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a b s t r a c t

This paper represents another step in overcoming a drawback of K-Means, its lack of defense against

noisy features, using feature weights in the criterion. The Weighted K-Means method by Huang et al.

(2008, 2004, 2005) [5–7] is extended to the corresponding Minkowski metric for measuring distances.

Under Minkowski metric the feature weights become intuitively appealing feature rescaling factors in a

conventional K-Means criterion. To see how this can be used in addressing another issue of K-Means,

the initial setting, a method to initialize K-Means with anomalous clusters is adapted. The Minkowski

metric based method is experimentally validated on datasets from the UCI Machine Learning

Repository and generated sets of Gaussian clusters, both as they are and with additional uniform

random noise features, and appears to be competitive in comparison with other K-Means based feature

weighting algorithms.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Clustering is a major data analysis tool used in such domains
as marketing research, data mining, bioinformatics, image proces-
sing and pattern recognition [1–5]. K-Means is arguably the most
popular clustering algorithm. It is intuitive and fast. Yet K-Means
has shortcomings as well, such as:
(a)
 no defense against irrelevant, or noise, features;

(b)
 no recommendation on the initial location of cluster centroids;

(c)
 no criterion for selecting the number of clusters.
The main concern of this paper is regarding the issue (a),
although attention is given to (b) as well. A very successful
approach taken by Huang and his collaborators [5–7] serves as
the starting point. They modify the criterion of K-Means to that of
their Weighted K-Means (WK-Means, for short), see later in Eq.
(3), to include powers of unknown weights wv of the variables v,
v¼1, y, M. This is done in the manner of the popular c-means
fuzzy clustering criterion [8] except for the fact that in c-means,
the weights are assigned to entities rather than features. In both
ll rights reserved.

ter Science and Information

et, London WC1E 7HX, UK.

(Moscow);

iro de Amorim),
formulations the weights are supposed to be non-negative and
sum to unity, which alongside the power parameters, lead to
closed-form formulas for weight updating computations. It
appears, the feature weights reflect within cluster feature var-
iances: the smaller the variance, the larger the weight. Therefore,
features uniformly distributed across clusters get a smaller
weight while those concentrating around centroids get a larger
weight [5], which is in line with the intuition and works well in
experiments. However, the K-Means criterion modified by Huang
et al. [5–7] (see later in Eq. (3)) loses its straightforward relation-
ship between scales of the feature values and feature weights,
which has been underlying much of the previous work on feature
weighting (for a review, see Ref. [9]). Therefore, the Euclidean
metric in the criterion is in this paper extended to Minkowski’s
metric so that the Minkowski’s exponent coincides with the
exponent that is assigned to the feature weights. It appears
such a modification of the criterion, further-on referred to as
Minkowski metric Weighted K-Means (MWK-Means, for short),
works well both theoretically and practically. On the former side,
it leads to an alternating minimization algorithm similar to that
by Huang et al. [5], with an added search for Minkowski centers
as a process of minimization of a convex function. On the latter
side, MWK-Means outperforms both K-Means and WK-Means in
most experiments reported below.

To address the issues of the number of clusters (b) and initializa-
tion (c) in the context of MWK-Means criterion, a version of
anomalous clustering [3] is used to initialize K-Means. In the context
of the classical squared Euclidean distance K-Means criterion, this is
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a viable alternative to the conventional multiple runs of K-Means
starting from random centroids and using popular criteria for
choosing the ‘‘right number’’ of clusters, as experimentally demon-
strated by Chiang and Mirkin [10]. In the context of weighted
features, the strategy of multiple runs is not applicable to Weighted
K-Means by Huang et al. [5] at different weight powers because the
values of the Weighted K-Means criterion are incomparable then.
Therefore, the rule for choosing the best solution at the minimum
criterion value loses its ground. In contrast, the anomalous cluster-
ing strategy is applicable at all the versions of K-Means under
consideration so that the results can be compared across all of them.
The experiments on pre-labeled datasets reported in this paper
show that using the anomalous clusters for initialization of the
weighted versions of K-Means works well on real datasets and
remains competitive on synthetic, generated, data.

The remainder is structured as follows. Section 2 reviews
background and related work and sets goals for this paper.
Section 3 introduces all versions of K-Means under consideration:
the generic, so-called Batch, K-Means; the anomalous clustering
procedure; the WK-Means by Huang et al.; and the proposed
Minkowski metric Weighted K-Means, MWK-Means. Section 4
describes experimental results with respect to the three following
issues: (i) comparing proposed Minkowski metric based proce-
dures with those proposed earlier; (ii) exploring the effects of
increasing the numbers of noisy features and/or features in total,
and (iii) exploring the possibility of deriving the value of Min-
kowski exponent in a semi-supervised manner. The experiments
are conducted over several popular datasets from the UCI
Machine Learning Repository [11] and on generated Gaussian
cluster datasets. Section 5 concludes the paper.
2. Background and related work

In a recent review, Jain [12] formulates several issues of
clustering. Four of them,
(i)
 Feature selection

(ii)
 Data normalization
(iii)
 Distance definition

(iv)
 How many clusters
are relevant to the material of this paper so that recent
developments related to K-Means will be discussed in this
section, as well as problems remaining to be addressed.

2.1. Feature weighting and different metrics in K-Means and

related methods

The issue (i) of feature selection in clustering currently is
considered either within the framework of subspace clustering
(see, for a review, Ref. [13]) or within the framework of feature
weighting (see, for a review, Ref. [5]). This paper belongs to the
latter. Since feature weighting is a part of the definition of the
distance or similarity metric utilized in a clustering algorithm,
this inadvertently brings us to issue (iii) of distance definition. An
overwhelming majority of papers use the Euclidean squared
distance d(x,y)¼(x�y)T(x�y)¼Si(xi�yi)

2 between multidimen-
sional points x, y represented by n-dimensional column-vectors
where T denotes transpose. There are three main lines for
extending this measure: (1) an extension of the inner product in
the distance definition; (2) nonlinear weights, and (3) other
distances. These will be discussed in turn.
(1)
 Extension of the inner product in the distance definition
involves a positive semidefinite weight matrix W so that
d(x,y)¼(x�y)TW(x�y)¼Si,jwij(xi�yi)(xj�yj), which is equiva-
lent to using linear combinations of the original features (see,
for example, Refs. [14,15]). In a special case when W is diagonal,
this amounts to d(x,y)¼(x�y)TW(x�y)¼Siwi(xi�yi)

2, that is,
using square roots

ffiffiffiffiffiffi
wi
p

as feature weights that also are feature
rescaling factors, thus relating issues (i), (ii) and (iii) above
together. To choose the weights in the distance, the authors use
either of two different options. One of them is to change the
criterion for clustering. To accommodate the linear weights,
Modha and Spangler [16] drastically change the K-Means
criterion by dividing its extension, ‘‘the within-cluster disper-
sion’’ over an index expressing ‘‘the between-cluster disper-
sion.’’ Another stance is taken by Tsai and Chiu [17], who do not
change the criterion but rather introduce a heuristic iterative
feature weights adjustment procedure. The other option
involves additional information of the cluster structure. Such
additional information is usually shaped as lists of pairs of
entities that are to be either in the same cluster or not. Xing
et al. [14] and Bilenko et al. [15] modify the K-Means criterion
by adding items penalizing for breaking the constraints
imposed by the lists of pairs to be put together or separately.
(2)
 Non-linear weights
Non-linear weights considered in the literature so far have
been just weight powers so that the distance is expressed as
d(x,y)¼(x�y)TWb(x�y)¼Siwi

b(xi�yi)
2, where W is a diagonal

feature weight matrix. Probably, Makarenkov and Legendre
[9] have been the first to use this distance, at b¼2, for a
three-stage extension of K-Means to alternatingly minimize
the K-Means summary distance criterion over the three
groups of variables: entity memberships, cluster centroids,
and feature weights. Note that at b¼2, the weights them-
selves have the meaning of feature rescaling factors, that is,
they can be put as part of the data pre-processing indepen-
dently of the clustering criterion. Frigui and Nasraoui [18]
introduced cluster-specific feature weights. However, they
do not go beyond b¼2 either and, moreover, change the
criterion by introducing additive ‘‘regularization’’ terms.
Huang et al. [6,7] moved on with a further extension of
K-Means criterion by admitting an arbitrary exponent b but
yet utilized the squared Euclidean distance as the dissim-
ilarity measure. They also changed the rule for expressing
the extent of success: it is not the summary distance to
centroids anymore, but rather the recovery of a ‘‘natural’’
pre-specified set of clustering labels. The change might be
well justified by the impossibility of comparing the values of
the summary distance criterion at different values b. This
extension works well in practice; Huang et al. [5–7] show
that most appropriate b values are data specific but they fall
short of indicating how the value of b can be chosen
in situations when class labeling is not known in advance.
Another issue with this approach is that under the exponent
ba2 the weights are not the feature scale factors anymore.
It is this shortcoming that is going to be addressed here by
extending the Euclidean squared distance to Minkowski
metric of the same power b. Also, a semi-supervised
approach for finding an appropriate value of the exponent
is to be tried (see later in Section 4.3).
(3)
 Minkowski metric and other distances
Minkowski p-metric between M-dimensional points x¼(xv)
and y¼(yv) is defined by equation

dpðx,yÞ ¼
XM

9xv�yv9
p

 !1=p

: ð1Þ

v ¼ 1

In most applications, only values p¼2 (Euclidean metric), p¼1
(Manhattan, or City-block, metric) and p-N (Chebyshev, or



