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ABSTRACT

The urge to compress the amount of information needed to represent digitized images while preserving
perceptual image quality has led to a plethora of image-coding algorithms. At high data compression ra-
tios, these algorithms usually introduce several coding artifacts, each impairing image quality to a greater
or lesser extent. These impairments often occur simultaneously. For the evaluation of image-coding algo-
rithms, it is important to find out how these impairments combine and how this can be described. The
objective of the present study is to show that Minkowski-metrics can be used as a combination rule for
small impairments like those usually encountered in digitally coded images. To this end, an experiment has
been conducted in which subjects assessed the perceptual quality of scale-space-coded color images com-
prising three kinds of impairment, viz., ‘unsharpness’, ‘phantoms’ (dark/bright patches within bright/dark
homogeneous regions) and ‘color desaturation’. The results show an accumulation of these impairments
that is efficiently described by a Minkowski-metric with an exponent of about two. The latter suggests
that digital-image-coding impairments may be represented by a set of orthogonal vectors along the axes
of a multidimensional Euclidean space. An extension of Minkowski-metrics is presented to generalize the
proposed combination rule to large impairments.

1. INTRODUCTION

Interest in digital imaging systems is growing at a rapid pace. The reason for this interest is obvious:
representing images in digital form allows visual information to be easily manipulated in useful and novel
ways!. A potential problem with digital images is the large number of bits needed to represent them.
For example, a black-and-white image sampled on a grid of 512 by 512 pixels with 8 bits/pixel requires
already more than 2x108 bits. For storage and transmission of digital images it is often necessary to
compress this amount of information considerably. All existing coding techniques aimed at compressing
the amount of information needed to represent an image can do so only at the expense of distorting the
image. At high compression ratios, distortions such as blurring or false contouring? degrade or impair
perceived quality of a coded image. As most coded images are meant to be watched by human observers,
these digital-image-coding impairments will play a crucial part in evaluating the applicability of a given
coding algorithm.

In general, coding algorithms introduce several artifacts in an image. This is certainly valid for multires-
olution coding techniques such as subband coding®, Laplacian pyramid coding? or scale-space coding®.
These techniques decompose the input image into different components that are coded and transmitted
separately before being combined to reconstruct the image. Each component contains specific information
about the input image. Hence, subsampling and/or gray-level quantization of different components may
lead to different coding artifacts in the reconstructed image. Digital-image-coding impairments have been
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found to accumulate when they occur simultaneously?®. This implies that for the evaluation of image-
coding algorithms it is not sufficient to know the perceptual consequences of each coding artifact separately.
In addition, one needs to know how different impairments combine and how this can be described.

The objective of the present study is to show that Minkowski-metrics can be used as a combination rule
for impairments, in particular for small impairments like those usually encountered in digitally coded
images. Minkowski-metrics” have already been employed in many fields of human perception research.
For example, as a distance function in multidimensional scaling® or as an efficient rule for combining
responses from different spatial channels assumed to exist in the human visual system®. Results of recent
experiments® suggest that Minkowski-metrics can also be used to describe the way digital-image-coding
impairments are combined.

The present paper is organized as follows. First, Minkowski-metrics are introduced as a possible rule for
combining small impairments (section 2). Subsequently, an experiment is described in which the applica-
bility of the combination rule based on Minkowski-metrics is examined (section 3). In this experiment,
subjects assess the perceptual quality of scale-space-coded color images® comprising one to three perceptu-
ally different impairments, viz., ‘unsharpness’ (blur), ‘phantoms’ (dark/bright patches within bright/dark
homogeneous regions) and ‘color desaturation’. Finally, an extension of Minkowski-metrics is presented to
generalize the proposed combination rule to large impairments (section 4).

2. MINKOWSKI-METRICS AS A COMBINATION RULE FOR IMPAIRMENTS

The combination rule based on Minkowski-metrics is confined to impairments due to coding artifacts in
appreciation-oriented images. In this case, numerical category scaling is the most efficient method to
assess perceptual image quality!?. The combination rule assumes a linear transformation of quality into
impairment followed by a nonlinear addition of impairment scores. In a previous paper®, the following
equation has been proposed to derive impairment score I from average quality rating Q:

I=(Qo-Q)/(Qo— Qmin), (1)

where Qo and Qmi, are the highest and lowest quality observed in a rating experiment. Note that
Qmin < Q@ < Qoand 0 < I < 1. In general, Q¢ will be the quality of the original image
comprising no coding artifacts. It is obvious that eq. (1) is not limited to images comprising only one
impairment. It can also be used to transform quality rating Q. of an image with n impairments into
overall impairment score Ii;.

