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ABSTRACT

In recent years diverse quality measures to support the exploration
of high-dimensional data sets have been proposed. Such measures
can be very useful to rank and select information-bearing projec-
tions of very high dimensional data, when the visual exploration
of all possible projections becomes unfeasible. But even though a
ranking of the low dimensional projections may support the user in
the visual exploration task, different measures deliver different dis-
tances between the views that do not necessarily match the expec-
tations of human perception. As an alternative solution, we propose
a perception-based approach that, similar to the existing measures,
can be used to select information bearing projections of the data.
Specifically, we construct a perceptual embedding for the differ-
ent projections based on the data from a psychophysics study and
multi-dimensional scaling. This embedding together with a ranking
function is then used to estimate the value of the projections for a
specific user task in a perceptual sense.

Index Terms: H.3.3 [Information Storage and Retrieval]: Infor-
mation Search and Retrieval—; Clustering; I.3.3 [Computer Graph-
ics]: Picture/Image Generation;

1 INTRODUCTION

Innovative approaches in visual analytics for high-dimensional data
sets have presented quality measures that can be used to automati-
cally select promising projections of the data [13, 14]. The visual
analysis of such data sets usually requires projecting the data into
lower-dimensional representations. However, with the increasing
amount of dimensions in scientific data sets the exhaustive analysis
of all possible projections requires prohibitive time. So-called qual-
ity measures have been used in a pre-processing phase to the visual
exploration. They can be effectively used to rank the possible pro-
jections of the data according to one or more user tasks and reduce
the number of views to be examined by sorting them or selecting
the best ones.

Usually defined with respect to an exploration task, the quality
measures can be defined as ranking functions for the projections.
However, an open issue of these methods is that the range and dis-
tribution of ranking values depends on the algorithm of each indi-
vidual measure and it is not possible to directly compare the results
of the different measures. Specifically, the possible values of the
measures are often relative values and it is therefore impractical to
quantify the amount of structure present in a projection for a spe-
cific user task.

In contrast, we propose a quality measure to appraise the quality
of a certain projection based on human perception. By means of
a psychophysics study we estimate the similarity between the pro-
jections in a perceptual space and define a measure based on these
observations. Compared to the previously presented methods, our
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approach has the advantage that the values assigned to the projec-
tions have a direct relation to the perceptual quality impression of
human beings. In our case especially, it aims at matching the per-
ceptual quality of visual analysts. The presented measure is very
general, can be trained for a variety of exploration tasks and ex-
ploits measures derived from the human visual system to rank new
unknown visualizations. Our contributions in this paper are:

• a new quality measure for projections of high-dimensional
data sets based on human perception;

• the measure is generally applicable, as it can be trained for
different visualizations and user tasks;

• it allows comparison of a variety of quality measures by pro-
jecting their results into our perceptual quality measure;

• we show how to train, rank and optimize our method for spe-
cific user tasks.

We present results on evaluating and ranking scatterplots for two
exploration tasks: finding correlation between the dimensions and
separation between classes. However, the extension to other visual-
ization methods, e.g. parallel coordinate and pixel based displays,
and other user tasks, should be straightforward. The quality esti-
mation for scatterplots is made based on two psychophysics stud-
ies concerning each user task. The first study is used to measure
similarity and dissimilarity between the visualizations. The sec-
ond study estimates a ranking based on the user task. Additionally,
our method allows comparison of different measures directly by
mapping the acquired quality values of the visualizations into our
perceptual ranking scheme.

2 BACKGROUND

There have been numerous publications that proposed methods to
support the exploration of high-dimensional data sets. Asimov pre-
sented the Grand Tour [4] as an approach to exhaustively analyze
a dataset using low-dimensional projections. The main idea was to
supply the user with a complete overview of the data by generating
sequences of two-dimensional projections. Nevertheless, the ex-
tensive exploration of high-dimensional datasets is usually effortful
and time consuming. To address this issue different quality mea-
sures to select the best views of data sets have been proposed: From
the Projection Pursuit [7, 9] method, over the well known Scagnos-
tics indices [16, 18], to more recent metrics for different visualiza-
tion methods and user tasks [12, 8, 13, 10, 14, 2, 5]. All those mea-
sures can be used to support the visual analysis of high-dimensional
data sets, but they do not necessarily relate to the analysts opinion.