R. Cordeiro de Amorim, B. Mirkin / Pattern Recognition 45 (2012) 1061–1075 1063
Maximum, metric) have been considered. However, a few papers
recently have been published on the usage of other values of p.
Doherty et al. [19] note that data normalization differently
improves cluster recovery with K-Means at different p values.
Rudin [20] and Francois et al. [21] point to the differences in
effects of data concentration at different p and possibilities of
utilizing them for effectively tackling data analysis problems; the
latter paper cites a number of useful mathematical properties of
Minkowski metric. Kivinen et al. [22] undertake a comprehensive
modification of the least-squares approach in prediction using the
Minkowski p-metric. They point to a general fact that the metric
allows to identify and, in fact, ignore irrelevant features, which
goes in line with the main subject of this paper.

A wide class of different metrics has been introduced by
Banerjee et al. [23]. Even wider classes of metrics may emerge
in the context of kernel versions of K-Means, since the wealth of
applicable kernels is virtually infinite (for a review, see Ref. [24]).
However, comparative analysis of different metrics does not
attract much attention as yet except in some specific areas such
as web-page clustering (see, for example, Strehl et al. [25]).

2.2. Number of clusters and initialization of K-Means

In spite of the well known and well documented fact that
the local minima of K-Means criterion are not necessarily deep
enough, there is not much known of the proper ways of initializa-
tion of the K-Means process, except probably for the information
that multiple runs from seeds located at random data entities
tend to converge to deeper minima than those starting from
random seeds located anywhere in the data space (see Steinley
and Brusco [26] for a review and discussion). A dozen of other
initializing options considered by Steinley and Brusco [26] did not
do terribly well in the experiments, except for the case of using
Ward agglomerative algorithm to produce K clusters to initialize
K-Mean. This is no wonder since Ward algorithm optimizes the
same criterion; it just uses a different strategy.

The problem of choosing the right number of clusters
at K-Means attracted much more attention (see, for example,
Refs. [27–32,10]). A number of these approaches, including those
in [27–29], have been tested on synthetic datasets comprising a
number of Gaussian clusters, possibly well elongated and inter-
mixed, by Chiang and Mirkin [10]. In these experiments, a ‘‘rule of
thumb’’ by Hartigan [32] based on the relative increment of the
summary distance K-Means criterion proved superior in most
cases. Another winner, especially in terms of the initial centroids,
was a method from Ref. [3] utilizing an attractive idea of putting
the initial centroids far enough from each other as anomalous
patterns. This idea has been differently formalized in the litera-
ture including: (a) the MaxMin procedure [3,26], (b) the algo-
rithm Build preceding a popular version of K-Means, PAM method
in which centroids are presented by central objects rather than by
means [33] and (c) Anomalous clustering [3,10], in which anom-
alous clusters are built as those most distant from grand mean
and extracted one by one. The MaxMin builds a series of faraway
initial seeds rather straightforwardly, whereas the other two
utilize a more balanced approach by taking in only those distant
objects that have a dense neighborhood. The MaxMin and Build
have no natural stopping criterion and, thus, require the number
of clusters K pre-specified. In contrast, the Anomalous clustering
does have a natural stopping criterion when no unclustered
objects remain, and, therefore, can be used for finding ‘‘the right
number of clusters’’ as well. The MaxMin and a version of
Anomalous clusters have been included in the experiments by
Steinley and Brusco [26] with rather mediocre results. It should
be mentioned in this regard that the successful procedure for
Anomalous clustering in Ref. [10] differs from that utilized in
Ref. [26]. In Chiang and Mirkin [10], all anomalous clusters are
found first, after which only those with the largest numbers of
entities are taken to initialize the K-Means. The number K is
defined in Ref. [10] by a threshold value such that the Anomalous
clusters containing less entities than the threshold value are
dissolved. When K is pre-specified, only the largest K Anomalous
clusters are taken to initialize K-Means. This concurs with the
idea of centroids to have dense neighborhoods. In contrast, the
version utilized by [26] takes the first K extracted anomalous
clusters to initialize K-Means, even if some of them have just one
or two entities. The initialization with K largest Anomalous
clusters [10] will be examined with Minkowski’s distances in this
paper as well.
3. K-Means algorithm and its weighted versions

This section describes the generic K-Means method and its
extensions with respect to the weighting of the variables and
initialization, both known, in the first subsection, and the newly
proposed ones, in the second subsection.

3.1. Versions of K-Means

In this subsection, three versions of K-Means are described, to
be used for deriving the newly proposed versions of K-Means.

3.1.1. Generic K-Means

The K-Means clustering method in its generic version, the
so-called batch mode, applies to a dataset involving a set of N

entities, I, set of M features, V, and a quantitative entity-to-feature
matrix Y¼(yiv), where yiv is the value of feature vAV at entity iAI.
The method produces a partition S¼{S1, S2,y, SK} of I in K non-
empty non-overlapping subsets Sk, referred to as clusters, each
represented by a centroid ck¼(ckv), an M-dimensional vector in
the feature space (k¼1,2,y,K). The criterion, alternatingly mini-
mized by the method, is the sum of within-cluster distances to
centroids:

WðS,CÞ ¼
XK

k ¼ 1

X
iA Sk

dði,ckÞ ð2Þ

where C¼{c1, c2,y, cK} is the set of all centroids and d(i,ck) is a
dissimilarity measure between Y’s ith row and centroid ck, usually
taken to be the squared Euclidean distance, so that the criterion
(2) can be rewritten as

WðS,CÞ ¼
XK

k ¼ 1

X
iA I

XM
v ¼ 1

sikðyiv�ckvÞ
2

ð3Þ

where sik is a binary cluster membership variable such that sik¼1
if iASk and sik¼0, otherwise.

Starting from K initial M-dimensional cluster centroids ck, the
K-Means algorithm updates clusters Sk according to the minimum
distance rule: For each entity i in the data table, its distances to all
centroids are calculated and the entity is assigned to its nearest
centroid. Then centroids ck are updated, given clusters Sk, accord-
ing to the distance d in criterion (2), k¼1, 2, y, K. With the
criterion in the form of Eq. (3), ck is calculated as the vector of
within-cluster averages that minimize Eq. (2) given the cluster
membership. This process is reiterated until the clusters stabilize.

3.1.2. Choice of K and initial setting: iK-Means

The ‘‘intelligent’’ version of K-Means, iK-Means, described in
Refs. [3,10] utilizes the so-called anomalous clusters that are
found before running K-Means itself. Anomalous clusters are
extracted one-by-one till no unclustered objects remain, after
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which centroids of the largest anomalous clusters are used to
initialize K-Means [3,10]. Each of the anomalous clusters is built
by taking, as its initial centroid, the entity that is farthest away
from a pre-specified ‘‘reference point’’. Then the anomalous
cluster is filled in by the entities that are nearer to it than to
the reference point, which is iteratively updated by updating the
center of the anomalous cluster in the manner of K-Means itself,
until the cluster stops changing. The resulting anomalous cluster
is removed from the dataset, and the procedure is repeated with
the reference point unmoved. When all entities have been
clustered in this way, the centroids of non-singleton anomalous
clusters are used to both set K and initialize K-Means. When the
number K is pre-specified, the procedure is modified accordingly:
centroids of only K largest anomalous clusters are taken to
initialize K-Means. In the absence of other information, the
reference point is set as the central point of the dataset that
minimizes the summary distance to all data entities, which is
‘‘grand mean’’, the gravity center, when the dissimilarity d is
Euclidean squared distance.

In a series of experiments with the generated Gaussian
clusters of varying degrees of within- and between-cluster
spreads and thus overlaps, iK-Means has outperformed, in most
cases, many other K selection algorithms in terms of both cluster
recovery and centroid recovery [10].

3.1.3. Feature weighting

Huang et al. [5–7] modify criterion (3) to include unknown
weights wv of the variables v, v¼1, y, M:

WðS,C,wÞ ¼
XK

k ¼ 1

X
iA I

XM
v ¼ 1

sikwb
v ðyiv�ckvÞ

2
ð4Þ

where the feature weights wv are supposed to be non-negative
and sum to unity. The exponent b is a user-defined parameter
that expresses the rate of effect of the weight on its contribution
to the distance.

