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Quality Assessment of Deblocked Images
Changhoon Yim, Member, IEEE, and Alan Conrad Bovik, Fellow, IEEE

Abstract—We study the efficiency of deblocking algorithms
for improving visual signals degraded by blocking artifacts from
compression. Rather than using only the perceptually question-
able PSNR, we instead propose a block-sensitive index, named
PSNR-B, that produces objective judgments that accord with
observations. The PSNR-B modifies PSNR by including a blocking
effect factor. We also use the perceptually significant SSIM index,
which produces results largely in agreement with PSNR-B. Simu-
lation results show that the PSNR-B results in better performance
for quality assessment of deblocked images than PSNR and a
well-known blockiness-specific index.

Index Terms—Blocking effect, deblocking, distortion, image
quality assessment, quantization.

I. INTRODUCTION

B LOCKING effects are common in block-based image and
video compression systems. Blocking artifacts are more

serious at low bit rates, where network bandwidths are lim-
ited. Significant research has been done on blocking artifact re-
duction [7]–[14]. Most blocking artifact reduction methods as-
sume that the distorted image contains noticeable amount of
blocking. The degree of blocking depends upon several param-
eters, the most important of which is the quantization step for
lossy compression. Little research has done on comparing the
perceptual quality of deblocked images. The recent advent of
powerful modern image quality assessment (IQA) algorithms
[1]–[5] that compare well with human subjectively makes this
plausible. Here we investigate quality assessment of deblocked
images, and in particular we study the effects of the quantization
step of the measured quality of deblocked images. A deblocking
filter can improve image quality in some aspects, but can reduce
image quality in other regards.

We perform simulations on the quality assessment of
deblocked images. We first perform simulations using the con-
ventional peak signal-to-noise ratio (PSNR) quality metric and
a state of the art quality index, the structural similarity (SSIM)
[1] index. The PSNR does not capture subjective quality well
when blocking artifacts are present. The SSIM metric is slightly
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more complex than the PSNR, but correlates highly with human
subjectively.

We also propose a new deblocking quality index that is sen-
sitive to blocking artifacts in deblocked images. We name this
peak signal-to-noise ratio including blocking effects (PSNR-B).
The simulation results show that the proposed PSNR-B corre-
lates well with subjective quality and with the SSIM index, and
performs much better than the PSNR.

We study a variety of image and video deblocking algo-
rithms, including lowpass filtering, projection onto convex sets
(POCS), and the H.264 in-loop filter. The image improvements
afforded by these algorithms is measured using the PSNR,
PSNR-B, and SSIM. Rather than relying on PSNR, which
correlates poorly with subjective judgment, we utilize PSNR-B
which is designed specifically to assess blocky and deblocked
images (but has no proven perceptual significance) in conjunc-
tion with the SSIM index, which is perceptually significant, but
has not been demonstrated on deblocked images.

Section II reviews the image quality assessment methods we
will consider. In Section III, we consider the relationship be-
tween quantization step size and image quality. Section IV in-
troduces a distortion change concept to analyze the effects of
deblocking filters. In Section V, we propose a new deblocking
quality index, PSNR-B. Sections VI and VII present the sim-
ulation results on quality assessment of deblocked images and
videos. We present concluding remarks in Section VIII.

II. QUALITY ASSESSMENT

We consider the class of quality assessment (QA) methods
that are full-reference (FR) QA, which compares the test (dis-
torted) image with a reference (original) image. In this paper,
the distorted images will ostensibly suffer from blocking arti-
facts or from the residual artifacts following deblocking.

A. PSNR

The simplest and most widely used FR QA metrics are the
peak signal-to-noise ratio (PSNR) and the mean-squared error
(MSE) [1], [3].

Let and represent the vectors of reference and test image
signals, respectively. Let be the vector of error signal between

and . If the number of pixels in an image is , then

MSE (1)

PSNR
MSE

(2)

The PSNR is an attractive QA metric since it is mathemat-
ically simple and has clear physical meaning. However, the
PSNR does not correlate well with perceived visual quality [1],
[3]–[6].