An initial study towards human perception with visual quality
metrics for multidimensional data has been proposed in [15]. Tatu
et al. did a user study to investigate the relationship between hu-
man perception and automatically computed measures. The authors
compared three different measures from [13, 14] that can be used to
estimate class separation in scatterplots and showed which measure
better fits the user’s opinion. Our approach is different in the sense
that we propose an automatic measure based on user perception it-
self. Specifically, the proposed distance in the ranking function of
the scatterplots is optimized to resemble the distance in a perceptual
embedding for scatterplots.



In this work we use the analysis of paired comparisons [6] where
an individual expresses a preference between two mutually distinct
scatterplots. Such comparison studies have been successfully used
to produce rankings [6]. Recently, Wills et al. [19] proposed a
method to construct a low-dimensional perceptual embedding for
bidirectional reflectance distribution functions that can be used to
navigate in the space of gloss and construct new materials. The
perception space is built based on a user study with paired compar-
isons and an extended multidimensional non-metric scaling algo-
rithm. This multidimensional scaling algorithm copes with incom-
plete and inconsistent dissimilarity matrices and can therefore be
trained using observations from a paired comparisons study. A de-
tailed description of the multidimensional scaling algorithm is pre-
sented by Agarwal et al. [1]. Inspired by this, we construct a similar
embedding for scatterplots that, together with a ranking function,
can be used as a visual quality measure to quantify the value of the
projection given a specific user task.

3 OVERVIEW

In this paper we present a perception-based quality measure to ap-
praise the quality of visualizations. The goodness values assigned
to the visualization by this novel measure are based on human ob-
servations from paired comparison studies. In particular, the dis-
tances between the measure values are optimized to be consistent
with an estimated perception distance between the corresponding
visualizations. It can be applied for a variety of visualizations and
exploration tasks. However, for the presentation in this paper we
concentrated on scatterplots and the user task of two-dimensional
correlation search and class separation.

Figure 1 gives an overview of our technique. It can be divided in
two main phases: a training phase where the measure is trained for
a specific user task and a test phase where new visualizations can be
ranked by the finished measure. The method starts with the training
phase. First, a set of visualizations for the specific exploration task
is chosen, and then a perceptual two-dimensional embedding P for
the defined task and visualization is trained based on this set. This
embedding provides a perceptually motivated similarity measure to
compare different visualizations. However the embedding alone is
not enough to decide when a visualization is better than another,
according to the exploration task. In order to compare the quality
of the visualization, we initialize a second, one-dimensional space
R for ranking the visualizations. In a final stage we optimize the
distances in R to resemble the distances in the perceptional embed-
ding. This optimized ranking space R is then used to evaluate the
quality of new visualizations, according to their similarity to the
visualizations in the ranking space.

Figure 1: Working steps to select the best visualizations of a high-
dimensional data set. A ranking function is defined in the training
phase, based on a perceptual embedding for scatterplots. This func-
tion is used later to measure the goodness value of new scatterplots
from a multivariate data set.

4 PERCEPTUAL SPACE FOR SCATTERPLOTS

Our perception-based quality measure is defined based on two user
studies with paired comparisons: The first is used to estimate mu-
tual perceptual distances between the plots (Section 4.1). The sec-
ond is used to define a ranking function (Section 4.2). For each
user task, a collection of scatterplots S is chosen to train the per-
ceptual embedding and perceptual ranking. The scatterplots can be
either synthetically created or taken from the projections of existing
high-dimensional data sets. Choosing a representative training set S
for the desired user task is of fundamental importance as it directly
reflects the coverage of the final measure.

Figure 2: Screenshot of the distance comparison test. A series of
scatterplot triplets is presented to each participant of the study. For
each triplet, the participant is asked to decide which of the lateral
images is more similar to the central one.

4.1 Perceptual Embedding

Once we have defined the exploration task, the perception embed-
ding P for scatterplots is built in a two-step approach [19]: In the
first step, a user study to estimate similarity between scatterplots is
performed. In this study, a series of scatterplot triplets is presented
to each participant. For each triplet, the participant is asked to de-
cide which of the lateral images is more similar to the central one
according to the specific exploration task (Figure 2). The scatter-
plots are randomly selected from the training set and are different
from each other in the triplet. The result of the study is stored as a
list of inequalities in the form:

LP = {(i, j,k)|di j ≤ d jk}, (1)

where i, j,k are indices of the scatterplots and di j denotes the per-
ceptual distance between the scatterplots i and j. At this stage we
do not know the absolute values of di j and d jk, but due to the user
input we know the correct ordering of i, j,k to fulfill the inequality.

