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ABSTRACT 
 

One approach for studying digital videos impairments is to work 
with synthetic artifacts which look like real impairments, yet are 
simpler, purer and easier to describe. In this paper, we created 
synthetic ringing and blurring and inserted them in short video 
sequences. In a psychophysical experiment we measured the 
probability of detection and the annoyance value of these 
artifacts as a function of their total squared error.  Although 
ringing occurs only near edges and blurring can occur over wide 
areas of the images, there is no consistent difference between 
either the thresholds or mid-annoyance strengths. There are, on 
the other hand, interactions between the specific video and 
artifact type in the determination of these values. Mid-annoyance 
strength was found to be highly correlated with threshold.  Also, 
we combined ringing and blurring to produce mixed artifacts.  
Their thresholds and mid-annoyance strengths tend to be 
intermediate between those of the individual artifacts.  Their 
annoyance value is well predicted by a weighted sum of the 
annoyance values for blurring and ringing with weights of 
approximately 0.6 and 0.4, respectively. 

 

1. INTRODUCTION 
 

An impairment or a defect is defined as a perceived flaw 
introduced into an image or video during capture, transmission, 
storage, and/or display, as well as by any image processing 
algorithm (e.g. enhancement, compression) that may be applied 
to the images. Impairments can be very complex in their physical 
description and also in their perceptual description. Most of 
them have more than one perceptual feature or perceived artifact. 
Examples of perceived artifacts introduced by digital systems are 
blurriness, noisiness, ringing, and blockiness [1].   

Many video quality models have been proposed, but little 
work has been done on studying and characterizing the 
individual artifacts found in digital video applications.  A study 
of the individual perceived artifacts is necessary since their 
relationship with the overall quality is not known. A 
characterization of the most common artifacts is also an 
important step in the design of a multi-metric quality 
measurement system [2].  
_____________________________ 
* This work was supported in part by CAPES – Brazil, in part by a National Science 

Foundation Grant CCR-0105404, and in part by a University of California MICRO 
Grant with matching support from Philips Research Laboratories. 

One  approach  for  studying  impairments  is  to  work  with 
synthetic artifacts that look like “ real”  artifacts, yet  are  simpler, 
purer, and easier to describe. Such artifacts are necessary 
components of the kind of reference impairment system 
recommended by the ITU-T for the measurement of image 
quality [3] and offer advantages for experimental research on 
video quality. This approach is promising because of the degree 
of control it offers with respect to the amplitude, distribution, 
and mixture of different types of artifacts. This control makes it 
possible, for example, to study the importance of each type of 
artifact for human observers.  

The goal of this study was to examine properties of two 
synthetic artifacts - blurring and ringing. To this end, we inserted 
ringing and blurring artifacts in short video sequences and 
performed a psychophysical experiment to estimate their 
visibility and annoyance.  
 

2. GENERATION OF SYNTHETIC ARTIFACTS 
 

Ringing is fundamentally related to the Gibb’s phenomenon. It 
occurs when the quantization of individual DCT coefficients 
results in high frequency irregularities of the reconstructed 
block. Ringing manifests itself in the form of spurious 
oscillations of the reconstructed pixel values. It is more evident 
along high contrast edges, especially if the edges are in the areas 
of generally smooth texture [1].  

The ITU-T reference impairment system recommends 
generating ringing using a filter with ripples in the passband 
amplitude response, which creates an echo impairment [3]. The 
problem with this approach is that besides ringing, this 
procedure also introduces blurring and possibly noise. Since our 
goal is the generation of artifacts as pure as possible, we 
developed an algorithm for synthetically generating ringing. Our 
algorithm consisted of a pair of delay-complementary highpass 
and lowpass filters, related by the following relationship: 

( ) ( ) 0nzzGzH −⋅=+ β , (1)

where H(z) and  G(z)  are  N-tap  highpass  and  lowpass  filters, 
respectively. We set β = 1 and n0 = 2N  for this work. The 

output of our system is given by the following equation: 
( ) ( ) ( )[ ] ( )zXzGzHzY ⋅+= , (2)

So, except for a shift, Y is equal to X, given that the initial 
conditions of both filters are exactly the same [4]. If, on the 
other hand, we make the initial conditions different, a decaying 
“noise”  is introduced in  the first  N /2  samples that     resembles 
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Figure 1. Ringing simulation in a 1-D signal with a sharp edge 
at time 0. Dashed line is the input signal, while the solid line is 
the reconstructed signal with shift compensation. 
 

the ringing artifact produced by compression. An example of this 
effect can be seen on  Figure 1, where   both input   (solid line) 
and output (dashed line) are plotted. In this example, N=10 and 
the input is: ( ) ( )ttx ⋅+⋅= 8.0cos1.0cos .  

 Since ringing is only visible around edges, the algorithm is 
only applied to the pixels of the video corresponding to edges in 
both horizontal and vertical directions. We use the Canny 
algorithm [5] to detect the edges. The resulting effect is very 
similar to the ringing artifact found in compressed images, but 
without any blurring or noise.   

