
between viewers regarding the size of the ROI, quantified with the standard devi-
ation of the ROI dimensions 𝜎Δ, seems to be large compared to the disagreement
about location. It is further observed that for all images, apart from ’Goldhill’,
the disagreement is considerably higher in the vertical direction (𝑦-coordinate)
as compared to the horizontal direction (𝑥-coordinate). This may be due to the
viewers selecting either a whole body, a face, or parts of a face, where in all
cases the width of the ROI selection is not as much affected as the height. This
accounts in particular for images like ’Barbara’, ’Lena’, ’Mandrill’, and ’Tiffany’.

8.1.4 Outlier elimination

In addition to the above observations, we found that for all seven reference images
there were some ROI selections that were far away from the majority of the votes.
In other words, the 𝑥- and/or 𝑦-coordinate of the centre of these ROI selections
were numerically distant from the respective mean coordinates. We eliminated
these, so called, outliers by adopting the criterion defined by the VQEG in [202]
as follows:

∣𝑥𝐶 − 𝜇𝑥𝐶
∣ > 2 ⋅ 𝜎𝑥𝐶

or ∣𝑦𝐶 − 𝜇𝑦𝐶
∣ > 2 ⋅ 𝜎𝑦𝐶

. (79)
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Table 19: Outlier ratios for the ROI selections in the reference images in ℐ𝑅.
Image Barbara Elaine Goldhill Lena Mandrill Peppers Tiffany

𝑟0
5
30

3
30

3
30

3
30

1
30

3
30

1
30

As such, an ROI is considered to be an outlier if the distance of either 𝑥𝐶 and/or
𝑦𝐶 to the respective mean over all 30 selections is at least twice the corresponding
standard deviation. Based on the number of eliminated outliers we define an
outlier ratio for each of the images as

𝑟0 =
𝑅0

𝑅
(80)

where 𝑅0 is the number of eliminated ROI selections and 𝑅 is the number of all
ROI selections.

The outlier ratios for all images are summarised in Table 19. One can see
that the Barbara image exhibited the most outliers, which we believe is due to
the location of the ROI in the periphery of the image. The least outliers can be
observed for the ’Mandrill’ and ’Tiffany’ image, which are also the images with
the face being present to a larger extent in comparison to the other face images.
Hence, no other objects are present in the visual scene that may distract the
viewers’ attention away from the face.

8.1.5 Mean ROI

Similar to MOS from subjective quality experiments, we define mean ROI, ROI𝜇,
for all seven reference images. Despite the variability of ROI selections in some
of the images (see Section 8.1.2), we decided to only define one ROI𝜇 for each
of the reference images. The reasons for this decision are threefold. Firstly, and
most importantly, many of the ROI selections are overlapping or even include
each other. For instance, in the case of the Tiffany image people mostly chose
the eyes, the mouth, or the whole face. Thus, selecting the face as ROI includes
both eyes and mouth. Similar observations were made for the other images.
Secondly, in the context of wireless imaging we are aiming to keep the overhead
and computational complexity low. Since a higher number of deployed ROI is
directly related to an increased overhead, in terms of side information, and also
an increased complexity, in terms of the number of computed metrics, we decided
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Figure 40: Mean ROI for the reference images in ℐ𝑅 (black frame: before outlier
elimination; brightened area: after outlier elimination).

for only one ROI𝜇. Lastly, deploying only a single ROI𝜇 is in agreement with the
subjective experiment in which we asked the viewers to select a single ROI.

Considering the above, we defined one ROI𝜇 for each image as the mean
over all 30 ROI selections. In particular, the location of the ROI was computed
as the mean over all ROI centre coordinates 𝑥𝐶 and 𝑦𝐶 . The size of the ROI
was computed as the mean over all ROI dimensions 𝑥Δ and 𝑦Δ. The mean ROI
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Figure 41: Reduced-reference quality assessment using the ROI aware image qual-
ity metric.

are shown in Fig. 40. Here, the black frames and the bright areas, respectively,
indicate the ROI𝜇 before and after outlier elimination (see Section 8.1.4). One can
see that the shift of the ROI𝜇 after outlier elimination is most prominent for the
’Barbara’ image, which is in agreement with the largest number of outliers that
this image exhibited (see Table 19). The ROI𝜇 after outlier elimination (bright
area) are in the following used for the ROI aware image quality metric design.

8.2 Region-of-interest aware quality metric

An overview of the RR visual quality assessment framework (see Fig. 4) adapted
to the deployment of the ROI aware quality metric is presented in Fig. 41. The
first step at the transmitter is to detect the ROI in the image content. To facilitate
online ROI detection, one may in a practical application deploy automated ROI
detection algorithms to perform this task [138, 148]. However, in order to avoid
ROI detection errors and subsequent errors in the metric design, we use here the
mean ROI, ROI𝜇, from subjective experiment E3 as a ground truth for the ROI
in the reference images. The RR information is then extracted from the ROI and
BG of the original image. The ROI and BG RR information is then transmitted
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as side information along with the ROI locations. The respective RR information
is extracted from the ROI and the BG at the receiver and the quality metric is
independently computed on both, ROI and BG. In a final pooling stage, the ROI
and BG metrics are combined to establish the ROI aware quality metric.

In the following, we discuss the different steps included in the ROI aware
metric design and evaluate the performance of the framework on three image
quality metrics; NHIQM [16], SSIM [14], and VIF [73].

8.2.1 Segmentation into ROI image, 𝐼𝑅𝑂𝐼 , and BG image, 𝐼𝐵𝐺

The mean ROI coordinates after outlier elimination were used to segment all
reference and distorted images into ROI images, 𝐼𝑅𝑂𝐼 , and BG images, 𝐼𝐵𝐺. In
particular, the ROI images were obtained by cutting out the area according to
the mean ROI centre coordinates, 𝜇𝐶 , and the mean ROI dimensions, 𝜇Δ (see
Fig. 38). The BG images then comprised of the remainder of the images with the
pixels in the ROI set to zero.

8.2.2 ROI and background pooling

Let Φ be again our general definition of an image quality metric. Furthermore,
let Φ𝑅𝑂𝐼 be a metric computed on the ROI image, 𝐼𝑅𝑂𝐼 , and Φ𝐵𝐺 be a metric
computed on the BG image, 𝐼𝐵𝐺. The ROI aware quality metric Φ(𝑅𝐴) is then
obtained as a weighted combination of the metrics computed in ROI and BG,
Φ𝑅𝑂𝐼 and Φ𝐵𝐺. In particular, we deploy a variant of the Minkowski metric [210]
in order to obtain the final metric Φ𝑅𝐴 as

Φ(𝑅𝐴)(𝜔, 𝜅, 𝜈) = [𝜔 ⋅ Φ𝜅
𝑅𝑂𝐼 + (1− 𝜔) ⋅ Φ𝜅

𝐵𝐺]
1
𝜈 (81)

with 𝜔 ∈ [0, 1] and 𝜅, 𝜈 ∈ ℤ+. For 𝜅 = 𝜈, the expression in (81) is also known
as the weighted Minkowski metric. However, we have found that better quality
prediction performance can be achieved by allowing for the Minkowski parameters
𝜅 and 𝜈 to have different values.

The weight 𝜔 regulates the contribution of Φ𝑅𝑂𝐼 and Φ𝐵𝐺 to the overall
quality metric Φ(𝑅𝐴). With regards to our earlier conjecture that artifacts in the
ROI may be perceived more annoying than in the background, one would expect
the weight 𝜔 to have a value > 0.5, thus, giving the ROI metric a higher impact
on the overall metric in comparison to the BG metric.

In the scope of this thesis, we derive the optimal weight 𝜔(𝑜𝑝𝑡) and the optimal
Minkowski parameters 𝜅(𝑜𝑝𝑡) and 𝜈(𝑜𝑝𝑡) for three image quality metrics, NHIQM,
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Table 20: Optimal parameters of the ROI aware quality metrics Φ(𝑅𝐴).

𝜔(𝑜𝑝𝑡) 𝜅(𝑜𝑝𝑡) 𝜈(𝑜𝑝𝑡)

Δ
(𝑅𝐴)
𝑁𝐻𝐼𝑄𝑀 0.593 3.142 4.066

SSIM(𝑅𝐴) 0.823 4.062 0.534

VIF(𝑅𝐴) 0.978 2.928 0.798

SSIM, and VIF, thus yielding Φ(𝑅𝐴)(𝜔, 𝜅, 𝜈) ∈ {Δ(𝑅𝐴)
𝑁𝐻𝐼𝑄𝑀 ,SSIM(𝑅𝐴),VIF(𝑅𝐴)}.

The procedure to find the optimal parameters for these three metrics is discussed
in the following section.

8.2.3 Optimisation of perceptual relevance weights

The MOO framework introduced in detail in Section 5.1 is deployed here once
again to determine the optimal parameters 𝜔(𝑜𝑝𝑡), 𝜅(𝑜𝑝𝑡), and 𝜈(𝑜𝑝𝑡). The MOO
is conducted with respect to the same objectives 𝑂𝐴 and 𝑂𝐺 and with the Pear-
son linear correlation being computed between Φ(𝑅𝐴) and the MOS from the
subjective experiments E1 and E2 as

𝜌𝑃 =

∑
𝑘(Φ

(𝑅𝐴)
𝑘 − Φ

(𝑅𝐴)
)(ℳ𝑘 −ℳ)√∑

𝑘(Φ
(𝑅𝐴)
𝑘 − Φ

(𝑅𝐴)
)2
√∑

𝑘(ℳ𝑘 −ℳ)2
. (82)

The goals are defined here as 𝑂∗
𝐴 = −0.9 and 𝑂∗

𝐺 = 0.001 and the magnitudes
𝜆𝐴 and 𝜆𝐺 are set to the absolute values of the goals.

The optimal weights 𝜔(𝑜𝑝𝑡), 𝜅(𝑜𝑝𝑡), and 𝜈(𝑜𝑝𝑡) determined from the MOO are
shown in Table 20. As discussed in Section 5.1, these parameter sets are trade-
off solutions from a number of noninferior solutions and thus, the parameters are
considered to be optimal in a Pareto sense. It is interesting to note that the
weights 𝜔(𝑜𝑝𝑡) are larger than 0.5 for all three metrics, which confirms our earlier
conjecture that the ROI metrics should receive a higher weight due to the artifacts
in the ROI being more annoying than in the background. Also, one can see that
the optimal parameters for SSIM(𝑅𝐴) and VIF(𝑅𝐴) are fairly similar, meaning,
that both have a 𝜔(𝑜𝑝𝑡) at the higher end of the scale and a significantly larger
value for 𝜅(𝑜𝑝𝑡) as compared to 𝜈(𝑜𝑝𝑡). This is somewhat not unexpected since
it has been shown [232] that both metrics have very strong relationships in their
methodologies of objectively assessing perceived quality.
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Table 21: Comparison of quality prediction performance between the original
quality metrics Φ and the ROI aware quality metrics Φ(𝑅𝐴).

Metric Metric Predicted MOS

name 𝜌𝑃,𝑇 𝜌𝑃,𝑉 𝜌𝑃,𝑇 𝜌𝑃,𝑉 𝜌𝑆,𝑇 𝜌𝑆,𝑉 𝑅𝑀𝑆𝐸𝑇 𝑅𝑀𝑆𝐸𝑉 𝑟0,𝑇 𝑟0,𝑉

Δ𝑁𝐻𝐼𝑄𝑀 0.843 0.841 0.892 0.888 0.867 0.892 10.579 14.035 0.583 0.7

Δ
(𝑅𝐴)
𝑁𝐻𝐼𝑄𝑀 0.896 0.896 0.928 0.886 0.892 0.92 8.69 11.194 0.483 0.5

SSIM 0.582 0.434 0.697 0.628 0.558 0.347 16.733 18.498 0.7 0.9

SSIM(𝑅𝐴) 0.732 0.623 0.734 0.614 0.657 0.486 15.847 17.575 0.667 0.9

VIF 0.713 0.727 0.789 0.788 0.813 0.729 14.486 13.892 0.817 0.7

VIF(𝑅𝐴) 0.835 0.834 0.863 0.794 0.872 0.776 11.795 13.006 0.633 0.75

8.2.4 Quality prediction performance

The quality prediction performance of the ROI aware metrics is evaluated using
the performance indicators introduced in Section 3.6.3. The results are presented
in Table 21 for all three metrics and for the training and validation sets of images.
In addition, predicted MOS are presented that have been derived for all ROI aware
metrics. The results are compared to the quality prediction performance of the
original metrics, as they were presented in Table 13.

From Table 21 one can see that the prediction accuracy of the ROI aware

metrics, Δ
(𝑅𝐴)
𝑁𝐻𝐼𝑄𝑀 , SSIM(𝑅𝐴), and VIF(𝑅𝐴), could be improved as compared to

the original metrics Δ𝑁𝐻𝐼𝑄𝑀 , SSIM, and VIF, on both the training (T) and
validation (V) set. This is apparent not only in the Pearson linear correlation
coefficient 𝜌𝑃 but also in the RMSE. In particular, an improvement of about 5%

for 𝜌𝑃 can be observed for Δ
(𝑅𝐴)
𝑁𝐻𝐼𝑄𝑀 on both the training and validation set while

maintaining the excellent generalisation ability of Δ𝑁𝐻𝐼𝑄𝑀 . The improvement in
𝜌𝑃 is even better for SSIM(𝑅𝐴) for which 𝜌𝑃 could be increased by about 15-20%.
Here, the generalisation of SSIM(𝑅𝐴) is not quite as good which may be due to
SSIM already showing a lower correlation on the validation set, as compared to
the training set. Finally, VIF(𝑅𝐴) shows both a significant improvement in 𝜌𝑃 of
about 12% and a well maintained generalisation.

Similar observations as for the Pearson correlation 𝜌𝑃 can also be done for
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the Spearman correlation 𝜌𝑆 , which is improved for all three metrics, Δ
(𝑅𝐴)
𝑁𝐻𝐼𝑄𝑀 ,

SSIM(𝑅𝐴), and VIF(𝑅𝐴), on both the training and validation set. However, the
improvement seems to be less prevalent as for the Pearson correlation and also,
the generalisation ability is worse in the case of SSIM(𝑅𝐴) and VIF(𝑅𝐴). Both
phenomena may be explained by the optimisation being performed with respect
to the Pearson correlation rather than the Spearman correlation.

8.2.5 Illustrative examples

Given the results from the previous section, we have shown that the framework
for ROI aware metric design was successfully deployed to three contemporary
image quality metrics; Δ𝑁𝐻𝐼𝑄𝑀 , SSIM, and VIF. To further illustrate the quality
prediction performance improvement of the considered metrics we take a closer
look at the prediction values of all three metrics for particular images, ’Lena’ and
’Tiffany’, that are shown in Fig. 42 and Fig. 43, respectively. In both figures,
the images labelled with (a) contain mainly artifacts within the mean ROI, ROI𝜇,
determined from the ROI experiment E3 (see Section 8.1.5) whereas the images
labelled as (b) exhibit artifacts mainly in the BG. The images were selected taking
into consideration a similar degree of distortion between the ROI distorted and
the BG distorted images, thus, facilitating a better evaluation of the impact of the
ROI on perceived quality. The related quality predictions of Δ𝑁𝐻𝐼𝑄𝑀 , SSIM, and
VIF are given in Table 22 and Table 23 for image ’Lena’ and ’Tiffany’, respectively.
In the tables, the original quality metrics Φ are given as well as the ROI aware
quality metrics Φ(𝑅𝐴), along with all predicted MOS. It should be noted that for

Δ𝑁𝐻𝐼𝑄𝑀 and Δ
(𝑅𝐴)
𝑁𝐻𝐼𝑄𝑀 a higher value relates to lower quality, whereas for the

other metrics and the predicted MOS, a higher value indicates higher quality.

In the ROI distorted ’Lena’ image in Fig. 42(a) one can observe several dis-
torted rows crossing her face around the eyes and the nose. On the other hand, in
the BG distorted ’Lena’ image in Fig. 42(b) there are artifacts located in the up-
per right corner, outside of the ROI. From Table 22 one can see that the original
quality metrics Δ𝑁𝐻𝐼𝑄𝑀 , SSIM, and VIF and their related predicted MOS judge
the artifacts between the two images to have a similar impact on the overall qual-
ity of the image. This does not agree with the corresponding MOS, which exhibit
a difference between the images, with the ROI distorted image being of about
10% lower perceived quality. These MOS are particularly interesting, since from a
pure visibility point of view one would judge the artifacts in Fig. 42(b) to be more
apparent, as compared to the artifacts in Fig. 42(a). However, the location of the
artifacts in the eyes in Fig. 42(a) seems to outweigh this fact and therefore results
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Table 22: Comparison of the ROI aware quality metrics, Φ(𝑅𝐴), and the related
original quality metrics, Φ, for image ’Lena’.

Metric Artifact Quality metric Predicted MOS MOS

type location Δ𝑁𝐻𝐼𝑄𝑀 SSIM VIF MOS𝑁𝐻𝐼𝑄𝑀 MOS𝑆𝑆𝐼𝑀 MOS𝑉 𝐼𝐹

Φ ROI 0.095 0.97 0.969 72.713 76.23 70.397 49.6

BG 0.094 0.972 0.969 72.884 77.176 70.388 59.833

Φ(𝑅𝐴) ROI 0.158 0.656 0.758 59.101 67.088 57.046 49.6

BG 0.098 0.716 0.928 72.081 70.742 73.551 59.833

(a) (b)

Figure 42: Distorted ’Lena’ images, illustrating the annoyance of artifacts in the
ROI as compared to the BG: (a) artifacts in ROI and (b) artifacts in BG.

in a stronger perceived quality degradation compared to Fig. 42(b). Unlike the
original metrics, the ROI aware metrics Φ(𝑅𝐴) and their related predicted MOS
better account for this quality difference, as can be observed from the difference
of these metrics between the ROI distorted image and the BG distorted image.

Similar observations as for the image ’Lena’ can also be made for the image
’Tiffany’. In the ROI distorted image in Fig. 43(a), we find artifacts along the
mouth and nose and some additional artifacts in the eyes. In the BG distorted
image in Fig. 43(b) there are artifacts in the lower part of the image. Again,
the visibility of artifacts is considered to be higher in Fig. 43(b) as compared to
Fig. 43(a). This is also represented by all three original quality metrics in Table
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Table 23: Comparison of the ROI aware quality metrics, Φ(𝑅𝐴), and the related
original quality metrics, Φ, for image ’Tiffany’.

Metric Artifact Quality metric Predicted MOS MOS

type location Δ𝑁𝐻𝐼𝑄𝑀 SSIM VIF MOS𝑁𝐻𝐼𝑄𝑀 MOS𝑆𝑆𝐼𝑀 MOS𝑉 𝐼𝐹

Φ ROI 0.084 0.971 0.956 72.101 76.726 67.72 47.27

BG 0.116 0.97 0.939 66.576 76.362 64.42 55.33

Φ(𝑅𝐴) ROI 0.183 0.683 0.62 54.331 68.695 46.374 47.27

BG 0.096 0.912 0.972 72.537 83.856 78.533 55.33

(a) (b)

Figure 43: Distorted ’Tiffany’ images, illustrating the annoyance of artifacts in
the ROI as compared to the BG: (a) artifacts in ROI and (b) artifacts in BG.

23, which judge the quality of the ROI distorted image to be slightly better as
compared to the BG distorted image. However, this is again in disagreement with
the related MOS, as the observers judged the ROI distortions to result in a 8%
larger quality degradation, as compared to the BG distortions. The human quality
ratings are better captured by the ROI aware metrics Φ(𝑅𝐴), as the judgment order
of the original metrics is inverted to exhibit the same order as the MOS.
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9 Eye Tracking and Subjective Image Quality Ex-
periments

I n the previous chapter, we considered ROI as a means to identify the objects
and regions within a set of images that were of particular interest to a number

of human observers. In this case, higher semantic processes are actively deployed
by the observers to make an informed decision with respect to the perceived
interest of objects in the scene. On the other hand, the attention of observers
when viewing a natural scene is not only driven by the recognition of various
objects (e. g. faces, houses, etc.) but also by more basic image features, such
as colour, shape, size, orientation, and texture (see discussion in Section 1.5).
The visual attention (VA) to these features is usually stimulus driven and relates
to bottom-up attentional processes in the HVS. Thus, subjective experiments,
such as the ROI experiment that we conducted, are not sufficient to identify the
stimulus driven behaviour of human observers, as the observers were asked to
actively perform the selection task.

The most common procedure to obtain data that reflects the VA of human
observers is by means of eye tracking experiments [124]. In this chapter, we
report about an eye tracking experiment that we conducted at the University of
Western Sydney (UWS) in Campbelltown, Australia, to obtain subjective data
related to VA of human observers in natural images. The experiment comprised
of two parts, of which both served different purposes.

The first part was an eye tracking experiment in which the observers were
shown a number of natural images from three different image quality databases.
The experiment was conducted under task-free condition, meaning, that the par-
ticipants were not instructed with any particular tasks but were asked to just view
the images they were presented. The resulting gaze patterns recorded during this
experiment reflect the saliency of the corresponding image content. Hence, they
facilitate a better understanding of human viewing behaviour of natural image
content and may serve to incorporate VA models into image quality metrics.

The second part of the experiment was conducted to gain a better under-
standing of the human viewing behaviour when judging image quality. This is
of particular interest in the context of wireless imaging applications to identify
the degree to which the complex distortion patterns alter the viewing behaviour.
For this purpose, we recorded gaze patterns of human observers when judging the
quality of the test images used in experiments E1 and E2. As the eye tracking was
conducted under quality assessment task, the gaze patterns do not only reflect
the content of the images but also inherently account for the viewing behaviour
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of the observers when performing the quality rating task. To gain also a deeper
insight into the confidence of observers during quality assessment, we further col-
lected confidence scores provided by the participants and recorded the response
times needed to give a particular judgement. These quantities are considered to
be valuable complements to CI as a measure of reliability of MOS.

The task-free experiment and the task-based experiment are referred to as
experiments E4a and E4b, respectively. In the following sections, we first discuss
the details that were common to both experiments, such as the laboratory envi-
ronment, the eye tracker hardware, and the viewer panel. We then discuss the
particulars for each experiment including the test material and the test proce-
dures. This chapter thus serves to introduce the details of the experiments. An
elaborate analysis of the results is provided in Chapter 10 and in Chapter 11.

9.1 Details common to experiments E4a and E4b

Both experiments E4a and E4b were conducted at the School of Computing and
Mathematics of UWS. The experiment procedures were designed according to
ITU-R Rec. BT.500-11 [19].

9.1.1 Laboratory environment

The experiments were conducted in a laboratory with low light conditions. A Sam-
sung SyncMaster monitor of size 19” with a native screen resolution of 1280×1024
pixels was used for image presentation. The screen was placed in front of light
grey blinds and any objects around the monitor that may have distracted the ob-
servers’ attention were removed. The eye tracker was installed under the screen
and the participants were seated at a distance of approximately 60 cm, corre-
sponding to about four times the height of the presented images. A Snellen chart
was used to test the visual acuity of each participant prior to the first session.

9.1.2 Eye tracking hardware

An EyeTech TM3 eye tracker [233] was used to record the gaze of the human
observers during both experiments. A photo of the TM3 eye tracker is shown in
Fig. 44. The TM3 consists of an infrared camera and two infrared light sources,
one on either side of the camera. The accuracy with which the gaze is recorded
lies within 1 degree of visual angle (dva). The eye tracker records gaze points
(GP) at a rate of about 40-45 GP/s. A calibration of the TM3 for each person
is done before every session using a 16 point calibration screen.



132 9 Eye Tracking and Subjective Image Quality Experiments

Figure 44: EyeTech TM3 eye tracker [233] used in experiments E4a and E4b.

9.1.3 Viewer panel

A total of 15 people participated in the experiments who were mainly staff and
students from the Campbelltown campus of the University of Western Sydney.
The age ranged from 20 to 60 years with an average age of 42 years. Nine par-
ticipants were male and six were female. Twelve participants stated that they
were not involved with image analysis in their professional and private activities.
Three participants were or had been earlier somewhat involved with image analy-
sis; one with face recognition, one with astronomical imaging, and one with image
restoration.

9.2 Details of experiment E4a

Experiment E4a was conducted to obtain gaze patterns of a number of human
observers when viewing natural images under a task-free condition. These gaze
patterns are considered to be highly useful for image quality researchers to incor-
porate models of VA into their quality metrics. The details of the experiment are
outlined in the following.