In the second step, the set LP is used to train the embedding us-
ing a general non-metric multidimensional scaling algorithm (GN-
MDS) [1]. Multidimensional scaling (MDS) can be defined as the
process of assigning Euclidean coordinates to a set of objects based
on a set of constraints. These constraints can be a set of dissim-
ilarities, similarities or ordinal relations between the objects. The
coordinates are assigned to the objects by fitting as close as possible
to these constraints. The GNMDS method was developed to learn
a low rank embedding from a collection of paired comparisons, ap-
plying convex optimization techniques, as described in Agarwal et
al. [1]. While in the classical MDS the dissimilarity values of the
objects are directly interpreted as Euclidean distances, in the GN-
MDS, only the relative order of the object dissimilarities is neces-
sary. Specially, the GNMDS method has the advantage that it can
be used in a variety of cases where the magnitude of the dissimi-
larity is uncertain or unknown, as is the case in the aforementioned
paired comparison study. The method can deal with repetitions and



inconsistencies that commonly arise in such studies as distinct par-
ticipants may have different opinions when comparing the scatter-
plots. The evaluation of a set LP using this algorithm results in a
two-dimensional embedding P of the visualizations, so that the dis-
tances in this embedding directly correlate to the user’s perception.
Figure 8 shows an embedding example trained for the correlation
task according to the user’s expectation of similarity between the
scatterplots.

4.2 Perceptual Ranking

Figure 3: Screenshot of the rank comparison test. A series of scat-
terplot pairs is presented to each participant of the study. For each
pair, the participant is asked to decide which of the visualizations has
a higher quality considering a specific task.

Given the perceptual embedding P for the scatterplots, we are
able to measure the perceptual distance between them. We now
need an efficient way to define a ranking function for the corre-
sponding scatterplots. Our perception ranking R is defined in a three
step approach:

To estimate the ordering of the scatterplots, we perform a second
paired comparison study. In this study, two scatterplots are pre-
sented to the participants and they are asked to choose the best one
considering the defined user task. Figure 3 shows a screenshot of
one of those tests. Similar to the first study, the presented scatter-
plots pairs are randomly chosen from the training set and the result
is a collection of observations in the form:

LR = {(i, j)|pi < p j}, (2)

where i, j are indices of the scatterplots, pi represents the ith scat-
terplot and the inequality pi < p j denotes that p j is better then pi,
considering the chosen task.

Given the set of inequalities LR we need an efficient way to find
an optimal ordering for the scatterplots of the training set. Con-
sidering that LR may contain inconsistencies, the problem of find-
ing the optimal ordering for the visualizations is NP-Complete as
its is equivalent to the Traveling Salesman problem. It therefore
requires exhaustively searching all possible visualization arrange-
ments. We use a greedy incremental algorithm to find a suitable
order that obeys the observations in LR as close as possible. Our
approach provides a trade-off between finding the optimal solution
and completing all computations in a feasible time.

We start by reducing the inconsistencies between the inequalities
in LR. We define vi j as the number of observations of LR in the form
pi < p j and vi j , the number of observations in the form p j < pi. pi

is considered smaller than p j, only if vi j − vi j > 0. To insert a new
visualization into the current sequence we test all possible config-
urations for the new plot within the sequence and choose the one
that best fits the observations in LR. This is done by incrementally
placing the actual scatterplot in all possible configurations of the

sequence and evaluating how the best ordering fits the observations
in LR. The algorithm is initialized with the first plot and the best
placement for the second plot is computed. We then add the third
plot and create all possible sequence arrangements. The process is
repeated, inserting each new element one by one at the positions
that fulfills the most inequalities in R until all elements have been
added. The value of a sequence is defined by the number of obser-
vations that are fulfilled and is therefore defined by:

s =
n−1

∑
i=1

n

∑
j=i+1

{

1, pi < p j

0, otherwise
(3)

When all scatterplots are added, the sequence with highest value
is chosen as the relative ordering for the scatterplots. Figure 4
shows an illustrative example with three visualizations. Given the
set of observations p1 > p2, p1 > p3 and p2 < p3, the best place-
ment for p2 is found (Figure 4(c)) and the final sequence is defined
(Figure 4(e)).

Figure 4: Placement algorithm for three example visualizations, given
the set of observations p1 > p2, p1 > p3 and p2 < p3. (a) The algo-
rithm is initialized with the first visualization p1. (b) All possible se-
quence arrangements for p2 are tested. The set of possible insertion
positions are marked with dotted boxes. (c) The best sequence is
saved in next step. (d) The algorithm searches for the best place-
ment for p3 and the best sequence is saved at the end (e).