A prerequisite for using Minkowski-metrics to combine impairments is that quality scales have the properties
of at least an interval scale. Fortunately, this can easily be ensured by rescaling category ratings using
models based on Thurstone’s ‘law of categorical judgment’*’. The combination rule itself is given by

) n 1/?
oot = (}: If’) , (2)
=1

where I;,; denotes the predicted impairment score for an image with n impairments and I; (i = 1,...,n)
are impairment scores that have been derived from quality ratings of images comprising only one of these
impairments. In this equation, exponent p is a free parameter. Recent results®, however, suggest that this
exponent will take only two values, viz., p ~ 1 when impairments are perceptually hardly distinguishable
and p = 2 when impairments are perceptually clearly distinguishable. The former would imply linear
addition, the latter nonlinear addition in accordance with Pythagoras’ rule. These values of exponent p have
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Figure 1: Perceptual quality as a function of perceived impairment. Stimuli are 12 scale-
space-coded images of one natural scene: the portrait of a female model (WANDAO1).
Impairment has been introduced by systematically reducing the highest resolution infor-
mation of the original image. Data have been taken from de Ridder!4. In this and the
following figures, bars denote twice the standard error of the mean.

been determined by means of a least-squares fitting procedure minimizing the sum of squared differences
between predicted impairment scores J;o; of eq. (2) and the corresponding impairment scores Iz, obtained
by putting quality ratings Q. into eq. (1). Whenever exponent p is known, predicted impairment scores Thot
can be transformed into predicted quality values Q,o; by means of eq. (1), leading to the following expression:

Qtot = Qo - jtot~(Q0 - Qmin)' (3)

In general, impairment score Io¢ will vary between zero and one. In extreme cases, however, it may become
larger than one, leading to negative values of Q. In order to prevent this, an extension of eq. (2) is needed.
A discussion on this topic can be found in section 4.

There is some experimental support for the assumption underlying eq. (1) that impairment and quality are
linearly related!:13, More proof comes from an experiment that has recently been carried out at IPO**. In
that experiment, subjects rated quality as well as impairment in a set of scale-space-coded images of one
natural scene: the portrait of a female model (WANDAO1). In this set of images, impairment was intro-
duced by systematically reducing the highest resolution information of the original image. Experimental
results are summarized in Figure 1 where perceptual quality has been plotted as a function of perceived
impairment. Data show a linear relation between quality and impairment (r? = 0.994).

3. EXPERIMENTAL TEST OF MINKOWSKI-METRICS

2.1 Introduction

In order to test the applicability of Minkowski-metrics as a combination rule for (digital-image-coding)
impairments, an experiment has been carried out in which subjects assessed the perceptual quality of
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scale-space-coded color images comprising one to three perceptually distinct impairments. This is, in fact,
an extension of one of the experiments described by de Ridder®. In that experiment, images comprised two
kinds of impairment, viz., ‘unsharpness’ and ‘color desaturation’. To this, a third kind of impairment was
added. It is denoted ‘phantoms’ as it consists of dark and bright patches within homogeneous bright and
dark regions respectively.

2.2 Method

Stimuli

The coded pictures were two static, complex scenes: an outdoor scene (TERRASGEEL) and the portrait
of a female model (WANDAO1). RGB signals, obtained by scanning slides of these scenes, were digitized
with 8 bits/pixel on a grid of 512 by 512 pixels and then transformed to luminance component Y and
chrominance components U and V that are used in PAL color TV transmissions. Subsequently, scale-
space-coding/decoding was applied to each component with the restriction that U and V components were
always coded the same way. Finally, the coded YUV components were transformed to RGB signals again.
During quality assessments, only part of the images (240 by 470 pixels) was displayed in the middle of the
screen of a CONRAC 7211 high resolution color monitor.

