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Abstract—Data-sets derived from subjective experiments are
often exploited to construct objective quality models using para-
metric statistics such as MOS and multiple regression. In this
paper, using data type and normality tests, we verify that non-
normally distributed user opinion scores in nominal or ordinal
responses should not be analysed using parametric statistics.
The paper introduces a number of non-parametric statistics for
valid model building and parameter estimation based on user
opinion scores. A set of modelling results are also presented to
demonstrate the effectiveness of non-parametric statistics.

I. INTRODUCTION

Due to the complexity of video services and the human vi-

sual system, subjective experiments are commonly conducted

to investigate the quality of video content as perceived by

human users. Often, these experimental results are exploited to

construct objective quality models using statistical approaches

and models. The modelling of qualitative user experiences

using quantitative predictors (metrics) is a statistical inference

process. Model specification, estimation of model parameters

and verification of precision are the three aspects of a valid

inference. Model specification, or formulation, in its widest

sense, is conceptually more difficult than estimating model

parameters [1]. Currently, the analysis of user opinion scores is

commonly conducted using parametric statistics. This includes

averaging user scores on each test condition as an absolute

mean opinion score (MOS), building an objective model using

general linear models and verifying model performance using

Pearson correlation tests. These parametric statistics are then

often exploited without the correct statistical validation of the

model conditions. Therefore, using statistical models that do

not match the characteristics of the data set usually leads to

invalid analytical studies and objective models.

This paper introduces a group of methods and tools to

examine the nature of experimental results against conditions

of statistics. Data type tests, normality tests and independency

tests are all applied on results of a typical subjective exper-

iment conducted using standard test procedures. Test results

verify that user opinion scores in the ITU recommended 5-

point scale [2] are ordinal responses. Further, we find that

the distribution of user scores is very unlikely to be normally

distributed. Therefore, applying parametric statistics such as

mean opinion scores and multiple regression on experimental

results is not statistically correct. A number of non-parametric

statistics are then introduced for valid statistical analysis where

conditions for parametric statistics are not met. Cumulative

logit model and maximum likelihood methods are recom-

mended for model specification and parameter estimation.

The paper also introduces corresponding methods to verify

the goodness of a model fit and to calculate the confidence

intervals of model predictions. A group of modelling results

are also presented to demonstrate the effectiveness of mod-

elling the distribution (rather than the arithmetic mean) of user

opinion scores.

II. BACKGROUND AND PROBLEM SPACE

This section reviews the current trend of subjective experi-

ment and data analysis in the field of QoE research and defines

the problem space as invalid utilisation of statistics.

A. Subjective Experiment and Data Analysis

Subjective user tests are vital in studying the qualitative user

experience of a video service. Several international recommen-

dations (e.g., [2], [3]) provide guidelines for valid subjective

experiments. The guidelines specify multiple aspects of a

test including the choice of rating scales, test environment,

test materials as well as the type of communication with

participants. The Video Quality Experts Group (VQEG) is a

specialised group which has designed and conducted multiple

dedicated test plans, such as the HDTV test plan [4] to

benchmark the performance of objective models.

The modelling of qualitative user experience utilising quan-

titative impact metrics is a statistic inference process. Model

specification, estimation of model parameters and estimation

of precision are the three aspects of valid inference [5].

Currently, a large number of methods have been available to

objectively and efficiently estimate model parameters and their

precision. With the data collected from subjective experiments,

correct statistical methods must be adopted to effectively

model the underlying principles of a target system. Model

specification, or formulation, in its widest sense, is therefore

conceptually more difficult than estimating model parameters

and their precision [1].

Currently, the analysis of user opinion scores is widely

carried out by researchers using parametric statistics. Typical

approaches include averaging user scores on each test condi-

tion as an absolute mean opinion score (MOS), forming an

objective model using a general linear model and verifying

the performance using parametric correlation tests.



B. Problem Space

A statistical test is only valid under certain conditions,

specified by the requirements and measurements of a model.

Therefore, before a particular statistical model is used, the

conditions of the model must be verified against the data.

For parametric statistical models associated with a normal

distribution such as the T-test, which indicates how the mean

of two data groups are statistically different from each other,

the conditions include [6]:

1) the observations must be independent;

2) the variables must have been measured on at least an

interval scale, so that it is possible to interpret the results;

3) the observations must be drawn from normally dis-

tributed populations.