1057-7149/$26.00 © 2010 IEEE



YIM AND BOVIK: QUALITY ASSESSMENT OF DEBLOCKED IMAGES 89

B. SSIM

The structural similarity (SSIM) metric aims to measure
quality by capturing the similarity of images [1]. A product of
three aspects of similarity are measured: luminance, contrast,
and structure. The luminance comparison function for
reference image and test image is defined as

(3)

where and are the mean values of and , respectively,
and is a stabilizing constant.

The contrast comparison function is defined similarly
as

(4)

where and are the standard deviation of and , respec-
tively, and is a stabilizing constant.

The structure comparison function is defined as

(5)

where is the correlation between and and is also a
constant that provides stability.

The SSIM index is obtained by combining the three compar-
ison functions

SSIM (6)

In [1], the parameters are set as and

SSIM (7)

Local SSIM statistics are estimated using a symmetric
Gaussian weighting function. The mean SSIM index pools the
spatial SSIM values to evaluate the overall image quality [1]

SSIM SSIM (8)

where is the number of local windows over the image, and
and are image patches covered by the th window.

III. QUANTIZATION STEP SIZE AND IMAGE QUALITY

Quantization is a key element of lossy compression, but in-
formation is lost. There is a tradeoff between compression ratio
and reconstructed image/video quality. The amount of compres-
sion and the quality can be controlled by the quantization step.
As the quantization step is increased, the compression ratio be-
comes larger, and the quality generally worsens. However, there
has not been a study made of how perceptual quality suffers as
a function of step size, or the degree to which deblocking aug-
ments perceptual quality. The emergence of new and powerful
IQA indices suggests this possibility.

In block transform coding, the input image is divided into
blocks, and each block is transformed independently into

Fig. 1. Block diagram for reference, decoded, and deblocked images.

transform coefficients. An input image block is transformed
into a DCT coefficient block

(9)

where is the transform matrix and is the transpose matrix
of . The transform coefficients are quantized using a scalar
quantizer

(10)

The quantization operator in (10) is nonlinear, and is a
many-to-one mapping from to [7].

In the decoder, only quantized transform coefficients are
available. The output of the decoder is

(11)

Let represent the quantization step. It is well known that
the PSNR is a monotonically decreasing function of .

The SSIM index captures the similarity of reference and test
images. As the quantization step size becomes larger, the struc-
tural differences between reference and test image will generally
increase, and in particular the structure term in (5) will
become smaller. Hence, the SSIM index would be a monotoni-
cally decreasing function of the quantization step size .

IV. DEBLOCKING FILTER AND DISTORTION CHANGE

As before, is the reference (original) image and is the
decoded image that has been distorted by quantization errors.
Let represent the deblocked image and represent the de-
blocking operation: . Fig. 1 shows a block diagram
depicting the flow of reference, decoded, and deblocked images.
Let be the quality metric between and . The goal of
the deblocking operation is to maximize , given
image .

Deblocking is a local operation. The deblocking operation
may improve the appearance of the image in some regions,
while degrading the quality elsewhere.

Let be the distortion between the th pixels of and
, expressed as squared Euclidean distance

(12)

Next, we define the distortion decrease region (DDR) to be
composed of those pixels where the distortion is decreased by
the deblocking operation

if

The amount of distortion decrease for the th pixel in the
DDR is

(13)
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The distortion may also increase at other pixels by applica-
tion of the deblocking filter. We similarly define the distortion
increase region (DIR)

if

The amount of distortion increase for the th pixel in the DIR
is

(14)

We define the mean distortion decrease (MDD)

(15)

where is the number of pixels in the image. Similarly the
mean distortion increase (MDI) is

(16)

A reasonable approach for designing a deblocking filter
would be to seek to maximize the MDD and minimize the
MDI . This is generally a very difficult task and of course,
may not result in optimized improvement in perceptual quality.

Lastly, let be the mean distortion change (MDC), defined
as the difference between MDD and MDI

(17)

If , then the deblocking operation is likely unsuccessful
since the mean distortion increase is larger than the mean dis-
tortion decrease. We would expect a successful deblocking op-
eration to yield . Nevertheless, these conditions are not
equated with levels of perceptual improvement or loss.