9.2.1 Test material

In this experiment, the observers were presented the reference images of three
well known image quality databases; the IRCCyN/IVC database [36], the LIVE
database [37], and the MICT database [35]. In addition to the publicly available
test images in these databases, MOS from subjective quality experiments are also
provided for each image. The additional eye tracking data from our experiment
E4a then further facilitates to directly relate the quality perception (MOS) to the
saliency of the images (gaze patterns).

The three databases contain a total of 10 + 29 + 14 = 53 reference images,
however, 11 images have been used both in the LIVE and MICT databases. We
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used these images only once and as such, a total of 42 images was presented
to the participants. The three databases are introduced in the following and a
summary of the databases is additionally provided in Table 24:

IRCCyN/IVC Database: The IRCCyN/IVC database [36] has been established
by the Image and Video Communication (IVC) group of the Institut de Recherche
en Communications et en Cybernétique (IRCCyN) in Nantes, France. Ten images
of dimension 512×512 pixels were selected to create a total of 235 distorted
images using JPEG coding, JPEG2000 coding, locally adaptive resolution coding,
and blurring. Fifteen observers then rated the quality of the distorted images
as compared to the reference images using the double stimulus impairment scale
(DSIS) [19].

LIVE Database: The LIVE database [37] is provided by the Laboratory for
Image & Video Engineering (LIVE) of the University of Texas at Austin, USA.
Here, JPEG coding, JPEG2000 coding, Gaussian blur, white noise, and fast fading
were applied to create a total of 779 distorted images from 29 reference images.
The image widths are in the range of 480-768 pixels and the image heights are in
the range of 438-720 pixels. Between 20-29 observers rated the quality of each
image using a single stimulus (SS) assessment method.

MICT Database: The MICT database [35] has been made available by the
Media Information and Communication Technology (MICT) Laboratory of the
University of Toyama, Japan. The MICT database contains 168 distorted images
obtained from 14 reference images using JPEG and JPEG2000 source encoding.
The image widths and heights are, respectively, in the ranges 480-768 and 488-720
pixels. Sixteen observers rated the quality of the test images using the adjectival
categorical judgement (ACJ) method [19].

9.2.2 Test procedure

The 42 images were presented to the participants in random order. Each image
was shown for 12 s with a mid-grey screen shown between images for 3 s. The
mid-grey screen contained a fixation point in the center which the participants
were asked to focus on. As such, it was assured that the observation of each
image started at the same location. Given the presentation times and the number
of images, the length of each session was about 10min.
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Table 24: Overview of the IRCCyN/IVC, LIVE, and MICT databases.

Database IRCCyN/IVC [36] LIVE [37] MICT [35]

Number of reference images 10 29 14

Number of test images 235 779 168

Image widths 512 480-768 480-768

Image heights 512 438-720 488-720

Number of observers/image 15 20-29 16

Assessment method DSIS SS ACJ

During the whole experiment the gaze of the observers was recorded using the
TM3 eye tracker. The participants were instructed to simply watch the images
they were presented, without specifying any further task. As such, the gaze
patterns recorded during this experiment serve as a ground truth regarding the
saliency of the presented images.

9.2.3 Recorded data and post-processing

The TM3 tracks both eyes at the same time and records individual GP for each
eye. An overall GP is then computed as the average between the two eyes. In
addition, the TM3 records if an eye has been tracked in a particular time instance
(eye status flag). If none of the two eyes could be tracked (for instance due to
blinking) then the previous GP is recorded. Given the recording rate of the eye
tracker and the presentation time of each image, we recorded about 480-540 GP
per person and image. Thus, the total number of GP of all participants for a
particular image adds up to approximately 7200-8100 GP/image. An example
image visualising the total number of GP in an image is presented in Fig. 45.

The recorded data needs to be post-processed for two important reasons.
Firstly, to eliminate GP that do not contribute to VA. From a technical viewpoint,
such GP may include recordings for which the eye status flag indicated that none
of the eyes could be tracked in a particular time instance. On the other hand,
from a biological viewpoint, GP recorded during saccades need to be eliminated
as VA is suppressed during these rapid eye movements.

Secondly, the GP need to be transformed into a more meaningful represen-
tation of the observers’ attention. This can be comprehended when looking at
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Figure 45: Visualisation of the GP of all 15 participants in experiment E4a.

Fig. 45, where the vast amount of GP does not easily reveal what the observers
actually focused on. For this reason, the gaze patterns are typically converted
into visual fixation patterns or saliency maps. The post-processing of the GP into
these representations is discussed in Section 11.1 where the resulting saliency
maps are consulted for further analysis.

9.3 Details of experiment E4b

Experiment E4b was conducted with the aim to gain a better understanding of
human behaviour when judging image quality. This is particularly interesting in
the context of wireless imaging distortions, as the range of distortions and the var-
ious distortion distributions constitute a difficult scenario for quality assessment.
To achieve this goal, we recorded in addition to the quality scores also confidence
scores and response times of the observers. As in experiment E4a, the TM3 eye
tracker was used to record the gaze patterns of the observers to obtain valuable
information with regards to the viewing behaviour during quality assessment.

9.3.1 Test material

In this experiment, the participants were shown the reference and distorted images
from the image sets ℐ𝑅, ℐ1, and ℐ2, that were already used in experiments E1
and E2. For this purpose, two equal-sized sets ℐ𝐴 and ℐ𝐵 were created randomly
from ℐ1 and ℐ2. In addition, the reference images ℐ𝑅 were randomly mixed into
both ℐ𝐴 and ℐ𝐵 , resulting in each of the sets containing a total of 47 images.
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Table 25: Subjective rating scales for quality and confidence as used in experiment
E4b.

Quality Score Confidence

Very Good 5 Very High

Good 4 High

Fair 3 Medium

Bad 2 Low

Very Bad 1 Very Low

9.3.2 Test procedure

The observers were presented the image sets ℐ𝐴 and ℐ𝐵 in random order in two
consecutive sessions of about 10min each. Each image was shown for approxi-
mately 8 s with a 5 s mid-grey screen presented between images. The TM3 eye
tracker was used to record the gaze patterns of the participants throughout the
experiment.

As we recorded the gaze patterns of the observers using the eye tracker, we
conducted the quality assessment using a single stimulus method, thus having
only one image presented on the screen at a time. The participants were asked
to rate the image quality on a 5-point scale, with 5 being the highest quality. To
minimise distraction of the participants during image viewing, and consequently to
reduce unwanted alternation of the gaze patterns, the participants were instructed
to do the rating during the grey screen presented between the images

In addition to the quality scores (QS) the participants were asked to provide
confidence scores (CS) on a 5-point scale, as a measure of how difficult is was
to judge the quality of a particular image. The observers were thus instructed to
provide a higher CS if the corresponding quality judgement was considered to be
easy, and vice versa. Both the quality scale and the confidence scale, as used in
the experiment, are shown in Table 25. Here, the scales have intentionally been
laid out to be very similar to ease the quality and confidence rating task for the
observers.

As an additional and non-intrusive measure of confidence, the response times
(RT) that the participant took to provide both the QS and the CS have been
recorded by the experimenter. The RT was measured as the total time from the
appearance of the grey screen after image presentation to the final judgement of
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Figure 46: Visualisation of the GP of all 15 participants in experiment E4b for:
(a) ’Lena’ reference image and (b) ’Lena’ distorted image.

both QS and CS by the observer. The participants were not made aware of the RT
being recorded, as this would have possibly impacted on their rating behaviour.

In order for the participants to have an idea about the range of distortions
in the test images and to adapt to the assessment procedure, a set of 7 training
images was shown prior to the test images of the first session. The training images
covered a wide range of artifact types and severities.

9.3.3 Recorded data

Given the number of observers, we recorded 15 QS, CS, and RT values for each
image. The analysis of these quantities and in particular the relationships amongst
them is discussed in detail in Chapter 10. Fifteen gaze patterns were further
recorded for each image. Considering the recording rate of the eye tracker and the
image presentation time, we recorded about 320-360 GP per person and image.
Thus, the total number of GP for a particular image adds up over all participants
to approximately 4800-5400 GP/image. Two example images visualising the total
number of GP are presented in Fig. 46(a) and Fig. 46(b), respectively, for the
’Lena’ reference image and for a distorted ’Lena’ image. From the gaze patterns
one can already observe a tendency of the GP to be shifted towards the distortion
in the lower half of the image. However, as with the GP from experiment E4a,
these GP need further processing into visual fixation patterns and saliency maps,
which is explained in Section 11.1.
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10 Observer Confidence During Image Quality As-
sessment

R ating the quality of images is not always an easy task for a human observer,
as there can be many different types of distortions introduced into the image

during the processes of capture, source coding, communication, and display. In
particular, the error-prone transmission channel can be a source of a variety of
different artifacts being present within the same image, thus, making the task of
quality judgement significantly more difficult. This is further complicated by the
often localised distortion distributions, in which case the observer may experience
difficulty to judge overall image quality as a trade-off between distorted regions
and otherwise undistorted regions of the image. In this respect, MOS obtained
from subjective experiments have a varying level of reliability as to how well
they represent the subjective perception of image quality as an average over a
population of observers. Furthermore, MOS alone do not reflect the difficulty
that an observer experienced when judging image quality.

In order to measure the reliability of a particular MOS, confidence intervals
(CI) and related standard errors (SE) are usually computed to quantify the vari-
ation in quality rating between participants. A smaller CI reflects stronger agree-
ment between the observers whereas a larger CI suggests a stronger disagreement
between the observers with respect to the perceived quality of the rated images.
However, there are different sources of variation that are reflected by CI and SE
of which we consider three of the most influential ones to be the following:

S1: Preference: The perception of visual quality is subjective and as such,
can be very different from observer to observer. Thus, there is usually a
disagreement between the ratings provided by different observers related
to their preference of different artifacts. This is particularly given in the
context of quality assessment between images containing various distortion
types and distributions. For instance, some observers may find blocking
artifacts to be more annoying compared to blur artifacts, but other observers
may perceive blur to be more annoying. Therefore, the personal preference
of different observers regarding the distortions contained in the images is
one source of variation contained in CI and SE.

S2: Detection: Depending on the strength of the distortions and the masking
effects of the underlying visual content, some observers may detect distor-
tions that others do not detect. As such, the observers that detected the
distortions are likely to provide a lower quality score compared to the ob-
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servers that consider the image content to be undistorted. This factor of
variation in the CI and SE is strongly related to attentional mechanisms, as
different viewers look at different things and thus have different likelihood
of detecting distortions depending on the location of their appearance.

S3: Confidence: The difficulty that observers face when judging image quality
depends on many factors including the distortion types, distortion distribu-
tions, distortion strengths, and the interaction of the distortions with the
underlying image content. Given these factors, the difficulty of judging the
quality of an image may vary strongly between images. The difficulty in
quality judgement that observers experience is reflected in the confidence
with which they provide a particular quality score and is considered here to
be a source of variation in the CI and SE.

In this chapter, we are particularly interested in evaluating the confidence
with which an observer rates the quality of an image and how the confidence
is related to the corresponding quality ratings and the SE. The evaluation is
based on the confidence scores (CS) and response times (RT) in relation to the
quality scores (QS) which were all obtained from the subjective experiment E4b,
as explained in Chapter 9. The RT has been widely used in psychophysics [234]
and is considered here as an alternative, non-intrusive measure of confidence, as
it may be inconvenient to require too much information from a participant during
a subjective experiment.

The analysis in this chapter is undertaken considering three hypotheses, which
are based on intuitive expectations regarding the relationship between the different
quantities obtained in experiment E4b. To be more precise, we hypothesise that:

H1. It is easier to rate an image if its quality is either very good or very bad while
images of medium quality are harder to judge. As a measure of difficulty
when judging image quality we consider a CS given by a human observer.

H2. The confidence of a human observer when rating the quality of an image
is strongly related to the RT of the quality rating. As such, we expect a
longer RT for images that are harder to judge.

H3. Observer confidence can be predicted with reasonable accuracy based on
the given QS in combination with the RT measured. Such a confidence
prediction may be used as a measure of reliability of a particular MOS in
addition to CI and SE.

The goals of this chapter are thus twofold. Firstly, we aim to establish rela-
tionships of CS and RT with QS and their corresponding SE, obtained from the
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subjective image quality experiment E4b (see Chapter 9). This serves to identify
the degree to which the disagreement between observers is related to their con-
fidence in relation to the quality judgements given and might provide valuable
insight into the perception of the complex distortion patterns observed in wire-
less imaging applications. Secondly, we aim to model the prediction of mean CS
based on QS, RT, and SE, as a non-intrusive measure of observer confidence to
complement the usually computed CI and SE.

In relation to the three sources (S1, S2, S3) that we identified to have a major
influence in the CI, the disagreement between observers can then be broken down
into the impact of observer ’preference’ and distortion ’detection’ on one hand
and observer ’confidence’ on the other hand. Future studies could take this one
step further by also assessing the individual impact of ’preference’ and ’detection’,
for instance, by deploying appropriate surveys and rating scales in the experiment,
respectively. However, this is outside the scope of this thesis.

In the following sections, we first analyse the different scores (QS, CS, RT)
individually and then discuss a detailed analysis of their interrelation. Different
models for mean CS prediction are then established based on the QS, RT, and
SE. It should be noted that we focus in this chapter on the quality assessment
outcomes of experiment E4b in terms of QS, CS, and RT, disregarding the eye
tracking data. The related gaze patterns are analysed in Chapter 11.

10.1 Analysis of quality scores, confidence scores, and re-
sponse times

In this section, we analyse the QS, CS, and RT independently from each other.
Given the 94 images that have been presented to the 15 viewers in experiment
E4b, a total of 1410 values were available for each of the three quantities. Where
applicable, we conducted the analysis independently for the image sets ℐ𝑟 and
ℐ𝑑 to allow for comparison between the reference images and distorted images,
respectively.

10.1.1 Distributions of subjective scores

The distributions of the QS, CS, and RT are presented in Fig. 47(a)-(c), respec-
tively. The value of each quantity is given along the abscissa and the number of
each value is shown on the ordinate.

Considering the two sets of reference images, ℐ𝑟, and distorted images, ℐ𝑑, in
its entirety, one can see in Fig. 47(a) that the whole spectrum of QS values from
1 to 5 was covered by the participants, with a tendency for values towards the
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Figure 47: Distribution of the quantities for the reference and distorted images
obtained in experiment E4b: (a) QS, (b) CS, and (c) RT.

middle of the scale. This indicates that the test images covered a wide range of
distortions relating to strongly varying perceived quality. Regarding the reference
images only; these cover mainly the upper range of quality, as would be expected.

A different scoring behaviour can be observed in Fig. 47(b) for the CS values,
where mainly the upper range of the scale has been covered. This applies both
to the reference images and the distorted images. In fact, only 1 out of the total
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Table 26: Statistical analysis of QS, CS, and RT for distorted images, ℐ𝑑, and
reference images, ℐ𝑟.

Image Measured Statistical measure

type quantity 𝜇 𝜎 𝛽 𝛾

QS 2.758 1.157 0.160 2.223

ℐ𝑑 CS 4.252 0.773 -0.770 3.052

RT [s] 1.534 0.754 2.058 8.939

QS 4.662 0.513 -1.318 5.024

ℐ𝑟 CS 4.600 0.636 -1.669 5.918

RT [s] 1.318 0.511 1.907 10.724

1410 CS has been given as CS=1.
The continuous RT are presented as a histogram in Fig. 47(c). Here, each bin

represents the number of RT that fall within a 100ms range. It can be seen that
the peaks of this distribution fall within 1-1.5 s for the distorted images. For the
reference images the tallest bins lay around 0.8-1 s. Apart from a few exceptions,
the RT for the reference images tend to go up to 2.5 s whereas the distribution
of RT for the distorted images stretches beyond 4.5 s. This indicates that the
participants could provide faster decisions for undistorted reference images that
were considered to be of perfect quality.

10.1.2 Statistical analysis

A statistical analysis of QS, CS, and RT is provided in Table 26 to reveal further
insight into the results obtained for these three quantities. In particular, the mean
𝜇, the standard deviation 𝜎, the skewness 𝛽, and the kurtosis 𝛾 (see Section 2.3.1)
are presented for all three quantities and independently for the reference images,
ℐ𝑟, and the distorted images, ℐ𝑑.

The statistics in the table confirm earlier observations that the CS are on
average higher and the RT are on average lower for the reference images, as
compared to the distorted images. The lower standard deviation of all three
quantities on the reference images indicates that the observers were in higher
agreement as compared to the distorted images. All distributions apart from QS
on the distorted images are strongly skewed to either higher or smaller values,
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which is revealed by the positive and negative values of the parameter 𝛽. To
be precise, the RT are asymmetrically spread towards higher values whereas the
CS are asymmetrically spread towards lower values. Finally, the kurtosis 𝛾 shows
that only the QS and CS for the distorted images experience a close to normal
distribution, whereas all other quantities exhibit a leptokurtic distribution resulting
in a more acute peak around the mean, as compared to a normal distribution.
The RT experience especially high kurtosis values caused by the few very long
RT as compared to the considerably lower mean RT.

10.1.3 Consistency over time

Assuming that the observers gain, to some degree, experience with quality eval-
uation with the number of images they have rated, one could expect that the
CS and the corresponding RT may, respectively, increase and decrease during the
progression of the subjective experiment. On the other hand, as we assured that
a wide range of distortions was covered in both sessions and considering that we
presented training images covering the range of distortions, it is desirable that
the average QS should not vary too much between the sessions.

Given the above, we compare the averages of QS, CS, and RT between the
first and the second session to see whether there are any changes in the rating
behaviour. The averages over all observers and images of QS, CS, and RT are
shown for both sessions in Fig. 48. It can be seen that, as anticipated, the QS
does not change dramatically for both the reference images ℐ𝑟 and the distorted
images ℐ𝑑. On the contrary to our assumptions, however, the CS and RT averages
also do not change much between the two sessions. The RT decreases slightly in
the second session but the CS remain almost the same. This indicates that the
confidence of the observers remained stable throughout the experiment and that
the training session was sufficient in developing a level of confidence already in
the first session.

10.2 Interrelation between quality scores, confidence scores,
and response times

In this section, we analyse the relationship between the QS, CS, and RT. For this
purpose, we define the means over all participants for each of the images. In
particular, the mean quality scores (MQS) are denoted as 𝜇𝑄𝑆 , the mean confi-
dence scores (MCS) are denoted as 𝜇𝐶𝑆 , and the mean response times (MRT) are
denoted as 𝜇𝑅𝑇 . It should be noted that the acronym MQS is used here instead
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Figure 48: Comparison of average QS, CS, and RT between the two sessions.

of MOS to distinguish these scores from the MCS, which are also opinion-based
scores and could thus be abbreviated with MOS.

10.2.1 QS-CS pairs

We hypothesised that it may be easier for a human observer to judge the quality
of images at either end of the quality scale and that it may be harder to judge
quality in the middle range of qualities (see H1). As such, one would expect high
CS at either end of the quality scale. This hypothesis is related to the narrower
CI at either end of the quality scale, as observed in the analysis of the MOS of
experiments E1 and E2 (see Section 2.3.2 and in particular Fig. 8). However, in
this earlier analysis it was not clear as to how much these narrower CI are actually
related to the observers’ confidence or are just a result of the limits of the quality
scale.

More light is shed onto this issue by a combined analysis of the QS and CS
obtained in subjective experiment E4b. The number of particular combinations
of QS and CS as given by the participants are shown in Fig. 49. One can see that
for QS at both the high end of the scale (QS = 5) and the low end of the scale
(QS = 1), the confidence of the majority of human observers has been very high.
This very high confidence drops towards the middle of the quality scale. However,
one can see that the lower values of CS (≤ 4) are predominant in the middle of
the quality scale. These observations confirm hypothesis H1 and further indicate
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Figure 49: Number of occurrences of pairs of QS and CS.

that the narrower CI are not just due to the scale limits but may also be related
to the observers confidence during quality assessment.

10.2.2 Average RT for QS and CS

We further hypothesised that RT may be longer for images that are harder to
judge since the participant might require more time to make a decision (see H2).
This may in turn be inversely related to the CS, meaning, a higher confidence
should result in a quicker response. Thus RT may provide an indirect measure of
observer confidence.

The average RT over all participants and all images are shown in Fig. 50
for both CS and QS. In alignment with our hypothesis one can see that the RT
increases with the CS decreasing from 5 to 3. However, for lower CS the RT seems
to drop, which is especially given for CS = 1. This seems at first contradictory, as
one would expect a longer RT for a lower CS. It should be noted here though that
there was only a few ratings CS=2 and in fact only one single rating CS=1. As
such, it is hard to evaluate the validity of these values and further experimental
data might be needed to achieve stronger statistical power of the results and



146 10 Observer Confidence During Image Quality Assessment

1 2 3 4 5
1

1.2

1.4

1.6

1.8

2

Score

A
ve

ra
ge

 r
es

po
ns

e 
tim

e 
[s

]

Quality scores (QS)
Confidence scores (CS)

Figure 50: Average RT (with standard error of the mean) over all participants
and images relating to particular QS and CS.

hence, be able to draw stronger conclusions. As it is, the rating CS=1 could
possibly constitute an outlier.

From Fig. 50 one can also observe that the RT are increasing towards the
middle of the quality scale, which is in alignment with the decreasing CS towards
the middle of the quality scale (see Fig. 49). This suggests that RT is indeed
related to CS and as such, reveals information about the confidence of an observer
during image quality assessment.

10.2.3 Regression analysis

The relationship between the mean scores, MQS, MCS, and MRT, is further
evaluated using regression analysis. We additionally relate these three scores to
the SE of the MQS, 𝜎ℳ𝑛 , which is computed as follows

𝜎ℳ𝑛 =
𝜎ℳ√
𝑛

(83)

with 𝜎ℳ being the standard deviation of the MQS and 𝑛 being the number of
observers over which the MQS was computed, here 𝑛 = 15.

Similar to the discussions in Sections 2.3.2 and 3.5.6, we considered the classes
of polynomial, exponential, power, and logistic functions to establish relationships
between the different quantities. It turned out that first and second order polyno-
mials most suitably represented these relationships. The resulting fitting curves
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Table 27: Fitting functions with corresponding parameters and goodness of fit
measures for MQS, MCS, MRT, and SE.

Variable Fitting curve Parameters 𝑅2 RMSE SSE

MCS vs MQS 𝑝2𝑥
2+𝑝1𝑥+𝑝0 𝑝2=0.199 0.681 0.170 2.641

𝑝1=−1.183

𝑝0=5.809

MRT vs MQS 𝑝2𝑥
2+𝑝1𝑥+𝑝0 𝑝2=−0.134 0.512 0.159 2.299

𝑝1=0.827

𝑝0=0.395

SE vs MQS 𝑝2𝑥
2+𝑝1𝑥+𝑝0 𝑝2=−0.026 0.539 0.030 0.083

𝑝1=0.155

𝑝0=−0.039

MCS vs MRT 𝑝2𝑥
2+𝑝1𝑥+𝑝0 𝑝2=0.832 0.516 0.201 4.005

𝑝1=−3.423

𝑝0=7.527

SE vs MCS 𝑝1𝑥+𝑝0 𝑝1=−0.077 0.269 0.038 0.132

𝑝0=0.488

SE vs MRT 𝑝1𝑥+𝑝0 𝑝1=0.086 0.195 0.040 0.145

𝑝0=0.030

between all possible pairs of MQS, MCS, MRT, and SE are shown in Fig. 51(a)-
(f). The corresponding prediction functions and goodness of fit measures are
presented in Table 27.

It can be seen from Fig. 51(a) that the MCS are higher at either end of the
MQS scale, confirming the observations on the individual CS scores in relation to
QS (see Section 10.2.1). Both MRT and SE over MQS exhibit similarly shaped
fitting curves with the lowest values at either end of the MQS scale, as can be seen
in Fig. 51(b) and Fig. 51(c), respectively. It is interesting to point out that MCS,
MRT, and SE are best fitted with MQS, using a quadratic polynomial function
with a strong symmetry of the corresponding fitting curves around the center of
the quality scale (MQS=3). The squared correlation coefficient 𝑅2 indicates that
MCS exhibits the strongest relation to MQS, followed by SE and MRT.