Although these crucial conditions for valid statistical analy-

sis have been established for decades by statisticians, they are

very rarely verified by researchers in computer science. Several

statistical tools such as the Pearson correlation and the Least

Square (LS) method have been adopted for model building

without solid support of theoretical principles. This absence of

statistical validity has become a critical issue, particularly in

the field of objective video quality evaluation. This issue is also

indicated by international organisations such as the VQEG.

Alternative rating scales such as the 11-point scale are adopted

over the 5-point scale aiming to amend the distribution of user

scores for better statistical validity. However, the MOS metric

and parametric statistics are still widely used improperly.

The modelling of probability distribution was exploited by

Janowski and Nguyen as an alternative of MOS [7], [8].

However, there is still lack of generic and systematic statistical

procedures for user score analysis, model selection, parameter

estimation, and fitness test.

III. DATA ACQUISITION AND EVALUATION

In order to systematically introduce the approaches to

examine subjective scores and to select appropriate statistical

models, we use data from one of our recent subjective ex-

periments as an example. The experiment (firstly introduced

in [9]) aims at investigating and modelling users’ opinions

of the effect of content loss caused by network impairments

using content, system and user related metrics. Although this

particular test might not share the same objectives as other

test plans (such as the ones that evaluate distortions caused by

video compression), the testing procedure and data analysis are

both generic components of subjective experiments conducted

using the same guidance provided by ITU and VQEG [2], [4].

A. Subjective Experiment

1) Test Configuration: Twenty uncompressed video se-

quences, referred to as the Source Reference Circuit (SRC),

with different motion and complexity levels are encoded using

the main profile of the H.264 codec. The slice mode is

specified as “an entire row of macroblocks per slice”. We

then use a packet loss emulator to remove the corresponding

content from encoded sequence to emulate transmission losses.

The loss emulations are applied to all three frame types (i.e. I,

P and B). P-frames of three different levels of dependency in

GoP are included to investigate the influence of the temporal

duration of distortions. Table I shows the frames under test

with their dependency in a GoP.

TABLE I
FRAMES UNDER TEST

GoP I B B P1 B B P B B P B B P2 B B P B B P B B P3 B B

In practice a content packet may contain a varied amount

of video content. Therefore the loss of a single packet can

lead to distortion with different spatial coverage on video

frames. Three sizes of loss are investigated on each frame type.

Content loss of one, two and four reference units (Figure 1)

are chosen for I and P frames. On B frames where coverage

of packet loss is commonly larger due to the more efficient

coding mechanism, loss of two, four and eight reference units

(Figure 1) are applied.

One unit loss Two units loss Four units loss Eight units loss

Fig. 1. Spatial coverage of the content loss

As a whole, 600 test conditions with content loss configured

and 20 reference conditions with no content loss configured

are defined. Each test condition is also referred to as a

Hypothetical Reference Circuit (HRC). For instance, “HRC

12 I 2” indicates the test condition of 2 units of content loss

experienced on an I frame of the source content SRC 12. HRCs

are applied on SRCs to generate test sequences for user tests.

2) Test Procedure: 60 participants took part in our exper-

iment. A Samsung 40-inch Full HD LCD TV is employed

as the display device. The purpose-designed testing software

AcrVQWin [10] is used for presenting test sequences and

collecting user ratings. User opinions were collected using the

absolute category rating (ACR) [3] method. ACR is a single-

stimulus method with which test sequences are presented

individually without being paired with corresponding reference

sequences. Participants are asked to provide a quality rating

with regard to the visual impact of distortions using the

categorical rating shown in Table II. A number of rating scales,

including impairment scale (Imperceptible; Perceptible but not

annoying; Slightly annoying; Annoying; Very annoying) and

quality scale (Excellent; Good; Fair; Poor; Bad) are available

for specific test plans. Because the goal of the experiment is

to investigate the perception of impairments, the impairment

scale is the most suitable rating scale to apply to the ACR

method.

B. Overview of Results

Users’ scores on all HRCs are presented in the form

of a frequency histogram, which gives the distribution of

participants’ scores on each HRC using the five-point scale.

Figure 2 and Figure 3 shows results for SRC 12 and SRC 19.



TABLE II
CATEGORICAL RATING SCALE

Rate the impact of error to the video quality

Score Description

5 Imperceptible
4 Perceptible but not annoying
3 Slightly annoying
2 Annoying
1 Very annoying

The differences between users’ scores on HRC 12 and HRC

19 illustrate the impact of content characteristics. There is a

also clear difference between results on different frame types.