Deblocking can be considered as an image restoration
problem. Let represent the deblocking operation function and

represent a neighborhood of pixel .
A lowpass filter is a simple deblocking filter. An low-

pass filter can be represented as

(18)

where is the kernel for the filter and is the th
pixel in the neighborhood of pixel .

While lowpass filtering does reduce blocking artifacts, crit-
ical high frequency information is also lost and the image is
blurred. While the distortion will certainly decrease for some
pixels that define the DDR , the distortion will likely increase
for a significant number of pixels in DIR . Indeed, it is quite
possible that could result. Moreover, blur is perceptually
annoying.

A variety of nonlinear methods have been proposed to re-
duce the blocking artifacts, while minimizing the loss of orig-
inal information [7]–[14]. For example, deblocking algorithms
based upon projection onto convex sets (POCS) have demon-
strated good performance for reducing blocking artifacts and

have proved popular [7]–[12]. In POCS, a lowpass filtering op-
eration is performed in the spatial domain, while a projection
operation is performed in the DCT domain. Typically, the pro-
jection operation is a clipping operation on the filtered coeffi-
cients, confining these to fall within a certain range defined by
the quantization step size.

Since the lowpass filtering and the projection operations are
performed in different domains, forward DCT and inverse DCT
(IDCT) operations are required. The lowpass filtering, DCT,
projection, IDCT operations compose one iteration, and mul-
tiple iterations are required to achieve convergence. It is argued
that under certain conditions, POCS filtered images converge to
an image that does not exhibit blocking artifacts [7], [10], [11].

As another example, the H.264 in-loop deblocking filter is
a key component in the H.264 video coding standard [17]. It
is claimed that the in-loop filtering significantly improves both
subjective and objective video quality [15]. The key idea of the
H.264 in-loop filter is to adaptively select the filtering operation

and the neighborhood using the relative pixel location
with respect to the block boundary and the local gray level gra-
dient information. Generally, the MDI value is reduced while
the MDD value is similar to lowpass filtering.

The H.264 in-loop filter uses separate 1-D operations and in-
teger multiplications to reduce complexity. However, it still re-
quires a large amount of computation. In fact, the H.264 in-loop
filter requires about one-third of the computational complexity
of the decoder [15].

V. PSNR INCLUDING BLOCKING EFFECTS

In the following, we propose a new block-sensitive image
quality metric which we term peak signal-to-noise ratio in-
cluding blocking effects (PSNR-B). As the quantization step
size increases, blocking artifacts generally become more con-
spicuous. Blocking artifacts are gray level discontinuities at
block boundaries, which are ordinarily oriented horizontally
and vertically. They arise from poor representation of the block
luminance levels near the block boundaries [24].

The following definitions are relative to an assumed
block-based compression tiling, e.g., 8 8 blocks as in JPEG
compression. For simplicity, assume that an integer number of
blocks comprise the image, viz., that horizontal and vertical di-
mensions are divisible by the block dimension. The definitions
apply whether the image is compressed, not-compressed, or
deblocked following decompression.

We, therefore, consider blocking artifacts that occur along
the horizontal and vertical orientations. Let and be the
horizontal and vertical dimensions of the image .
Let be the set of horizontal neighboring pixel pairs in . Let

be the set of horizontal neighboring pixel pairs that
lie across a block boundary. Let be the set of horizontal
neighboring pixel pairs, not lying across a block boundary, i.e.,

. Similarly, let be the set of vertical neigh-
boring pixel pairs, and be the set of vertical neighboring
pixel pairs lying across block boundaries. Let be the set of
vertical neighboring pixel pairs not lying across block bound-
aries, i.e., .
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Fig. 2. Example for illustration of pixel blocks.