To minimize criterion (4) over unknown clusters, centroids and
feature weights, Huang et al. [5–7] propose a process, referred to as
WK-Means, of alternating minimization in iterations similar to
those in K-Means but involving three steps according to the
number of groups of variables in criterion (4): clusters Sk, centroids
ck and weights wv. These steps are:
(i)
 given centroids and weights, update clusters using the
minimum distance rule where distance is modified to include
the weights: dðyi,ckÞ ¼

P
vAV wb

v ðyiv�ckvÞ
2;
(ii)
 given clusters and weights, update centroids conventionally
as clusters’ gravity centers, that is, means;
(iii)
 given clusters and centroids, update weights according to the
formula followed from the first order optimality condition for
the problem of minimization of Eq. (4) constrained by the
condition that the sum of weights is 1

wv ¼
1P

uAV ½Dv=Du�
1=ðb�1Þ

ð5Þ

where Dv ¼
PK

k ¼ 1

P
iA Iðyiv�ckvÞ

2sik, the sum of within-clus-
ter variances of feature v weighted by clusters’ cardinalities.
Formula (5) much resembles a similar formula for the entity
membership values in the fuzzy c-means algorithm [8]. The
reason is the structure of criterion (4), similar to that of the
c-means criterion. This makes the minimizer of Eq. (4) with
respect to the linear constraint

P
vAVwv¼1 to satisfy two addi-

tional properties. First, the solution is expressed in a closed form
(5), and, second, all the optimal weights are positive. Formula (5)
is not applicable when Du¼0 for some uAV. To alleviate the issue,
Huang et al. [5–7] advise adding a positive value, the average
feature variance, to each Du in formula (5). The other case at
which formula (5) is not applicable is of b¼1, as this would
generate a division by zero in the exponent. In this case the
minimum of Eq. (4) is reached at wvn¼1 for the feature vn with
the smallest sum of the within-cluster distances and all other
feature weights set to 0 [7].

The WK-Means converge in a finite number of steps because at
each step the criterion decreases, whereas the number of different
partitions is finite.

Huang et al. [7] further extend criterion (4), and WK-Means, to
the case of ‘‘subspace clustering’’, at which the variable weights
are cluster-specific. The extension is rather straightforward—all
the steps and formulas remain the same, except that the weights
wv and distances Dv in Eqs. (4) and (5) become cluster-specific wkv

and Dkv, respectively. The latter is provided by dropping the sum
over k from the definition of Dv in Eq. (5)

wkv ¼
1P

uAV ½Dkv=Dku�
1=ðb�1Þ

ð5aÞ

where Dkv ¼
P

iA Iðyiv�ckvÞ
2sik, which is the within-cluster var-

iance of feature v weighted by the cluster’s cardinality.

3.2. Further extensions of weighted K-Means clustering

In each of the three following subsections, a new version
of weighted K-Means is proposed. The section ends with a brief
discussion of computational issues related to the proposed
algorithms.

3.2.1. Weighted iK-Means

The anomalous clusters step can be rather straightforwardly
implemented for the weighted distance criterion (4) to set K and
initialize centroids before application of the WK-Means method.
This will be referred to as iWK-Means:
0.
 Normalize the data.

1.
 Initialize the weights to be equal to each other in all the features.

2.
 The non clustered entity farthest away from the origin 0 is

taken as the tentative anomalous cluster’s centroid;
a. Define a cluster S to consist of the entities that are closer, in

terms of the weighted distance, to the tentative centroid
than to the origin 0;

b. Update the centroid to the mean of S;
c. Update the weights for this centroid using Eq. (5) or (5a);
d. If the new centroid differs from the previous one, go to

step a; otherwise stop and remove S from the dataset.

3.
 Repeat step 2 until all the entities are clustered.

4.
 Select the centroids of the K largest clusters.

5.
 Run WK-Means starting from the found centroids and weights.

3.2.2. Minkowski metric weighted K-Means

The feature weights of WK-Means method can be associated
with feature scaling factors if the distance in WK-Means criterion
(4) is extended from the squared Euclidean to Minkowski b-metric
in criterion (6)

WbðS,C,wÞ ¼
XK

k ¼ 1

X
iA I

XM
v ¼ 1

sikwb
v 9yiv�ckv9

b

¼
XK

k ¼ 1

X
iA I

XM
v ¼ 1

sik9wvyiv�wvckv9
b
¼
XK

k ¼ 1

X
iASk

dbðy0i,c
0
kÞ: ð6Þ

Criterion (6) differs from criterion (4) only in the distance
exponent, b rather than 2, so that the right-hand expression refers
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to b power of Minkowski b-metric (1) between the rescaled entity
points yi

0 ¼(wvyiv) and centroids ck
0 ¼(wvckv) in the feature space.

Yet criterion (6) returns the weighted version to the original
K-Means formulation, the right-hand expression in (6), by identi-
fying the weights with the feature scaling coefficients.

Minimization of Minkowski metric K-Means score function (6)
follows that of the weighted function (4), with some changes due
to the distance exponent b. Specifically, the alternating minimi-
zation in iterations over the three groups of variables – clusters,
centroids and weights – is similar to that in WK-Means. Here is a
formulation of the algorithm, further referred to as MWK-Means,
for alternating minimization of criterion (6) at a given b:
(i)
 given centroids ck and weights wv, update the cluster assign-
ment of entities using the Minimum distance rule with
distance defined as b power of Minkowski b-metric in
Eq. (6), dbðyi,ckÞ ¼

PM
v ¼ 1 wb

v 9yiv�ckv9
b
;

(ii)
 given clusters Sk and weights wv, update centroid ck¼(ckv) of
each cluster Sk as its Minkowski center so that, at each v, ckv

is defined by a value c minimizing an item in Minkowski’s
distance b power,

dðcÞ ¼
X
iA Sk

9y0iv�c9b ð7Þ

where yiv
0 ¼(wvyiv), according to equation ckv¼c/wv as fol-

lows from the notation introduced for Eq. (6). (Indeed, since
criterion (6) is the sum of independent items of the form of
Eq. (7) so that an optimal set of centroids C consists of values
ckv, each minimizing Eq. (7) for the corresponding vAV and
k¼1,y, K.)
(iii)
 given clusters Sk and centroids ck, update weights according
to the formula followed from the first order optimality
condition for the problem of minimization of (6) constrained
by the condition that the sum of weights is 1:

wv ¼
1P

uAV ½Dvb=Dub�
1=ðb�1Þ

ð8Þ

where Dvb ¼
PK

k ¼ 1

P
iA I9yiv�ckv9

b
sik.
This algorithm indeed is an algorithm of alternating minimiza-
tion for criterion (6) over the three groups of the variables: the
feature weights, the centroids, and the clusters. The starting point
is a random selection of centroids and equal weights of the
variables, after which the iterations of the alternating minimiza-
tion are run, each as a sequence of steps (i), (ii) and (iii) as
described above.

To prove that formula (8) gives the optimal weights, given the
centroids and clusters, let us rewrite the Minkowski criterion (6)
as WbðS,C,wÞ ¼

PM
v ¼ 1 wb

v Dvb. To minimize this over wv with
regard to the constraint

PM
v ¼ 1 wv ¼ 1, one should use the first-

order optimality condition for the Lagrange function L¼
PM

v ¼ 1

wb
v Dvbþlð1�

PM
v ¼ 1 wvÞ. The derivative of L with respect to wv is

equal to ð@L=@Þwv ¼ bwb�1
v Dvb�l. By equating this to zero,

one can easily derive that ðl=bÞ1=ðb�1Þ
¼wvD1=ðb�1Þ

vb , that is, wv ¼

ðl=bDvbÞ
1=ðb�1Þ: By summing these expressions over all v, one

arrives at equation 1¼
P

vðl=bDvbÞ
1=ðb�1Þ, so that ðl=bÞ1=ðb�1Þ

¼

1=
P

vð1=DvbÞ
1=ðb�1Þ. This leads to Eq. (8) indeed.

Note that Eq. (8) guarantees that the weights cannot be
negative, which has not been required in the problem solved by
the equation, and, in fact, is a bonus implied by the additive
structure of the criterion (6). Of course, Eq. (8) is not applicable
when Dub¼0 for some feature uAV.

We follow a further extension of WK-Means algorithm pro-
posed by Huang et al. [5–7], who were using cluster-specific
weights (5a) rather than those cluster independent ones, as
described in Section 3.1.3. These are derived similarly in the
Minkowski metric context, so that cluster-specific weights are
computed according to formula

wkv ¼
1P

uAV ½Dkvb=Dkub�
1=ðb�1Þ

ð8aÞ

where the summary distance Dkvb ¼
P

iA I9yiv�ckv9
b
sik is cluster-

specific.
Another issue of the MWK-Means algorithm is finding Min-

kowski’s centers, whose components are minimizers of the
summary Minkowski distances (7). The problem is to find a real
value c minimizing the summary distance (7) for a given set of
real values representing a feature within a cluster. A computa-
tionally feasible procedure for computing Minkowski’s center of a
set of values yi, i¼1,2,y, n, at any b can be defined with a nature-
inspired evolutionary algorithm.