Up to now the ordering is only relative, in order to qualitatively
evaluate the scatterplots we need to combine it with the perceptual
embedding P. Our goal now is to find a ranking that, constrained to
the optimized ordering, fits as close as possible the mutual distances
in P. Figure 5 depicts such an example. Given an ordering of the
visualization in the form p1 ≤ p2 ≤ p3, and their mutual distances
in the perceptual embedding d12, d13, and d23, we want to find the
best fitting goodness values for x1, x2, x3, where xi is the rank value
for the scatterplot pi. Stating the problem in terms of a matrix Ax =
d, we want to solve the following optimization problem:

E = argmin
x

‖Ax − d‖2
2

xi ≤ x j, i < j.

(4)

To solve this problem, x is first initialized with the cumula-
tive pairwise distances of the embedding P, i.e. the scatterplot
ranked lowest is initialized to x1 = 0 and each remaining scatter-
plot xi = xi−1+di,i−1. Afterwards, the values xi are optimized to fit
as close as possible all distances di j of the embedding P. The min-
imization of Equation (4) can then be computed using quadratic
programming. As the problem is convex we iterate several times
over x, optimizing each point locally, until the algorithm converges
to the global minimum.

5 PERCEPTUAL QUERY

After defining the perceptual ranking for a chosen user task, we
can finally appraise the quality of new, previously unknown scat-
terplots. To define the goodness value of a new scatterplot pq, we



(a) Perceptual Embedding

(b) Perceptual Ranking

Figure 5: Embedding and ranking examples, given an ordering to the
visualizations p1 ≤ p2 ≤ p3, and their mutual distances in the percep-
tual embedding d12, d13, and d23, we want to find the best values for
x1, x2, x3.

search for the k−nearest scatterplots in our training set. Instead of
directly comparing points of scatterplots, we choose to extract spe-
cific features to represent them and yield a more robust comparison.
Principal Component Analysis (PCA) [17] is a common approach
to find such robust feature descriptors of images.We follow this ap-
proach, by using the set of previously selected scatterplots in the
training phase to compute an eigenobject basis. After projecting
the scatterplots on this eigenobject basis, the ten first main compo-
nents are chosen as feature vector.

For a new query we use a fast nearest-neighbor search [3] to find
the k-best matching scatterplots in our training basis. If k is larger
than 1, the influence of outliers is reduced. We use k = 3 throughout
the paper. The final goodness value is computed as the weighted
sum of the goodness values of the k best matching scatterplots. The
Perception-based Measure (PBM) is therefore defined as:

PBM =
∑

K
k=1 wkxk

∑
K
k=1 wk

, (5)

where the weight wk is defined as 1
dk

, dk is the Euclidian distance

between the feature vectors of the query and the kth best scatter-
plot. Again, it is worth noting that choosing a representative train-
ing set for the desired user task is of fundamental importance for
this method because the final measure value for a new scatterplot
is computed based on the values of the most similar plots in the
training set.

6 EXPERIMENTS AND ANALYSIS

Our PBM measure can be trained to select high quality projections
for different user tasks. For each user task, the measure is trained
using a set of training visualizations to represent the task. The qual-
ity of the training set is crucial to the outcome of the PBM measure
as it is always relative to the provided set. In the best case, this
training set should contain evenly distributed examples of the pos-
sible space of all visualizations as the later goodness value of the
visualizations is dependend on this training set. But even with in-
complete training data, the results are often sufficient. We only used
incomplete training data for our tests presented in this paper.

We trained our measure separately for two distinct exploration
tasks: correlation finding for unclassified data and class separation
for classified data, two standard tasks in visual analytics [13, 14].

For the correlation analysis task, we have chosen a set of scatter-
plots from the abalones data set [11], containing examples of linear
and non-linear correlation, as well as different degrees of correla-
tion. Figure 6 shows three examples of 21 scatterplots chosen to
represent this task. For the class separation task, we have chosen a
set of scatterplots from a synthetically generated data set [14], con-
taining examples with two distinct classes, represented by two point
clouds in two different colors. By choosing an example with only
two classes, we aim to show the effectiveness of our measure for the
class separation task. Note that the class separation task consists of
finding scatterplots were the classes, which are already known and
represented by different colors, are well separated. However, our
measure can be similarly trained for the task of finding projections
containing separate clusters in data sets where no label information
is available. Figure 7 shows three examples of 28 scatterplots cho-
sen to represent this task. These training sets are not complete to
describe the cited tasks, but they could be successfully used to test
the effectiveness of the measure.