Let , , , and be the number of pixel pairs
in , , , and , respectively. If is the block size,
then

Fig. 2 shows a simple example for illustration of pixel blocks
with , , and . The thick lines represent
the block boundaries. In this example, , ,

, and . The sets of pixel pairs in this ex-
ample are

Then we define the mean boundary pixel squared differ-
ence and the mean nonboundary pixel squared differ-
ence for image to be

(19)

(20)

Generally, as the quantization step size increases, will
increase relative to , and blocking artifacts will become more
visible. Of course, this does not establish any level of correlation
between (19), (20) and perceptual annoyance.

Also define the blocking effect factor

BEF (21)

where

if
otherwise

(22)

emphasizes the BEF as a function of block size. The assumption
here is that the visibility of blocking effects increases with block
size.

Of course, there can be multiple block sizes in a particular
decoded image/video. For example, there can be 16 16
macroblocks and 4 4 transform blocks, both contributing to
blocking effects, as in H.264 video coding. Let , ,
BEF , and modify (19)–(22) for block size . Then

BEF (23)

The BEF over all block sizes is defined as

BEF BEF (24)

The mean-squared error including blocking effects (MSE-B)
for reference image and test image is then defined as the
sum of the MSE in (1) and BEF in (24)

MSE- MSE BEF (25)

Finally, we propose the PSNR-B as

PSNR-
MSE-

(26)

The MSE term in (25) measures the distortion between the
reference image and the test image , while the BEF term in
(25) specifically measures the amount of blocking artifacts just
using the test image . The BEF itself can be used as a no-refer-
ence quality index, similar to the generalized block-edge impair-
ment metric (GBIM) [20] and the mean noticeable blockiness
score (MNBS) [21]. These no-reference quality indices claim
to be efficient for measuring the amount of blockiness, but may
not be efficient for measuring image quality relative to full-ref-
erence quality assessment. On the other hand, the MSE is not
specific to blocking effects, which can substantially affect sub-
jective quality. We argue that the combination of MSE and BEF
is an effective measurement for quality assessment considering
both the distortions from the original image and the blocking
effects in the test image. The associated quality index PSNR-B
is obtained from the MSE-B by a logarithmic function, as is
the PSNR from the MSE. The PSNR-B is attractive since it is
specific for assessing image quality, specifically the severity of
blocking artifacts.

VI. SIMULATION RESULTS ON DEBLOCKED IMAGES

This section presents simulation results on quality assessment
of deblocked images. Images are compressed using DCT block
coding as JPEG. In JPEG, quantization is applied using a dif-
ferent quantization step size for each DCT coefficient, as defined
by a quantization table. Here, we apply the same quantization
step size for all DCT coefficients, to more directly investigate
the effects of quantization step size on image quality. This also



92 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 1, JANUARY 2011

Fig. 3. PSNR comparison of images. (a) Lena. (b) Peppers. (c) Barbara.
(d) Goldhill.

accords with the analysis of H.264 video in Section VII, since
H.264 compression uses the same quantization step size for all
transform coefficients as determined by the quantization param-
eter (QP). Quantization step sizes of 5, 10, 20, 40, 80, 120, and
160 were used in the simulations to investigate the effects of
quantization step size. Deblocking was applied on the decoded
images for comparison.

A. PSNR Analysis

Fig. 3 shows the comparison with respect to PSNR. When
the quantization step size was large , the 3 3 filter,
7 7 filter, and POCS methods resulted in higher PSNR than
the no-filter case on the Lena, Peppers, and Goldhill images.
On the more complex Barbara image, all the methods resulted
in similar PSNR values, while the POCS gave a slightly higher
PSNR at .

When the quantization step was small , all the
deblocking methods produced lower PSNR compared to the
no-filter case. The POCS did not produce improvement. When
the quantization step is small, the MDI was larger than the
MDD. In other words, the amount of information that was
distorted was larger than the amount of information recovered
by deblocking filters. When the quantization step size fell in the
middle range of about 80, the 3 3 filter gave a slightly higher
PSNR on the Lena, Peppers, and Goldhill images.