However, in the case of bZ1, the only one that is explored here,
a better option is available. Indeed, the summary distance d(c) in
Eq. (7) is a convex function of c at bZ1. Then a steepest descent
procedure can be applied to find the global minimizer. As it is well
known, at b¼1, the median minimizes the distance d(c) in (7), so
that further on only b41 are considered. Assume that the y-values
are sorted in the ascending order so that y1ry2ryryn. Let us
first prove that the optimal c must be between the minimum, y1,
and the maximum, yn, of the range. Indeed, if, on the contrary, the
minimum is reached outside of the interval, say at c4yn, then
d(yn)od(c) because 9yi�yn9o9yi�c9 for all i¼1,2, y, n; and the
same holds for the bth powers of those. This contradiction proves
the statement. To prove the convexity, consider any c in the interval
between y1 and yn. Distance function (7) then can be rewritten as

dðcÞ ¼
X

iA Iþ

ðc�yiÞ
b
þ
X
iA I�

ðyi�cÞb

where Iþ is set of those indices i¼1,2,y, n for which c4yi , and
I� is set of such i’s that cryi. Then the first derivative of d(c) can
be expressed as d0ðcÞ ¼ bð

P
iA Iþ ðc�yiÞ

b�1
�
P

iA I ¼ ðyi�cÞb�1
Þ, and

the second derivative, as d00ðcÞ ¼ bðb�1Þð
P

iA Iþ ðc�yiÞ
b�2
þ
P

iA I ¼

ðyi�cÞb�2
Þ. The latter expression is positive for each c value,

provided that b41, which proves that d(c) is convex indeed.
The convexity leads to one more useful property: assume that

d(yin) is the minimum among all n d(yi) values (i¼1, 2, y, n) and
denote by yi0 the maximum of yi-values such that: (a) yioyin and
(b) d(yi)4d(yin). Similarly, denote by yi00 the minimum yi-value
such that: (a) yi4yin and (b) d(yi)4d(yin). Then the minimum of
d(c) lies within the interval (yi0, yi00).

These properties justify the following steepest descent algo-
rithm for finding Minkowski’s center of a set {yi} of values y1r
y2ryryn at b41.
3.2.2.1. Minkowski center algorithm
1.
 Initialize with c0¼yin, the minimizer of d(c) on the set {yi} and
a positive learning rate l that can be taken, say, as 10% of the
range yn–y1.
2.
 Compute c0�ld0(c0) and take it as c1 if it falls within the
interval (yi0, yi00). Otherwise, decrease l a bit, say, by 10%, and
repeat the step.
3.
 Test whether c1 and c0 coincide up to a pre-specified precision
threshold. If yes, halt the process and output c1 as the optimal
value of c. If not, move on.
4.
 Test whether d(c1)rd(c0). If yes, set c0¼c1 and d(c0)¼d(c1),
and go to step 2. If not, decrease l a bit, say by 10%, and go to
step 2 without changing c0.

In the computations, this method appears to converge much faster
than a nature-inspired evolutionary method (not described here).
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What is said above suggests an iteration in the MWK-Means
algorithm with cluster-specific feature weights outlined as
follows:
(i)
 given centroids and weights, update clusters by using the
minimum distance rule where distance is: dðyi,ckÞ ¼

P
vAV

wb
kvðyiv�ckvÞ

2;

(ii)
 given clusters and weights, update centroids component-

wise using the Minkowski center algorithm;

(iii)
 given clusters and centroids, update weights according to

formula (8a).
3.2.3. Minkowski metric weighted iK-Means

The MWK-Means algorithm initialized with centroids of
anomalous clusters found using Minkowski metric and the found
feature weights will be referred to as iMWK-Means. It should be
noted that on the second step of the anomalous pattern algorithm
the reference point is defined now as the Minkowski’s center of
the entity set. In step 2b, the mean of S must be replaced by the
Minkowski center of S, and in step 2c, Eqs. (8) and (8a) are used
instead of Eqs. (5) and (5a), respectively.

In relation to Dvb¼0 in Eq. (8) and Dkvb¼0 in Eq. (8a), in our
experiments, it appears that adding a very small constant to the
denominator instead of the average feature variance, advised by
Huang et al. [5–7], tends to increase the accuracy. This applies
only at the initialization stage of the algorithm; MWK-Means
remains then unchanged.

3.2.4. Computation time issues

In spite of the popularity of K-Means, its computational
properties are not well known. Obviously, the computation time
at each iteration is proportional to the product of the number of
entities and the dimension of the variable space. The number of
iterations in practice is rather small; yet a recent paper [34]
suggests that, in a worst-case scenario, this can be quite high. The
weighting should not much change that—using the formulas
(5) and (5a) may just somewhat increase the scaling coefficient
at the running time and, probably, increase the number of
iterations. The proposed modifications may lead to more complex
computations yet. The Anomalous cluster procedure at i-versions
should not much increase the total time: the added computation
of centroids should lead to a smaller number of iterations because
the choice of centroids is dictated by a version of K-Means
criterion, so that, on the balance, this should not be of an issue.
However, the computation of Minkowski’s centers can slow down
the running time drastically because it involves an iterative
steepest descent process the number of iterations at which can
be significant.
4. Experiments with weighted K-Means algorithms

Experiments on the proposed methods are conducted in the
following three directions:
(1)
 Testing the proposed Minkowski metric algorithms for cluster
recovery, especially in the presence of noise features, in
comparison with the original method by Huang et al. [5–7];
(2)
 Exploring the behavior and accuracy of the proposed Minkowski
metric algorithms with respect to increasing the numbers of
features;
(3)
 Exploring the possibility of estimating the value of the
exponent b in a semi-supervised manner.
Relative running times of the algorithms are of interest as well.
The section is divided in subsections accordingly.
4.1. Testing Minkowski metric weighted K-Means algorithms

The goal of this section is to experimentally explore the
performance of the Minkowski metric Weighted K-Means algo-
rithms at best possible values of the Minkowski exponent, in
relation to the best performances of other K-Means algorithms
under consideration.

Algorithms under comparison and datasets utilized are
described below. The scoring criterion is the accuracy in recovery
of pre-assigned cluster labels.

4.1.1. Algorithms under comparison

Basically, the proposed MWK-Means algorithm is compared
with WK-Means and generic K-Means, so that two versions of
each are taken: one based on a hundred runs starting from a
random initialization, and the other, starting from an anomalous
cluster initialization. This leads to the following six versions of
K-Means (at pre-specified K):
1.
 K-Means: Results of a hundred runs of generic K-Means at
random initializations;
2.
 WK-Means: Results of a hundred runs of the Weighted K-Means
algorithm by Huang et al. at the best b values, yet with the same b
at all of the hundred runs;
3.
 MWK-Means: Results of a hundred runs of the Minkowski
metric Weighted K-Means at the best b values, yet with the
same b at all of the hundred runs;
4.
 iK-Means: Generic K-Means initialized at the centroids of K

largest anomalous clusters;

5.
 iWK-Means: Weighted K-Means algorithm initialized at the

centroids of K largest anomalous clusters, at the best b value;

6.
 iMWK-Means: Minkowski metric Weighted K-Means algo-

rithm initialized at the centroids of K largest anomalous
clusters, at the best b value.

In all the experiments the range of b values considered is from
1 to 5, with the precision of up to one decimal digit.

In the weighted versions all the feature weights are taken to be
cluster-specific.

Before running an algorithm, the dataset is pre-processed so
that every feature is standardized by subtracting its average from
the data entries and dividing the result by half the feature’s range,
the difference between the maximum and minimum divided by 2.

4.1.2. Datasets for the experiments

With respect to datasets in the experiments, both real datasets
and synthetic ones, list of sets analyzed by Huang et al. [5–7] is
taken and somewhat extended. Specifically, six real datasets come
from the UCI Machine Learning Repository [11]: two of them, the
Australian credit card and Heart disease datasets have been
analyzed by Huang et al. [7], the other four are popular datasets,
Iris, Wine, Hepatitis, and Pima Indian Diabetes; all with pre-
labeled clusters. Some of these, like Pima Indian Diabetes, have
rather complex class structure so that none of the existing
classification algorithms have achieved anything better than
70–80% accuracy. It should be noted, that all the selected algo-
rithms are for clustering, not classification. In the setting of the
experiments, only one parameter, the feature weight exponent b,
is subject to adjustment to the pre-specified class labels as it has
been in the work by Huang et al. [5–7]. This drastically differs
from the adjustment of classification algorithms in which the
number of parameters is not one or two but often exceeds that of
the number of features. That means that, with adjusting just one
parameter, there will likely not be much overfitting, which may
and do happen when a classification algorithm is run. At this



Table 1
Accuracy levels for different versions of K-means clustering at the Iris dataset;

means, standard deviations, maxima and minima are over a hundred of random

initializations when applicable.