As for the other relationships; it can be seen from Fig. 51(d) and the cor-
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Figure 51: Fitting curves and 95% CI for distorted images ℐ𝑑 and reference images
ℐ𝑟 for: (a) MCS over MQS, (b) MRT over MQS, (c) SE over MQS, (d) MCS
over MRT, (e) SE over MCS, and (f) SE over MRT.
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responding goodness of fit measures that MCS and MRT also exhibit a strong
relationship, whereas the relation of both MCS and MRT to SE is rather weak.
In fact, both MCS and MRT seem to be rather uncorrelated to SE, which is a
strong indication that the other sources of variation in SE, as discussed earlier at
the beginning of Chapter 10, have a strong impact on the magnitude of a par-
ticular SE of the MQS. It is also worth noting the symmetry of the linear fitting
curves in Fig. 51(e) and Fig. 51(f), revealing the inversely oriented (though weak)
relationships of MCS and MRT with SE.

10.2.4 Correlation analysis and bootstrap estimation of the standard error

The above findings show that there is a strong relationship between MQS, MCS,
and MRT and also between MQS and SE. In fact, MCS, MRT, and SE are not
directly related to MQS but rather to the distance of MQS to the middle of the
quality scale 𝑚𝑄𝑆 = 3. To be precise, MCS increases with the distance of MQS
from 𝑚𝑄𝑆 = 3 to the scale limits, whereas MRT and SE decrease towards the
scale limits. For further analysis we therefore define a delta-MQS (DQS) measure
as follows

𝜇Δ
𝑄𝑆 = ∣𝜇𝑄𝑆 −𝑚𝑄𝑆 ∣. (84)

We then compute the Pearson linear correlation coefficient, 𝜌𝑃 , and the Spearman
rank order correlation coefficient, 𝜌𝑆 , for all combinations of 𝜇Δ

𝑄𝑆 , 𝜇𝐶𝑆 , 𝜇𝑅𝑇 , and
𝜀𝑠 to establish a full overview of the interdependencies.

All correlations are presented in Table 28 where negative values indicate that
the corresponding quantities are inversely related to each other. The correlation
coefficients give further evidence of the strong interdependencies between DQS,
MCS, and MRT. This is particularly given for DQS and MCS with correlations
above 0.8. These observations are true for both the Pearson correlation 𝜌𝑃 and the
Spearman correlation 𝜌𝑆 . The SE on the other hand experience lower correlations
with all three measures, but in particular with MCS and MRT.

We conduct a bootstrap analysis [235] to estimate the standard errors of the
correlation coefficients presented in Table 28. In general, bootstrap methods are
used for assessing uncertainty in parameter estimation and for empirical estimation
of sampling distributions, when the form of the population of which the samples
were drawn is unknown. Let 𝑋 = [𝑥1, 𝑥2, . . ., 𝑥𝑛] be a sample of size 𝑛, drawn
from a sample space Ω, and let 𝜚𝑏 be a statistic of interest for which we want
to estimate the standard error. The idea is then to treat 𝑋 as if it represents
the entire sample space Ω and use a Monte Carlo algorithm [236] to evaluate the
statistic of interest in three steps:
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Table 28: Pearson linear correlation coefficient 𝜌𝑃 (above diagonal) and Spearman
rank order correlation coefficient 𝜌𝑆 (below diagonal).

DQS MCS MRT SE

DQS 1.000 0.825 −0.714 −0.620

MCS 0.809 1.000 −0.697 −0.519

MRT −0.715 −0.698 1.000 0.441

SE −0.521 −0.483 0.393 1.000

1. Create a bootstrapped sample 𝑋̂ = [𝑥̂1, 𝑥̂2, . . ., 𝑥̂𝑛] by drawing 𝑛 values
with replacement from 𝑋, meaning, that each value in 𝑋̂ is drawn from the
whole sample 𝑋 as 𝑥̂𝑖 ∈ [𝑥1, 𝑥2, . . ., 𝑥𝑛], 𝑖 ∈ [1, 𝑛]. Thus, some values 𝑥𝑖

may be present in 𝑋̂ several times whereas others may be entirely absent.
This process is repeated 𝐵 times, resulting in 𝐵 bootstrapped samples
𝑋̂𝑏, 𝑏 ∈ [1, 𝐵].

2. Evaluate the statistic of interest 𝜚𝑏(𝑋̂𝑏) for each bootstrapped sample 𝑋̂𝑏.

3. Compute the standard deviation over all 𝜚𝑏 as a bootstrap estimate of the
standard error as follows

𝜎𝐵𝑆 =

√√√⎷ 1

𝐵 − 1

𝐵∑
𝑏=1

(𝜚𝑏(𝑋̂𝑏)− 𝜇𝜚𝑏
)2 (85)

with 𝜇𝜚𝑏
being the mean over 𝜚𝑏(𝑋̂𝑏) of all bootstrapped samples 𝑋̂𝑏.

The accuracy of the bootstrap estimate improves with the number of boot-
strapped samples 𝐵. In [237], the number of bootstrapped samples chosen was
𝐵 = 1000, to obtain a reasonably accurate bootstrap estimate of the statistic of
interest. However, as computational capacities have significantly improved over
the past two decades, we chose 𝐵 = 100000 to further improve the accuracy of
our bootstrap estimate of the standard error.

The statistics of interest are the Pearson linear correlation coefficients, 𝜌𝑃 , and
the Spearman rank order correlation coefficient, 𝜌𝑆 . For each of the six possible
combinations of DQS, MCS, MRT, and SE we randomly create the 𝐵 = 100000
bootstrapped samples on which both 𝜌𝑃 and 𝜌𝑆 are computed. The estimated
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Table 29: Estimated standard errors for Pearson linear correlation coefficient
𝜌𝑃 (above diagonal) and Spearman rank order correlation coefficient 𝜌𝑆 (below
diagonal).

DQS MCS MRT SE

DQS 0 0.035 0.045 0.069

MCS 0.045 0 0.05 0.076

MRT 0.052 0.056 0 0.081

SE 0.094 0.092 0.095 0

standard errors of the correlations over all bootstrapped samples are presented
in Table 29. The corresponding normalised density estimates [238] are shown in
Fig. 52(a) and Fig. 52(b) for 𝜌𝑃 and 𝜌𝑆 , respectively.

One can see from Table 29, that the standard errors for the correlations be-
tween DQS-MCS, DQS-MRT, and MCS-MRT are considerably smaller, as com-
pared to the standard errors for the correlations of DQS-SE, MCS-SE, and MRT-
SE. This is also reflected in the narrower but taller density estimates in Fig. 52. In
fact, the correlations between DQS-MCS, DQS-MRT, and MCS-MRT are almost
exclusively far above 0.5, whereas the correlations between DQS-SE, MCS-SE,
and MRT-SE exhibit a considerable amount of correlations well below 0.5. Given
these standard error estimates, the high correlations between DQS-MCS, DQS-
MRT, and MCS-MRT can indeed be considered to be of high certainty, unlike the
correlations of the three measure DQS, MCS, and MRT with SE. This is further
evidence that DQS, MCS, and MRT exhibit a stronger interrelation as compared
to the relation of each of these quantities to the SE.

10.3 Observer confidence prediction

From the analysis in the previous sections it is apparent that MCS is strongly
related to both DQS and MRT. Even though both DQS and MRT already provide
a reasonable indication of an observers confidence when rating image quality, one
may suspect that a combination of DQS and MRT could result in a further
improvement of confidence prediction (see H3). Although SE exhibits only a
minor interdependence with MCS, as compared to DQS and MRT, consideration
of SE in a combinatorial prediction model may provide further improvement of
confidence prediction. In this section, we thus aim on modelling the prediction of
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Figure 52: Normalised distributions over 100000 random bootstrap samples for:
(a) Pearson linear correlation coefficient 𝜌𝑃 and (b) Spearman rank order corre-
lation coefficient 𝜌𝑆 .

observer confidence based on DQS, MRT, and SE.

10.3.1 Combinatorial prediction model

Similar to (81), we use a variant of the Minkowski metric to combine the different
factors DQS, MRT, and SE into a confidence prediction model. In this respect,
we look into two different classes of models. The first class, denoted as M𝑗 ,
𝑗 ∈ {1, 2, 3}, incorporates the factors directly into the combinatorial prediction
model, whereas with the second class, M∗

𝑗 , the factors are mapped to MCS before
being incorporated into the combinatorial model. For this purpose, polynomial
mapping functions are used, similar to the ones presented in Table 27.

For each of the two model classes, M𝑗 and M∗
𝑗 , we consider three different

combinations of DQS, MRT, and SE. The first combination is based only on DQS
and MRT, keeping in mind that SE has a rather weak interrelation with MCS.
Secondly, we define models based on only DQS and SE, given that these two
quantities are readily available after an image quality experiment and no RT have
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to be recorded. Finally, all three factors DQS, MRT, and SE are incorporated
into a model. The respective models of these three combinations are denoted as
M1, M2, and M3 for the first model class and as M∗

1, M
∗
2, and M∗

3 for the second
model class.

Given the above, the resulting six confidence prediction models that are taken
into account in this thesis are given as follows:

M1 : 𝜇
(𝑀1)
𝐶𝑆 (𝜔1, 𝑝) =

[
𝜔1 ⋅ (𝜇Δ

𝑄𝑆)
𝑝 + (1− 𝜔1) ⋅

(
1

𝜇𝑅𝑇

)𝑝] 1
𝑝

M∗
1 : 𝜇

(𝑀∗
1 )

𝐶𝑆 (𝜔1, 𝑝) =
[
𝜔1 ⋅ (𝜇(𝑄𝑆)

𝐶𝑆 )𝑝 + (1− 𝜔1) ⋅ (𝜇(𝑅𝑇 )
𝐶𝑆 )𝑝

] 1
𝑝

M2 : 𝜇
(𝑀2)
𝐶𝑆 (𝜔1, 𝑝) =

[
𝜔1 ⋅ (𝜇Δ

𝑄𝑆)
𝑝 + (1− 𝜔1) ⋅

(
1

𝜎ℳ𝑛

)𝑝] 1
𝑝

M∗
2 : 𝜇

(𝑀∗
2 )

𝐶𝑆 (𝜔1, 𝑝) =
[
𝜔1 ⋅ (𝜇(𝑄𝑆)

𝐶𝑆 )𝑝 + (1− 𝜔1) ⋅ (𝜇(𝑆𝐸)
𝐶𝑆 )𝑝

] 1
𝑝

M3 : 𝜇
(𝑀3)
𝐶𝑆 (𝜔1, 𝜔2, 𝜔3, 𝑝) =

[
𝜔1 ⋅ (𝜇𝑄𝑆)

𝑝 + 𝜔2 ⋅
(

1
𝜇𝑅𝑇

)𝑝
+ 𝜔3 ⋅

(
1

𝜎ℳ𝑛

)𝑝] 1
𝑝

M∗
3 : 𝜇

(𝑀∗
3 )

𝐶𝑆 (𝜔1, 𝜔2, 𝜔3, 𝑝) =
[
𝜔1 ⋅ (𝜇(𝑄𝑆)

𝐶𝑆 )𝑝 + 𝜔2 ⋅ (𝜇(𝑅𝑇 )
𝐶𝑆 )𝑝 + 𝜔3 ⋅ (𝜇(𝑆𝐸)

𝐶𝑆 )𝑝
] 1

𝑝

(86)
where 𝑝 ∈ ℤ+ is the Minkowski parameter [209] and 𝜔𝑖 ∈ [0, 1], 𝑖 ∈ {1, 2, 3},
are the relevance weights that control the contribution of the different factors to
the overall prediction model. The optimal parameters 𝑝 and 𝜔𝑖 are obtained by
exhaustive search in the parameter space.

The functions 𝜇
(𝑄𝑆)
𝐶𝑆 , 𝜇

(𝑅𝑇 )
𝐶𝑆 , and 𝜇

(𝑆𝐸)
𝐶𝑆 as part of the models M∗

1, M
∗
2, and

M∗
3 are represented by the following polynomial mapping functions

𝜇
(𝑄𝑆)
𝐶𝑆 = 𝑝1 ⋅ 𝜇Δ

𝑄𝑆 + 𝑝0

𝜇
(𝑅𝑇 )
𝐶𝑆 = 𝑝2 ⋅ 𝜇2

𝑅𝑇 + 𝑝1 ⋅ 𝜇𝑅𝑇 + 𝑝0

𝜇
(𝑆𝐸)
𝐶𝑆 = 𝑝1 ⋅ 𝜎ℳ𝑛 + 𝑝0 (87)

where the parameters 𝑝0, 𝑝1, and 𝑝2 are determined through linear regression.

10.3.2 Model performance evaluation using cross-validation

We use k-fold cross-validation (CV) [239] to train and validate each of the six mod-
els presented in (86). Cross-validation is a resampling strategy used to validate
the performance of prediction models by random sub-sampling of the available
data. To be more precise, the original data is randomly subdivided into 𝑘 sets. In
each CV step, 𝑘 − 1 sets are then used for model training and the remaining set
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Table 30: Confidence prediction performance indicators for all six models.

Model number M1 M∗
1 M2 M∗

2 M3 M∗
3

Training 𝜌𝑃 0.845 0.844 0.825 0.825 0.84 0.844

𝜌𝑆 0.828 0.826 0.809 0.808 0.823 0.826

𝑅𝑀𝑆𝐸 0.159 0.159 0.168 0.168 0.161 0.159

𝑟0 0.489 0.461 0.544 0.57 0.474 0.461

Validation 𝜌𝑃 0.863 0.868 0.862 0.862 0.868 0.867

𝜌𝑆 0.815 0.822 0.83 0.834 0.813 0.826

𝑅𝑀𝑆𝐸 0.152 0.153 0.161 0.161 0.154 0.153

𝑟0 0.464 0.461 0.544 0.558 0.528 0.461

Test 𝜌𝑃 0.84 0.844 0.821 0.822 0.836 0.843

𝜌𝑆 0.858 0.859 0.838 0.838 0.84 0.859

𝑅𝑀𝑆𝐸 0.177 0.175 0.186 0.186 0.179 0.176

𝑟0 0.579 0.579 0.684 0.684 0.684 0.579

is used for model validation. This procedure is repeated 𝑘 times with each of the
𝑘 sets being used exactly once for the model validation. The results over the 𝑘
folds are then averaged to determine a performance estimation of the prediction
model.

In addition to the training and validation sets, we also leave out a number
of images for a final performance test of the model, based on averaged model
parameters determined from the CV. For this purpose, we split the set of 94
images used in experiment E4b into 10 approximately equal sized sets of 9 to 10
images. Eight of these sets are then randomly selected and used for an 8-fold CV,
whereas the remaining two sets are combined into a test set. We then perform the
8-fold CV for the six models and analyse their performance on both training set
and validation set. The performance of the prediction models in relation to the
MCS is evaluated using the indicators described in Section 3.6.3. As a result, for
each of the 8 folds, we obtain a set of model parameters and a set of confidence
prediction performance indicators. These parameters and performance indicators
are then averaged over all 8 folds. The averaged model parameters are then used
to compute the final model which is evaluated on the test set.

The confidence prediction performance indicators are presented in Table 30
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Table 31: Average model parameters over the 8 folds determined on the training
sets in the cross-validation.

Model number M1 M∗
1 M2 M∗

2 M3 M∗
3

𝑝 2.939 15.123 0.486 13.846 0.864 15.624

𝑤1 0.196 0.689 0.988 0.98 0.643 0.813

𝑤2 - - - - 1 0.366

𝑤3 - - - - 0.01 0.01

𝑝2 - - - 0.831 - -

𝑝1 - 0.484 - -3.432 - -3.464

𝑝0 - 3.8 - 7.541 - 4.853

for all six models and for training, validation, and test sets. The corresponding
model parameters are presented in Table 31 where 𝑝 and 𝜔𝑖 relate to the models
in (86) and 𝑝0, 𝑝1, and 𝑝2 relate to the mapping functions in (87).

By comparing the prediction performance of the models between training,
validation, and test sets, one can see that all models generalise very well. This
applies, in particular, to the validation set where the performance indicators are
very competitive with the corresponding performance indicators on the training
set. The confidence prediction performance on the test set is very comparable for
the correlation coefficients but slightly worse for the RMSE and the outlier ratio,
𝑟0. However, generally one can conclude that all models are able to generalise
well to unknown images.

Comparison of the confidence prediction performance indicators between the
different models reveals that generally the models based on DQS and MRT (M1,
M∗

1) and the models based on DQS, MRT, and SE (M3, M
∗
3) are superior to the

models based on DQS and SE (M2, M
∗
2). In fact, the correlation coefficients

of the models M2 and M∗
2 on the test set are very similar to the correlations

between DQS and MCS presented in Table 28, indicating that the SE does not
contribute to an overall improved confidence prediction performance. This can
also be comprehended by the negligibly small weight that SE receives in both
models M2 and M∗

2, as shown in Table 31. The models M3 and M∗
3 (incorporating

SE) provide very similar performance to the models M1 and M∗
1 (disregarding

SE), which is additional evidence of the negligible contribution of SE. On the
other hand, the improved correlation coefficients of the models M1 and M∗

1 in
comparison to the correlation between DQS and MCS (see Table 28) indicate a
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Figure 53: MCS versus predicted MCS, MCS𝑀1, using prediction model M1.

positive impact of the MRT being included into the confidence prediction model.
It can further be observed that the performance between the two model classes

M𝑗 and M∗
𝑗 is very similar, which applies to all three combinations of DQS, MRT,

and SE. This suggests that both model classes are equally suitable to combine
the different factors into an overall prediction model. Given that M𝑗 generally
needs less parameters, and is thus less complex, as compared to M∗

𝑗 , one may in
fact consider M𝑗 as the preferred class of models for the factor pooling.

Finally, with respect to the factor weights 𝜔𝑖 it should be noted, that they
do not only reflect the importance that each factor carries with respect to the
overall prediction model. The weights also inherently compensate for the mag-
nitude differences between the different factors DQS, MRT, and SE as they are
represented on different scales. This is particularly true for the model class M𝑗

where all factors are included directly and without mapping to a common scale.
With model class M∗

𝑗 , on the other hand, all factors are mapped onto the MCS
scale and thus, the weights relating to M∗

𝑗 better reflect the relative importance
of the different factors on the overall prediction model.

Given the above, we consider M1 as the preferred model for observer confi-
dence prediction. The reason being, its equal to superior prediction performance
and lower complexity in comparison to the other models. A scatter plot of the
MCS over the predicted MCS using model M1, MCS𝑀1, is presented for the test
set in Fig. 53, along with a linear fit and 95% CI.
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11 Task-Free and Task-Based Visual Attention in
Natural Images

I n the previous chapter, we evaluated in detail the relationship between QS, CS,
and RT from the experiment E4b. In this chapter, we analyse the gaze patterns

obtained in both experiments E4a and E4b. The aim of this analysis is to gain a
better understanding of human viewing behaviour when observing natural image
content, both under task-free condition and under quality assessment task.

In this respect, we first discuss the post-processing of the GP into visual
fixation patterns (VFP) and saliency maps (SM). The SM of experiment E4a
represent the visual saliency of the image content, since the gaze patterns were
recorded under task-free condition. The SM of experiment E4b, on the other
hand, not only reflect the content saliency but also the viewing strategy deployed
by the observers when judging the image quality.

The analysis of the SM from experiment E4a focuses on the variation of
the viewing behaviour of the different observers. The motivation for this being
that SM are widely used as a ground truth for VA modelling, similar to MOS
which constitute a ground truth for quality models. However, little is known
regarding the variation of gaze patterns between different observers that are used
as a basis for the creation of the SM. To shed some light on this issue, we
analyse in this chapter the SM of the individual observers in relation to each
other and in relation to the image content. The discussion in this chapter is thus
not restricted to the image communication context but is thought to be a more
general contribution towards more reliable SM as a ground truth for VA modelling,
which can subsequently be integrated into quality metric design.

The analysis of the gaze patterns obtained in experiment E4b serves to better
understand human viewing behaviour when assessing quality of images containing
complex distortion patterns. In particular, we evaluate the relative impact of the
image content and the distortions on the SM of the human observers. It is
revealed, that the selected ROI from experiment E3 (see Section 8.1) are strongly
connected to the SM from experiment E4b. This is in agreement with the findings
by Elazary et al. [240] and Masciocchi et al. [154], who showed that SM from
VA models predict objects of interest well above chance. However, the SM from
our experiment were obtained under quality assessment task when viewing images
with distortions well in the suprathreshold regime. The outcomes reveal that the
quality of images is mainly assessed in the ROI, even in the presence of strong
distortions.

It should be noted, that the analysis and discussions provided in the following
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sections are by no means considered to be exhaustive. The results presented are
instead intended to provide some insight into human viewing behaviour during
both, task-free and task-based (quality assessment task) viewing of natural im-
ages. We further discuss some open issues that have in our opinion not been
sufficiently addressed by the image quality research community when incorporat-
ing visual saliency into image quality models.

11.1 Processing of gaze patterns

The gaze patterns recorded in the subjective experiments E4a and E4b are post-
processed into VFP and SM to obtain a more meaningful representation of the
attentional behaviour of the observers when viewing the presented images. For
this purpose, the gaze patterns are first converted into fixations by disregard-
ing those GP that have been recorded during saccades and GP that have been
recorded while none of the two eyes were tracked. The resulting VFP for each of
the images then represents the locations and durations of the observers’ focus of
attention (FoA).

The human retina is highly space variant in processing and sampling of visual
information. The accuracy is highest in the central point of focus, the fovea,
and decreases strongly with increasing eccentricity to the fovea. Therefore, visual
information is not only captured by the fovea but also by the photoreceptors
surrounding it. To account for this gradually decreasing sampling accuracy, the
fixations are further filtered using a Gaussian kernel resulting in a final SM. The
processing of GP into VFP and SM is explained in detail in the following sections.

11.1.1 Creation of visual fixation patterns

A pseudo code for the creation of VFP from GP is provided in Algorithm 1 [241].
Here, the GP for a particular viewer and image are scanned in sequential order.
The GP are assigned to clusters 𝒞𝑗 according to a pre-defined threshold 𝜏𝑐𝑙𝑢𝑠.
For this purpose, the mean 𝜇(𝑗) over all GP in the current cluster is computed,
including the new 𝐺𝑃 (𝑖) at a particular time instance 𝑖. If the distance of 𝐺𝑃 (𝑖)
to the mean 𝜇(𝑗) is below the threshold 𝜏𝑐𝑙𝑢𝑠, then 𝐺𝑃 (𝑖) is added to the current
cluster 𝒞𝑗 . If the distance is above the threshold, the current cluster 𝒞𝑗 is saved,
the counter 𝑗 is increased by one, and 𝐺𝑃 (𝑖) is added to the next cluster 𝒞𝑗 .
After the clustering process, each cluster is considered to be a fixation ℱ𝑛 if it
contains at least a pre-defined number, 𝐹𝑚𝑖𝑛, of GP. The value 𝜏𝑐𝑙𝑢𝑠 was chosen
with respect to the size of the presented image on the screen and the viewing
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Algorithm 1 Pseudo code for creation of visual fixation patterns [241].

define cluster threshold 𝜏𝑐𝑙𝑢𝑠
define minimum number of fixations 𝐹𝑚𝑖𝑛

set counter 𝑗 = 1
create first cluster 𝒞𝑗
for 𝑖 = 1 to number of GP do
compute mean 𝜇(𝑗) of 𝐺𝑃 (𝑖) plus all GP in 𝒞𝑗
compute Euclidean distance 𝛿(𝑖) of 𝐺𝑃 (𝑖) to mean 𝜇(𝑗)
if 𝛿(𝑖) < 𝜏𝑐𝑙𝑢𝑠 then
enter 𝐺𝑃 (𝑖) into cluster 𝒞𝑗

else
save current cluster 𝒞𝑗
increase counter 𝑗 = 𝑗 + 1
create new cluster 𝒞𝑗
enter 𝐺𝑃 (𝑖) into 𝒞𝑗

end if
end for
save current cluster 𝒞𝑗
for 𝑘 = 1 to 𝑗 do
compute number 𝑁𝐺𝑃 of GP in 𝒞𝑘
if 𝑁𝐺𝑃 ≥ 𝐹𝑚𝑖𝑛 then
ℱ𝑛 = 𝒞𝑘

end if
end for

distance as 𝜏𝑐𝑙𝑢𝑠 = 20. The value for 𝐹𝑚𝑖𝑛 was chosen as 𝐹𝑚𝑖𝑛 = 4, representing
a commonly used lower threshold of about 100ms, above which the clustered GP
are considered to be a fixation.