Figure 6: Examples of scatterplots from the trainig set for the corre-
lation task.

Figure 7: Examples of scatterplots from the trainig set for the class
separation task.

For each separate task, we executed two psychophysics studies
using the selected scatterplots. The participants of the studies were
20 undergraduate students, PhD students and post docs working in
the field of visual computing. In the first study, 200 randomly cho-
sen scatterplot triplets from the task training set were presented to
them. They were then asked which of the lateral plots is more sim-
ilar to the central one. In the second study, 100 scatterplot pairs
were presented to the participants, again randomly chosen from the
task training set, and they were asked to choose the best scatterplot
considering the task. For the correlation task, the participants were
instructed to observe the amount of correlation between the scat-
terplot axes and the difference between linear and non-linear corre-
lation. Similarly, for the class separation task, they were asked to
observe the separation between the class clusters, i.e. the best plots
have well separated clusters and no overlap between the classes.

6.1 Perceptual Space

Using the results of the first study, we trained two perceptual em-
beddings, as described in Section 4.1. Figure 8 shows the result-
ing two-dimensional perceptual embedding trained using the scat-
terplots from the training set for the correlation task. It is worth
noting how the scatterplots are clustered according to the kind (lin-
ear and non-linear) and the amount of correlation. We can clearly



Figure 8: Resulting two-dimensional perceptual embedding trained using the scatterplots for the correlation task. The scatterplots are clustered
according to the kind of axis correlation (linear and non-linear) and the amount of correlation. We can see three main clusters in this embed-
ding: scatterplots presenting high and non-linear correlation cluster on the right of the embedding; lower non-linear correlation on the top and
scatterplots depicting nearly linear correlation can be found on the bottom left.

see three main clusters: scatterplots presenting high and non-linear
correlation clusters on the right of the embedding, lower non-linear
correlation at the top, and scatterplots depicting nearly linear corre-
lation can be found at the bottom left. Additionally, we can observe
three important subclassifications in this last cluster: strong linear
correlation on the middle, sparse linear correlation on the top, and
lower linear correlation on the bottom.

Figure 9 shows the resulting perceptual embedding for the class
separation task. Similar to the correlation space, the clusters of
scatterplots can be observed according to the presented class sepa-
ration. Three main clusters can be observed in this embedding as
well: scatterplots with bad separation between the two classes on
the right, with horizontal separation on the top-left corner and with
vertical separation on the bottom-left corner.

6.2 Perceptual Ranking

The perceptual rankings for the respective tasks were created based
on the second study as described in Section 4.2. Figure 10 shows
the resulting ranking for the correlation task. Small-scaled scatter-
plots are shown in the middle row and their respective quality values
are show in the bottom row. Note that as result of the optimiza-

tion, similar plots have the same or almost the same quality value.
Also this value increases according to the distance between the plots
in the perceptual embedding (Figure 8). A larger discrepancy be-
tween the values can be observed when neighboring scatterplots are
quite different due to the different clusters in the perception embed-
ding. As for example in Figure 10, between scatterplots (7) and (8)
where (7) behaves as an outlier and between (15) and (16) where
the transition from non-linear to linear correlation occurs. The re-
sulting order of the scatterplots resembles the observations of the
second study. A characteristic that can be observed in the correla-
tion ranking is the preference of the participants for scatterplots that
present linear correlation between the dimensions. Unfortunately,
some participants were unexperienced in the field of visualization
and visual analytics. Therefore, these participants had problems
choosing scatterplots showing the higher correlation value as they
assumed correlation and skinny structures to be equal. This may
result in outliers that can be minimized by using more experienced
participants for the study.

Similarly, Figure 11 shows the resulting ranking for the class
separation task. Again, we can observe large discrepancies between
the quality values of different scatterplots. Some examples are be-



Figure 9: Perceptual embedding for the class separation task. Clusters of scatterplots can be observed according to the presented class
separation. Three main clusters can be observed: scatterplots with bad separation between the two classes on the right; with horizontal
separation on the top-left corner and with vertical separation on the bottom-left corner.

Figure 10: Perceptual ranking for the correlation task. Small-scaled scatterplots are shown in the middle row and their respective quality values
are show in the bottom row. Note that similar scatterplots have the same, or almost the same quality value and this value increases according
with their mutual distances in the perceptual embedding (Figure 8).