Algorithm Exponent b at Accuracy, %

Distance Weight Mean Std dev Max Min

K 2 0 84.0 12.3 89.3 52.0

WK 2 1.8 87.1 13.8 96.0 50.7

MWK 1.2 1.2 93.3 8.3 96.7 59.3

iK 2 0 88.7
iWK 2 1.1 96.7
iMWK at different b 2.0 2.0 94.7

3.0 3.0 90.0
1.2 1.2 96.7

Table 2
Comparing clustering results achieved by various algorithms on the Iris dataset.

Accuracy, % Comments

FCMþMSD 93.3 Combined fuzzy c-means and

multidimensional scaling [36]

SWFCM 91.3 A weighted version of fuzzy c-means [37]

TILDE 94.0 Top-down induction of logical decision

trees [38]

CEFS 92.5672.96 Clustering ensemble based method [39]

SS-NMF 92.7 Semi-supervised non-negative matrix

factorization [40]

Fast SVM 94.7 Supervised fast Support Vector Machine

technique separately classifying each of

the classes [41]

iMWK-Means 96.7 At b¼1.2

Table 3

iMWK cluster-specific feature weights in the Iris dataset at b¼1.2.

1 2 3 4

Initial Anomalous clusters 0.0022 0.0182 0.9339 0.0458

0.0000 0.0000 0.9913 0.0086

0.0000 0.0000 1.0000 0.0000

Final clusters 0.0228 0.1490 0.5944 0.2338

0.0508 0.0036 0.5898 0.3558

0.0233 0.0386 0.4662 0.4719
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stage, those values of b at which this or that algorithm performs
best are used, as it has been in the work of Huang et al. [5–7]; the
issue of learning b from the data will be dealt with later, in
Section 4.3.

All synthetic datasets in this section have been generated as a
500 strong six-dimensional GM (Gaussian Model) dataset, each
comprising five Gaussian clusters with the mixture coefficients
equal to 0.2 each, using the Netlab software [35]. Each of the
clusters is spherical of the variance 0.1; its center’s components
are independently generated from a Gaussian distribution N(0,1)
of zero mean and unit variance.

The tests are run on both the datasets as they are and on
versions of the data with added noise features. A noise feature is
generated, after data standardization, as a uniformly random
distribution in the interval of the length 2, [�1,þ1], similar to
those of the features innate to the dataset.

4.1.3. Result scoring function

The evaluation of the algorithm’s results follows Huang et al.
[5–7] using the accuracy, the proportion of points correctly
clustered by an algorithm under consideration. Specifically, each
of the K clusters produced by the algorithm is mapped to that of
the pre-labeled K clusters, that makes the largest overlap; the set
of points in that largest overlap is stored for each cluster, these
overlap sets are merged together, and the size of the merged set is
computed proportional to the size of the whole data [5–7]. This
proportion is taken as the accuracy. The values of the K-Means
criterion itself are not used because they are not comparable at
different b’s.

4.1.4. Results on data with no added noise

In this subsection, the experiment goes over real and synthetic
datasets as they are, with no noise features added to them.

4.1.4.1. Analysis of the Iris dataset. The Iris dataset of 150 flower
specimens characterized by 4 features (Sepal Length, Sepal Width,
Petal Length, Petal Width) consists of 3 clusters representing
three Iris species, 50 specimens in each.

Results of the six algorithms under consideration on the Iris
dataset are in Table 1. To express all the different criteria within a
uniform framework, we consider them as special cases of the
Weighted K-Means criterion at which the exponent values at the
weights and the point distances may differ—these are put here
and further on as ‘‘Exponent b at weight’’ and ‘‘Exponent b at
distance’’, respectively. Following Huang et al. [5] the values of b
exponent adjusted at the best accuracy of cluster recovery are
reported. Also, the maximum accuracy (over random intilializa-
tions, for methods that use them) as well as the average accuracy
and its standard deviation is presented. The average accuracy
gives an overall performance measure that indicates the expected
performance of the algorithm under consideration in the situa-
tions at which classes are not pre-labeled—these are of utmost
interest to a data miner. This model of reporting is carried
through all the further results described in the paper.

One can see that the best results – 96.7% accuracy, only
5 misclassified objects – have been achieved by the Weighted iK-
Means in both versions at the Euclidean and Minkowski distance
metric with b¼1.1 and 1.2, respectively. The same accuracy was
achieved once in a hundred of random runs of Weighted
K-Means.

This favorably compares with the accuracy achieved at the Iris
using different clustering or classification algorithms as reported
in the recent literature (see Table 2), although one should not
forget that classification algorithms are tested differently, using
test sets that have no overlap with the training sets.
To see what can cause a successful clustering, let us take a look
at the feature weights in Table 3 at which rows correspond to
clusters and columns to features.

As one can see from Table 3, features 3 and 4 (Petal Length and
Petal Width) have considerably higher weights in all clusters. This
is well aligned with the literature, which tends to show these
features or their product, as being the informative ones. Yet here
one can observe that the relative weights of these differ from
cluster to cluster.

4.1.4.2. Analysis of the Wine dataset. Wine dataset comprises results
of chemical analyses of various wine probes over 13 features; the
178 specimen of wine are divided in 3 classes according to their
production region.

Table 4 presents the results of the algorithms on the Wine
dataset. In contrast to the Iris dataset case, the introduction of
feature weights here does not lead to improving the accuracy—the
generic K-Means here lead to very high results.

Table 5 presents a sample of best results by other algorithms.
One can see that they can achieve as much as the best run of
generic K-Means, 96.6%, with iWMK-Means reaching almost as
much, 94.9%. Another criterion is taken by Tsai and Chiu [17]: their



Table 5
Accuracy achieved by other clustering algorithms on the Wine dataset.

Accuracy, % Comments

CEFSþPBIL 87.0770.21 Ensemble based methodþIncremental

algorithm [39]

SGKK-Means 91.6072.12 Soft geodesic kernel K-Means [42]

NK-Means 95.8 A neighborhood based initialization for

K-means [43]

SWFCM 96.6% A weighted version of Fuzzy c-means [37]

Table 6
Accuracy levels achieved by the six versions of K-Means at the Hepatitis dataset;

means, standard deviations and maxima are over a hundred of random initializa-

tions when applicable.

Algorithm Beta Mean Std Max

K-Means 0.7151 0.0136 0.7226

WK-Means 1.0 0.7872 0.0013 0.8000

MWK-Means 1.0 0.7902 0.0084 0.8000

iK-Means 0.7226

iWK-Means 1.0 0.7871

iMWK-Means 2.3 0.8452

Table 4
Accuracy levels achieved by the six versions of K-Means at the Wine dataset;

means, standard deviations, maxima and minima are over a hundred of random

initializations when applicable.

Algorithm Exponent at Accuracy, %

Distance Weight Mean Std dev Max Min

K 2 0 95.3 0.4 96.6 94.9

WK 2 4.4 93.9 0.8 94.9 91.6

MWK 2.3 2.3 92.6 1.3 96.1 89.3

iK 2 0 94.9
iWK 2 1.2 94.9
iMWK at different b 1.2 1.2 94.9

2.0 2.0 92.1
3.0 3.0 93.8

Table 7
Accuracy levels achieved by recent cluster based classification techniques at the

Hepatitis dataset.

Accuracy, % Comments

RBFC þHKM 79.3 (0.14) Radial Basis Functions classification

network trained by using Harmony

K-Means results [44]

PROAFTN with

RVNS 85.8

85.8 Prototype based fuzzy techniques

multi-criterion decision method

involving several manually set

parameters

MSDD

algorithm

80.8 Multi-stream dependency detection

(MSDD) algorithm [45]

iMWK-Means 84.5 Proposed Minkowski metric based

version

Table 8
Accuracy levels achieved by the six versions of K-Means at the Pima Indian

Diabetes dataset; means, standard deviations and maxima are over a hundred of

random initializations when applicable.

Algorithm Beta Mean Std Max

K-Means 0.6667 0.0055 0.6680

WK-Means 4.5 0.6450 0.0298 0.6628

MWK-Means 3.9 0.6818 0.0285 0.7135

iK-Means 0.6680

iWK-Means 1.8 0.6471

iMWK-Means 4.9 0.6940

Table 9
Accuracy levels achieved by recent cluster based algorithms at the Pima Indian

Diabetes dataset.