11.1.2 Creation of saliency maps

The pseudo code for the creation of SM from the VFP is given in Algorithm
2. Here, we first initialise the SM, 𝐼𝑆𝑀 , and enter the fixations by means of
single-pixel peaks. The amplitude of the peaks is in correspondence with the
fixation lengths which are in turn given by the number of GP that each fixation
is based on. The SM is then convolved with a Gaussian filter kernel 𝜙𝐺, as
illustrated in Fig. 54, to obtain 𝐼𝑆𝑀,𝜙. We chose maximum filter dimensions
of 𝑥𝑚𝑎𝑥 = 𝑦𝑚𝑎𝑥 = 105 pixels and a standard deviation of 𝜎 = 𝑥𝑚𝑎𝑥/3 = 35
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Algorithm 2 Pseudo code for creation of saliency maps.

initialise the saliency map 𝐼𝑆𝑀 with zeros
for 𝑝 = 1 to number of participants do
add fixations ℱ(𝑝) to 𝐼𝑆𝑀

end for
create a Gaussian filter kernel 𝜙𝐺

convolve 𝐼𝑆𝑀 with 𝜙𝐺 → 𝐼𝑆𝑀,𝜙

normalise 𝐼𝑆𝑀,𝜙 into the range [0...1] → 𝐼𝑆𝑀,𝜙

multiply the image with 𝐼𝑆𝑀,𝜙 for visualisation

pixels. The part above the grey threshold constitutes the area of the filter kernel
that covers the corresponding pixels in the image which are processed with high
acuity by the fovea. This threshold assumes a size of the fovea of 2 dva and
further depends on the screen resolution of 1280 × 1024 pixels and the viewing
distance of 60 cm. The final SM is then created by normalising 𝐼𝑆𝑀,𝜙 into a range
of [0 . . . 1] with higher values indicating more salient pixels. For visualisation of
the saliency, the corresponding image is multiplied pixel-by-pixel with the SM,
resulting in salient regions to receive more brightness compared to the remainder
of the image.

11.2 Inter-observer saliency variation in task-free image view-
ing

As with any data recorded in experiments that involve human observers, a certain
level of variability is expected between the gaze patterns, and thus the resulting
SM, of the participants. The degree to which the SM vary between the partic-
ipants depends strongly on the saliency of the image content. Hence, images
that contain regions of strong saliency, and therefore attract much of the view-
ers’ attention, may have more consistent SM between the viewers, whereas SM
related to images without strong salient regions may experience larger discrepan-
cies. Generally, however, SM are treated as being equally relevant and reliable as
a ground truth for VA modelling, disregarding the inter-observer variability and
the content of the image. In this respect, it is of interest to quantify the variabil-
ity between the SM of the observers and thus, obtain some insight regarding the
reliability of the associated SM for different image content.

The above discussion is in line with related procedures conducted in quality
assessment where, for instance, the variability of the given quality scores between
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Figure 54: Gaussian filter kernel with 𝜎 = 35 pixels. The area above the grey
threshold indicates the pixels that are captured by the fovea of the human eye.

observers is quantified using CI and the related SE. Subjective scores that are
far away from the majority of the votes are often eliminated as outliers. Similar
considerations could be taken into account with regards to gaze patterns obtained
from eye tracking experiments to obtain SM that are more robust and reliable.

In this section, we therefore analyse the inter-observer saliency variations based
on the gaze patterns and associated SM obtained from experiment E4a. We are
particularly interested in analysing the variation of the saliency between observers
and its dependance on the visual saliency of the content. This provides valuable
insight into the reliability of SM created for particular image content. Ultimately,
it may serve to define criteria for outlier detection and removal of observers to
obtain more reliable SM to be used as a ground truth for the design of VA
models. Through the analysis in this section we aim on providing evidence towards
answering questions such as: How reliable is a particular set of saliency data? Are
there big variations between observers? Do the variations depend on the image
content? Can one identify outlier SM and exclude these observers?

To further advance VA modelling research in relation to image quality as-
sessment, we made the gaze patterns from eye tracking experiment E4a publicly
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Figure 55: Example of highly correlated saliency maps with 𝜌
(𝑖)
𝑃 (𝑂𝑚, 𝑂𝑛) = 0.968

for image ’lenat’.

Figure 56: Example of nearly uncorrelated saliency maps with 𝜌
(𝑖)
𝑃 (𝑂𝑚, 𝑂𝑛) =

0.000321 for image ’house/kp22’.

available in the Visual Attention for Image Quality (VAIQ) database. Details
about the VAIQ database can be found in Appendix C. Here, the reader can
also find a visualisation of the SM overlayed on the natural image content. The
original names from the quality databases are provided below each of the figures.
The SM in Appendix C will also be referred to in the following analysis.

11.2.1 Cross-correlation analysis

As a basis for the following analysis, we created SM for each observer and image,
resulting in a total of 15× 42 = 630 SM. A pixel-based cross-correlation analysis
[242] of the SM is then conducted to determine the variability between the SM
with respect to the different observers and the different content, using the Pearson
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linear correlation coefficient as follows:

𝜌
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(88)

Here, 𝑆𝑀 (𝑖,𝑚) and 𝑆𝑀 (𝑖,𝑛) are, respectively, the SM of the observers 𝑂𝑚 and
𝑂𝑛 for the 𝑖𝑡ℎ image, 𝑥 ∈ [1, 𝑋] and 𝑦 ∈ [1, 𝑌 ] are, respectively, the horizontal

and vertical pixel coordinates, and 𝑆𝑀
(𝑖,𝑚)

and 𝑆𝑀
(𝑖,𝑛)

denote the respective
mean pixel values. The correlation coefficient is computed in the range from
-1 to 1, with a larger value corresponding to higher similarity between the SM.
Examples of highly correlated and nearly uncorrelated SM of two observers are
shown in Fig. 55 and Fig. 56, respectively.

11.2.2 Distribution of cross-correlations

We start by analysing the cross-correlations 𝜌
(𝑖)
𝑃 (𝑂𝑚, 𝑂𝑛) between all 𝑁𝑂 = 15

observers and for all 𝑁𝐼 = 42 images to gain a general idea about the distribution

of 𝜌
(𝑖)
𝑃 (𝑂𝑚, 𝑂𝑛), disregarding particular viewers and image content. Given the

number of observers, we computed 105 cross-correlations for each image, resulting
in a total of 4410 cross-correlations over all 42 images. A histogram of the cross-
correlations is shown in Fig. 57. It can be seen, that by large the majority of
the cross-correlations are positive, indicating general agreement between the SM
of the observers. In fact, the highest cross-correlation between two observers

was computed as 𝜌
(𝑖)
𝑃 (𝑂𝑚, 𝑂𝑛) = 0.968 for the image ’lenat’ (see Fig. 55). On

the other hand, there is also a considerable amount of 𝜌
(𝑖)
𝑃 (𝑂𝑚, 𝑂𝑛) around zero

and in the negative range of the scale, indicating low agreement between the
corresponding SM.

To formalise the distribution of all cross-correlations we conducted a curve
fitting of the histogram considering different fitting functions. A mixture of two
Gaussian distributions turned out to provide the best goodness of fit. The fitting
curve is shown in Fig. 57 and the fitting function is given as

𝑦(𝑥) = 67.04 ⋅ 𝑒−( 𝑥−90.77
40.73 )

2 − 16.53 ⋅ 𝑒−( 𝑥−138.5
10.41 )

2

(89)

with a squared correlation coefficient 𝑅2 = 0.963 and a root mean squared error
RMSE = 4.876. The maximum of the distribution is located at a correlation
coefficient 𝜌

(𝑖)
𝑃 (𝑂𝑚, 𝑂𝑛) = 0.51.
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Figure 57: Histogram and fitting curve of cross-correlations 𝜌
(𝑖)
𝑃 (𝑂𝑚, 𝑂𝑛) over all

observers and all images.

11.2.3 Observer related analysis

In case of subjective quality assessment it is common practice to determine sub-
jective quality scores that are far away from the majority of the votes, to classify
them as outliers, and to exclude them from the final MOS. Analogously, one may
also want to determine gaze patterns or SM that are significantly different from
the majority of the SM and as such, represent viewing behaviour of an observer
that is drastically different from the other observers. The difference can, of course,
be due to many reasons that are not necessarily easy to determine. For instance,
the observer may have not payed close attention to the experiment or he/she just
had a different interest in the image content, compared to the majority of the
observers.

We identify the agreement between all observers by averaging the cross-
correlations between two observers, 𝑂𝑚 and 𝑂𝑛, over all 42 images as

𝜌𝑃,𝑂(𝑂𝑚, 𝑂𝑛) =
1

𝑁𝐼

𝑁𝐼∑
𝑖=1

𝜌
(𝑖)
𝑃 (𝑂𝑚, 𝑂𝑛). (90)

The averaged correlations are presented in Fig. 58 with red indicating the highest
correlation and dark blue relating to the lowest correlation. One can see that
observers 1, 3, and 10 exhibit comparably lower correlations to the majority of the
other observers, showing low agreement with the larger population of observers.
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Figure 59: Mean cross-correlations over 42 images and 14 observers.

One could suspect that observers 1, 3, and 10 may correlate well with each other,
however, the cross-correlations between these observers are also very low.

To further illustrate the low agreement of these three observers we additionally
compute the marginal distribution of the correlations in Fig. 58 by averaging the
cross-correlations for a particular observer over all other 14 observers. The result
is shown in Fig. 59. Here it is even more apparent that observers 1, 3, and 10
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have a significantly lower correlation with the other observers, indicated by the
gap between observer 3 and observer 11 (highlighted by the red arrow). Therefore,
one could regard observers 1, 3, and 10 as outliers and consider them for exclusion
from the final SM creation. More specific criteria would of course be needed upon
which to base such a decision about outlier SM, similar to the ones defined by
VQEG for MOS [202].

11.2.4 Content related analysis

In this section, we identify the degree to which the content of the image impacts
on the agreement between the SM of the different observers. For this purpose we
average all cross-correlations for a particular image as

𝜌𝑃,𝐼(𝑂𝑚, 𝑂𝑛) =
2

𝑁𝑂(𝑁𝑂 − 1)

𝑁𝑂−1∑
𝑚=1

𝑁𝑂∑
𝑛=𝑚+1

𝜌
(𝑖)
𝑃 (𝑂𝑚, 𝑂𝑛). (91)

The results are presented in Fig. 60 in order of decreasing 𝜌𝑃,𝐼(𝑂𝑚, 𝑂𝑛). It is
interesting to note that there is a strong dependence of the cross-correlations on
the content of the images. In fact, the average cross-correlations range from as
high as 0.682 for the ’barba’ image to as low as 0.225 for the ’bikes’ image. There
does not appear to be any strong drop of the correlations but rather a gradual
decrease over all images, indicating that there is a large variety of content and
saliency covered in the images used in the experiment. It is further interesting to
point out that the standard error over all correlations does not appear to be very
different between the image contents.

A few more findings are briefly highlighted in the following. Firstly, all images
that exhibit faces (human and animal) and human beings are found in the upper
half of the correlations, thus showing stronger agreement between the SM of the
observers. This is rather expected as humans and their faces are well known to
attract attention. One exception is the image ’bikes’ which also contains humans
but has the lowest average correlation in the considered set of images. This is
thought to be due to two reasons. Firstly, the humans are wearing helmets, thus
hiding the faces which would otherwise attract attention. Secondly, there are
several humans present, thus representing multiple salient regions. The latter
phenomenon is also apparent in the image ’rapids’, which contains multiple hu-
mans but experiences only an average correlation. On the other hand, the image
’mandr’ contains only one face but also experiences an average correlation. This
is found to be due to the area of the image that the face covers; as it is very large,
different people look at different parts of the face. Finally, a very high correlation
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Figure 60: Mean cross-correlations, 𝜌𝑃,𝐼(𝑂𝑚, 𝑂𝑛), over all 15 observers.

was computed for the image ’cemetry’. This image does not contain any humans
or faces, but instead contains a plaque with text on it, which drew most of the
viewers’ attention.

To summarise these observations, images that have regions or objects that are
known to be salient, such as humans, faces, animals, and text, generally result
in higher correlations of the SM. However, if there are multiple salient regions
present in the image, or if the salient region is too small or too large, then the
agreement between observers drops which can be observed in an decline of the
cross-correlations.

11.3 Visual attention during image quality assessment

Unlike the SM created from experiment E4a (see Section 11.2), the SM from
experiment E4b do not directly reflect the saliency of the visual content, as the
gaze patterns were recorded under quality assessment task. Hence, the gaze
patterns inherently reflect the search strategies that human observers deploy when
analysing an image to provide a final judgement of the overall quality. The
resulting SM are thus strongly based on top-down attentional viewing behaviour
in addition to the bottom-up attention. This is further increased as the content of
the images presented in experiment E4b has been repeated numerous times and
as such, the observers became familiar with the visual scenes they were shown.
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Barbara Goldhill Mandrill

Figure 61: Example images visualising the heat maps created from the gaze
patterns of experiment E4b.

Given the above, we analyse in this section the human viewing behaviour when
assessing image quality. We are particularly interested in the relative importance
of image content and distortions on the gaze patterns, and the resulting SM. In
this respect, we aim to gain insight into what type, strength, and distribution of
distortions are attended to perform the quality assessment task. We are further
interested in evaluating whether the region of analysis changes between different
distorted images of the same content, and how much the changes are content and
distortion dependent. We reveal that the ROI obtained from experiment E3 (see
Section 8.1) are strongly connected to the SM obtained in experiment E4b. This
result is largely independent of the distortion types, strengths, and distributions.

For illustration, some SM are presented in Fig. 61 for the reference images
’Barbara’, ’Goldhill’, and ’Mandrill’. The SM were visualised as heat maps (HM)
and superimposed over the image content. A red area in the HM indicates highest
saliency whereas a dark blue area indicates lowest saliency, with the intermediate
saliency levels in between. The grey areas represent regions that have not been
attended. The SM for all reference images and distorted images obtained in
experiment E4b are presented in Appendix D. In particular, the HM for the
reference images, ℐ𝑟, are shown in Fig. 93 and Fig. 94 whereas the HM for the
distorted images, ℐ𝑑, are presented in Fig. 95-101.

11.3.1 Consistency of viewing behaviour between the two sessions

To determine the impact of the distortions on the viewing behaviour of the par-
ticipants we need a reference SM to which the SM of the distorted images can
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Table 32: Pearson linear correlation coefficient, 𝜌𝑃 , between the saliency maps
of the reference images from the first and second session.

Barbara Elaine Goldhill Lena Mandrill Peppers Tiffany

𝜌𝑃 0.973 0.978 0.946 0.952 0.914 0.912 0.966

be compared to. For this purpose we consult the SM computed on the seven ref-
erence images ℐ𝑟. As each reference image has been presented twice during the
experiment, once in the first session and once in the second session, we can also
evaluate the consistency of the observers’ viewing behaviour when being presented
the same image twice.

The HM for the reference images are shown in Fig. 93 and Fig. 94 of Appendix
D, with the left column containing the SM created from the gaze patterns of the
first session and the middle column presenting the SM created from the gaze
patterns of the second session. The SM in the rightmost column have been
created using the gaze patterns from both sessions. In addition, the Pearson
linear correlation coefficients, 𝜌𝑃 , between the SM from the first and second
session are given in Table 32 for all reference images.

One can clearly see from Fig. 93 and Fig. 94, that for all seven contents of
the reference images, the SM between the first and the second session are very
similar. This observation is supported by the very high correlation coefficients,
which are all well above 0.9. In fact, the images ’Barbara’, ’Elaine’, ’Lena’, and
’Tiffany’ even exhibit correlations above 0.95 between the SM. These images
contain humans and their faces which have already been shown in Section 8.1
to be of high interest to the observers. It can be seen here that these images
with more dominant ROI also exhibit a more consistent viewing behaviour of the
observers, as compared to the images with less dominant ROI, such as ’Peppers’,
or with multiple ROI, such as ’Mandrill’.

Particularly worth noting is the high correlation of the SM for the image
’Barbara’. This image experienced a wider spread of the ROI selections, which
was assumed to be due to the off-center location of Barbara’s face and the other
salient objects in the scene. However, the viewing behaviour during image quality
assessment is very stable with the highest saliency in the face, followed by salient
regions on the legs and the object on the table.

In relation to the image ’Goldhill’ it is interesting to see the strong saliency on
the man walking down the street. This strong focus is even more pronounced in
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the SM of the second session as compared to the first session, which may suggest
that more people would have detected the man by then. In any case, this is a
strong indication that people are searching for distortions in objects and regions
that they are particularly interested in.

The lowest correlations are exhibited by the images ’Mandrill’ and ’Peppers’.
In the case of the former image, this is thought to be due to the face, and thus the
ROI, covering the entire visual scene. Hence, there is no distinct fixation point
as with the images that contain smaller ROI. Furthermore, ’Mandrill’ contains
several ROI in terms of the eyes, the mouth, and the large nose. On the other
hand, the image ’Peppers’ does not contain any strong ROI, which explains the
more spread and inconsistent SM.

11.3.2 Visual attention to structural distortions

The viewing behaviour can be considered to be fairly consistent on the reference
images with the highest saliency coinciding well with the ROI from experiment
E3. As such, changes in the SM can be related to changes in the image content
in terms of distortions. To evaluate the search strategies of the observers when
assessing the distorted images, we thus analyse the HM of the distorted images,
ℐ𝑑, which are presented in Fig. 95-101 of Appendix D. The images are sorted
with respect to the decreasing MOS of experiments E1 and E2. In particular,
images 1-40 represent the images used in experiment E1, sorted with decreasing
MOS. Images 41-80 represent the images used in experiment E2, also sorted with
decreasing MOS. The reason for keeping the order as in experiments E1 and E2
being, that the reader can relate the visual examination of the HM to the feature
metrics presented in Section 3.1, and in particular Fig. 11.

We quantify the difference of the SM on the distorted images compared to
the corresponding SM on the reference images with the correlation coefficient
𝜌𝑃 . Here, we use the reference SM that were computed using the gaze patterns
from both sessions (the right column in Fig. 93 and Fig. 94 of Appendix D).
The correlations for all distorted images are presented in Fig. 62. One can see
that for all seven reference image contents there is a wide spread of correlations.
In general, however, there seems to be a tendency of the images with higher
viewing consistency on the reference images (see Section 11.3.1) to also have
a higher consistency with respect to the distorted images. To shed some more
light on this, we computed the average, 𝜇𝜌, and standard deviation, 𝜎𝜌, over
all correlations related to a particular image content, which are summarised in
Table 33. Here one can clearly see that ’Elaine’, ’Lena’, and ’Tiffany’ have a
comparably higher correlation than ’Goldhill’, ’Mandrill’, and ’Peppers’, which is
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Figure 62: Pearson linear correlation coefficient, 𝜌𝑃 , between the saliency maps
of all distorted images and their corresponding reference images.

in alignment with the results presented on viewing consistency in Section 11.3.1.
The only exception being here, once again, the image ’Barbara’, which has shown
high viewing consistency on the reference images but exhibits a lower correlation
on the distorted images. This indicates that the distortions shifted the FoA to
other regions of the image, in addition to the highly salient face, for the quality
assessment to be performed.

We attempted to further determine quantitative relationships between the
distortions contained in an image and the related SM computed from the gaze
patterns of all observers. However, the relationship between these two factors
seems highly complex and not as intuitive as one might expect. For instance,
one could suspect, that strongly distorted images more significantly change the
SM as compared to weakly distorted images, as the content of the underlying
image is more severely altered. This would mean that the correlations presented
in Fig. 62 would gradually decrease with the image numbers increasing from 1
to 40 and from 41 to 80, as this relates to stronger distortions and lower related
MOS, which is obviously not the case.
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Table 33: Average, 𝜇𝜌, and standard deviation, 𝜎𝜌, of the Pearson linear corre-
lation coefficient, 𝜌𝑃 , between the saliency maps over all distorted images and
their corresponding reference images.

Barbara Elaine Goldhill Lena Mandrill Peppers Tiffany

𝜇𝜌 0.87 0.969 0.904 0.931 0.81 0.868 0.923

𝜎𝜌 0.045 0.022 0.055 0.038 0.069 0.051 0.035

Given the above, we conducted a qualitative analysis of the HM presented in
Fig. 95-101 of Appendix D in relation to the distortions in the images. The major
observations can be summarised as follows:

∙ Distortion location: The observers generally tend to analyse the quality
within the average ROI obtained from experiment E3. This is particularly
true when distortions are present both inside and outside the ROI. This
phenomenon can be observed in images 33 and 71 which exhibit strong
artifacts at the bottom of the image but the observers still analyse the
quality in Lena’s face, as there are also subtle distortions present. If on the
other hand distortions are absent from the ROI and only present in the BG,
then the search range is shifted to other parts of the image outside the ROI
(e. g. images 20 and 47).

∙ Distortion distribution: Global distortions generally do not alter the SM
as much as local distortions do. For instance, the images 37, 38, and 40
are strongly distorted on a global level, but the impact on the SM is only
small, as indicated by the high correlation coefficients. On the other hand,
local distortions are more likely to change the gaze patterns, in particular
if they are located outside the ROI (e. g. images 19, 20, and 47). These
observations are in agreement with the findings reported in [243].

∙ Distortion strength: As far as we can observe, the distortion strength
has surprisingly little impact on the alternation of the SM, as compared to
the distortion location and distribution. Strong distortions that are locally
distributed tend to change the SM (e. g. images 10, 17, 19, and 20) but
so do weak locally distributed distortions (e. g. images 2, 9, 11, and 14).
In fact, it seems that subtle distortions often change the SM more than
strong distortions which can be attributed to the fact that they need to be
attended comparably longer for thorough analysis. This is clearly present
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in image 9 which received the lowest of all correlations. Here, very subtle
ringing artifacts are present on the side lobes of Mandrill’s nose that are
thoroughly investigated by the observers, as indicated by the HM.

∙ Distortion type: The different distortion types in relation to their strengths
seem to have a considerable impact on the viewing behaviour. Blocking
artifacts usually need to be fairly strong for the observers to attend them.
For instance, the strong line of blocking artifacts in image 20 draws much
attention whereas the weaker blocking artifacts in image 25 change the
SM only marginally. On the other hand, ringing artifacts can considerably
change the SM (e. g. images 2, 9 and 14) even if they are only very subtle.
One reason for this may be related to ringing artifacts being considered
to be more ’unusual’ as compared to blocking artifacts that most observers
would have been exposed to before. Also, the more complex structure of the
ringing artifacts may lead to a more thorough analysis. Block intensity shifts
are typically analysed at the border between the two different intensities
(e. g. images 68, 70, 72, and 77) rather than in either of the intensity
shifted areas.

To further analyse what distortions have caused the most severe changes in the
SM we list, in the following, the images that have received the lowest correlations
for each of the image contents and briefly summarise the artifacts contained in
the images:

∙ Barbara - Image 76:

extreme mix of blocking, ringing, noise, and block intensity shift artifacts

∙ Elaine - Image 18:

ringing artifacts around Elaine’s head and body

∙ Goldhill - Image 78:

extreme blocking artifacts globally distributed

∙ Lena - Image 11:

subtle ringing artifacts around the shoulder and in the feather boa

∙ Mandrill - Image 9:

subtle ringing artifacts in the side lobes of Mandrill’s nose
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∙ Peppers - Image 32:

blocking artifacts locally distributed in the lower half of the image

∙ Tiffany - Image 47:

subtle ringing artifacts in the hair and around the hand

In summary, the variety of different artifact locations, distributions, types, and
strengths highlights again the complex interaction of the distortions in the images
and the viewing behaviour of the participants when judging the image quality.
Both, subtle artifacts (close to the near-threshold regime) and strong artifacts
(well in the suprathreshold regime) can have an impact on the gaze patterns,
with the subtle distortions appearing to dominate over the strong distortions.
Generally, local distortions seem to change the gaze patterns more severe than
global distortions, unless the global distortions are very strong. Finally, blocking
artifacts, and especially ringing artifacts, seem to strongly attract attention and
are major sources of changes in the gaze patterns.

11.3.3 Overview of Receiver Operating Characteristic analysis

The qualitative analysis from the previous section has indicated that human ob-
servers tend to analyse image quality in regions that are of high interest to them.
To provide further evidence for this phenomenon, we evaluate the SM of the dis-
torted images in relation to the ROI from experiment E3 by means of Receiver
Operating Characteristic (ROC) analysis [244]. ROC analysis is normally used for
binary classification of a performance measure into one of two classes. Here, we
make an unconventional use of ROC analysis to quantify the level of saliency that
is present in the ROI and the BG of the distorted images. In the following, we
briefly discuss ROC analysis.