Taking the results for B frames as an example, the content

loss of 2 units (i.e. HRC 12 B 2 and HRC 19 B 2) is hardly

noticed by participants. When the content loss increases to

8 units, 14 (out of 30) participants noticed the distortion in

HRC 19 B 8. Out of the 23 participants that confirmed the

perception of an error in HRC 12 B 8, 10 believe the error

is “slightly annoying” or even “annoying”.

Compared with the results of B frames, content loss in I

frames are extremely detrimental, especially on the HRC 12.

With merely 1 unit of content loss, 73 percent of participants

perceive the impairments in HRC 19 I 1 while 36 percent of

them feel the error “slightly annoying” or “annoying”. The

errors in HRC 12 I 1 are nearly visible to every participant

of the experiment while half the participants believe the error

“annoying” or “very annoying”. With more units of loss

introduced, the visibility of corruption increases greatly. On

4 units of loss (i.e. HRC 12 I 4 and HRC 19 I 4), nearly all

participants noticed the error. Looking at the distribution of

scores it can be observed that SRC 12 is much more vulnerable

to I frame impairments than SRC 19. Results for all other test

sequences also show clearly shifts of data distribution.

C. Analysis of Experiment Results

Before any statistics are applied, we verify the conditions

of widely adopted parametric tests (as summarised in section

II-B) against the characteristics of user opinion scores col-

lected from our experiment.

1) Independency of Observation: Every score rated by

users in the experiment are independently collected. Each test

session is completed by only one participant and the rating

process on the HRCs are also independent from each other.

Hence, condition 1 (independent observation) is met.

2) Measurement Scale of Data: For data with interval

scales, the categories are ordered and numerical labels or

scores are attached. The scores are treated as category av-

erages, medians or mid-points. Differences between scores

are therefore interpreted as a measure of separation of the

categories [11].

In our experiment, the scale of 1 to 5 attached to each opin-

ion category is arbitrary. Clearly, this numeric representation

of each category should therefore not be used to interpret the

intensity of any category or the difference between response

categories. Furthermore, the psychological distance between

the categories should not be considered as equal. For instance,
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Fig. 2. Results for HRC 12

the difference between “imperceptible” and “perceptible” is

not equal to the difference between “annoying” and “very an-

noying” in the psychological scale. For a nominal categorical

scale, numbers or other symbols associated with options are

used merely for classification.

Furthermore, the five point scale used by the experiment is

ordinal. This means that each point on the scale is different

from the others (e.g. imperceptible 6= perceptible), but also

related (e.g. “imperceptible” < “perceptible”) [6]. The five

point scale shows a clear ordering of the response categories

with respect to the observed perceptual impact of the content

loss: “imperceptible” < “perceptible” < “slightly annoying”

< “annoying” < “very annoying”.

As a whole, the user opinion scores collected in the test

are in an ordinal scale. Thus, the test results must not be

interpreted using the assigned numerical labels. Parametric

statistics are therefore not suitable for data analysis when

adequate psychological representations in interval scales are

not available. This conclusion also applies to the tests using

a quality scale (Excellent; Good; Fair; Poor; Bad). Conse-

quently, condition 2 is not met.

3) Normality of Data Distribution: The normality of the

distribution of users’ scores on each HRC is a prerequisite
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Fig. 3. Results for HRC 19

for statistics based upon a MOS. We use three exclusive

normality test tools, the “Skewness test”, the “Kurtosis test”

and the “Shapiro-Wilk test”, to determine whether or not it is

statistically legitimate to assume a normal distribution on the

test data for parametric modelling.

Skewness measures the degree of symmetry of a probability

distribution [12]. If skewness is greater than zero, the distri-

bution is skewed to the right, having more observations on the

left. Kurtosis measures the thinness of tails or “peakedness” of

a probability distribution [12]. The Shapiro-Wilk test checks

the normality assumption by constructing the W statistic,

which is the ratio of the best estimator of the variance to the

usual corrected sum of squares estimator of the variance [13].

Table III gives results of the Skewness, the Kurtosis and the

Shapiro-Wilk test on HRC 12 and HRC 19 as examples. It is

concluded from the results of all three tests that the normality

of the distribution of the users’ scores in subjective experiment

cannot be assumed. The same conclusion is also drawn on

other HRCs. This means condition 3 is not met and therefore

that statistical analysis methods based upon the assumption of

given data being normally distributed, must not be utilised for

experiment.