B. SSIM Analysis

Fig. 4 shows the result of comparing images using the well-
known and perceptually significant SSIM index [1]. When the
quantization step was large , all the filtering methods
resulted in larger SSIM values on the Lena, Peppers, and Gold-
hill images. On the Barbara image, only POCS produced a larger

Fig. 4. SSIM comparison of images. (a) Lena. (b) Peppers. (c) Barbara.
(d) Goldhill.

SSIM value than the no-filter case. When the quantization step
size was small , the 3 3 and 7 7 lowpass filters
resulted in lower SSIM values than the no-filter case, while
the POCS method had little effect on the SSIM value. On the
Peppers image, all the filtering methods produced much larger
SSIM values at , and slightly higher SSIM values at

, as compared to not filtering. On the Barbara image, only the
POCS approach did not reduce the SSIM values, while the low-
pass filtering methods gave much lower SSIM values than the
no-filter case at quantization step 80. The Barbara image con-
tains complex textures with high frequency components, yet the
amount of information lost by lowpass filtering is significant.

C. GBIM Analysis

We performed simulations using a blockiness-specific quality
index, the so-called generalized block-edge impairment metric
(GBIM) in [20], for comparison. Fig. 5 shows the GBIM com-
parison of images. The GBIM is an overall ratio between the
mean-weighted-squared pixel differences between pixel pairs
lying across a block boundary and pixels pairs not lying across
a block boundary. As shown in Fig. 5, GBIM becomes large
when there are blocking effects. GBIM becomes very large as
the quantization step increases when no filter is used. When any
deblocking algorithm is applied, GBIM becomes much smaller
than in the no-filter case even for large quantization steps. In this
regard, the GBIM can be an effective index for measuring the
amount of blockiness.

D. BEF Analysis

Fig. 6 shows the blocking effect factor (BEF) comparison
of images. The BEF results in very similar trends as GBIM in
Fig. 5. In Fig. 6, the BEF becomes quite large when no filter is
applied for large quantization steps. All deblocking algorithms
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Fig. 5. GBIM comparison of images. (a) Lena. (b) Peppers. (c) Barbara.
(d) Goldhill.

Fig. 6. BEF comparison of images. (a) Lena. (b) Peppers. (c) Barbara.
(d) Goldhill.

are effective for reducing BEF, and POCS removes the blocking
effects very effectively in terms of BEF.

E. PSNR-B Analysis

Fig. 7 shows the comparison of deblocking algorithms using
the distortion-specific PSNR-B index. For moderate to large
range of quantization step sizes , POCS produced
improved PSNR-B values relative to the no-filter case over all
the images. For large quantization steps , the simple

Fig. 7. PSNR-B comparison. (a) Lena. (b) Peppers. (c) Barbara. (d) Goldhill.

lowpass filtering methods also improved the PSNR-B values on
the Lena, Peppers, and Goldhill images. Since the local spa-
tial variations are relatively larger in Barbara image, the BEF
was relatively large even at small quantization steps in no-filter
case. Hence, the POCS resulted in improved PSNR-B values
compared to the no-filter case even at small quantization steps
in Barbara image. Compared to PSNR, the PSNR-B improves
more markedly on the deblocked images, especially for large
quantization steps. The PSNR-B was largely in agreement with
the SSIM index.

F. Subjective Quality Assessment Experiment

We performed a subjective quality assessment experiment.
The experiment was based upon the double-stimulus im-
pairment scale (DSIS) Variant I in ITU-R BT.500-11 [22].
The double-stimulus method is cyclic, wherein the original
(reference) image is first presented, then the same impaired
(distorted) image is presented. The DSIS Variant I presentation
timing is as shown in Fig. 8.

After the presentation of the original image and the
mid-gray image , the observer votes while the impaired
image or mid-gray image is presented. The observer
is asked to vote the subjective impairment score (SIS) using the
five-grade impairment scale in [22]:

1) imperceptible;
2) perceptible, but not annoying;
3) slightly annoying;
4) annoying;
5) very annoying.