ROC analysis is typically used to make a binary classification into a predicted
or hypothesised class, based on an instance of a measured quantity or performance
indicator. For instance, in medical science ROC analysis is often used to make
a decision whether a patient has a particular disease or not, based on results of
medical tests that were performed. In this case, the actual presence of the disease
represents a true positive class, whereas the absence of the disease represents a
true negative class. The two classes cannot necessarily be perfectly separated,
meaning, that based on a particular measure one cannot always perfectly decide
whether to classify as positive or negative. This is illustrated in Fig. 63 where
the two distributions of the true positive (P) and true negative (N) classes are
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Figure 63: Example distributions and the corresponding confusion matrix.

overlapping. Performance measures above a threshold 𝜏 are classified as belong-
ing to the positive class, whereas performance measures below the threshold 𝜏
are classified to belong to the negative class. This classification is, however, not
always correct as the positive class spreads below the threshold and the nega-
tive class spreads above the threshold. Thus, there is a certain percentage of
misclassifications with four possible outcomes of the classification:

∙ True positive (TP): the instance is positive and it is classified as positive

∙ True negative (TN): the instance is negative and it is classified as negative

∙ False positive (FP): the instance is negative and it is classified as positive

∙ False negative (FN): the instance is positive and it is classified as negative

The respective regions are denoted under the distributions in Fig. 63 and the
relative magnitudes of these four outcomes are typically listed in a confusion
matrix, as shown on the right in Fig. 63. Here, P and N represent, respectively,
the true positive and true negative classes with a total of P𝑇 and N𝑇 instances.
Correspondingly, P𝐻 and N𝐻 represent the hypothesised (or predicted) classes
based on the binary classification. A number of performance metrics can be
computed from the confusion matrix of which, in the context of ROC analysis,
the two most relevant ones are the true positive rate (TPR) and the false positive
rate (FPR). The TPR is given as the ratio of correctly classified positive instances,
TP, to the total number of positive instance, P𝑇 , as follows:

TPR =
TP

P𝑇
. (92)
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Similarly, the FPR is the ratio of negative instances that were falsely classified to
be positive, FP, to the total number of positive instance, P𝑇 , and is given by

FPR =
FP

P𝑇
. (93)

The relative magnitudes of TPR and FPR are regulated by the decision thresh-
old 𝜏 , where larger 𝜏 result in lower TPR but also in lower FPR. On the other
hand, a lower 𝜏 changes the classification outcome in favour of higher TPR but
also results in more misclassifications in terms of higher FPR. In the context of
ROC analysis, this trade-off between TPR and FPR is represented in the ROC
curve, where TPR is plotted over FPR for all possible magnitudes of 𝜏 covering
the extent of the positive and negative distributions.

To illustrate the interdependence of the class distributions and the related
ROC curves, three different pairs of distributions and ROC curves are shown in
Fig. 64. From Fig. 64(a) it can be observed, that the ROC curve rises steeply
if the distributions are separated nicely. This relates to a strong increase of the
TPR at only little cost of FPR when moving the decision threshold from large
values to lower values. Figure 64(b) shows that the ROC curve lowers towards
the diagonal if the distributions are overlapping more, resulting in a higher FPR
for a given TPR. If the positive class is in fact centered around lower values than
the negative class, as is the case in Fig. 64(c), then the corresponding ROC curve
falls below the diagonal.

The diagonal in the ROC space represents a classifier that randomly guesses
a class, as TPR and FPR are equal for all values along the diagonal. Thus,
to perform a more informed classification it is desirable to move as far away
as possible from the diagonal towards the upper left corner. In fact, the upper
left corner itself represents perfect classification, as the related distributions are
exclusively separated and thus, no FP and FN classifications occur.

The area under the ROC curve (AUC) is typically computed as a measure
of classification performance. As such, a ROC curve that rises faster and runs
above the diagonal usually exhibits a larger AUC, as compared to slow rising ROC
curves that are closer to or even under the diagonal. The AUC for the examples
in Fig. 64 are shown in the respective ROC spaces. The AUC for the diagonal is
computed to be 0.5, relating to 50% of the entire ROC space.

11.3.4 Interrelation analysis of saliency maps and ROI using ROC

In the context of evaluating the SM in relation to the ROI, we use the ROC
analysis to quantify the relative amount of pixels that are present in either the
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Figure 64: Illustrative example to demonstrate the effect of two distributions on
the shape of the ROC curve and the magnitude of the corresponding area under
the ROC curve (AUC).

ROI or the BG, given a particular saliency. Considering our earlier observations
that the viewers analyse the quality mainly within the ROI, one would expect the
presence of high-magnitude pixels of the SM to dominate in the ROI as compared
to the BG.

In relation to the convention used in the previous section, we define the SM
pixels located in the ROI to belong to the true positive class and the pixels in
the BG to belong to the true negative class. The saliency level of the pixels is
our performance measure. We hypothesise that the performance measure should
be generally higher for the positive class (ROI) as compared to the negative class
(BG), which relates to the cases presented in Fig. 64(a) and Fig. 64(b).

We create the ROC curve for each image by adapting the threshold 𝜏 with
respect to the normalised magnitudes of the SM in the range from 0 to 1. By
doing so, we obtain for each level of saliency (𝜏) the relative amount of pixels that
are located in the ROI and the BG. If the pixels in the ROI would have exclusively
higher saliency than the pixels in the BG, then the ROC curve would go through
the top left corner of the ROC space. Even though this is not expected to be the
case, given our earlier conjecture of higher saliency in the ROI one would expect
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Figure 65: ROC curves between the SM and ROI for all distorted images of: (a)
’Barbara’, (b) ’Elaine’, (c) ’Goldhill’, (d) ’Lena’, (e) ’Mandrill’, (f) ’Peppers’, and
(g) ’Tiffany’.

the ROC curve to be considerably higher than the diagonal of the ROC space.
The related AUC would hence be expected to be well above 0.5.

The ROC curves for all distorted images are presented in Fig. 65(a)-(g), sep-
arated with regards to their respective seven reference images. For all image
contents, the mean, 𝜇𝐴𝑈𝐶 , and standard deviation, 𝜎𝐴𝑈𝐶 , of the AUC computed
over all respective ROC curves are presented in Table 34. It can be seen from
both the ROC curves and the AUC statistics that indeed the highest saliency
levels were located within the ROI. This is true for all distorted images without
any exception, as all ROC curves are located clearly above the diagonal and the
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Table 34: Mean, 𝜇𝐴𝑈𝐶 , and standard deviation, 𝜎𝐴𝑈𝐶 , of the area under the
ROC curve (AUC) over all distorted images.

Barbara Elaine Goldhill Lena Mandrill Peppers Tiffany

𝜇𝐴𝑈𝐶 0.818 0.97 0.945 0.946 0.907 0.884 0.97

𝜎𝐴𝑈𝐶 0.029 0.01 0.025 0.031 0.038 0.039 0.018

mean AUC are well beyond 0.5, in fact, even well beyond 0.8.
The highest mean AUC were computed for the images ’Elaine’ and ’Tiffany’,

closely followed by ’Goldhill’ and ’Lena’. The high AUC for ’Goldhill’ is particularly
interesting, as this complex scene has had a wide spread of ROI selections with
only the man walking the streets somewhat standing out. However, as can be seen
from the HM in Appendix D, the man has actually been attended a considerable
amount by the observers to perform the quality assessment. Not unexpectedly, the
’Barbara’ image has received the lowest mean AUC. This can be comprehended
by consulting the HM, which show that the legs and the object on the table were
frequently attended for quality assessment, both being outside the ROI.

11.3.5 Initial versus late viewing behaviour

Unlike with the selective ROI there is a temporal factor captured with the recorded
gaze patterns, meaning, that information is available as to in which order the
different regions were attended by the viewers. In this respect it is of interest to
analyse whether the evidence provided in the previous section applies for both,
SM that are based on early fixations and SM based on later fixations during the
8 s duration of image presentation. Through visual inspection of the fixations
we found that there is indeed a distinct difference between the early and the
later fixations of the viewers. In particular, it is apparent that the early fixations
are mostly located within or around the ROI, whereas a considerable amount of
later fixations is located outside the ROI. This suggests, that the viewers start
their quality assessment task in the regions that are of interest to them and once
evaluated, move on to other regions in the image.

This phenomenon is illustrated in Fig. 66, where the top row shows the first
fixation and the bottom row shows the last fixation (combined from both sessions)
of every observer for the three reference images ’Barbara’, ’Goldhill’, and ’Tiffany’.
The size of the circle relates to the length of the fixation. It can clearly be seen
that the last fixations tend to be more widely spread as compared to the first
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Figure 66: Comparison of the first fixation of every observer (top row) with the
last fixation of every observer (bottom row) for the images ’Barbara’, ’Goldhill’,
and ’Tiffany’. The black rectangle marks the mean ROI from experiment E3.

fixations, although still a considerable amount of fixations remains in the ROI.
Similar observations have been made for other images.

To quantify these observations, we utilise again the ROC curves and the related
AUC. The ROC curves corresponding to the three reference images in Fig. 66,
along with the ROC curves of the other reference images, are shown in Fig. 67.
The curves reveal that for the SM based on the first fixations, the saliency in the
ROI is indeed comparably higher than in the SM based on the last fixations. This
is true for all reference images but the ’Mandrill’ image, for which the ROC curve
of the SM based on the first fixation is considerably lower.

The AUC presented in Table 35 provide further evidence for these observations.
Here, the AUC are presented as averages over the reference images, ℐ𝑟, and as
averages over all distorted images, ℐ𝑑, related to a particular content. The AUC
show that the saliency is generally higher in the ROI for the first fixations, 𝐹1,
as compared to the last fixations, 𝐹𝐿. However, the AUC also reveal that this
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Figure 67: ROC curves between the SM and ROI for all reference images with
the SM being created from: (a) the first or (b) the last fixation of every observer.

Table 35: Area under the ROC curve for the ROI selections and the saliency maps
created from the first fixation, 𝐹1, and the last fixation, 𝐹𝐿, of each observer.

Barbara Elaine Goldhill Lena Mandrill Peppers Tiffany

ℐ𝑟 𝐹1 0.962 0.967 0.94 0.985 0.858 0.97 0.971

𝐹𝐿 0.832 0.936 0.926 0.904 0.893 0.812 0.935

ℐ𝑑 𝐹1 0.943 0.98 0.945 0.974 0.871 0.915 0.962

𝐹𝐿 0.812 0.959 0.934 0.926 0.852 0.834 0.929

is not necessarily given for the ’Mandrill’ image, as for the reference images the
AUC is in fact higher for the SM based on the last fixation. This suggests, that
the viewers did not turn to the BG for quality analysis during their later fixations.
One possible reason could be, that the BG of the ’Mandrill’ image contains the
highly textured fur of the Mandrill, which makes quality assessment comparably
harder to the more uniform regions around the nose.

Similar findings as the ones discussed in this section were reported in [155]
where gaze patterns from a task-free eye tracking experiment were evaluated in
relation to importance maps. It was concluded that the observers attended regions
of high importance with their early fixations, whereas regions of lower importance
were attended later during image viewing.
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12 Eye Tracking and Video Impairment Assess-
ment

T he methods exploited in the previous chapters indicated that consideration
of ROI and VA can be beneficial for quality assessment in the context of

transmission errors. This is mainly motivated by the complex distortion patterns,
and especially the localised distortions, caused by image transmission, as com-
pared to the global distortions caused by source coding. The content saliency of
the distortion region thus plays a more prominent role and a local weighting of
artifacts becomes of great interest. However, the gain through VA and saliency
models for image applications is expected to be limited as the content does not
change and thus, suprathreshold artifacts would be detected eventually during
image viewing.

In video applications, on the other hand, the content continuously changes
and thus, the attention of the viewer is shifted in a much more dynamic way,
as compared to images. Furthermore, distortions caused by transmission errors
occur not only local in space but also local in time, meaning, the distortions may
appear for a particular duration and disappear again. The notion of ’surprise’
established by Itti et al. [245] states that humans gaze towards temporally novel
events in a video stream in a highly significant manner. Thus, if the distortions
are suprathreshold then the likelihood of detection is increased by the dynamic
appearance and disappearance of the distortions. This is further determined,
amongst other factors, by the relation of the saliency of the video content and
the distortion duration. Distortions appearing in a region of higher saliency may be
more likely detected, and thus perceived as annoying, as compared to distortions
in a non-salient region. Similarly, longer durations may be more likely detected
than shorter durations and may hence be perceived as more annoying.

To investigate the impact of content saliency and distortion duration on per-
ceived annoyance of localised packet loss distortions, we conducted a combined
video quality and eye tracking experiment, which is explained in detail in this
chapter. The outcomes are analysed in Chapter 13 and provide valuable insight
into the relation between loss duration and the content saliency of the distorted
region and their impact on the overall perceived annoyance of packet loss distor-
tions. The results are further utilised in a saliency awareness framework, which
is discussed in Chapter 14, to improve quality prediction performance of existing
video quality metrics. The creation of test sequences and the procedures of the
experiment are outlined in the following sections.
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12.1 Creation of distorted video sequences

The video sequences to be used in the experiment were selected with respect to
two criteria; the saliency of the content and the spatial and temporal characteris-
tics of the content. All video sequences were then encoded and transmission errors
were introduced using a packet loss simulator. The details of the test sequences
generation are explained in the following sections.

12.1.1 Identification of content saliency

The primary concern of this experiment was to identify the impact of content
saliency on the perceived annoyance of packet loss distortions. Hence, a reliable
ground truth was to be used to identify the saliency in the reference sequences.
For this reason, we utilised gaze patterns from a previously conducted eye tracking
experiment [157] in which 30 video sequences in standard definition (SD) format
were presented to 37 participants. The gaze patterns were recorded using a dual-
Purkinje eye tracker from Cambridge Research Systems [246]. In this eye tracking
experiment, the sequences were presented under task-free condition and as such,
the recorded gaze patterns represent the saliency of the visual content.

The gaze patterns were post-processed to eliminate saccades, leaving the
fixations and smooth pursuit eye movements that contribute to VA. A Gaussian
filter was then deployed to create the final SM for all frames of each sequence
based on the visual fixations of all 37 observers. We visually inspected these SM
to identify frames that contain regions of particular high saliency.

12.1.2 Source encoding and creation of loss patterns

The video sequences were encoded in H.264/AVC format [191,214] using the JM
16.1 reference software [247]. As we are interested in evaluating the perceptual
impact of transmission errors rather than source coding distortions, we encoded
the sequences in high quality with a fixed quantisation parameter of QP=28.
The fixed QP further minimises quality differences between the various sequences
unlike, for instance, a constant bit rate would do. The sequences were encoded
in High profile with an IBBPBBP... GOP structure of two different lengths; 30
frames (GOP30) and 10 frames (GOP10). The frame rate was set to 25 fps and
as a result, the two GOP lengths correspond to 1.2 s and 0.4 s, respectively.

We utilised an adapted version of the Joint Video Team (JVT) loss simulator
[248] to introduce packet loss into the H.264/AVC bit stream. An overview of
the packet loss insertion is illustrated in Fig. 68 for both the GOP30 and GOP10
coded video sequences. The packet loss was introduced into a single I frame in
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Figure 68: Packet loss insertion into I frames containing highly salient regions for
GOP30 and GOP10 encoded video sequences.

each sequence, resulting in error propagation until the next I frame, due to the
inter-frame prediction of the P and B frames. Thus, the two different GOP lengths
(30/10 frames) relate to the maximum lengths of error propagation (1.2/0.4 s).
To have better control regarding the location and extent of the corresponding
spatial loss patterns we chose a fixed number of 45 macro blocks (MB) per slice
during source encoding. Given that SD video has dimensions 720 × 576 pixels,
corresponding to 45× 36 MB, each slice represents exactly one row of MB.

To identify the impact of saliency on the perception of the distortions, we
introduced packet loss into the sequences such that the corresponding visual
distortions appear either in a salient region or in a non-salient region, based on
the salient frames as identified in Section 12.1.1. In particular, we created test
sequences with packet loss introduced in 5 slices, spatially centered around the
most salient region in an I frame. We then created a corresponding sequence with
5 slices of distortions introduced into a non-salient region of the same I frame.
The extent of the loss pattern was intentionally kept constant to allow for a better
comparison between distortions in the salient region and the non-salient region.

We created such two sequences for both the GOP30 and GOP10 coded videos,
resulting in a total of four distorted sequences for each reference sequence SEQ𝑅.
The subsets of distorted sequences will in the following be referred to as SEQ𝑆,0.4,
SEQ𝑁,0.4, SEQ𝑆,1.2, and SEQ𝑁,1.2, where 0.4 relates to error propagation length
for GOP10 and, accordingly, 1.2 relates to GOP30. The indices 𝑆 and 𝑁 refer
to the distortions being inserted either into the salient or the non-salient regions,
respectively.

All sequences were shortened to 150 frames, corresponding to 6 s duration.
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During the creation of the test sequences it was assured that no distorted frames
were present in the first second and the last second of the video and also not
immediately before or after scene cuts.

12.1.3 Spatial and temporal content classification

In order to keep the experiment at a reasonable length and thus, to lower the
strain on the participants, we selected 20 out of the 30 reference sequences to
be used in the experiment along with the corresponding distorted sequences. To
cover a wide range of different visual content, both with respect to its spatial
and temporal characteristics, we further classified the reference sequences using
spatial information (SI) and temporal information (TI) indicators [20]. The SI
indicator measures the spatial information over a number of 𝑁 frames 𝐹𝑛. For
this purpose, each frame is filtered using the Sobel operator 𝑆𝑜𝑏𝑒𝑙(⋅) and the
standard deviation 𝜎 is computed for the filtered frames. The SI indicator is then
the maximum standard deviation over the 𝑁 frames and is given as

𝑆𝐼 = max
𝑁

(𝜎(𝑆𝑜𝑏𝑒𝑙(𝐹𝑛))). (94)

The TI indicator is based on the motion changes in the video which is measured
as the luminance pixel difference between two consecutive frames as

𝑀𝑛(𝑖, 𝑗) = 𝐹𝑛(𝑖, 𝑗)− 𝐹𝑛−1(𝑖, 𝑗) (95)

where 𝑖 and 𝑗 denote the row and column number in the 𝑛𝑡ℎ frame, respectively.
The standard deviation 𝜎 is then computed for each difference frame. Similar to
the SI indicator, the TI indicator then is the maximum standard deviation over
𝑁 frames as

𝑇𝐼 = max
𝑁

(𝜎(𝑀𝑛(𝑖, 𝑗))). (96)

As both SI and TI indicators may change significantly throughout the duration
of a sequence, we used for the content classification only the 30 distorted frames
of the GOP30 coded video sequences. The SI and TI for all sequences are shown
in Fig. 69. The selection of the test videos was done with respect to covering
a wide range of SI and TI indicators. In Fig. 69, the numbered dots represent
the 20 sequences chosen for the experiment whereas the remaining 10 sequences
were not included in the test set.

Example frames for each of the 20 sequences SEQ(𝑖), 𝑖 ∈ {1, 2, . . ., 20}, used
in the experiment are shown in Fig. 70 and Fig. 71. To be precise, the I frame
is presented in which the packet loss was introduced to create the sequences
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Figure 69: Spatial information (SI) and temporal information (TI) indicators [20]
for all 30 sequences. The numbered dots represent the 20 sequences that have
been selected for the experiment.

SEQ𝑆,0.4 and SEQ𝑁,0.4. For visualisation purposes in this thesis, the distortions
of both the salient region and the non-salient region are presented within the same
frame. The salient distortion region is additionally highlighted with green lines
and the non-salient distortion region is highlighted with yellow lines. The saliency
information from the task-free eye tracking experiment [157] on the reference
images is additionally visualised using HM.

12.2 Details of experiment E5

The combined video quality and eye tracking experiment was conducted at the
Image and Video Communication (IVC) department at the University of Nantes,
Nantes, France, and is in the following referred to as experiment E5. The exper-
iment procedures were designed according to ITU Rec. BT.500 [19] and will be
discussed in the following sections.
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(1) (2) (3)

(4) (5) (6)

(7) (8) (9)

(10)

Figure 70: Example frames for video sequences 1-10, visualising both the salient
(green lines) and non-salient (yellow lines) distortion regions and also the saliency
information using heat maps.
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(11) (12) (13)

(14) (15) (16)

(17) (18) (19)

(20)

Figure 71: Example frames for video sequences 11-20, visualising both the salient
(green lines) and non-salient (yellow lines) distortion regions and also the saliency
information using heat maps.
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12.2.1 Laboratory setup

The laboratory in which the experiment took place was set up with grey covers on
all walls and was illuminated with low light levels. The video sequences were pre-
sented on an LVM-401W full high definition (HD) screen by TVlogic with a size
of 40” and a native resolution of 1920×1080 pixels. A mid-grey background was
added to the SD test sequences to be displayed on the HD screen. The Video
Clarity ClearView [249] video server was used for real-time playback of the se-
quences. The observers were seated at a distance of about 150 cm, corresponding
to six times the height of the displayed video sequences.

12.2.2 Eye tracking hardware

The iView X
TM

Hi-Speed eye tracker by SensoMotoric Instruments (SMI) [250] was
used to record the gaze patterns of the human observers during the experiment.

The iView X
TM

Hi-Speed consists of a sturdy tower with a chin rest and a head
rest. The gaze is recorded using an infrared camera and the pupils are illuminated

using two infrared light sources. The recording rate of the iView X
TM

Hi-Speed is
500GP/s. The gaze tracking accuracy is given by the manufacturer to be in the
range of 0.25-0.5 dva. A photo of the laboratory setup with the eye tracker in the
front is shown in Fig. 72.

12.2.3 Viewer panel

A total of 30 non-expert viewers participated in the experiment out of which 10
were female and 20 were male. The participants were mainly students and staff
of the University of Nantes with the ages ranging between 15 to 39 years and an
average age of about 23 years. Prior to each experiment, the visual accuracy of
the participants was tested using a Snellen chart and any colour deficiencies were
ruled out using the Ishihara test.

12.2.4 Experiment procedures

The participants were presented the 100 test sequences (20 reference sequences
SEQ𝑅 plus 80 distorted sequences SEQ𝑆,0.4, SEQ𝑁,0.4, SEQ𝑆,1.2, and SEQ𝑁,1.2)
in a pseudo random order, with a distance between the same content of at least
5 presentations. The sequences were presented using a single stimulus method,
meaning, that the distorted sequences were presented without their corresponding
reference sequence. The reference sequences were randomly mixed with the set of
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Figure 72: Laboratory setup with the SMI eye tracker in the foreground.

distorted sequences and the participants were not told if the currently presented
sequence contained distortions or not.

Before the test sequences the participants were shown 6 training sequences
in a fixed order for them to adapt to the impairment rating system and to get
a feeling for the distortions that can be expected in the test sequences. For
this purpose, training sequences were selected from the remaining 10 sequences
(see Sec. 12.1.3 and Fig. 69) that covered the range of distortions in the test
sequences.

The 5-grade impairment scale [19] was used to assess the annoyance of the
distortions in the sequences. Here, the observers were asked to assign one of
the following adjectival ratings to each of the sequences: ’Imperceptible (5)’,
’Perceptible, but not annoying (4)’, ’Slightly annoying (3)’, ’Annoying (2)’, and
’Very annoying (1)’. In this experiment, we chose the impairment scale over
the quality scale, which is also defined in [19], as it has the advantage that
the rating ’Imperceptible’ directly allows to identify whether participants actually
detected the distortions in the sequences or not. This knowledge is of interest
for the subsequent analysis of the experiment outcomes, but can also be useful
to improve the prediction performance of packet loss visibility models [251] or of
video quality metrics [252].

The rating of a sequence was conducted after the presentation of the sequence
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Figure 73: Five-grade impairment scale as utilised in experiment E5 [19].

was finished. The impairment scale, as shown in Fig. 73 (with the corresponding
French labels), was displayed over the whole area of the screen with all scoring
fields initially being white. The participants then had to look for at least one sec-
ond at the score they wanted to assign to the previously presented sequence. The
corresponding field then turned red as a feedback that the score was selected. To
confirm the selection the participants then had to look at the field ’Valider’, which
then also turned red, and the presentation of the following sequence was initiated.
The participants also had a chance to correct the rating if they accidently selected
the wrong field or if they were not satisfied with their choice. In this case, they
needed to look at the ’Corriger’ field instead, which turned all fields white again,
allowing for a new rating to be conducted. No restrictions regarding the number
of corrections and no time limits were imposed on the quality rating procedure.