TABLE III
TEST OF NORMALITY

HRC Skewness Kurtosis
Shapiro-Wilk

Statistic Significance

12 I 1 1.avi 0.142 -0.849 0.88 0.048

12 I 2 1.avi 0.433 -0.669 0.798 0.003

12 I 4 1.avi 1.649 3.923 0.713 0

12 P1 1 1.avi -0.415 0.38 0.865 0.028

12 P1 2 1.avi -0.128 -1.348 0.817 0.006

12 P1 4 1.avi 0.433 -0.669 0.798 0.003

19 I 1 2.avi 0 -0.179 0.799 0.004

19 I 2 2.avi -0.078 -1.328 0.87 0.034

19 I 4 2.avi 0.715 -0.756 0.848 0.016

19 P1 1 2.avi -3.326 11.391 0.394 0

19 P1 2 2.avi -2.405 4.349 0.413 0

19 P1 4 2.avi -0.124 -0.654 0.896 0.082

4) Summary: This subsection has exploited statistical tools

to examine the five-scale user opinion scores against the

conditions of the parametric tests that have been commonly

adopted to model user ratings. The data analysis shows that the

validity of some commonly used subjective QoE metrics must

be statistically verified for valid data modelling. For instance,

the mean opinion score (MOS) is the defacto standard metric

for representing user opinions in subjective experiments [14].

Its accuracy, however, cannot be verified because the measure-

ment scale is based on five-point ordinal response categories

and because the non-normality of data, representing users’

opinions by their arithmetic mean, is statistically incorrect.

Consequently, any model that is built referring to MOS is

not able to provide valid and interpretable results. Alternative

statistical methodologies must therefore be established for the

modelling of user opinion scores.

IV. NON-PARAMETRIC STATISTICS

Although it is possible to conduct a parametric statistical test

for data of any type, the validity and interpretability of the test

depends on how the numerical values reflect the underlying

principles. For instance the “5” associated with “impercepti-

ble” and the “1” associated with “very annoying” must not

be considered as a valid representation of user opinion unless

they are verified as being in a correct psychological scale.

Non-parametric statistics focus on the order or ranking of

scores, not on associated artificial numerical values. Whereas,

a parametric test may focus on the difference between the

means of two populations, the non-parametric test may focus

on the difference between the medians [6]. The advantages of

non-parametric statistics are summarised in [6] as follows;

1) If the sample size is very small, there may be no alterna-

tive to using a non-parametric statistical test unless the

nature of the population distribution is known exactly;

2) Non-parametric statistics typically make fewer assump-

tions about the data and may be more relevant to a

particular situation and research investigation;

3) Non-parametric statistics are available to analyse data

which is inherently in ranks as well as data whose

seemingly numerical scores has the strength of ranks.



Therefore, non-parametric statistics provide valid analysis

tools for the subjective scores rated by human participants on

an ordinal scale. Further, the modelling of user scores with

parametric statistics requires a relatively large sample size.

This requirement can greatly affect the efficiency of time-

consuming and costly experiments. Non-parametric statistics,

which have much more relaxed sample size requirements,

are therefore far more suitable for subjective experiments of

a limited scale. This section now presents background and

instance of generalised linear models as such a non-parametric

statistics for the analysis and modelling of user opinion scores.

A. Generalised Linear Models

The generalised linear model (GLM) generalises the ordi-

nary linear model to encompass non-normal response distribu-

tions and modelling functions of the mean. The generalisation

enables a more effective modelling of the five-point scale user

opinion scores with relaxed requirements on the normality and

scale of experiment data.

The generalisation from the ordinary linear models is com-

prised of three components [15]:

1) The random component of a GLM consists of a re-

sponse variable with independent observations from a

distribution in the exponential family. The raw data as

the participants’ scores from subjective experiments is

taken as the random component of GLM.

2) The systematic component of a GLM relates a vector

(η1,. . .,ηN ) to the explanatory variables (for example,

the predictor of a video quality model) through a linear

model. The covariates xi1,. . .,xip produce the vector

given by:

ηi =

p∑

1

xijβj ; i = 1, . . . , N (1)

3) The third component is the link function g which may

become any monotonic differentiable function.

ηi = g(µi) (2)

An effective link function must be selected based on

specifics of the target model in conjunction with observations

from experiments. Probit and logit models are effective when

there are only gradual changes in cumulative probability, oth-

erwise other link functions should be considered. In particular,

linear models using the logit scale or the complementary log-

log scale, are found to work well in practice [16]. The changes

of cumulative probability for most of the HRCs are gradual

in our experiment. Therefore, the logit function is specified as

the link function of the model.