Figure 11: Perceptual ranking for the class separation task. We can observe large discrepancies between the quality values of differing scatter-
plots. For example between scatterplot (10) and (11), where a clear difference concerning the separation the two classes can be observed.



tween scatterplot (10) and (11) where a clear difference concerning
the separation of the two classes can be observed. From (1) to (10)
the scatterplots present a large overlap between the classes. An in-
teresting aspect that can be noted in ordering of the visualizations
is the preference for the horizontal separated class clusters. During
the study we could observe that horizontal separated point clusters
appeared to be more disjoined in the participants opinions than ver-
tical separated ones.

To verify the stability of the scatterplot ranking, we performed a
leave-one-out test with the scatterplots of the class separation task.
We removed each of the 28 scatterplots and trained the measure
with the 27 remaining samples. As result the newly created rank-
ings presented an average difference of 1.28 position, compared to
the original one. That means an error of 4.6%, indicating that the
ranking is stable considering the dependence on the individual scat-
terplots of the training set.

6.3 Perception-Based Measure

To evaluate our measures we tested them with two synthetically
generated data sets. To test our PBM measure with the correlation
task, we used an unclassified data set with 6 dimensions and 1000
sampling points. Figure 12(a) presents the scatterplot matrix of the
data set showing scatterplots above the main diagonal and their re-
spective values according to the PBM measure under the diagonal.
These values were computed based on the 3-best matching scat-
terplots of the training set. E.g. for the scatterplot (dim0-dim1),
the scatterplots (10),(11), and (15) were automatically chosen from
the training set (Figure 10) and their respective ranks were used
to compute the PBM measure (Section 5). Our measure success-
fully ranked linear and non-linear correlation between dimensions
(dim0-dim1) and (dim4, dim5) with suitable values according to
the previously computed perceptual ranking. The remaining scat-
terplots were ranked with a low value for the PBM measure, in
consistence with the perceptual ranking.

Similarly, we compute the values of the scatterplots using the
RVM measure [14] (see Figure 12(b)). The RVM measure is used
to find linear and non-linear correlations between pairwise dimen-
sions. Both measures successfully select the scatterplots with the
strongest correlation as best plots. Note that in the perception rank-
ing we trained for correlation (Figure 10), the worst ranked scatter-
plots are similar to the scatterplots (dim0-dim2) and (dim1-dim2),
what justifies their low values for the PBM. Compared to the RVM
measure, the PBM has the advantage that the ranking values re-
semble the user perception and that it can be trained not only for
correlation but for a variety of user tasks. The PBM measure has a
lower sensibility due to it restrictions to the used training set, using
a more comprehensive training set may increase this sensibility.

To test the PBM measure with the class separation task, we used
a classified data set with 6 dimensions and 2000 sampling points
and two classes. Figure 12(c) presents the scatterplot matrix of this
data set showing scatterplots above the main diagonal and their re-
spective values according to the PBM measure under the diagonal.
The PBM measure successfully ranks the new scatterplots accord-
ing to the previously defined perceptual ranking (Figure 11). Note
that the scatterplots with horizontal class separation are rated with
higher scores compared to vertical class separation due to the pref-
erence of the participants for the vertical layouts.

Figure 12(d) shows the CDM measure [14] computed for this
data set. The CDM evaluates scatterplots according to the separa-
tion properties of the classes. Comparing our PBM to the CDM
measure, we can observe that the PBM measure delivers more ac-
curate values for this data set. For example the scatterplot (dim2-
dim3) that presents the best separation of the class clusters is ranked
with the best value by the PBM but not by the CDM measure.

7 CONCLUSION

In this paper we presented the first perceptually motivated goodness
measure for qualitatively evaluating visualizations. Our new quality
measure can serve several purposes. It is a very general technique
that is not limited to scatterplots, but we expect it to also be ap-
plicable to other visualization methods as Parallel Coordinates or
Pixel Bar Charts. We showed how to apply our technique for com-
mon visual analytics tasks such as finding projections with high
(non-)linear correlations or good class separability. Further user
tasks can be directly included and will be investigated in the fu-
ture. We compared our method with previously proposed quality
measures [15] and showed that our approach can be similarly used
to rank visualizations. Our measure has the advantage that it can
be trained to evaluate a variety of user tasks and that the computed
quality values resemble the human perception, even though consid-
ering its limitations to the training set and user preferences.

The presented measure opens new possibilities to aid the visual
exploration of high-dimensional data sets capitalizing on the human
visual system. As future work, we intent to test our measure with
other visualization methods and to extend the existing set of user
tasks. Additionally, we aim at comparing different quality measures
with different ranges in their goodness values by projecting them
into our perceptual ranking function.
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