Given the length of 6 s per video sequence and the time for the impairment
rating between the sequences, each experiment lasted about 30-40min. To avoid
fatigue of the viewers’ eyes, we included a break after about half of the sequences
was presented.

12.2.5 Recorded data and post-processing

For each video sequence, we recorded 30 impairment scores and 30 gaze patterns
using the eye tracker. Given the length of 6 s and the recording rate of the eye
tracker of 500GP/s, about 3000 GP were recorded per person and video sequence.
Consequently, about 90000 GP were recorded for each sequence as a total over



192 12 Eye Tracking and Video Impairment Assessment

all viewers. As with the gaze patterns from the eye tracking experiments E4a
and E4b, these GP have to be post-processed into VFP and SM. This process
is substantially more challenging for video as it is for images since the visual
scene is changing constantly and thus, GP recorded in different locations do not
necessarily relate to a change of FoA but can instead be caused by smooth pursuit
eye movements following a moving object through the scene. The post-processing
of the GP is discussed in Section 13.2.1.



193

13 Impact of Content Saliency on Packet Loss
Distortion Perception

T he subjective impairment ratings and the eye tracking data obtained from
experiment E5 are in the following analysed in detail with the aim to establish

a better understanding of the perceived annoyance of the packet loss distortions.
In this respect, we are particularly interested in evaluating the impact of the video
content, the saliency of the distortion region, and the distortion duration on the
overall perceived annoyance.

We first focus on the analysis of the impairment ratings given by the partici-
pants and evaluate whether distortions in a salient region have been perceived to
be more annoying, as compared to distortions in a non-salient region. It is shown
that there is indeed a highly significant impact of the content saliency on the
perceived distortion annoyance. This is true for different distortion durations and
for a wide variety of different video sequence content. The distortion duration, on
the other hand, is revealed to have a comparably lower impact than the content
saliency.

The recorded gaze patterns are evaluated with respect to the amount of at-
tention that the distortion regions have received, with the goal to identify whether
particular distortions have actually been focused on or not. It is revealed that the
FoA is indeed shifted, in particular in the sequences that are distorted in the non-
salient region, SEQ𝑁,0.4 and SEQ𝑁,1.2. However, the shift is strongly dependent
on the video content and the distortion visibility.

The results from experiment E5 and the insights provided in this chapter
are considered to be highly valuable to gain a better understanding about the
perceived annoyance of packet loss distortions in relation to content saliency.
They are further beneficial for the development of VQM that take into account
content saliency in their quality estimation. In fact, in Chapter 14 we discuss some
simple models that are deployed to make existing VQM saliency aware, showing
strong improvement in prediction performance.

13.1 Perceived annoyance of packet loss distortions

The subjective impairment ratings from experiment E5 are analysed in detail in
the following. In this respect, we focus on identifying the relative influence of the
content saliency in the packet loss distortion region, the distortion duration, and
the video sequence content, on the overall perceived annoyance.
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13.1.1 Distortion class specific MOS differences

The 30 subjective impairment ratings for each sequence are averaged into MOS.
Corresponding to the subsets of sequences, SEQ𝑅, SEQ𝑆,0.4, SEQ𝑁,0.4, SEQ𝑆,1.2,
and SEQ𝑁,1.2 (see Sec. 12.1.2), we define subsets of MOS as MOS𝑅, MOS𝑆,0.4,
MOS𝑁,0.4, MOS𝑆,1.2, and MOS𝑁,1.2, respectively. To evaluate the impact of
content saliency and distortion duration on the overall annoyance, we further
define MOS differences, ΔMOS, as follows

ΔMOS,0.4 = MOS𝑁,0.4 −MOS𝑆,0.4 (97)

ΔMOS,1.2 = MOS𝑁,1.2 −MOS𝑆,1.2 (98)

ΔMOS,𝑆 = MOS𝑆,0.4 −MOS𝑆,1.2 (99)

ΔMOS,𝑁 = MOS𝑁,0.4 −MOS𝑁,1.2. (100)

Here, for instance, ΔMOS,0.4 represents the MOS difference between the salient
(S) and the non-salient (N) region in case of short distortion propagation of 0.4 s.
Similarly, ΔMOS,𝑆 represents the MOS difference between short (0.4 s) and long
(1.2 s) distortion propagation in case of distortions in the salient region.

13.1.2 Distribution of impairment ratings

Given the 30 participants and the 100 video sequences, a total of 3000 impairment
ratings were collected during the experiment. As such, 600 ratings were given
for each subset of sequences. The normalised distribution of the ratings for the
four subsets of distorted sequences is presented in Fig. 74 (the subset of reference
sequences, SEQ𝑅, has been left out as almost exclusively all ratings were equal to
5). Here, the number of ratings for each annoyance score have been normalised
with respect to the total number of 600 ratings within each subset.

Figure 74 shows a strong tendency that the salient region distorted sequences,
SEQ𝑆,0.4 and SEQ𝑆,1.2, received generally lower ratings as compared to the non-
salient region distorted sequences, SEQ𝑁,0.4 and SEQ𝑁,1.2. It can also be ob-
served that the ratings for SEQ𝑆,0.4 and SEQ𝑆,1.2 are generally more spread as
compared to SEQ𝑁,0.4 and SEQ𝑁,1.2, which observe high peaks at an annoyance
score of 4. These observations indicate, that the ratings are more similar between
the sequence subsets that contain distortions in the same region (salient or non-
salient) than between the sequence subsets that contain distortions of the same
duration (long or short).

To further illustrate the above observations, we have conducted a curve fitting
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Figure 74: Normalised distributions of the total number of ratings for the four
distorted sequence subsets: (a) SEQ𝑆,0.4, (b) SEQ𝑁,0.4, (c) SEQ𝑆,1.2, and (d)
SEQ𝑁,1.2.

of the score distributions using a Gaussian fitting function as

𝑦(𝑥) = 𝑝1 ⋅ 𝑒−
(

𝑥−𝑝2
𝑝3

)2

. (101)

The fitting function parameters as well as the goodness of fit measures are sum-
marised in Table 36 for all four distorted sequence subsets. Here, the parameter
𝑝1 determines the height of the distribution maximum, the parameter 𝑝2 repre-
sents the corresponding value on the annoyance score scale, and the parameter
𝑝3 is related to the width of the Gaussian fitting curve. These parameters pro-
vide quantitative evidence that the ratings of SEQ𝑆,0.4 and SEQ𝑆,1.2 are similarly
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Table 36: Gaussian curve fitting for the total number of ratings within all distorted
sequence subsets.

Subset Fitting parameters Goodness of fit

𝑝1 𝑝2 𝑝3 𝑅2 RMSE

SEQ𝑆,0.4 0.476 2.495 1.195 0.996 0.016

SEQ𝑁,0.4 0.727 3.769 0.753 0.997 0.021

SEQ𝑆,1.2 0.456 1.625 1.418 0.998 0.009

SEQ𝑁,1.2 0.625 3.706 0.824 0.95 0.072

distributed, as are the ratings of SEQ𝑁,0.4 and SEQ𝑁,1.2. The corresponding
goodness of fit measures, the root mean squared error (RMSE) and the squared
correlation coefficient 𝑅2, further show that the ratings of all four subsets can be
accurately fitted using a Gaussian distribution.

13.1.3 Impairment ratings averaged over distortion classes

The results from the previous section indicate that the sequences with distortions
in the salient region generally receive lower ratings as compared to the sequences
with distortions in the non-salient region. Further evidence of this observation is
given by the MOS computed for each of the five subsets and averaged over all 20
different contents, which is presented in Table 37. It can be seen that, expectedly,
SEQ𝑅 received the highest MOS, followed by SEQ𝑁,0.4, SEQ𝑁,1.2, SEQ𝑆,0.4,
and SEQ𝑆,1.2. Thus, as an average over a large number of different contents,
the distortions in the non-salient region were perceived as far less annoying in
comparison to the salient region. It is particularly worth noting that MOS𝑁,1.2

received an average MOS that is 1.02 higher than MOS𝑆,0.4, even though the
distortion in the non-salient region is three times longer than the distortion in the
salient region.

On the other hand, the distortion duration seems to play only a minor role as
compared to the saliency of the location. This is particularly true for distortions
in the non-salient region, where the small difference of 0.22 between MOS𝑁,0.4

and MOS𝑁,1.2 indicates only little impact of distortion duration on perceived an-
noyance. The larger difference of 0.64 between MOS𝑆,0.4 and MOS𝑆,1.2 suggests
that the duration plays a more prominent role in the case of distortions appearing
in the salient region.
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Table 37: MOS averaged over all sequences within the five subsets of sequences.

MOS𝑅 MOS𝑁,0.4 MOS𝑁,1.2 MOS𝑆,0.4 MOS𝑆,1.2

4.97 3.72 3.5 2.48 1.84
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Figure 75: MOS and standard errors for all 20 contents of all sequence subsets
(SEQ𝑅, SEQ𝑆,0.4, SEQ𝑁,0.4, SEQ𝑆,1.2, SEQ𝑁,1.2).

13.1.4 Dependency on natural video content

To identify whether the hierarchy of MOS presented in Table 37 is valid for
different content, the MOS for all 20 sequence contents in the 5 subsets are
presented in Fig. 75. It can be observed that the hierarchy of MOS between
the subsets is almost exclusively the same as in Table 37 for all video sequences.
This is a strong indication that the higher annoyance of distortions in the salient
region as compared to the lower annoyance of distortions in the non-salient region
is valid for a broad range of different video contents with strongly varying spatial
and temporal characteristics (see SI and TI indicators in Fig. 69).

The ΔMOS presented in Fig. 76 reflect the difference in annoyance both with
respect to content saliency and distortion duration. It can be seen, that for al-
most all sequences the difference in MOS is considerably larger for ΔMOS,0.4 and
ΔMOS,1.2 as compared to ΔMOS,𝑆 and ΔMOS,𝑁 . These results support the above
observations that the observers distinguished annoyance levels more pronounced
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Figure 76: MOS differences for all 20 contents of the distorted sequence subsets
(SEQ𝑆,0.4, SEQ𝑁,0.4, SEQ𝑆,1.2, SEQ𝑁,1.2).

with respect to the content saliency of the distorted region (salient or non-salient)
as compared to distortion duration (long or short) and give further evidence that
this is true for a large variety of different content. Figure 76 also shows that
the difference between salient region and non-salient region is usually more pro-
nounced in case of long distortions, ΔMOS,1.2, as compared to short distortions,
ΔMOS,0.4. Similarly, the distinction between long and short distortions is observed
to be more pronounced in the salient region, ΔMOS,𝑆 , as compared to the non-
salient region, ΔMOS,𝑁 . In particular the small values of ΔMOS,𝑁 indicate that
the annoyance of distortions in the non-salient region varies only very little with
respect to the duration. Similar observations were made on the MOS averaged
over the whole subset and indeed, this appears to be true for a broad range of
sequence contents.

The above observations apply for all sequences but one, sequence 18. This
sequence contains a close up of a rugby game with extremely high motion over
large parts of the frames, which is also apparent by it having the highest TI
indicator out of all sequences (see Fig. 69). Here the distinction between long and
short distortions was in fact stronger in the non-salient region. This may due to
stronger masking effects caused by the extremely high motion in the salient region,
as compared to the lower motion in the background. As such, the distortions in
the salient region were not perceived as severe, which also explains the fairly high
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MOS scores. This may also be the reason for the distinction between salient region
and non-salient region being more pronounced for the short distortion duration,
unlike for all other sequences, where it is more pronounced for the long distortion
duration.

Videos containing very high motion have already been found by Wang et
al. [253] to have a considerable impact on the parameters of their packet loss
distortion model. Furthermore, Lin et al. [113] found that packet loss visibility
strongly depends on camera motion. These results and the findings presented in
this thesis indicate that high motion video sequences in the presence of packet
loss distortions may need particularly careful treatment.

13.1.5 Analysis of variance with respect to the distortion classes

From the analysis of the MOS in this section we can summarise, so far, two
observations. Firstly, the content saliency of the distortion region seems to have
a stronger impact on the MOS as compared to the distortion duration. This
is particularly apparent in the MOS averaged over the four distortion classes,
as presented in Table 37. Secondly, the hierarchy of MOS with respect to the
different distortion classes is almost exclusively the same for all 20 different video
contents (see Fig. 75). The relative difference between the MOS of the distortion
classes, however, varies between the different video contents, as can be observed
from Fig. 76. It is thus of interest to more precisely quantify the impact of the
three factors (content, saliency, distortion duration) on the MOS, and also to
determine the interaction between the different factors.

For this purpose, we conduct an analysis of variance (ANOVA) [242] of the
three factors with respect to the MOS values. The general idea of ANOVA is that
the considered factors, also referred to as independent variables, affect the MOS,
the dependent variable, in a particular way. The degree to which each of the
independent variables affects the dependent variable is determined by comparing
the variances between each factor level to the variances of the samples within
each factor level. In our case, we have three different factors, the video content,
the saliency of the distortion region, and the distortion duration, which are in
the following referred to as ℱ𝐶 , ℱ𝑆 , and ℱ𝐷, respectively. Here, factor ℱ𝐶 has
twenty levels represented by the twenty different contents of the reference video
sequences. Factor ℱ𝑆 has two levels (salient/non-salient), as does factor ℱ𝐷

(0.4 s/1.2 s). The effect of these three factors on the MOS are referred to as the
main effects, whereas the mutual effects of these factors on the MOS are referred
to as the interaction effects. Given the three factors, we conduct a three-way
ANOVA that evaluates both the main effects of the three factors and also the
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interaction between them.
The ANOVA is essentially based on several hypotheses with respect to the

main effects and the interaction effects. In particular, the null-hypothesis for the
main effects states that the means between the different levels of a factor are
drawn from the same population. This would relate to a comparably low variance
between the factor levels as compared to the variance between the samples of
each factor level. As such, the difference between the different levels of a factor
would be considered to be not significant. Similarly, the null-hypothesis for the
interaction effects states that there is no interaction between different factors.

Rejecting any of the above hypotheses means that the respective main factor
or interaction has a significant effect on the MOS. Whether or not to reject a
null-hypothesis is determined using the F-test [254] and the related 𝐹 value and
the probability 𝑝. The null-hypothesis is rejected when the value of 𝐹 exceeds a
critical value, where the critical value corresponds to the limits of the confidence
interval (CI) of the sample distribution within a factor level. The CI is typically
chosen to be 95% and thus, a 𝐹 value being equal to the critical value relates
to a probability of 𝑝 = 0.05 that the 𝐹 value has been obtained, given that the
null-hypothesis is true. In other words, given that two factor means are indeed
from the same population, there is only a 5% chance that an 𝐹 value as extreme
as the critical value would have been obtained. Therefore, the null-hypothesis is
typically rejected for 𝐹 values larger than the critical value, relating to probabilities
𝑝 < 0.05 of false rejection (Type I error).

The results of the three-way ANOVA are presented in Table 38. Here, the
sum of squares (SS), the degrees of freedom (DoF), the mean squares (MS), the
𝐹 value, and the probability 𝑝 are given for the main effects and the first order
interactions. From the main effects one can observe that indeed all three factors
are highly significant as their respective 𝑝 values are well below the threshold of
𝑝 = 0.05 for rejection of the null-hypothesis. The magnitudes of the different 𝑝
values further reveal that the saliency factor ℱ𝑆 has most impact on the MOS,
followed by the distortion duration, ℱ𝐷, and the video content, ℱ𝐶 . Regarding
the interactions, it can be observed that there is a significant interaction between
the content and the saliency, ℱ𝐶×ℱ𝑆 , and also between the saliency and the dis-
tortion duration, ℱ𝑆×ℱ𝐷. There seems, however, to be no significant interaction
between the content and the distortion duration, ℱ𝐶 ×ℱ𝐷.

These results confirm the observations that the content saliency indeed has
the strongest impact on the perceived annoyance of the distortions. The content
of the video sequences, however, also plays a significant role with regards to the
degree to which the saliency impacts on the distortion perception.

The results found here disagree with the findings by Moore et al. [255], who
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Table 38: Three-way ANOVA table showing the main effects and interactions
of the three factors, content ℱ𝐶 , saliency ℱ𝑆 , and distortion duration ℱ𝐷, in
relation to the MOS values.

Effects Factors SS DoF MS 𝐹 𝑝

Main ℱ𝐶 4.04 19 0.213 7.62 2.404 ⋅10−5

ℱ𝑆 42.244 1 42.244 1513.76 0

ℱ𝐷 3.641 1 3.641 130.47 5.934 ⋅10−10

Interaction ℱ𝐶 ×ℱ𝑆 2.442 19 0.129 4.61 8.292 ⋅10−4

ℱ𝐶 ×ℱ𝐷 0.446 19 0.024 0.84 0.645

ℱ𝑆 ×ℱ𝐷 0.882 1 0.882 31.61 2.021 ⋅10−5

Error 0.53 19 0.028 - -

Total 54.224 79 - - -

reported only a minor impact of the importance in a video sequence on the overall
distortion annoyance. In their work, however, the importance was not based on
visual saliency, but rather on segmentation of the video frames into nine equally
sized rectangles which were subsequently rated by human observers regarding their
importance. Hence, the methodological differences may lead to different conclu-
sions, as in our work the SM used are mainly based on bottom-up attentional
processes whereas the importance ratings in [255] are mainly based on top-down
processes. Furthermore, the FoA recorded through eye tracking, as we used it,
shifts more dynamically with the content of the video sequences, unlike the static
importance rectangles used in [255].

13.1.6 Detection of distortions

In the previous sections the perceived annoyance of the packet loss distortions has
been analysed in detail. In this section, we evaluate whether distortions have been
detected at all and how the distortion detection relates to the video content, the
saliency, and the distortion duration. The ’Imperceptible’ rating given in the im-
pairment scale provides, in this context, valuable information whether distortions
have actually been detected by the observer or not. As such, the ’Imperceptible’
rating (impairment ratings equal to 5) corresponds to distortions that were not
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Figure 77: Number of ’Imperceptible’ ratings for all 20 contents of the distorted
sequence subsets (SEQ𝑆,0.4, SEQ𝑁,0.4, SEQ𝑆,1.2, SEQ𝑁,1.2).

detected in the sequences, whereas the other possible ratings (impairment ratings
smaller than 5) relate to the degree of annoyance of detected distortions.

The number of ’Imperceptible’ ratings are visualised in Fig. 77 for all 20
video contents of the distorted sequence subsets. It can be seen that many
’Imperceptible’ ratings have been given for SEQ𝑁,0.4 (29 ratings) and SEQ𝑁,1.2

(22 ratings), whereas only few have been given for SEQ𝑆,0.4 (3 ratings) and in
fact none for SEQ𝑆,1.2. This is thought to be due to mainly two reasons. Firstly,
as the attention is usually on the salient region, the observer is more likely to
miss distortions in non-salient regions. Secondly, salient regions typically exhibit
features that facilitate stronger visualisation of distortions, such as high local
contrast, and distinguished shapes and colours. Non-salient regions are often
composed of image parts that are more uniform, such as a sky or a water surface.

It can be further observed from Fig. 77 that for sequences 2, 16, and 19 there
was a particularly high number of ’Imperceptible’ ratings in the sequences that are
distorted in the non-salient region. These three sequences exhibit fairly uniform
non-salient regions and in addition, the attention of the observers is strongly
focused on the salient regions in all three sequences, as indicated by the HM in
Fig. 70 and Fig. 71.

13.2 Visual attention to localised packet loss distortions

The gaze patterns recorded during the task-free eye tracking experiment (see
Section 12.1.1) served to identify the content saliency of the video sequences.
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On the other hand, the gaze patterns recorded during experiment E5 do not
directly reflect the saliency of the visual content, as the experiment was conducted
under quality assessment task. As such, the gaze patterns and the related SM
reflect the viewing behaviour of the participants while evaluating the quality of
the sequences.

In the following, we evaluate the gaze patterns recorded in experiment E5,
to gain some more insight into the viewing behaviour of human observers when
assessing the quality of packet loss distorted video sequences. Similar to the
analysis of the image eye tracking data in Chapter 11, we first create SM for each
video frame. We then perform a ROC analysis (see Section 11.3.3) and evaluate
in particular the AUC, to quantify the attendance of the observers in the distortion
regions during the quality assessment task. A higher AUC in this context reflects a
stronger focus of the observers on the distortions and thus, a higher likelihood that
the distortions have been consciously attended. The AUC analysis is conducted
on a frame-by-frame basis for each video and simple statistics, such as the mean,
are further determined to highlight interesting observations.

13.2.1 Creation of frame-based saliency maps

As a basis for analysis, the gaze patterns of all observers were first transferred into
VFP, by means of clustering, and then converted into SM using a Gaussian filter
kernel, similar to the procedures explained in Section 11.1. The difference to the
SM created for the still images is the temporal change of the visual scene that is
to be accounted for in case of the videos. The main difficulty in this respect is to
distinguish between smooth pursuit eye movements, that are deployed to move
the FoA along with moving objects, and the saccadic eye movements, that are
used to shift the FoA between different objects in the scene. We chose a threshold
of 25 dva/s to distinguish between smooth pursuit and saccadic eye movements.
The reason for this being, that there were no object motions in the sequences that
exceeded this speed and as such, higher eye movement speeds were attributed to
saccades.

13.2.2 Frame-based ROC analysis and AUC computation

In Section 11.3.3, the ROC analysis was conducted to quantify the relative amount
of saliency in the ROI and the BG, where the SM pixels within the ROI were
considered to belong to the true positive class and the pixels outside the ROI
considered to belong to the true negative class. In a similar fashion, we perform
the ROC analysis here to quantify the relative amount of saliency in the distorted
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frame regions and the undistorted frame regions. We define the SM pixels within
the distortion regions to belong to the true positive class and the SM pixels outside
the distortion regions to belong to the true negative class.

The ROC analysis is performed on a frame-by-frame basis for all the sequences
of the four distortion classes, SEQ𝑆,0.4, SEQ𝑁,0.4, SEQ𝑆,1.2, and SEQ𝑁,1.2, taking
into account the different distortion locations in the salient and non-salient regions
and the range of distorted frames for all 20 contents. It should be noted that the
ROC was not just conducted on the distorted frames but on all 150 frames of each
sequence, thus facilitating the analysis of shifts in attention due to the distorted
video frames as compared to the undistorted video frames. In this respect, the
AUC is consulted as a measure of the amount of saliency in the distorted regions
as compared to the undistorted regions, with a higher AUC indicating a stronger
focus of the observers on the distortion regions. With all distortions introduced
through the packet loss being in the suprathreshold regime, one can assume
the attention of the observers to be shifted towards the distortions during their
course of appearance. As a result, the AUC of the distorted frames would rise
in comparison to the AUC of the undistorted frames. The AUC computations
are in the following denoted as AUC𝑆,0.4, AUC𝑁,0.4, AUC𝑆,1.2, and AUC𝑁,1.2, in
relation to the respective distortion classes of the video sequences.

13.2.3 Attentional shifts due to distortions: an illustrative example

Before going into the details of the ROC analysis results, an illustrative example
of viewing behaviour that we have observed for a wide range of video sequences is
discussed. For this purpose, representative SM are shown in Fig. 78, superimposed

as HM on the corresponding distorted sequences, SEQ
(13)
𝑆,1.2 and SEQ

(13)
𝑁,1.2, in

the left and the right column, respectively. The distortions in these sequences
propagated over 30 frames, from frame 111 to frame 140.

The first row shows the SM for frame 101 of the respective videos, which
does not contain any distortions and is presented here to illustrate the VA before
the appearance of the distortions. It can be noted that the attention is mainly
in the lower part of the frame and in particular around the region that has been
identified as highly salient, based on the task-free eye tracking data (see Section
12.1.1). However, the focus of the observers is not quite as condensed as in the
task-free experiment (see Fig. 71), which might be due to the quality task under
which the observers in experiment E5 were viewing the videos. Thus, the FoA
might be moved to some degree to other regions of the frame to conduct the
quality analysis.

The second row, showing frame 111, represents the first frame in which the
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Figure 78: Example frames of SEQ
(13)
𝑆,1.2 (left) and SEQ

(13)
𝑁,1.2 (right) with distor-

tions ranging from frame 111 to frame 140.
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packet loss distortions appear. In the left column, the distortions clearly appear
at the bottom of the frame, around the highly salient region. In the right column,
the distortions appear towards the top of the frame, in the non-salient region.