For each component, five prediction error signals were generated that formed a scale-space pyramid®!%.
These signals varied systematically in spatial resolution, the one on the lowest level or scale of the pyramid
representing the highest-resolution information of the input image. Throughout this paper, these pyramids
will be called Y- and UV-pyramids, while the lowest scale will be labelled sq, the next scale s, etc. To
create these prediction error signals, five images of reduced size were derived from the input image by
means of sampling the latter with square lattices of 2D Gaussian kernels that were T; = 2* pixels apart,
withi=1, 2,..., 5. The ratio between sampling distance T; and the standard deviation of the Gaussian
weighting function on scale s; was always equal to three. Subsequently, the reduced image on scale s; was
used to construct a prediction of the image on scale s;_; by upsampling and interpolation. Subtraction of
this predicted image from the image on scale s;_; resulted in the prediction error signal on scale s;_;. For
the reconstruction of the input image, only the prediction error signals and the reduced image on scale s
needed to be transmitted.

Impairments were generated by uniform quantization of prediction error signals. Throughout this paper,
the degree of quantization of the signal on scale s;_; will be indicated by the size of quantization step ¢;_;.
A prediction error signal is said to be left intact when the step size is equal to one. That is, the signal is
sampled with 8 bits/pixel. The complete deletion of the prediction error signal on scale s;_; is indicated
by ¢i-1 = 0.

Four levels of ‘unsharpness’ were introduced in the reconstructed image by deleting both prediction error
signals on the two lowest scales of the Y component (g0 = ¢1 = 0), by deleting either one of them
(90 = 0,91 = 1 and ¢o = 1,¢; = 0) and by leaving both signals intact (g0 = ¢1 = 1). Three levels of
‘phantoms’ were produced by deleting the prediction error signal on scale s4 of the Y component comprising
low-resolution information (g4 = 0), by compressing its information by a factor of four (¢4 = 61) and by
leaving this signal intact (g4 = 1). In all above-mentioned cases, the prediction error signals on scales s,
and sz were left intact. Finally, four levels of ‘color desaturation’ were generated by deleting all prediction

error signals of the U and V components (go = -+ = g4 = 0), by deleting the signals on the four lowest
scales (go = --- = g3 = 0,94 = 1) as well as on the three lowest scales (go = - = ¢2 = 0,93 = 1,44 = 1)
and by leaving all signals intact (go = - -- = ¢4 = 1). All possible combinations of these impairments led to

48 different images per scene.
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Procedure

The experiment was carried out by one female and two male subjects. Their age varied between 22 and
28 years. The subjects had normal or corrected-to-normal vision. Their visual acuity measured by a
Landolt chart at 5 meter distance varied between 1.25 and 2.00. No color deficiencies were reported.
Viewing conditions were in accordance with CCIR Recommendation 50018 with the one exception that the
peak luminance was increased to 110 cd/m?. The subjects rated perceptual image quality on a 10-point
numerical category scale, ranging from 1 (low quality) to 10 (high quality). There were two sessions per
subject. In the course of a session all 96 images were displayed three times in a random order, except that
the same scene never appeared on two consecutive trials. Stimuli were presented for 5 seconds, after which
a 40 cd/m? adaptation field appeared on the screen. The resulting quality ratings were transformed to an
interval scale using a class I, condition D model based on Thurstone’s ‘law of categorical judgment’!. For

further details on experimental conditions, see de Ridder and Majoor?®.

2.3 Results and discussion

Figure 2 shows the experimental results for images comprising one or two impairments, viz., ‘unsharpness’
and ‘color desaturation’ (Fig. 2, upper panels), ‘phantoms’ and ‘color desaturation’ (Fig. 2, middle panels)
and ‘unsharpness’ and ‘phantoms’ (Fig. 2, lower panels). The filled symbols in Figure 2 denote data that
have been taken from another experiment®. These data have been linearly transformed to match the
corresponding data of the present study (Fig. 2, open symbols). Despite the fact that different subjects
participated in the two experiments, a good match was obtained between the two sets of data (r? = 0.89).
This indicates that category ratings from different experiments can be combined by means of a simple
linear transformation. The finding that perceptual quality is not affected by deleting the prediction error
signals on the two lowest scales of the UV-pyramids, implies that high-resolution color information does
not contribute to perceptual image quality.