The subjective impairment score ranges from 1 to 5, and we
used a continuous scale for improved accuracy. In our experi-
ment, the observers were not asked to vote specifically for the
amount of blockiness nor for the amount of blur. They were just
asked to vote their subjective judgment of impairment compared
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Fig. 8. DSIS Variant I presentation timing (�� �10 s original image, �� �3 s
mid-gray image, �� �10 s impaired image, �� �10 s mid-gray image) [22].

Fig. 9. Scatter plots of subjective impairment score (SIS) versus quality
indices. (a) SIS versus PSNR: �� � ������, 	
�� � ��

��,

�� � ������. (b) SIS versus GBIM: �� � ������, 	
�� � ���
��,

�� � �����
. (c) SIS versus SSIM: �� � ������, 	
�� � ������,

�� � ����
�. (d) SIS versus PSNR-B: �� � ������,	
�� � ������,

�� � ����
�.

to the original image. The 80 test images were used in the sub-
jective experiment: Lena, Peppers, Barbara, and Goldhill im-
ages with quantization steps 20, 40, 80, 120, and 160 for cases
no-filter, 3 3 filter, 7 7, and POCS. The observers were re-
cruited among junior and sophomore undergraduate students in
a Signal Processing class at Konkuk University, Seoul (21 ob-
servers participated), and their scores were averaged for each
test image.

A five-parameter logistic function was used in the nonlinear
regression process (a logistic function with an added linear
term) as in [3], [4]. Fig. 9 shows the scatter plots of subjective
impairment score (SIS) versus quality indices. In Fig. 9, the
line indicates the fitted curve by regression. We calculated three
statistical values for performance comparison. The first value is
the linear correlation coefficient (CC) between SIS and quality
indices. The second and third values are root-mean-squared
error (RMSE) and mean-absolute error (MAE) between the SIS
and the fitted curve after nonlinear regression.

The blockiness-specific quality index, GBIM, gave relatively
worse performance. The CC was much smaller, and the RMSE
and MAE were larger, than for SSIM and PSNR-B. The SSIM
and the proposed index, PSNR-B, resulted in better performance

Fig. 10. Reconstructed images of Lena with quantization step 80. (a) No
filter (���	 � ����� ��, ���	�� � �
��� ��, ���
 � ������,
���
 � �����). (b) POCS deblocking filter (���	 � ����� ��,
���	�� � ����� ��, ���
 � �����
,���
 � ���
�).

Fig. 11. Reconstructed images of Peppers with quantization step 80. (a) No
filter (���	 � ����� ��, ���	�� � ����� ��, ���
 � ���
��,
���
 � �����). (b) POCS deblocking filter (���	 � ����� ��,
���	�� � ����� ��, ���
 � ������,���
 � �����).

compared to the conventional quality index PSNR in terms of
CC, RMSE, and MAE. The performances of SSIM and PSNR-B
were similar. The SSIM was slightly better in terms of CC and
RMSE, while PSNR-B was better in terms of MAE.

G. Comparison of Quality Indices

Fig. 10 shows Lena reconstructed from compression using
quantization step 80. When no filter was applied as in Fig. 10(a),
annoying blocking artifacts are clearly visible. When the POCS
deblocking filter was applied [Fig. 10(b)], the blocking effects
were greatly reduced, resulting in better subjective quality. The
PSNR index produced slightly lower values than on the no-fil-
tered image. Conversely, the PSNR-B and SSIM quality indices
produced larger values on the POCS filtered image.

Fig. 11 shows Peppers reconstructed from compression,
also using quantization step 80. When no filter is applied as
in Fig. 11(a), blocking artifacts are clearly visible, especially
on the peppers. When the POCS deblocking filter was applied
as in Fig. 11(b), the blocking effects were mostly removed,
resulting in better subjective quality. The PSNR-B and SSIM
quality indices produced larger values on the POCS filtered
image, in agreement with observation.