Accuracy, % Comments

PAM 65.6 Partitioning around medoids PAM

[33] used in [46]

SPAM 77.2 PAM based strategy to minimize

the number of wrongly assigned

objects [46]

SRIDHCR 79.5 Insertion/deletion hill climbing to

minimize the number of wrongly

assigned objects [46]

iMWK-Means 69.4 Proposed Minkowski metric based

version
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experiments on Iris and Wine datasets lead to rather low levels of
the adjusted Rand coefficient, about 0.77 and 0.40, respectively
[17][ p. 4667]; these correspond to the accuracy levels way below
those reported above in Tables 1, 2, 4 and 5.

4.1.4.3. Analysis of the Hepatitis dataset. This is a dataset of 155�19
size. Many of the features are yes-no binary, which are coded here
with 1-0 values, so that all features are considered to be quantitative
as described in Ref. [3]. There are two pre-labeled classes, ‘‘live’’ and
‘‘die’’. The accuracy levels achieved on the Hepatitis dataset are
recorded in Table 6. Here, iMWK-Means outperformed all the other
K-Means versions with the accuracy 84.5%.

This result rather favorably compares with results recently
published in Refs. [43,44], where the training extends much further,
to produce classifiers rather than clusterers (see Table 7), though, as
already mentioned, the classifiers are tested more thoroughly, on
the parts of the datasets that have not been used for training the
algorithms.

4.1.4.4. Analysis of the Pima Indians Diabetes dataset. This dataset
is of 768�8 size and involves two classes. The results in Table 8
show that Minkowski’s metric based algorithms outperform the
others, including Weighted K-Means, both in terms of maximum
and average values achieved. The accuracy achieved is not high,
though, and can be beaten with techniques involving further
readjustment of clusters to minimize the number of misclassified
entities [46] (see Table 9 in which the best results found after 50
random initializations in Ref. [46] are reported).
4.1.4.5. Analysis of the Australian credit card and Heart Disease

datasets. Tables 10 and 11 present results of the comparison
between the weighted versions of K-Means method and the
results achieved by Huang et al. [5] on the Australian credit card
dataset and Heart Disease dataset. In contrast to the other datasets
under consideration, these combine both categorical and quanti-
tative features so that Huang et al. [5] apply to them a somewhat
differing method combining K-Means and K-Prototype in which
centroids are represented by averaged quantitative values and
modal categorical values, respectively. To remain within the
original K-Means framework, a different strategy is utilized
here. According to this strategy [3], the data are quantified by
representing each categorical feature by a quantitative binary
variable, a dummy that assigns 1 to each entity which falls in the
category and 0 if not. Each of these variables is then standardized
in a quantitative way by subtracting its grand mean, that is, the



Table 10
Results of different weighted partitioning methods on the Australian credit card dataset; means, standard deviations, maxima and minima are over a hundred of random

initializations when applicable.

Exponent b at Accuracy, %

Distance Weight Mean Std Max Min

WK-Means combined with Prototype [5] 2.0 9 71.93 85 71a

WK-Means 2.0 4.9 71.82 13.71 86.52 45.22

iWK-Means 2.0 1.8 85.51 – –

iMWK-Means 1.8 1.8 86.09 – – –

a Huang et al. [5] report of 81 runs out of 100 leading to the accuracy of 71% or less; thus, the figure of 71% is an upper estimate of the minimum accuracy, also used to

compute the mean accuracy.

Table 11
Results of different weighted partitioning methods on the Heart disease dataset;

means, standard deviations, maxima and minima are over a hundred of random

initializations when applicable.

Exponent b at Accuracy, %

Distance Weight Mean Std Max Min

WK-Means/Prototype [5] 2.0 9.0 73.55 85 71a

WK-Means 2.0 4.2 78.50 6.22 82.59 53.33

iWK-Means 2.0 3.8 80.37 – –

iMWK-Means 2.7 2.7 84.07 – –

a Huang et al. [5] report of 63 runs out of 100 leading to the accuracy of 71% or

less; thus, the figure of 71% is an upper estimate of the minimum accuracy, also

used to compute the mean accuracy.

Table 12
Average accuracy results for K-Means versions under consideration on the ten GM

datasets. The best values of exponent b for MWK and iMWK versions are given for

one of the GM sets; means, standard deviations and maxima are over a hundred of

random initializations when applicable.

Exponent b at Accuracy, %

Distance Weight Mean Std Max

K-Means 2 0 79.8 9.1 89.4

WK-Means 2 4.2 78.2 10.6 91.8

MWK-Means 2.5 2.5 77.5 10.7 91.2

iK-Means 2 0 82.6 7.7 89.4

iWK-Means 2 4.5 81.0 9.9 89.8

iMWK-Means at different b 2.4 2.4 81.3 9.2 90.0

2 2 75.4 9.9 88.8

3 3 78.3 12.5 88.2
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category’s proportion. That means that centroids are represented
by the proportions rather than just the modal values. Because of
the different standardizations, the clustering results may differ too.
Therefore, for the weighted versions of K-Means, Tables 10 and 11
present both the results reported by Huang et al. [5] after work-
ing of their combined K-Means/Prototype algorithm, in the first
row, and the results found with an in-house implementation of the
WK-Means method, in the second row. Another issue is that the
currently available version of the Australian credit card dataset is
used. It contains records of 690 instances in which all missing
values have been substituted by the feature’s average values [11],
whereas Huang et al. [5] take only 666 of them, those with no
missing values.

As can be seen from Tables 10 and 11, given the specific
data coding, iWMK-Means’s results are superior to those of
WK-Means, and competitive with the best results achieved by
the WK-Means/Prototype method by Huang et al. [5].

Modha and Spangler [16] apply their method to the Australian
credit card dataset by separating the subspace of quantitative
features from the subspace of dummy variables related to the
categorical features and assigning thus only two weights pertain-
ing to the subspaces rather than to individual features. There is no
wonder thus that the accuracy achieved in Ref. [16], about 83%
at K¼2, is somewhat inferior to those reported in Table 10 for
WK-Means and iMWK-Means, 85% and 86%, respectively.
4.1.5. Experiments on synthetic data

Ten 500 strong six-dimensional GM (Gaussian Model) datasets,
each comprising five Gaussian clusters with the mixture coeffi-
cients equal to 0.2 for each, have been generated using Netlab
software [34]. Each of the clusters is spherical of the variance 0.1;
its center’s components are independently generated from a
Gaussian distribution N(0,1) of zero mean and unity variance.

The averaged results of the experiment are presented in Table 12.
All the within-cluster feature weights are more or less similar,

which corresponds to the way the data are generated, with no
preference assigned to any feature or cluster. This cluster struc-
ture gives no special advantages to weighted or anomalous
clusters, which is manifested in the fact that on the level of the
best results, as well as on average, all methods work similar. This
is in stark contrast to the results obtained on the real world
datasets from the UCI Machine Learning Repository where intel-
ligent versions of K-Means outperformed the conventional multi-
ple run schemes, probably because the ‘‘anomalous’’ clusters
model is more adequate to real data than to those generated as
described above.
4.1.6. Results on data with noise features added

Huang et al. have shown that, unlike the generic K-Means,
their weighted version of K-Means is rather robust against added
noise features [5–7]. The aim of the experiments is to check
whether the Minkowski and intelligent versions of weighted
K-Means do keep this advantage or they may be even better in
this respect.

Specifically, a pre-specified number of uniformly distributed
noise features are added to each of the datasets. For each dataset
a pre-specified number of noise features is generated 10 times,
so that there are 10 random copies processed with each of the
clustering algorithms in the study. The reported figures are the
averaged results of these computations.

The Iris and Wine datasets are supplemented with (a) as many
noise features as there are in the data, or (b) half that number,
which is 4 and 2 for Iris, and 13 and 7 for Wine, respectively. To
illustrate how much the additional irrelevant features affect the
data structures, Figs. 1 and 2 illustrate the Wine and GM original
datasets and their noisy versions projected to the plane of the two
first principal components.

Curiously, both noisy versions of the Iris dataset lead to
the same optimal parameter values at the weighted clustering,
though results slightly differ (see Table 13). On the other hand,
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Fig. 1. Wine dataset, on the left, and its version with 13 noise features, on the right, on the plane of the two first principal components, so that the axes correspond to the

first and second singular vectors of the data matrix. The classes are shown by different shapes for data points.
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Fig. 2. Illustration of one of the generated GM datasets, on the left, and its version with the noise, on the right. The axes correspond to the first and second singular vectors

of the data matrix.

Table 13
Accuracy levels achieved at the different versions of weighted K-means clustering

at the noisy Iris dataset; in each line, the accuracy at 2 noise features is on top, and

at 4 noise features, on bottom; means, standard deviations and maxima are over a

hundred of random initializations when applicable.