Figure 2 shows that perceptual quality of images with two impairments is always less than that of images
comprising only one of them. This implies that the impairments accumulate. To determine whether
Minkowski-metrics can describe this accumulation, all quality values of Figure 2 were transformed into
impairment scores by means of eq. (1). Subsequently, a least-squares fitting procedure was used for each
pair of impairments to determine the value of exponent p that minimizes the sum of squared differences
between predicted impairment scores Tiot of eq. (2) and corresponding impairment scores I;o;. Results of this
procedure can be found in Table 1. In all cases, a good fit was obtained (0.94 < r? < 0.98), suggesting
that Minkowski-metrics are indeed able to describe the observed accumulation of two impairments. To
confirm this suggestion, the predicted impairment scores have been transformed into quality ratings Qo
by means of eq. (3). In Figure 2, the resulting predicted quality ratings are indicated by dashed lines,
demonstrating a good fit between predicted and measured quality.

Table 1 shows that exponent p has about the same value, irrespective of kinds of impairment involved. This
suggests that all data can be described by one Minkowski-metric. This has been examined in a subsequent
test, in which the fitting procedure was repeated, but now for all images including those comprising
three impairments. The results of this procedure can be seen in Figure 3, where the predicted quality
ratings are indicated by dashed lines. Again, a good fit was obtained between predicted and measured
quality. Exponent p was found to vary around two: p = 2.08 + 0.06 (r? = 0.96) for TERRASGEEL and
p=191 £ 0.05(r? = 0.97) for WANDAOL.

Based on a limited set of data, de Ridder® concluded that perceptually distinct impairments combine ac-
cording to a Minkowski-metric with an exponent that is slightly above two. The results of the present study
suggest that this exponent can be set equal to two. This would imply that perceptually distinguishable
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Figure 2: Perceptual quality of scale-space-coded color images comprising one or two
impairments, viz., ‘unsharpness’ and ‘color desaturation’ (upper panels), ‘phantoms’ and
‘color desaturation’ (middle panels) and ‘unsharpness’ and ‘phantoms’ (lower panels). For
details on how these impairments are generated, see section 2.2. Filled symbols denote
data that have been taken from another experiment®. They have been linearly transformed
to match the corresponding data of the present study (open symbols). Left-hand panels:
TERRASGEEL, right-hand panels: WANDAO1. Data have been averaged across three
subjects. Dashed lines connect predicted quality ratings Q.o of eq. (3). Values of these
ratings are based on exponents that are presented in the upper three rows of Table 1.
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Figure 3: Perceptual quality of scale-space-coded color images comprising one to three
impairments, viz., ‘unsharpness’, ‘phantoms’ and ‘color desaturation’. For details on how
these impairments are generated, see section 2.2. Left-hand panels: TERRASGEEL,
right-hand panels: WANDAO1. Data have been averaged across three subjects. Dashed
lines connect predicted quality ratings Qo of eq. (3). Values of these ratings are based
on exponents that are presented in the lower row of Table 1.
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Table 1: Results of the least-squares fits of eq. (2) to impairment scores derived from the
data shown in Figures 2 and 3. Impairment scores were determined by means of eq. (1).

kind TERRASGEEL WANDAO1
of p  95% confidence r? p  95% confidence r?
impairment interval interval
‘unsharpness’
and 2.21 1.79-2.64 0.98 | 1.96 1.40-2.52 0.97
‘color desaturation’
‘phantoms’
and 1.95 1.568-2.31 0.97 | 1.92 1.50-2.34 0.94
‘color desaturation’
‘unsharpness’
and 2.30 1.62-2.80 0.95 | 2.03 1.56-2.51 0.96
‘phantoms’
‘unsharpness’
and
‘color desaturation’ | 2.08 1.97-2.20 0.96 | 1.91 1.81-2.01 0.97
and
‘phantoms’

digital-image-coding impairments can be represented by a set of orthogonal vectors along the axes of a
multidimensional Euclidean space.