B. Cumulative Logit Model

For a five-point user opinion scale, the choice and definition

of response categories (opinion scale) is either arbitrary or

subjective. It is essential that the nature of the modelling

of users’ responses should not be affected by the number

or choice of response categories. Such considerations lead to

modelling the dependence of the response on the independent

variables by means of the cumulative response probability as a

realisation of GLM (Equation 3) [17]. πj(x) is the probability

that score j is rated by human users. logit[γj ] models the

logit that users score less or equal to score j. J specifies the

total number of response categories (5 in our experiment). A

number of J − 1 logits are established since P (Y ≤ J |x) is

always 1.

logit[γj ] = log
P (Y ≤ j|x)

1− P (Y ≤ j|x)
= log

π1(x) + . . .+ πj(x)

πj+1(x) + . . .+ πJ(x)

, j = 1, . . . , J − 1 (3)

A model that simultaneously uses all cumulative logits is

logit[P (Y ≤ j|x)] = αj + β′x, j = 1, . . . , J − 1 (4)

Each cumulative logit of the model has its own intercept

(αj). The αj is increasing in j, since P(Y≤j) increases in j

for fixed x, and the logit is an increasing function of this

probability. Due to the nature of the cumulative logit each

logit for the model has the same effect β and different αj .

Following the structural form of the model, the intercept

and coefficients of variables in the model are estimated from

subjective experimental results with the maximum likelihood

(ML) estimation. The likelihood indicates the probability that

the model can predict the observed data (e.g., subjective

ratings) with the independent variables (e.g., metrics) defined.

The ML estimate is the parameter value that maximises this

function. This is the parameter value under which the observed

data has the highest probability of occurrence [18].

C. Calculation of Confidence Intervals

The interpretation of models often involves the examination

of predicted outcomes at specific values of the independent

variables with confidence intervals (CI) [19]. The confidence

intervals give a value range within which the population value

falls. Confidence intervals are a standard way of expressing

the statistical accuracy of the prediction.

Calculation of CI for the models that are based on the cumu-

lative logit model is not as straight-forward as for parametric

models due to the complex link functions. The delta method

is a general approach for computing confidence intervals for

functions of maximum likelihood estimates. The delta method

takes a function that is too complex for analytical computation

of the variance and creates a linear approximation of that

function. The variance of the simpler linear function is then

used for constructing the confidence interval [20]. More details

and implementation of the delta method can be found in [21].

D. Calculation of Goodness of Model Fit

When fitting a statistical model, the value of the dependent

variable (such as the user opinion score) is considered to be

composed of two parts: the systematic component and the error

component [22]. The systematic component is a mathematical

function of the independent variables that characterise the

given observed data among subjects with the independent



variables of the model. Although the fitness of the derived

model can be roughly examined by comparing the model

output to the observed data, the quantitative evaluation of the

model fit is impossible with only the systematic component.

The error component represents how much the model’s output

differs from the observed data. The process of examining the

values for the error component is referred to as assessing the

goodness of fit of the model. In practice the goodness of

fit provides crucial information on how the model’s output

resembles the observed data from the experiments. It is also

a useful tool for examining the effectiveness of the model

design. Pearson χ2 and Deviance goodness of fit statistics are

two commonly used methods to test whether the observed data

are well described by the fitted model.

E. Use Case

For the subjective experiment introduced in section III-A,

we use the presented cumulative logit model to form the

structure of model, which aims at estimating the distribution

of user opinions on the 5-point scale using a number of

predictors. Parameters of the model are derived using max-

imum likelihood estimation. The goodness of model fit and

confidence intervals are calculated using statistics introduced

in Section IV-C and IV-D. Figure 4 demonstrates the results

of the estimation with 95 % confidence interval for HRC 12 I

and HRC 19 I. It clearly demonstrate how objective models

based on cumulative logit statistics can capture the distribution

data for different test conditions. Furthermore, the distribution

format provides more interpretable insights of users’ opinion

which are not possible by MOS.
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Fig. 4. Model estimation results of HRC 12 I and HRC 19 I

V. CONCLUSION

Subjective user opinions derived from experiments are com-

monly exploited to construct objective quality models using

statistical analysis. Although a number of parametric statistics

have been widely adopted for this task, the conditions for

using parametric statistics are rarely verified. Our tests verify

that non-normally distributed user opinion scores in nominal

or ordinal responses should not be analysed using parametric

statistics. We therefore introduced methods and tools for valid

model selection and parameter estimation. Finally, a group of

test result demonstrated the effectiveness and advantages of

the user opinion distribution over the MOS.
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