Fig. 12 shows the reconstructed Barbara image with quanti-
zation step 80. Blocking artifacts are visible in the no-filtered



YIM AND BOVIK: QUALITY ASSESSMENT OF DEBLOCKED IMAGES 95

Fig. 12. Reconstructed images of Barbara with quantization step 80. (a) No
filter (���� � ����	 
�, ������ � �
��� 
�, ���� � ������,
���� � ��
��). (b) POCS deblocking filter (���� � ����� 
�,
������ � ����� 
�, ���� � �����	,���� � �����).

image and are mostly removed in the POCS filtered image.
Again, PSNR produced slightly larger values on the no-filtered
image, while the SSIM index was almost unchanged. PSNR-B
produced slightly larger values on the POCS filtered image.

A number of observations may be made from these simulation
results. First, the PSNR-B metric captures subjective quality on
images containing blocking artifacts as well as deblocking arti-
facts. This is substantiated both by agreement with the percep-
tually significant SSIM index and by subjective quality assess-
ment experiment. Second, the PSNR does not perform as well,
as might be expected. Thirdly, both the PSNR-B and the SSIM
index indicate that the POCS approach improves the perceptual
quality of block degraded images more than does simple low-
pass filtering. Fourth, the blockiness-specific GBIM has limi-
tations for measuring image quality including blocking artifacts
and deblocking artifacts, even though it is effective just for mea-
suring the amount of blockiness.

VII. STUDY OF H.264 IN-LOOP FILTER

Now we present simulation results for deblocking filters for
H.264 video coding. The H.264 encoding and decoding sim-
ulations are performed using the H.264 reference software in
[18]. The in-loop deblocking filter is a key component in H.264
video coding. If the filter is selected by an encoding parameter,
in-loop filtering is performed both in encoding and in decoding.
If it is not selected, in-loop filtering is not performed either in
encoding or in decoding. In H.264, the quantization step size is
controlled by the quantization parameter (QP) during encoding
[16]. The QP can take 52 values ranging from 0 to 51, and the
quantization step is doubled for each increment of six in the QP
[19]. In H.264 coding, the quantization step is the same for all
transform coefficients as determined by the QP.

To assess the in-loop filter using the quality indices, the size
of a group-of-pictures (GOP) is set as eight with one I-frame
and seven P-frames. In the simulations, 16 frames are encoded
and decoded. The quality indices were applied on the original
(reference) and decoded images at each frame, and the quality
scores were then averaged over the 16 frames.

Fig. 13. PSNR comparison of filters for H.264 videos. (a) Foreman.
(b) Mother and Daughter. (c) Hall Monitor. (d) Mobile.

A. PSNR Analysis

Fig. 13 examines the H.264 in-loop filter and lowpass filters
using the PSNR as an analysis tool. The 3 3 and 7 7 lowpass
filters do not provide improvement compared to not filtering for
small to medium quantization step sizes . The lowpass
filters produce slight improvement compared to not filtering for

on the Foreman and Mother and Daughter videos. The
in-loop filter gave a slight improvement of PSNR compared to
not filtering for mid-to-large quantization steps on the
Foreman, Mother and Daughter, and Hall Monitor videos. The
in-loop filter did not produce improvements compared to not
filtering on the complex Mobile video, according to the PSNR.
However, the PSNR is of dubious value when assessing percep-
tual quality.

B. SSIM Analysis

Fig. 14 studies the deblocking methods using the SSIM index
[1]. The in-loop filter produced improvement in the SSIM values
compared to not filtering for mid-to-large quantization steps

on the Foreman, Mother and Daughter, and Hall Mon-
itor videos. As the quantization step was increased, the in-loop
filter systematically produced larger SSIM values. The 3 3
filter also produced improvement according to SSIM as com-
pared to not filtering on the Foreman, Mother and Daughter,
and Hall Monitor videos, when the quantization step was greater
than 40. For the Mobile video, the in-loop filter produced SSIM
values almost the same as those for not filtering while the low-
pass filters gave lower SSIM values. This is clear evidence that
the in-loop filter works well, according to the perceptually rele-
vant SSIM index.
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Fig. 14. SSIM comparison of filters for H.264 videos. (a) Foreman. (b) Mother
and Daughter. (c) Hall Monitor. (d) Mobile.