4. EXTENSION OF MINKOWSKI-METRICS

In the previous section, it was demonstrated that Minkowski-metrics can be used as a combination rule for
small impairments. How about large impairments? Suppose, an image comprises two different artifacts,
each producing an impairment that is so strong that an image comprising one of these impairments becomes
almost unrecognizable. Then, the image comprising both impairments as well as images comprising one
of these impairments will be classified into the lowest category of a quality scale. In other words, all
images will receive an impairment score of one. This, however, implies that overall impairment score I;o
of eq. (2) becomes larger than one, unless exponent p approaches infinity. This example points out two
important things. Firstly, there exists an upper bound for perceived strength of impairment. Secondly,
Minkowski-metrics do not take into account the fact that upper bounds might exist.

For two impairments (0 < I;, I < 1), the following extension of eq. (2) is proposed to incorporate an

upper bound in Minkowski-metrics:
1
P 3 (a)
ot 14 (I].Iz)P '

This equation is a generalization of Schonemann’s ‘Metric for Bounded Response Scales’'? in the sense that
eq. (4) is not confined to a Minkowski-metric with p = 1 (City-block metric). Experimental support for
eq. (4) can be found in Figure 4, where it has been fitted to data extracted from an experiment in which, in
extreme cases, the perceptual quality of the original image was degraded to such an extent that the image
became almost unrecognizable. The interesting aspect of this experiment is that this strong degradation
was already accomplished by either of the two impairments involved. These impairments were generated

SPIE Vol. 1666 Human Vision, Visual Processing, and Digital Display 111 (1992) / 23

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 08/21/2013 Terms of Use: http://spiedl.org/terms



e
c - AP
5 o038 /s
E
'S 0.6 2
Q
£ 1
— 0.4+
5 ] o WANDA16
) o DORPSSTRAAT
g 0.2 — eq.(2)
i/ eq.(4)
O T T T T T r T T — T
0 0.2 0.4 06 08 1

single impairment

Figure 4: Impairment scores for images comprising two equally strong impairments as
a function of the strength of these impairments. Impairment scores have been derived
from quality ratings, averaged across six subjects, for two natural scenes: an old building
(DORPSSTRAAT) and the portrait of a female model (WANDA16). Dashed line denotes
the optimal fit of eq. (4) with p = 1.77. Solid line represents predicted impairment
scores I;op of eq. (2) using the same value of exponent p.

by optical low-pass filtering!® and by adding normally-distributed spatial noise. In Figure 4, impairment
scores are shown only for those images that comprise two equally strong impairments. That is, I; = I5.
The impairment scores have been derived from quality ratings, averaged across six subjects, for two natural
scenes. Eq. (2) predicts that impairment scores lie on a straight line. Figure 4, however, shows that data
systematically deviate from a straight line for impairment scores above 0.5. This deviation is correctly
predicted by eq. (4) (Fig. 4, dashed line). Exponent p is again close to two, viz., 1.77 + 0.18 (r? = 0.98).

The main difference between this experiment and the one described in section 3 is the perceptual quality
range involved. Despite this difference, subjects used the whole category scale to rate image quality in
both experiments. This tendency to adapt the category scale to the perceptual range under investigation
is a well-known phenomenon in psychometrics!®. Furthermore, impairment scores are always normalized
by means of eq. (1). One way to allow for these properties of the evaluation technique used in the present
study is to assume that eq. (4) describes how actually perceived impairments combine and that calculated
impairment scores I are proportial to actually perceived impairments, or

I=KI;K?>1, (5)
where I~ denotes actually perceived impairment on a scale from zero (original image) to one (unrecognizable
image). Then, eq. (4) becomes

1/p
R r+r
Liot = sz ; K > 1. (6)
Ty

For K = 1, this equation turns into eq. (4) again. In general, however, K will be much larger than one,
because, under practical circumstances, impairments are rather small. This implies that the denominator
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in eq. (6) approaches one, meaning that eq. (6) turns into the original Minkowski-metrics described by
eq. (2).

5. CONCLUSIONS

The main conclusions of the present study are:
e Minkowski-metrics can be used as a combination rule for small impairments like those usually en-
countered in digitally coded images

e Perceptually distinct impairments combine according to a Minkowski-metric with an exponent that
is about two

e An upper bound for perceived strength of impairment has to be introduced into Minkowski-metrics
to generalize the combination rule using this metric to large impairments.
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