The third and fourth row, respectively, show frames 121 and frame 131 of the

according sequences. It can clearly be seen in the left column that for SEQ
(13)
𝑆,1.2

the FoA remains in the bottom of the frame, and in fact, even more so than in the
previous frames. On the other hand, the right column shows that for SEQ

(13)
𝑁,1.2

the FoA gradually shifts towards the distortions at the top of the frame, away
from the salient region at the bottom.

The corresponding AUC values beside each frame reflect this behaviour. To be

precise, the AUC values for SEQ
(13)
𝑆,1.2 in the left column are fairly high for all four

frames and increase only marginally with the appearance of the distortions. The

AUC values for SEQ
(13)
𝑁,1.2 are considerably smaller for the early frames and increase

strongly for later frames, as the FoA is drawn away from the content saliency to
the localised packet loss distortions. Similar observations have been made for a
wide range of sequences, however, not all of them exhibit these phenomena. A
more detailed analysis of all sequences based on the computation of the AUC is
presented in the following sections.

13.2.4 Temporal progression of the AUC

To illustrate the progression of the AUC over the course of a sequence, the frame-
by-frame AUC for three example videos are shown in Fig. 79, of which the one
in the middle, SEQ(13), corresponds to the example frames presented in Fig. 78.
The sequence numbers relate to the numbers provided in Fig. 70 and Fig. 71.
For each sequence, four frame-based AUC curves are plotted, corresponding to
the different distortion classes (SEQ𝑆,0.4, SEQ𝑁,0.4, SEQ𝑆,1.2, SEQ𝑁,1.2). The
abscissae denote the frame numbers with labels provided for the beginning and the
end of the temporal distortion ranges. Here, B30 and E30 denote the beginning
and the end of the distortions in the GOP30 coded videos and B10 and E10
denote the beginning and the end of the distortions in the GOP10 coded videos.

As one can see from Fig. 79 (a) and (b), there is indeed a noticeable increase of
the AUC in the distorted frames as compared to the undistorted frames. However,
this increase is considerably larger for the sequences that are distorted in the non-
salient region, SEQ𝑁,0.4 and SEQ𝑁,1.2, showing a stronger shift in the observers
FoA. This can be explained by the saliency being generally higher in the distortion
regions for the salient region distorted sequences, SEQ𝑆,0.4 and SEQ𝑆,1.2, and as
such, the viewers’ focus is already there and does not need to be shifted to the
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Figure 79: Frame-based AUC computation for all four distortion classes of the
video sequences: (a) SEQ(11), (b) SEQ(13), and (c) SEQ(16).
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same extent as for the sequences SEQ𝑁,0.4 and SEQ𝑁,1.2.
It is further worth pointing out the delay with which the AUC rises in relation

to the appearance of the distortions. From Fig. 79 (a) and (b) one can observe
that the AUC starts to increase about 5 frames after the first distorted frame,
which is apparent for both the GOP10 and the GOP30 coded sequences. This
delay corresponds to about 200ms, given the frame rate of 25 fps with which the
videos were presented. Similar delays were observed for the other video sequences.

These observations made for video sequences SEQ(11) and SEQ(13) do not
hold to the same degree for SEQ(16), as can be observed in Fig. 79 (c), where
the AUC does not rise notably during the distorted video frames. Unlike video
sequences SEQ(11) and SEQ(13), video sequence SEQ(16) contains very high and
fast motion in conjunction with a highly textured background. As such, the
distortions in the non-salient regions do not attract as much attention, or are not
even detected at all, which is also evident in Fig. 77 with SEQ(16) having received
many ’Imperceptible’ ratings.

13.2.5 Impact of the content saliency and distortion duration

Figure 79 shows that for all three sequences, the AUC𝑆,0.4 and AUC𝑆,1.2, corre-
sponding to the salient region distorted sequences, are generally higher as com-
pared to the AUC𝑁,0.4 and AUC𝑁,1.2, corresponding to the non-salient region
distorted sequences. To verify if this is a general phenomenon for all 20 sequence
contents, we compute the average AUC, 𝜇(𝐴𝑈𝐶), over all 150 frames for each
video. The results are presented in Fig. 80, showing, that indeed the average
AUC is consistently higher for SEQ𝑆,0.4 and SEQ𝑆,1.2 as compared to SEQ𝑁,0.4

and SEQ𝑁,1.2.
Intuitively one would expect this result, as the distortions in SEQ𝑆,0.4 and

SEQ𝑆,1.2 are in the regions of high saliency from the task-free eye tracking exper-
iment (see Section 12.1.1). However, it should be emphasised here again, that
the gaze patterns obtained in experiment E5 do not directly reflect the content
saliency but instead the viewing behaviour under quality assessment task. Thus,
the generally higher AUC in the sequences SEQ𝑆,0.4 and SEQ𝑆,1.2 reflects the
fact, that the human observers tend to analyse the quality of the video sequences
in the highly salient regions, rather than in the non-salient regions. This is in
strong agreement with the results from Section 11.3 where we found that human
observers rate image quality within ROI. To be more precise, the observers tend
to start the assessment in the ROI and once inspected they, to some degree,
move on to other parts of the image. As the visual scene constantly changes
in the case of video sequences, the effect of moving on to a non-salient region



13.2 Visual attention to localised packet loss distortions 209

0 2 4 6 8 10 12 14 16 18 20
0.3

0.4

0.5

0.6

0.7

0.8

Video sequence number

µ(A
U

C
)

µ(AUC)
S,0.4

µ(AUC)
N,0.4

µ(AUC)
S,1.2

µ(AUC)
N,1.2

Figure 80: AUC averaged over all 150 frames for all sequences and distortion
classes.

seems somewhat suppressed, as the AUC remains generally higher for SEQ𝑆,0.4

and SEQ𝑆,1.2 throughout the duration of the sequences.
Figure 80 also shows that SEQ𝑆,0.4 and SEQ𝑆,1.2 generally experience similar

AUC values, and so do SEQ𝑁,0.4 and SEQ𝑁,1.2. However, SEQ𝑆,0.4 and SEQ𝑆,1.2

do not exhibit a consistent pattern regarding one of the two having a higher AUC
than the other. The AUC𝑁,1.2, on the other hand, seems to be mostly higher
than AUC𝑁,0.4, which indicates that the longer distortions were on average longer
attended by the observers, as compared to the shorter distortions.

13.2.6 Attendance of distorted versus undistorted frames

To further quantify the amount to which the FoA shifts with respect to the
distortions, we compute the average AUC 𝜇(𝐴𝑈𝐶) independently for the distorted
frames and the undistorted frames. The average AUC for the distorted frames,
𝜇(𝐴𝑈𝐶,𝐷), is thus computed over 10 and 30 frames, respectively, for the GOP10
and GOP30 coded sequences. The remaining frames are used to compute the
average AUC for the undistorted frames, 𝜇(𝐴𝑈𝐶,𝑈). Given the delay in the shift
of the FoA, the computation of the average AUC of the distorted frames is actually
also shifted by 5 frames, or analogously, by 200ms.

The average AUC for the undistorted and the distorted frames are shown in
Fig. 81 for all 20 sequence contents and the 4 distortion classes. The bar plot at
the bottom of each figure represents the difference between the respective average



210 13 Impact of Content Saliency on Packet Loss Distortion Perception

1 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Video sequence number

µ(A
U

C
)

S
,0

.4

Undistorted Distorted

(a)

1 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Video sequence number

µ(A
U

C
)

N
,0

.4

Undistorted Distorted

(b)

1 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Video sequence number

µ(A
U

C
)

S
,1

.2

Undistorted Distorted

(c)

1 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Video sequence number

µ(A
U

C
)

N
,1

.2
Undistorted Distorted

(d)

Figure 81: AUC average over all distorted and undistorted frames for all se-
quences and distortion classes: (a) SEQ𝑆,0.4, (b) SEQ𝑁,0.4, (c) SEQ𝑆,1.2, and
(d) SEQ𝑁,1.2. The bars at the bottom of each plot emphasise the difference
between the average of the distorted and undistorted frames.

AUC for the undistorted and the distorted frames

Δ𝜇(𝐴𝑈𝐶) = 𝜇(𝐴𝑈𝐶,𝐷) − 𝜇(𝐴𝑈𝐶,𝑈). (102)

It can be seen that for all distortion classes, the average AUC is generally higher
for the salient region distorted sequences. The AUC difference Δ𝜇(𝐴𝑈𝐶) also
highlight earlier observations, that the shift of the FoA is stronger for the non-
salient region distorted videos, and in particular, in the case of the long distortions
(SEQ𝑁,1.2).
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Table 39: Pearson linear correlation coefficients between the AUC of the distorted
frames, 𝜇(𝐴𝑈𝐶,𝐷), for the different distortion classes.

𝜇
(𝐴𝑈𝐶,𝐷)
𝑆,1.2 𝜇

(𝐴𝑈𝐶,𝐷)
𝑁,0.4

𝜇
(𝐴𝑈𝐶,𝐷)
𝑆,0.4 0.764 0.01

𝜇
(𝐴𝑈𝐶,𝐷)
𝑁,1.2 0.032 0.271

13.2.7 Correlation analysis of average AUC in distorted frames

In Section 13.1, we showed that the distribution of impairment ratings changes
considerably more with the saliency of the distortion region, as compared to the
duration of the distortions (see Fig. 74). It was further shown that the average
MOS exhibited larger differences with respect to the content saliency compared to
the distortion duration (see Table 37). This predominance of the content saliency
over the distortion duration is, to some degree, also apparent in the distortion
attendance as analysed in this section. Particularly the averaged AUC presented
in Fig. 80 clearly highlight the difference of the AUC with respect to the content
saliency and the similarity of the AUC regarding the distortion duration.

To provide further insight regarding the impact of content saliency and distor-
tion duration on the distortion attendance of the human observers, we compute
the Pearson linear correlation coefficient 𝜌𝑃 between the AUC of the distorted
frames, 𝜇(𝐴𝑈𝐶,𝐷), over all 20 sequence contents. The results are presented in Ta-

ble 39. With regards to the distortion duration; the correlation between 𝜇
(𝐴𝑈𝐶,𝐷)
𝑆,0.4

and 𝜇
(𝐴𝑈𝐶,𝐷)
𝑆,1.2 exhibits a fairly large value of 0.764, indicating that the attendance

in the salient region distorted sequences SEQ𝑆,0.4 and SEQ𝑆,1.2 has been fairly
similar in the case of both distortion durations. On the other hand, the correla-
tion of 0.271 between 𝜇

(𝐴𝑈𝐶,𝐷)
𝑁,0.4 and 𝜇

(𝐴𝑈𝐶,𝐷)
𝑁,1.2 is very low, showing that in the

non-salient region the attendance was not as stable between the two distortion
durations. These observations may explain why the distinction between quality
levels of the two distortion durations were more distinct in the case of sequences
SEQ𝑆,0.4 and SEQ𝑆,1.2 (see Table 37), as these distortions were more consistently
attended compared to the ones in the non-salient region.

From Table 39 it can further be seen that 𝜇
(𝐴𝑈𝐶,𝐷)
𝑆,0.4 and 𝜇

(𝐴𝑈𝐶,𝐷)
𝑁,0.4 are nearly

uncorrelated. The same applies for 𝜇
(𝐴𝑈𝐶,𝐷)
𝑆,1.2 and 𝜇

(𝐴𝑈𝐶,𝐷)
𝑁,1.2 . This indicates

that there has been no common viewing pattern across the video sequences with
respect to the two distortion regions (salient/non-salient) which suggests that
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the impact of content saliency is in fact somewhat larger as compared to the
saliency caused by the transmission distortions. This can partly be attributed to
the different degrees of visibility of the distortions and thus, the different degrees
with which the FoA shifted towards these distortions.
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14 Modelling Saliency Awareness for Video Qual-
ity Metrics

T he outcomes of experiment E5 revealed that the content saliency of the region
in which the localised packet loss distortions appear has a significant impact

on the overall perceived annoyance of the distortions. In fact, the influence of the
content saliency has been found to be more significant compared to the distortion
duration. Thus, VQM that aim to accurately predict the perceived quality of a
video sequence, in particular in the context of localised transmission errors, may
not only focus on spatial and temporal distortion measures, but should also take
into account the saliency of the video content.

The aim of this chapter is to determine the benefits of incorporating visual
saliency information into existing VQM to improve their quality prediction per-
formance. For this purpose, we consider a contemporary VQM, the temporal
trajectory aware video quality measure (TetraVQM) [81]. This metric is based on
numerous processing steps related to properties of the HVS, but does not take
into account the content saliency. As such, TetraVQM is particularly suitable for
an extension with a saliency awareness model.

The general saliency awareness framework considered in this work is shown in
Fig. 82. Here, the white blocks denote the integral parts of most existing VQM.
The grey blocks highlight the processing steps of the saliency awareness extension.
It can be observed that the saliency awareness model is not integrated into the
actual VQM, but instead constitutes a separate entity that is combined with the
VQM in a final step. As such, the saliency awareness model can be added to
existing VQM without having to conduct any changes to the VQM.

The saliency awareness model needs as input the regions of the visible dis-
tortions and also the saliency information of the visual content. In an applied
scenario, the former could be determined from the distortion maps that are read-
ily available from the VQM. The saliency information could be automatically
predicted using VA models [129,130]. In the context of this work, we omit these
procedures and instead make use of the perfect knowledge that we have regarding
the distortion region and the visual content saliency. To be precise, the distortion
regions are known from the creation of the test sequences and the saliency infor-
mation is obtained from the task-free eye tracking data. Thus, we avoid potential
estimation errors of distortions and content saliency from objective methods, that
would subsequently result in errors in the saliency awareness model.

Given the very recent conduction of the combined video quality and eye track-
ing experiment E5, the modelling and the results presented in this chapter are by
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Figure 82: Extension of a conventional video quality metric (white blocks) with
the saliency awareness model (grey blocks).

no means considered to be exhaustive. They are rather indicative and are consid-
ered to be a first step towards a more complete framework of saliency awareness
for VQM that are not accounting for the saliency of the video content.

14.1 TetraVQM

TetraVQM [81] is an objective quality algorithm that is particularly well suited for
enhancement with visual saliency because it already contains several steps that
are motivated by the HVS. It has been designed for the prediction of video quality
in multimedia scenarios, including the typical artifacts that occur in packet loss
situations.

14.1.1 Essential processing steps

TetraVQM follows the FR approach and therefore uses the reference video se-
quence to predict the perceived visual quality of a corresponding distorted video
sequence. The main focus is on temporal processing steps, e.g. the misalignment
of the video sequences, frame freezes, frame skips, frame rate reduction, influence
of scene cuts, and the tracking of the visibility of distorted objects. The processing
starts with the spatial, temporal, and colour alignment of the two input videos,
followed by the creation of a spatial distortion map for each video. The position
and the severity of the degradations is then identified using the MSE.

A human observer perceives the video sequence as a continuous stream of
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Figure 83: Scatter plot of MOS over TetraVQM, highlighting the four distortion
classes and their mean values.

information, rather than image by image, and thus, the perceived severity of
distortions depends on the duration that they have been seen by the observer.
Furthermore, distortions which move together with an object are perceived as
long lasting object degradations, rather than several isolated momentary points
of distortions. Therefore, TetraVQM estimates the object motion and keeps track
of the degradations over time. Each initial distortion map is then modified to
account for the temporal visibility of the artifacts.

The spatial summation is performed by applying a filter that is based on the
distribution of the cones in the fovea. Currently, the assumption is used that the
viewer focuses on the point of the maximum perceived degradation. This was
previously seen as the focal point of the observer. Thus, it is straightforward to
improve the algorithm by applying a more sophisticated approach that uses the
visual content saliency.

14.1.2 Omittance of content saliency

A scatter plot of the MOS from experiment E5 over TetraVQM is presented in
Fig. 83. In this figure, the sequences corresponding to the four different subsets
of distortions (SEQ𝑆,0.4, SEQ𝑁,0.4, SEQ𝑆,1.2, SEQ𝑁,1.2) are illustrated using dif-
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ferent markers. In addition, the cluster means (𝜇𝑆,0.4, 𝜇𝑁,0.4, 𝜇𝑆,1.2, 𝜇𝑁,1.2) are
provided for all subsets.

The scatter plot highlights that TetraVQM accounts for the temporal duration
of the distortions but not for the content saliency of the distortion region. The
latter is evident given the big gap in MOS and the small gap in TetraVQM
between the sequences with distortions in the salient (SEQ𝑆,0.4,SEQ𝑆,1.2) and
non-salient (SEQ𝑁,0.4,SEQ𝑁,1.2) region. One could thus say that TetraVQM
predicts the quality of the video sequences with distortions in the salient region
too optimistically in relation to the video sequences with distortions in the non-
salient region.

14.2 Saliency awareness model

The saliency awareness model is combined with a conventional VQM as shown in
Fig. 82. The model consists of two integral parts, the first one being the saliency
quantification in the distortion region, based on the provided input information
about the distortions and the content saliency. The second part then consists
of an appropriate pooling of the conventional VQM with the saliency awareness
model.

In general, both the saliency quantification and the pooling stage can be
implemented in various degrees of complexity. For instance, the saliency quantifi-
cation in the distortion region could incorporate some interaction factor between
the distortion visibility and the content saliency. In the scope of this work, we
consider a simple saliency model in the form of a ’penalty term’ that is added in
relation to the amount of saliency in the distortion region as follows:

VQMSA = VQM− 𝛼 ⋅ S (103)

where S denotes the saliency information. The idea behind (103) is to add a
negative offset Δ = −𝛼 ⋅ S to the VQM with respect to the amount of saliency
information in the region where the distortions appear. This is based on the evi-
dence from experiment E5, where it was shown that distortions in a more salient
region are perceived as more annoying and as such, should receive a lower pre-
dicted quality score. The parameter S represents the saliency within the distortion
regions of the videos and thus, determines the relative magnitude of the offset
between different contents. The parameter 𝛼 regulates the general degree with
which the offset is performed and needs to be optimised for any particular VQM.
The model outlined here is considered to be generally applicable to any VQM
that does not take into account visual saliency.
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Figure 84: Saliency quantification S1 for all 20 sequence contents in each subset.

In the following, we present two different saliency quantification methods
that were found to considerably improve the quality prediction performance of
TetraVQM.

14.2.1 Saliency quantification method S1

The saliency awareness model using this first saliency quantification method, S1,
is in the following referred to as model M1. This method takes into account that
the saliency within the distortion region varies between different videos. For this
reason, the saliency in the distorted regions is quantified using the SM created
from the gaze patterns. The mean saliency for each frame is then computed over
the whole distortion region as

S1𝑓 =
1

(𝑙𝑖𝑚𝑏 − 𝑙𝑖𝑚𝑡)(𝑙𝑖𝑚𝑟 − 𝑙𝑖𝑚𝑙)

𝑙𝑖𝑚𝑡∑
𝑥=𝑙𝑖𝑚𝑏

𝑙𝑖𝑚𝑟∑
𝑦=𝑙𝑖𝑚𝑙

S(𝑥, 𝑦) (104)

where 𝑙𝑖𝑚𝑏, 𝑙𝑖𝑚𝑡, 𝑙𝑖𝑚𝑙, and 𝑙𝑖𝑚𝑟, respectively, denote the limits of the distortion
region on the bottom, top, left, and right. In a temporal pooling step the mean
over all degraded frames 𝑁𝑑𝑓 is then computed as

S1 =
1

𝑁𝑑𝑓

𝑁𝑑𝑓∑
𝑛=1

S1𝑓 (𝑛). (105)

The saliency magnitudes S1 for all sequences are shown in Fig. 84. One can see
that the sequences SEQ𝑆,0.4 and SEQ𝑆,1.2 contain a higher amount of saliency
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as compared to SEQ𝑁,0.4 and SEQ𝑁,1.2, however, the amount of saliency is not
constant between the different sequences. As such, the offset changes with the
saliency of the different sequences.

14.2.2 Saliency quantification method S2

The saliency awareness model using the second saliency quantification method,
S2, is in the following referred to as model M2. This method does not distinguish
between as many saliency levels as M1 does, but rather distinguishes only between
two cases; salient region or non-salient region. This is realised with a threshold
algorithm as follows:

S2 = 1 for S1 ≥ 𝜏 (106)

S2 = 0 for S1 < 𝜏.

Considering the results presented in Fig. 84, we define a threshold of 𝜏 = 0.01
which separates the classes of saliency and non-saliency in the distorted image
region. The threshold is indicated by the dashed grey line. As such, the VQM
scores for the sequences SEQ𝑆,0.4 and SEQ𝑆,1.2 receive the same offset, whereas
the VQM scores for the sequences SEQ𝑁,0.4 and SEQ𝑁,1.2 remain unaltered.

14.3 Performance evaluation

The quality prediction performance of TetraVQM is evaluated using three perfor-
mance indicators; the RMSE, the Pearson linear correlation coefficient 𝜌𝑃 , and
the Spearman rank order correlation 𝜌𝑆 . Prior to calculating the RMSE, a linear
fit is applied in order to align the VQM output to the subjective rating scale.
The optimal parameters 𝛼𝑜𝑝𝑡 for both models M1 and M2 are determined with
respect to minimising RMSE between the saliency aware TetraVQM and the MOS
using an exhaustive search. For further analysis of the saliency awareness models
we also deployed them to the PSNR metric averaged over all frames of a video
sequence. In the following, detailed results will be discussed only for TetraVQM.

The relation between the 𝛼 and the RMSE is presented in Fig. 85 and the
correspondence between 𝛼 and the correlation coefficients is given in Fig. 86. The
minimum RMSE and the maximum 𝜌𝑃 and 𝜌𝑆 are highlighted in the respective
figures. The performance values are summarised in Table 40 for both TetraVQM
and PSNR and their proposed enhancements as in TetraVQMM1, TetraVQMM2
and PSNRM1, PSNRM2, respectively. The performance results of TetraVQM
and PSNR without the proposed enhancements indicate that these metrics are
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Figure 85: Root mean squared error (RMSE) versus 𝛼1 and 𝛼2.
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Figure 86: Pearson linear correlations (𝜌𝑃 ) and Spearman rank order correlations
(𝜌𝑆) versus 𝛼1 and 𝛼2.

unable to predict the MOS given for the videos with the localised packet loss
distortions. When comparing between TetraVQM and PSNR, it can be observed
that TetraVQM consistently performs better than PSNR.

The results show that for both models M1 and M2, the RMSE can be largely
decreased and the correlation coefficients 𝜌𝑃 and 𝜌𝑆 can be largely increased.
Somewhat unexpected, model M2 achieves better results than model M1, even
though M2 does not distinguish saliency levels between the distortion regions
of the different sequences, but instead uses a constant offset for SEQ𝑆,0.4 and
SEQ𝑆,1.2.

It should be noted that for model M2, the maximum 𝜌𝑆 coincides with the 𝛼2

for which the TetraVQMM2 of all sequences SEQ𝑆,0.4 and SEQ𝑆,1.2 are shifted
below the TetraVQMM2 of the sequences SEQ𝑁,0.4 and SEQ𝑁,1.2. Thus, the
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Table 40: Optimised parameters 𝛼𝑜𝑝𝑡 and quality prediction performance indica-
tors (RMSE, 𝜌𝑃 , 𝜌𝑆) for TetraVQM and PSNR.

Metric 𝛼𝑜𝑝𝑡 RMSE 𝜌𝑃 𝜌𝑆

TetraVQM N/A 0.702 0.522 0.536

TetraVQMM1 28.15 0.447 0.84 0.835

TetraVQMM2 2.41 0.316 0.923 0.888

PSNR N/A 0.75 0.414 0.451

PSNRM1 418.61 0.465 0.825 0.83

PSNRM2 35.08 0.332 0.915 0.88

rank order correlation of the objective quality scores with MOS is highest when
all sequences with distortions in the salient regions are rated lower than the worst
sequence with distortions in the non-salient region. This observation is in line with
the conclusions drawn from the MOS of the subjective experiment (see Section
13.1 and Fig. 75).

Scatter plots of TetraVQMM1 and TetraVQMM2 are presented in Fig. 87
after deploying a linear mapping to the MOS. The scatter plot for TetraVQMM2
shows two distinct point clouds for the two classes, salient and non-salient, which
partially corresponds to the situation seen in Fig. 75. This is remarkable be-
cause the optimisation has been performed on the RMSE value and not on the
correlation coefficients and thus, it is not an artifact of the training.