C. PSNR-B Analysis

Fig. 15 analyzes the in-loop filter using PSNR-B. PSNR-B
produces trends similar to SSIM and visual analysis, while the
PSNR shows different trends. For mid-to-large quantization
steps , PSNR-B shows that the in-loop filter delivers
marginal improvement as compared to not filtering, while
the PSNR shows little change on the Foreman, Mother and
Daughter, and Hall Monitor videos. For a large quantization
step , the PSNR-B comparison in Fig. 15 shows that
the 3 3 and 7 7 filters deliver improvements, while the
PSNR comparison in Fig. 13 does not.

D. Analysis Using Quality Indices

Fig. 16 shows the decoded I-frame from Foreman video when
the QP is 42, which corresponds to a quantization step of
80. The subjective quality produced by the in-loop filter is no-
ticeably better than for the no-filter case. The PSNR-B for the
in-loop filter is marginally higher than for no-filter (by 2.81 dB),
while the PSNR values are very similar with a difference of 0.52
dB. The SSIM value for the in-loop filter result is higher than the
no-filter result by 0.0341. This difference is visible in Fig. 14(a).

Fig. 17 shows the decoded I-frame from Mother and Daughter
video for . The blocking artifacts are no-
ticeably reduced and the subjective quality is nicely improved
using the in-loop filter. The PSNR-B of the in-loop filter result is
higher by 2.72 dB, while the PSNR is higher by just 0.32 dB The
SSIM value increased by 0.0178, which is visible in Fig. 14(b).

Overall the in-loop filter generally resulted in improvements
compared to no-filter when the quantization step was large, but
did not give noticeable improvements when the quantization
step was small or the scene was complex as the Mobile. Since

Fig. 15. PSNR-B comparison of filters for H.264 videos. (a) Foreman.
(b) Mother and Daughter. (c) Hall Monitor. (d) Mobile.

Fig. 16. H.264 decoded I-frame from Foreman video (�� � ��, � � ��).
(a) No filter (�	
� � ���
� ��, �	
��� � ����� �, 		�� � �����
).
(b) In-loop filter (�	
� � ����
 ��, �	
��� � ����� ��, 		�� �

������).

Fig. 17. H.264 decoded I-frame from Mother and Daughter video (�� � ��,
� � ��). (a) No filter (�	
� � �
�����,�	
��� � �������, 		�� �

������). (b) In-loop filter (�	
� � �
��� ��, �	
��� � �
��� ��,
		�� � ����
�).

the in-loop filter does not give improvements in many cases and
the implementation cost is high as discussed in [23], the inclu-
sion of in-loop filter should be selected carefully in real appli-
cations.
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VIII. CONCLUDING REMARKS

We proposed the block-sensitive image quality index
PSNR-B for quality assessment of deblocked images. It modi-
fies the conventional PSNR by including an effective blocking
effect factor. In simulations, we compared relevant image
quality indices for deblocked images. The simulation results
show that PSNR-B results in better performance than PSNR for
image quality assessment of these impaired images. By compar-
ison, the blockiness-specific index GBIM effectively assesses
blockiness, but has limitations for image quality assessment.
PSNR-B shows similar trends with the perceptually proven
index SSIM. It is attractive since it is specific for assessing
image quality, specifically the severity of blocking artifacts.
The PSNR-B takes values in a similar range as PSNR and is,
therefore, intuitive for users of PSNR, while it results in better
performance for quality assessment of deblocked images.

For future work, we look forward to new problems to solve in
this direction of inquiry. Firstly, quality studies of this type using
special-purpose quality indices (such as PSNR-B) and percep-
tually proven indices (such SSIM) in conjunction are of consid-
erable value, not only for studying deblocking operations, but
also for other image improvement applications, such as restora-
tion, denoising, enhancement, and so on. Second, we envision
that nonlinear deblocking approaches could be developed using
perceptual quality indices, such as SSIM, as optimized objec-
tive functions—such an approach may produce impressive re-
sults, as has occured in the linear restoration problem [25], and
the image denoising problem [26]. A further application of in-
terest is foveated image quality assessment [27], since certain
methods of foveation can produce blocking artifacts [28]–[30].
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