Exponent b at Accuracy, %

Distance Weight Mean Std dev Max

K-Means 2 0 67.1 6.4 76.7

66.7 7.0 80.0

WK-Means 2 1.2 85.5 15.8 96.0

88.7 12.6 96.0

MWK-Means 1.2 1.2 88.2 16.9 96.0

90.0 12.8 96.0

iK-Means 2 0 68.7

69.3
iWK-Means 2 1.1 96.0
iMWK-Means at different b 2.0 2.0 90.7

91.3
3.0 3.0 82.7

87.3
1.1 1.1 96.0

96.0

Table 14
Accuracy of the K-Means versions at the Wine dataset with 7 and 13 noise features

(top and bottom, respectively); means, standard deviations, maxima and minima

are over a hundred of random initializations when applicable.

Algorithm Exponent b at Accuracy, %

Distance Weight Mean Std Max Min

K-Means 2 0 93.0 6.5 96.6 52.3

87.5 11.0 93.3 59.0

WK-Means 2 2.7 91.9 7.1 95.5 57.3

2.6 89.4 10.6 94.9 50.0

MWK-Means 1.6 1.6 92.2 6.8 95.5 55.6

1.4 1.4 88.3 10.6 94.4 55.1

iK-Means 2 0 94.4

93.3

iWK-Means 2 1.9 94.9
3.0 93.8

iMWK-Means 2.0 2.0 93.8

93.8
3.0 3.0 87.6

57.3
2.2 2.2 95.5n

1.1 1.1 94.9nn

n Optimal for the dataset with 7 extra noise features.
nn Optimal for the dataset with 13 extra noise features.
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best results on the noisy versions of Wine set are achieved at
differing parameters as shown in Table 14.

The structure of feature weights on the noisy Iris data
reproduces that at the original features giving near zero weights
to all of the added noise features in each cluster.

On the noisy Wine set (Table 14), the summary weight of
the noise features on the anomalous clusters is less than 1% of
the total, and it increases to about 10% of the total weight at the
output of MWK-Means applied starting from those clusters’
centroids, according to the iMWK-Means approach.

For each of the GM datasets a noisy version was created by
adding two noise features (see Fig. 2 demonstrating the structures of
the 6-dimensional GM sets and their 8-dimensional versions with



Table 15
Average accuracy levels at GM 5 cluster 500�6 datasets with 2 noise features added.

Algorithm Mean b Std b Average accuracy

over 100 runs, %

Std Average Max,

over the datasets

Std of Max

K-Means – – 38.5 5.2936 47.62 6.4363

WK-Means 1.5 0.0816 56.56 5.2638 78.56 9.4482

MWK-Means 1.54 0.0699 60.26 6.3688 80.52 8.6970

iK-Means – – – – 37.7 6.8633

iWK-Means 2.14 1.0058 – – 66.12 11.5774

iMWK-Means 1.79 0.4841 – – 70.28 11.9090

Table 16
Average accuracy levels at GM 5 cluster 500�15 datasets with 10 noise features added.

Algorithm Mean b Std b Average accuracy

over 100 runs, %

Std Average Max,

over datasets

Std of Max

K-Means – – 0.4671 0.0957 0.6276 0.0886

WK-Means 3.44 1.5469 0.7244 0.0997 0.8984 0.0971

MWK-Means 1.4 0.0707 0.7882 0.0658 0.9336 0.0424

iK-Means – – – – 0.5584 0.1629

iWK-Means 3.18 1.4412 – – 0.8076 0.0964

iMWK-Means 1.6 0.2739 – – 0.8882 0.0925

Table 17
Average accuracy levels at GM 12-cluster 1000�25 datasets with 25 noise features added.

Algorithm Mean b Std b Average accuracy

over 100 runs, %

Std Average Max,

over datasets

Std Max

K-Means – – 0.2074 0.0184 0.2860 0.0379

WK-Means 4.76 0.2302 0.5205 0.0536 0.7136 0.0666

MWK-Means 1.32 0.0447 0.6843 0.0315 0.8414 0.0147

iK-Means – – – – 0.2192 0.0582

iWK-Means 2.88 1.359 – – 0.3936 0.1447

iMWK-Means 1.48 0.1789 – – 0.5488 0.0327
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noise features on the plane of the two first principal components:
the clusters are hardly distinguishable on a noisy GM set).

Table 15 presents results of applying the algorithms to the noisy
versions of GM datasets that consistently show the following:
(i)
 The accuracy levels are much more modest here than when
analyzing the data with no added noise (see Table 12). This is
reflected in the fact that the optimized feature weights are all
of the order of 0.13–0.16 for the six original features and of
0.05–0.06 for the two noise features. This again contrasts the
almost zero weights of noise on real datasets.
(ii)
 On average the maximum accuracy of the Minkowski metric
K-Means is greater than that by WK-Means.
(iii)
 The original K-Means shows quite modest accuracy rates,
reflecting the mentioned lack of structure on the synthetic
datasets.
(iv)
 On average, the i-versions of the algorithms outperform the
multiple runs of the corresponding versions of K-Means
under investigation, with iMWK-Means achieving the best
performance. This shows that in a situation of clustering
unlabeled data the intelligent Minkowski metric Weighted
K-Means version remains a viable option even when the data
structure is rather vague.
Overall, these experiments show that the Minkowski metric
Weighed K-Means versions are quite competitive and frequently
superior to the Euclidean metric options on both the original
datasets and their noisy versions.
4.2. Effects of increasing the feature space sizes

To see how the algorithms presented work at larger feature
spaces, three further series of ever larger datasets have been
generated, with cluster structures defined by NetLab software
[35], as described in Section 4.1.2 above, plus a number of noise
features added afterwards:
(1)
 GM 5-cluster structure 500�15 datasets with 10 noise features
added, amounting to 500�25 datasets;
(2)
 GM 12-cluster structure 500�25 datasets with 25 noise features
added, amounting to 500�50 datasets;
(3)
 GM 12-cluster structure 1000�50 datasets with 25 noise
features added, amounting to 1000�75 datasets.
The results for each of the series, averaged over ten datasets
generated for each of them, are presented in respective Tables
16–18.

Table 16 presents a pattern similar to that of the Table 15, with
the Minkowski metric versions outperforming the others, and
i-versions outperforming on average those based on multiple
runs. The generic K-Means suffers most and shows rather poor
performances.

Table 17 shows a rather different pattern emerging. K-Means
shows even poorer performance, probably because the proportion of
noise features here, one half, is the highest. The Minkowski metric
versions still outperform their Euclidean metric based counterparts,
though, with rather mediocre results. However, the balance



Table 18
Average accuracy levels at GM 12-cluster 1000�50 datasets with 25 noise features added.

Algorithm Mean b Std b Average accuracy

over 100 runs, %

Std Average Max,

over datasets

Std Max

K-Means – – 0.9279 0.0107 0.9998 0.0004

WK-Means 4.18 0.7981 0.8042 0.0108 0.9312 0.0062

MWK-Means 1.22 0.0447 0.8522 0.0818 0.9868 0.0290

iK-Means – – – – 0.8852 0.0815

iWK-Means 1.84 1.3372 – – 0.3736 0.2541

iMWK-Means 1.9 0.4690 – – 0.7076 0.0984

Table 19

Results of the experiments with the semi-supervised learning of the exponent b for WK-Means in datasets with noise features. The parenthesis at a dataset name presents

the original number of features plus the number of noise features. The means, modes and optima are taken over 50 runs of the semi-supervised learning algorithm (B

option). The parentheses at Modal beta values present the frequencies of the modes.

Real World datasets Exponent b Accuracy, %

Mean Modal Optimal Mean Max

Iris (4þ2) 1.23 1.2 (54%) 1.2 82.1/3.3 88.8

Iris (4þ4) 1.21 1.2(64%) 1.2 85.4/2.5 89.4

Wine (13þ7) 3.59 2.9(6%) 2.7 90.7/1.3 93.2

Wine (13þ13) 3.74 3.1(10%) 2.6 85.4/1.8 89.1

Pima Indians (8þ4) 1.55 1.5(22%) 1.9 63.2/1.6 65.3

Pima Indians (8þ8) 1.74 1.3(16%) 1.7 65.1/1.48 66.6

Hepatitis (19þ10) 2.10 1.0(58%) 1.0 77.3/1.9 78.8

Hepatitis (19þ20) 2.65 1.0(36%) 1.5 77.6/1.3 80.1

Synthetic datasetsn Mean Mean of Modal Mean of Optima Mean Mean of Max

500� (6þ2) 1.69/2.2 1.49/0.57 1.50 55.1/4.9 59.0/5.1

500� (15þ10) 2.72/8.9 1.84/7.60 3.44 70.7/9.7 74.7/10.2

1000� (25þ25) 4.30/1.6 4.46/3.36 4.76 50.8//5.3 53.9/5.1

1000� (50þ25) 4.02/3.1 3.48/13.48 4.18 78.2/0.9 81.4/1.0

n A summary of all the experiments per Gaussian Model is presented. The number after the slash is the standard deviation computed over all the sets generated

according to the corresponding Gaussian Model.
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shifts towards the Weighted versions based on multiple runs: they
outperform their corresponding i-versions.