14.4 Limitations and outlook

Although the results presented in this chapter are very promising, there are some
limitations that need to be considered. Firstly, the same subjective data has been
used for training as well as for evaluation of the saliency awareness models. As
such, the performance indicators presented in Table 40 provide an upper bound of
the performance improvement that can be expected due to the saliency awareness
framework. Further analysis based on separated training and validation sets will
lead to more insight regarding the performance of the proposed framework.

The amount of saliency in the presented models has been quantified using the
mean over the distortion region. Different quantification models might lead to
even larger performance improvements than the ones that have been presented
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Figure 87: Scatter plots of MOS over TetraVQMM1 and TetraVQMM2, including
95% confidence intervals (CI).

here. Such models could, for instance, consider the variation of the saliency in
the distortion region, rather than just taking the mean. The relative magnitudes
of the saliency in relation to the distortion severeness could also be a factor worth
looking at.

Finally, the presented framework combines the saliency model non-intrusively
with the VQM. Although this has the advantage of not having to change the orig-
inal metric, the interaction between the distortion measures and the HVS-based
processing steps within the VQM cannot be fully integrated with the saliency
model. Thus, further work can concentrate on implementing the saliency aware-
ness directly into the algorithmic processing of the VQM, which may lead to
further performance improvements.
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15 Final Remarks

I n the following sections, we briefly summarise the work that has been presented
in this thesis and highlight the major contributions. We further discuss a few

limitations that can be subject for future work. We end the thesis with some final
conclusions.

15.1 Summary and contributions

In this thesis, we presented our work on modelling perceptual quality and visual
saliency for image and video communication applications. The presented models
were all developed and validated using as a ground truth data obtained from ex-
tensive subjective experiments. They were further designed within the constraints
of image and video communication systems and in particular wireless networks.
To be precise, the low computational processing power, the scarce channel band-
width, and the complex distortion patterns were major considerations in the metric
designs. The contributions of this thesis can be summarised as follows.

Part I presented reduced-reference quality metrics specifically designed for
application in image and video communications. The metrics are of low com-
putational cost and exploit minimal reference information, as compared to other
reduced-reference metrics proposed in the literature. This is achieved while main-
taining a superior quality prediction performance compared to other contemporary
metrics in the context of image communications.

Part II proposes several techniques to further improve the quality prediction
performance of the reduced-reference quality metrics. In particular, a multiobjec-
tive optimisation framework is proposed for determining optimal feature weights.
The framework is applied to several quality metrics, showing consistent perfor-
mance improvement while maintaining generalisation ability of the metrics. A
region-of-interest framework is further proposed to be integrated into existing
image quality metrics.

Part III aims at facilitating a better understanding regarding the deployed
strategies of human observers when rating image quality. Firstly, the confidence
of human observers when judging image quality is analysed in detail and simple
computational models are derived to predict observer confidence, as a complement
to typically computed confidence intervals. Secondly, the gaze patterns of human
observers are analysed which were recorded during task-free and task-based (qual-
ity assessment task) eye tracking experiments, revealing valuable insight into the
human viewing behaviour when presented natural image content in the absence
and the presence of structural distortions.
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Part IV, finally, evaluates the perceived annoyance of packet loss distortions in
relation to the underlying content saliency of natural video sequences. The anal-
ysis is based on an extensive combined eye tracking and video quality assessment
experiment. Based on the experiment outcomes, a saliency awareness model is
further proposed to enhance existing video quality metrics by integrating content
saliency information.

We further make some of the results from our subjective experiments publicly
available to the research community. The outcomes of experiments E1 and E2
are made available in the Wireless Imaging Quality (WIQ) database, which is
explained in Appendix A. The outcomes of experiment E3 are made available in
the Region-of-Interest (ROI) database, which is explained in Appendix B. Finally,
the gaze patterns recorded in experiment E4a are made available in the Visual
Attention for Image Quality (VAIQ) database, which is explained in Appendix C.

15.2 Limitations and future work

The surveys presented in Chapter 1 of this thesis revealed that there is an abun-
dant amount of different attributes and parameters that can, and maybe should,
be accounted for in order to define successfully deployed perceptual quality met-
rics. Incorporating all factors, however, would lead to extremely complex com-
putational metrics which would find no application in current image and video
communication systems. Like any of the visual quality metrics reviewed in Sec-
tion 1.4, we had to sacrifice some factors in the favour of others. To facilitate
future research and possible extension of the presented models, we highlight in
the following a few limitations that we are aware of:

∙ As most proposals in the literature thus far, the metrics presented in Part I
and Part II of this thesis are based on the analysis of luminance values only.
Thus, conducting similar tests on colour images and incorporating colour
information into the models can be subject for future work [256,257].

∙ The perceptual relevance weights of the metrics presented in Part I and Part
II were derived for the particular case of JPEG compressed images. As such,
the weights would need to be determined for other possible applications, for
instance, for JPEG2000 coded images or H.264/AVC coded video sequences.
Subjective experiments need to be conducted again to obtain a ground truth
for the metric design. Incorporating several different coding systems into
the weights optimisation would make the metrics more generally applicable,
but likely reduce the quality prediction performance with respect to any of
the codecs involved.
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∙ The quality metrics and saliency models presented in this thesis focused on
visual stimuli. In the case of video, auditory distortions also have a strong
impact on the overall perceived quality. Furthermore, the attention of a
human observer is strongly driven by auditory cues [170] in addition to the
visual cues. Taking these considerations into account may lead to even
more effective audio-visual quality metrics that correlate well with human
perception [258, 259]. However, auditory cues to be incorporated into the
quality and visual attention modelling were outside the scope of this thesis.

∙ There are still many open questions for future research regarding the gaze
patterns obtained from both the image quality experiment presented in
Chapter 9 and the video quality experiment reported in Chapter 12. In both
cases it would be of great interest to establish closer relationships between
the gaze patterns of the human observers and their quality judgements
during the experiment. Such an analysis would serve to further understand
the quality rating behaviour of human observers when presented natural
image and video content in the presence of transmission distortions.

∙ The gaze patterns from experiments E4b and E5 were recorded under qual-
ity assessment task. Hence, the attention to the visual distortions does
not reflect the pure saliency of the distortions in relation to the image
or video content. It would therefore be very valuable to conduct a task-
free eye tracking experiment in which the participants are shown images
or videos containing transmission distortions. The outcomes would reflect
more suitably the natural attention to these distortions, disregarding the
search strategies deployed during quality assessment.

∙ In addition to the analysis provided in Section 11.2, there is much room
for analysis regarding the task-free gaze patterns from the eye tracking ex-
periment E4a presented in Chapter 9. As many visual attention models
are designed and validated on saliency maps obtained from eye tracking,
it is of crucial importance to obtain valid saliency maps that constitute
a reliable ground truth. However, little is known about the convergence
behaviour of saliency maps in dependence on the presentation time of the
image. As such, a too short presentation time may result in an ’incomplete’
saliency map whereas a too long presentation time may contain ’redundant’
saliency information, thus unnecessarily prolonging expensive subjective ex-
periments. Furthermore, the consistency of saliency maps obtained from
eye tracking experiments of different laboratories should be evaluated to
identify the reliability of different saliency maps as a ground truth for visual
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attention modelling. These are just some issues that need attention and in
fact, at the time of submission of this thesis, the author has started a coop-
erative work with the University of Technology in Delft, The Netherlands,
the University of Nantes, France, and the University of Western Sydney,
Australia, to shed some more light onto these problems.

15.3 Conclusions

The field of visual quality assessment research has experienced tremendous ad-
vances over the past decades and especially in recent years. The increased deploy-
ment of perceptual quality assessment in image and video processing applications
is promising for a wider acceptance of perceptual quality metrics as an alternative
to PSNR. However, despite the efforts and the improvements there are no quality
predictors yet that work reliable under a wide range of different scenarios. One of
the most commonly neglected factors is visual attention, which has been shown
in this thesis to have a considerable impact on the perceived visual quality and
the prediction performance of image and video quality metrics. Colour [256] is
another often disregarded attribute which, when taken into account, can be ex-
pected to further advance this field of research. In fact, Xia et al. [260] recently
found that colour artifacts are amongst the most severely perceived distortions in
natural video sequences and should thus not be neglected. We believe also that
reduced-reference quality assessment should receive more attention as a method
that allows for a well balanced compromise between full-reference and no-reference
quality assessment, combining the advantages of both of them.

In any case, we are still far away from truly reliable and universally applicable
visual quality metrics if, in fact, such metrics can be achieved, given the subjectiv-
ity of quality perception and the broad range of available multimedia applications
nowadays.
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Appendices
For the development of visual quality metrics and visual attention models, a
ground truth is usually needed on which to design and validate the models on. In
case of quality metrics, mean opinion scores obtained in subjective quality exper-
iments are typically utilised. On the other hand, gaze patterns from eye tracking
experiments often support the design and validation of visual attention models.
For a better comparison of the objective methods between laboratories worldwide,
it is desirable to have publicly available quality and eye tracking databases.

For this reason, we make some of our subjective databases publicly available
to the research community. In particular, the outcomes of experiments E1 and E2
are made available in the Wireless Imaging Quality (WIQ) database, which is
explained in more detail in Appendix A. The Region-Of-Interest (ROI) database
contains the outcomes of experiment E3 and is discussed in Appendix B. Finally,
the eye tracking data from experiment E4a is made available in the Visual At-
tention for Image Quality (VAIQ) database, which is introduced in Appendix C.

All three databases can be downloaded from the following web site:

http://www.bth.se/tek/rcg.nsf/pages/perceptual-databases

The passwords needed to unpack the files can be obtained by emailing the author
of this thesis, Ulrich Engelke (ulrichengelke@gmail.com).

Appendix D presents the saliency maps created from the gaze patterns from
eye tracking experiment E4b. The saliency maps are visualised as heat maps,
overlayed on the image content.
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A The Wireless Imaging Quality (WIQ) Database

A.1 Database description

The Wireless Imaging Quality (WIQ) database is based on the outcomes of exper-
iments E1 and E2, which are described in detail in Chapter 2. The WIQ database
contains the following data:

∙ Reference images from experiments E1 and E2
(wiq ref images.zip, approx. 1.55 MB)

∙ Distorted images from experiment E1
(wiq dst images t01.zip, approx. 8.88 MB)

∙ Distorted images from experiment E2
(wiq dst images t02.zip, approx. 8.72 MB)

∙ Raw subjective image quality scores and mean opinion scores contained in
a Matlab workspace (wiq subjective scores matlab.zip, approx. 7 kB)

∙ Raw subjective image quality scores and mean opinion scores contained in
an Excel spreadsheet (wiq subjective scores excel.zip, approx. 45 kB)

∙ WIQ database readme file (wiq readme.zip, approx. 3 kB)

A.2 Chief investigators

The chief investigators are:

∙ Ulrich Engelke, Blekinge Institute of Technology, Sweden

∙ Tubagus Maulana Kusuma, Gunadarma University, Indonesia

∙ Hans-Jürgen Zepernick, Blekinge Institute of Technology, Sweden

A.3 References for the WIQ database

In addition to the discussion in this thesis, the following publications contain de-
tailed descriptions and analysis of the WIQ database:

U. Engelke, T. M. Kusuma, H.-J. Zepernick, and M. Caldera “Reduced-Reference
Metric Design for Objective Perceptual Quality Assessment in Wireless Imaging,”
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Signal Processing: Image Communication, vol. 24, no. 7, pp. 525-547, 2009.

U. Engelke, H.-J. Zepernick, and T. M. Kusuma “Subjective Quality Assessment
for Wireless Image Communication: The Wireless Imaging Quality Database,”
in Proc. of International Workshop on Video Processing and Quality Metrics
(VPQM), Scottsdale, USA, January 2010.
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B The Region-of-Interest (ROI) Database

B.1 Database description

The Region-of-Interest (ROI) database is based on the outcomes of experiment
E3, which is described in detail in Section 8.1. The ROI database contains the
following data:

∙ ROI coordinates contained in a Matlab workspace
(roi coordinates matlab.zip, approx. 3 kB)

∙ ROI coordinates contained in an Excel spreadsheet
(roi coordinates excel.zip, approx. 17 kB)

∙ ROI database readme file (roi readme.zip, approx. 2 kB)

B.2 Chief investigators

The chief investigators are:

∙ Ulrich Engelke, Blekinge Institute of Technology, Sweden

∙ Hans-Jürgen Zepernick, Blekinge Institute of Technology, Sweden

B.3 References for the ROI database

In addition to the discussion in this thesis, the following publications contain de-
tailed descriptions and analysis of the ROI database:

U. Engelke and H.-J. Zepernick “A Framework for Optimal Region-of-Interest
Based Quality Assessment in Wireless Imaging,” Journal of Electronic Imaging,
Special Section on Image Quality, vol. 19, no.1 , ID 011005, 2010.

U. Engelke and H.-J. Zepernick, “Optimal Region-of-Interest Based Visual Qual-
ity Assessment,” in Proc. of IS&T/SPIE Human Vision and Electronic Imaging
XIV, vol. 7240, San Jose, USA, January 2009.

B.4 Coordinates of all ROI selections

The coordinates of all ROI selections are presented in Tables 41 and 42, with the
coordinate system origin being in the top left image corner.
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Table 41: Coordinates of the ROI selections for the seven reference images as
obtained from experiment E3 (participants 1-15).

# Coord Barbara Elaine Goldhill Lena Mandrill Peppers Tiffany

1 x* 338 421 185 301 240 291 240 367 120 398 51 206 216 441

y# 75 178 187 319 390 467 228 306 96 348 35 494 145 408

2 x 414 505 184 250 244 301 440 512 116 399 225 385 271 388

y 91 227 265 324 387 463 251 512 26 96 160 331 291 382

3 x 319 501 187 304 251 481 241 373 112 373 186 431 220 419

y 1 227 175 323 149 346 244 297 27 471 69 380 172 382

4 x 179 469 158 385 1 507 192 387 106 425 45 219 232 473

y 2 206 151 366 27 250 220 405 17 137 45 505 135 422

5 x 327 424 179 314 275 355 230 358 110 409 188 424 207 437

y 74 116 182 319 205 279 243 382 22 442 223 476 188 382

6 x 279 509 48 497 5 450 58 442 70 446 166 437 199 437

y 1 205 3 510 60 476 32 475 19 120 178 490 126 405

7 x 229 496 240 507 337 491 191 373 108 411 239 382 189 438

y 6 262 273 482 115 330 174 397 17 121 157 329 155 261

8 x 208 512 126 393 241 465 72 421 112 413 61 440 197 433

y 1 512 90 373 153 489 42 512 16 491 10 494 138 255

9 x 296 512 143 390 61 478 223 367 122 390 73 425 216 444

y 5 224 131 356 238 478 230 306 91 376 26 479 101 423

10 x 321 460 168 393 55 386 129 419 89 444 108 418 60 456

y 32 247 153 379 175 456 133 461 11 484 13 475 53 464

11 x 317 471 8 175 256 360 222 364 123 411 86 195 197 449

y 7 187 271 500 156 308 191 390 24 129 28 487 35 442

12 x 1 183 159 367 364 512 65 201 96 399 153 455 164 472

y 88 299 173 366 338 466 170 329 1 146 164 376 129 303

13 x 259 498 199 315 106 272 204 423 101 446 21 210 208 453

y 4 229 191 250 129 452 163 412 18 330 43 485 148 448

14 x 230 504 152 372 19 290 47 311 102 409 81 241 85 236

y 269 508 166 352 120 475 171 498 14 106 31 287 345 488

15 x 310 496 194 322 89 464 238 368 109 418 208 437 249 418

y 81 370 187 240 99 275 32 493 21 487 173 482 286 391

* The left/right x-coordinates for each image denote the respective left/right ROI limits.
# The left/right y-coordinates for each image denote the respective upper/lower ROI limits.
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Table 42: Coordinates of the ROI selections for the seven reference images as
obtained from experiment E3 (participants 16-30).

# Coord Barbara Elaine Goldhill Lena Mandrill Peppers Tiffany

16 x* 291 472 143 421 250 291 201 361 100 392 86 190 205 436

y# 4 217 86 379 384 477 166 399 29 104 90 466 163 248

17 x 421 466 178 331 173 263 236 367 111 417 118 393 233 414

y 388 465 193 237 277 434 230 296 6 128 35 299 295 381

18 x 288 502 96 350 172 397 195 383 115 402 73 202 199 438

y 4 280 104 347 253 444 184 401 30 468 51 479 151 403

19 x 186 512 87 512 199 512 60 446 115 402 91 428 165 487

y 1 512 28 512 181 512 32 475 30 468 10 328 31 456

20 x 17 159 201 334 233 368 230 398 52 448 70 227 222 436

y 112 253 262 318 372 471 219 304 15 496 16 224 144 380

21 x 242 512 75 456 1 460 96 431 99 400 66 426 158 486

y 4 358 92 376 109 467 39 426 24 436 46 486 6 450

22 x 328 440 169 308 260 449 69 214 155 329 85 202 253 386

y 9 181 186 237 201 321 213 512 94 443 43 472 306 376

23 x 7 315 67 452 272 458 55 401 62 441 61 252 194 442

y 133 512 59 385 165 446 90 512 1 193 10 512 85 442

24 x 209 512 121 498 1 444 67 398 80 401 175 420 65 512

y 1 512 1 512 56 449 50 512 1 500 177 495 30 512

25 x 325 477 157 371 146 300 219 379 103 409 65 412 209 439

y 1 202 117 346 166 462 188 393 19 484 1 478 82 446

26 x 333 476 65 452 178 402 245 360 134 395 423 496 281 373

y 21 200 18 249 282 428 245 284 117 338 142 272 310 369

27 x 15 174 158 402 237 307 192 398 128 390 71 188 272 386

y 111 281 109 355 369 485 150 404 34 108 36 512 302 386

28 x 333 449 185 320 209 406 233 372 88 423 232 361 259 394

y 2 186 186 239 49 167 201 394 17 119 160 302 296 378

29 x 330 427 188 305 266 420 237 372 135 357 66 404 210 441

y 19 178 182 238 166 283 241 294 71 440 9 223 180 245

30 x 317 442 172 361 250 286 186 410 202 295 210 392 268 379

y 68 118 198 308 403 456 236 293 124 335 179 485 298 384

* The left/right x-coordinates for each image denote the respective left/right ROI limits.
# The left/right y-coordinates for each image denote the respective upper/lower ROI limits.
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C The Visual Attention for Image Quality (VAIQ)
Database

C.1 Database description

The Visual Attention for Image Quality (VAIQ) database is based on the outcomes
of experiment E4a, which is described in detail in Chapter 9. The VAIQ database
contains the following data:

∙ Recorded gaze points contained in Excel spreadsheets
(vaiq gaze points excel.zip, approx. 16.9 MB)

∙ Recorded gaze points contained in a Matlab workspace
(vaiq gaze points matlab.zip, approx. 3.6 MB)

∙ Saliency maps Set 1 (vaiq saliency maps 1.zip, approx. 32.4 MB)

∙ Saliency maps Set 2 (vaiq saliency maps 2.zip, approx. 34.2 MB)

∙ Saliency maps Set 3 (vaiq saliency maps 3.zip, approx. 36.5 MB)

∙ Saliency images (vaiq saliency images.zip, approx. 13.6 MB)

∙ VAIQ readme file (vaiq readme.zip, approx. 4 kB)

C.2 Chief investigators

The chief investigators are:

∙ Ulrich Engelke, Blekinge Institute of Technology, Sweden

∙ Anthony Maeder, University of Western Sydney, Australia

∙ Hans-Jürgen Zepernick, Blekinge Institute of Technology, Sweden

C.3 References for the VAIQ database

In addition to the discussion in this thesis, the following publications contain de-
tailed descriptions and analysis of the VAIQ database:

U. Engelke, A. J. Maeder, and H.-J. Zepernick, “Analysing Inter-Observer Saliency
Variations in Task-Free Viewing of Natural Images,” in Proc. of IEEE International



C.4 Saliency maps 233

Conference on Image Processing (ICIP), Hong Kong, China, September 2010.

U. Engelke, A. J. Maeder, and H.-J. Zepernick, “Visual Attention Modelling for
Subjective Image Quality Databases,” in Proc. of IEEE International Workshop
on Multimedia Signal Processing (MMSP), Rio de Janeiro, Brazil, October 2009.

C.4 Saliency maps

The saliency maps for all images in the VAIQ database are visualised in Fig. 88 to
Fig. 92. The saliency maps are divided into the different figures with respect to the
databases that the corresponding images are from; IRCCyN/IVC [36], LIVE [37],
and MICT [35]. The names under each image correspond to the original name
from the respective database. More information on the image quality databases
can be found in Table 24.
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avion barba boats

clown fruit house

isabe lenat mandr
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Figure 88: Saliency maps for the images from the IRCCyN/IVC [36] database.
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bikes / kp05 buildings / kp08 caps / kp03

house / kp22 lighthouse2 / kp21 ocean / kp16

paintedhouse / kp24 parrots / kp23 plane / kp20

sailing1 / kp06 stream / kp13

Figure 89: Saliency maps for the images contained in both the LIVE [37] and the
MICT [35] database (left label: LIVE; right label: MICT).
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kp01 kp07 kp12

Figure 90: Saliency maps for the images exclusively from the MICT [35] database.

lighthouse sailing2 sailing3

statue woman womanhat

Figure 91: Saliency maps for the images exclusively from the LIVE [37] database.
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building2 churchandcapitol coinsinfountain

monarch cemetry dancers

rapids studentsculpture manfishing

sailing4 flowersonih35 carnivaldolls

Figure 92: Saliency maps for the images exclusively from the LIVE [37] database
(continued).
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D Heat Maps for All Images from Experiment E4b

Figure 93: Heat maps for the reference images, based on gaze patterns from the
first session (left), the second session (middle), and both sessions (right).
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Figure 94: Heat maps for the reference images, based on gaze patterns from the
first session (left), the second session (middle), and both sessions (right).
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Figure 95: Heat maps for the distorted images 1-12.
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Figure 96: Heat maps for the distorted images 13-24.
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Figure 97: Heat maps for the distorted images 25-36.
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Figure 98: Heat maps for the distorted images 37-48.
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Figure 99: Heat maps for the distorted images 49-60.
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Figure 100: Heat maps for the distorted images 61-72.
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Figure 101: Heat maps for the distorted images 73-80.
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The evolution of advanced radio transmission tech-
nologies for third and future generation mobile ra-
dio systems has paved the way for the delivery of 
mobile multimedia services. This is further enabled 
through contemporary video coding standards, such 
as H.264/AVC, allowing wireless image and video 
applications to become a reality on modern mobile 
devices. The extensive amount of data needed to re-
present the visual content and the scarce channel 
bandwidth constitute great challenges for network 
operators to deliver an intended quality of service. 
Appropriate metrics are thus instrumental for ser-
vice providers to monitor the quality as experienced 
by the end user. This thesis focuses on subjective and 
objective assessment methods of perceived visual 
quality in image and video communication. The con-
tent of the thesis can be broadly divided into four 
parts.

Firstly, the focus is on the development of image 
quality metrics that predict perceived quality degra-
dations due to transmission errors. The metrics fol-
low the reduced-reference approach, thus, allowing 
to measure quality loss during image communication 
with only little overhead as side information. The 
metrics are designed and validated using subjective 
quality ratings from two experiments. The distortion 
assessment performance is further demonstrated 
through an application for filter design.

The second part of the thesis then investigates 
various methodologies to further improve the qua-
lity prediction performance of the metrics. In this re-

spect, several properties of the human visual system 
are investigated and incorporated into the metric 
design. It is shown that the quality prediction per-
formance can be considerably improved using these 
methodologies.

The third part is devoted to analysing the im-
pact of the complex distortion patterns on the 
overall perceived quality, following two goals. Firstly, 
the confidence of human observers is analysed to 
identify the difficulties during assessment of the 
distorted images, showing, that indeed the level of 
confidence is highly dependent on the level of visual 
quality. Secondly, the impact of content saliency on 
the perceived quality is identified using region-of-
interest selections and eye tracking data from two 
independent subjective experiments. It is revealed, 
that the saliency of the distortion region indeed has 
an impact on the overall quality perception and also 
on the viewing behaviour of human observers when 
rating image quality.

Finally, the quality perception of H.264/AVC co-
ded video containing packet loss is analysed based 
on the results of a combined subjective video qua-
lity and eye tracking experiment. It is shown that 
the distortion location in relation to the content sa-
liency has a tremendous impact on the overall per-
ceived quality. Based on these findings, a framework 
for saliency aware video quality assessment is pro-
posed that strongly improves the quality prediction 
performance of existing video quality metrics.
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