The change of the pattern is complete at the largest generated
size series (3) presented in Table 18. Minkowski metric Weighted
K-Means versions still outperform their Euclidean metric based
counterparts. However, it is the generic K-Means that dominates
here overall, reaching on some of the datasets 100% cluster
recovery. In contrast, i-versions show relatively poor perfor-
mances. All of these probably can be explained by the effects of
the higher dimension sizes [47]: with all the distances relatively
small and similar to each other, the ‘‘anomalous’’ patterns are no
longer distinguishable, the individual variables are more or less of
the same weight, and the fact that the irrelevant features prevail,
making a majority of two thirds, gives the generic K-Means the
ability of good cluster recovery.
4.3. Semi-supervised learning the Minkowski metric exponent value

To see whether the Minkowski metric b value can be learned
from the data in a semi-supervised manner, a series of experi-
ments involving most of the datasets utilized in the previous
computations have been conducted for iMWK-Means method
versus WK-Means. Specifically, the value of b has been learnt
from exposing the class labels on a 20% data sample only, yet the
clustering was conducted over either this very sample (A option)
or over the entire dataset (B option).

Given a dataset, each of the experiments comprises fifty runs
of the following procedure:
1—Randomly choose a 20% sample of the data plus labels;
2—Run a series of clustering experiments at different b values
using only the chosen 20% of the data (A option) or the whole
dataset (B option); 3—At each of the options, pick the experiment
and b with the highest accuracy; 4—At A option, use the chosen b
value to cluster the whole of the dataset (including the initial
20%); at B option, just use the result of the corresponding
experiment.

At A option, the results have been stable (over different 20%
samples), yet rather disappointing, as the b values learnt have
been rather far away from those found at the entire dataset.
However, B option has provided a better match between the b
values learnt in the semi-supervised and fully supervised settings,
which can be clearly seen in Tables 19 and 20. These tables report
the accuracy results for WK-Means and iMWK-Means, respec-
tively. One can easily see that, at B option, iMWK-Means clearly
outperforms WK-Means on both counts: (i) the match between
the semi-supervised and supervised b values and (ii) the accu-
racy. The only exception to this is the case of synthetic sets of the
largest dimension 1000�75 at which WK-Means is superior. This
goes in line with the already observed poor performances of
iMWK-Means supervised learning of b in this case: just the very
concept of ‘‘anomalous’’ pattern loses its ground in these
conditions.

4.4. Running time of the algorithms

To illustrate the discussion of computational intensity of
various versions of K-Means in Section 3.2.4, a series of



Table 20

Results of the experiments with the semi-supervised learning of the exponent b for iMWK-Means in datasets with noise features. The parenthesis

at a dataset name presents the original number of features plus the number of noise features. The means, modes and optima are taken over 50 runs

of the semi-supervised learning algorithm (B option). The parentheses at Modal beta values present the frequencies of the modes.

Real World datasets Exponent b Accuracy, %

Mean Modal Optimal Mean Max

Iris (4þ2) 1.08 1.1(52%) 1.1 94.8/1.6 96.0

Iris (4þ4) 1.13 1.1(40%) 1.1 94.4/1.6 96.0

Wine (13þ7) 1.60 1.1(32%) 2.2 93.7/1.7 95.5

Wine (13þ13) 1.77 1.1(48%) 1.1 93.3/2.0 94.9

Pima Indians (8þ4) 2.86 3.0(14%) 4.1 65.2/5.6 67.2

Pima Indians (8þ8) 2.41 2.6(22%) 2.6 65.6/2.6 67.2

Hepatitis (19þ10) 2.57 4.5(40%) 4.5 79.7/3.1 83.3

Hepatitis (19þ20) 2.03 1.2(40%) 4.5 78.3/3.3 79.3

Synthetic datasetsn Mean Mean of Modal Mean of Optima Mean Mean of Max

500� (6þ2) 1.74/3.0 1.71/4.9 1.79 69.4/12.4 70.3/11.9

500� (15þ10) 1.58/2.9 1.52/2.4 1.6 88.3/9.7 88.8/9.2

1000� (25þ25) 1.47/1.8 1.5/1.8 1.48 54.5/3.5 54.9/3.3

1000� (50þ25) 1.82/3.5 1.88/4.8 1.90 70.4/10.8 70.8/9.84

n A summary of all the experiments per Gaussian Model is presented. The number after the slash is the standard deviation computed over all

the sets generated according to the corresponding Gaussian Model.

Table 21
The total time, in seconds, taken by an algorithm to make a single run.

GM noisy dataset Algorithm

K-Means iK-Means WK-Means iWK-Means MWK-Means iMWK-Means

500� (6þ2) 0.03 0.08 0.08 0.11 6.59 9.40

500� (15þ10) 0.08 0.14 0.19 0.32 22.89 29.82

1000� (25þ25) 2.28 2.07 1.05 1.65 119.50 208.23

1000� (50þ25) 0.20 0.65 1.05 0.94 124.47 153.96
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experiments have been conducted on the generated GM datasets
with recording the CPU running time of the K-Means algorithm
versions under comparison (see Table 21). All the computations
have been executed on the Intel Core-2 CPU 2.4 GHz, Ram 2 Gb
under Windows 7 operational system on the MatLab, version
2010, which can take advantage of a Core-2 CPU.

Of course, the timing can be quite different on different
computing systems; however, the data in Table 21 seem rather
indicative of the relative speeds of convergence of the algorithms
under consideration. As expected, both feature weighting and
anomalous cluster search do not much add to the running time
of an algorithm as compared to the generic K-Means runs. More-
over, these can increase the speed of computation in situations
of high proportions of noise features in the data as, for example,
at the GM dataset of 1000 points and 25 features with supple-
mentary added 25 random noise features. Evidently, this may
happen because, on this type of data, the generic K-Means
requires a large number of iterations to converge, whereas the
weighted and i-based versions may take much less iterations. The
weighted versions change the space structure by drastically
reducing the significance of noise, whereas i-versions start from
better initial centroids following the data structure.

In contrast, Minkowski’s metric algorithms take a hundred or
more times longer to converge—this is the toll taken by the process
of finding the Minkowski centers in each cluster at each iteration.
A run of the iMWK-Means or MWK-Means takes a hundred
times greater to converge than a run of WK-Means. However, to
find a better initialization, WK-Means needs to be run about a
hundred times, which balances the score: in practical computa-
tions, iMWK-Means and WK-Means take about the same time
to run.
5. Conclusion

Weighting of the variables is a way to advance into the
problem of clustering of datasets at which the cluster structure
is blurred by the presence of irrelevant, or noise, features, as the
Weighted K-Means method clearly demonstrates [5–7]. In this
paper, two modifications of this method are proposed and their
competitiveness is experimentally demonstrated.

The main contribution of this paper is the extension of the
exponent b from the weights in the original Weighted K-Means
method to the distances, in the form of Minkowski metric
criterion (6). This returns the K-Means criterion to its original
format of summary distances between entities and their cluster
centroids and, also, makes the weights to be the feature rescaling
coefficients. The Minkowski metric criterion does the job: in the
experiments, it consistently improves the accuracy of the
Weighted K-Means both at the original and noisy datasets. The
issue remaining to be addressed in this regard, as it is with the
original Weighted K-Means, is of determining the right value of b
exponent. Applying a semi-supervised setting by training b on
labeled subsamples appears to be a promising direction. Another
possibility would lie in trying to identify characteristics of the
data structures that relate to specific values of b.

A related contribution of this paper is the usage of anomalous
cluster centers to initialize both centroids and feature weights in the
‘‘intelligent’’ versions of the Weighted K-Means. This proved effec-
tive at modest to moderate data sizes. An improvement with regard
to real world datasets is not unexpected because real data structures
probably do have something to do with the anomalous cluster
mechanism [3], unlike the generated data with their ‘‘rounded’’
clusters. Yet i-versions prove superior on average at synthetic data
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as well. Moving to the high-dimensions realm, though, changes the
entire perspective on weighting as shown in Section 4.2—and this
deserves further investigation. The issue of a relatively slow con-
vergence of the Minkowski metric algorithms should be investigated
further as well. One potential direction can be related to developing
a kind of scale to relate the exponent b value and the likely position
of Minkowski center in a sorted series of the feature values—we
know already, that at b¼1 the center is the median, thus, it is in the
middle of the series. Such a development would allow to change the
steepest descent process by a less computationally intensive sorting.

One more direction for future work would be in extending this
approach to objects of complex structure to combine clustering
with semi or fully supervised learning for both feature selecting
and weighting. The specifics of the complex structure of the
objects would suggest a two-step approach here so that features
are selected first and readjusted later. The Minkowski metric
approach will be extended to the work that we have started in the
analysis of signals [48] and unstructured texts [49].
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