Blurring is the reduction in sharpness of edges and spatial 
detail [1]. In compressed images blurring is often caused by 
trading off bits to code resolution and motion. Blurring artifacts 
can be easily generated by applying a symmetric, two-
dimensional low-pass FIR (Finite Impulse Response) filter to the 
digital image array [3].  We used a 5×5 mean filter in this 
experiment. Different filters with varying cut-off frequencies 
could be used to control the amount of blurriness introduced. 
 

2. PSYCHOPHYSICAL EXPERIMENT 
 

With the goal of estimating the visibility and annoyance of 
blurring and ringing, a psychophysical experiment was 
performed. To generate the test video sequences, we started by 
choosing a set of five original video sequences of assumed high 
quality: Bus, Calendar, Cheerleader, Flower-garden, and 
Hockey. These videos are commonly used for video experiments 
and are publicly available at the Video Quality Group website 
(http://www.vqeg.org). The second step was to generate videos 
in which one type of artifact dominated and produced a 
relatively high level of annoyance. We also created a set of 
videos with equal proportions of blurring and ringing. Therefore, 
for each original video, 3 new videos were created: Xblurry, with 
only blurring, Xring, with only ringing, and Xcomb, with a 
combination of blurring and ringing.  

The usual approach to subjective quality testing is to degrade 
a video by a variable amount and ask the test subjects for a 
quality rating [6]. Since both the type and the strength of 
artifacts vary from frame to frame and region to region, this 
method  cannot  be used to measure the visibility and annoyance 
produced by specific artifacts at specific strengths. To do this we 
use an experimental paradigm in which impairments are 
restricted to an isolated region (defect zone) of the video clip for 
a short time interval. The rest of the video is left in its original  

state [7]. 
Finally, the  test  sequences, Y, were  generated   by   linearly 

combining the original video with the video containing the 
impairment (Xblurry, Xring, or Xcomb) in different proportions, as 
given by the following equation: 

( )XXrXY I −⋅+= , (3)
where X is the original video, XI is the sequence with the 
impairment, and r is the strength parameter of the test sequence 
(r ≥ 0). Before adding them, the videos were transformed to the 
linear light domain using a gamma approximation. A total of 95 
test videos were used in this experiment (5 originals × 6 
strengths × 3 types of impairments).  

To create artifacts that were identical except for strength, we 
first created a single artifact using the algorithm. This was 
combined with the original video using eq. 3 with different 
values of r.  The values of r were chosen to cover the ranges of 
both the psychometric and the annoyance functions in so far as 
possible, using results of a pilot study.  However, we found that 
the highest strengths of ringing that we could produce without 
saturation had lower values of TSE and produced less annoyance 
than our highest strength blurring artifacts. Consequently, we 
were often not able to measure the upper part of the annoyance 
function for ringing.  Nevertheless, we were able to measure 
enough of this function to get a reasonably good estimate of its 
parameters. 

Our test subjects were drawn from a pool of students in the 
introductory psychology class at UCSB. The students are 
thought to be relatively naive concerning video artifacts and the 
associated terminology. They were asked to wear any vision 
correcting devices (glasses or contacts) that they normally wear 
to watch television. There were five stages to the experimental 
session: instructions, training, practice, experiment, and 
interview.  In the first stage, the subject was verbally given 
instructions.  In the training stage, we showed sample sequences 
to the subject to establish the range for the strength and 
annoyance scales. In the practice stage, the subject carried out 8 
practice trials to allow the responses to stabilize. At the interview 
stage, we asked the test subjects for qualitative descriptions of 
the defects that were seen. 

The main experiment was performed with the complete set of 
test sequences presented in random order. The test subjects were 
instructed to search each video for defective regions. After each 
video was played the subjects were asked two questions. The 
first question was “Did you see a defect or impairment?”   If the 
answer was ‘no’ , no further questions were asked. If the answer 
was ‘yes’ , the subject was instructed to enter a positive 
numerical value indicating how annoying the defect was. Any 
defect half as annoying should be given 50, as annoying 100, 
twice as annoying 200 and so forth.   
 

4. DATA ANALYSIS 
 

We used the standard methods [6] for analyzing the visibility 
and annoyance judgments provided by the test subjects. We first 
computed two measures for each test sequence: Probability of 
Detection (PD), and Mean Annoyance Value (MAV). PD was 
estimated by   dividing the   number of subjects who detected the 
artifact by the total number of   subjects. MAV is calculated by 
averaging the annoyance levels over all observers for each video. 
 The visibility threshold  is  defined  as  the  logarithm  of  the 
TSE such that the impairment is seen by 50% of the subjects.  To 
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estimate this threshold, the probability of detection data for each 
impairment were fitted using the Weibull function [6],  which  is 
defined as: 

( ) ( )kxSxP ⋅−−= 21  , (4) 

where P(x) is the probability of detection, x is the logarithm of 
the Total Squared Error (TSE), S is the sensitivity, and k is a 
constant that determines the slope of the transition. The 50% 
detection threshold is simply  xT =1/S. Columns 2, 3, and 4 of 
Table 1 show the psychometric function fitting parameters (xT 
and k) and the sum of squared fitting residuals. The empty spaces 
correspond to cases where a fit was not possible because more 
than 50% of subjects detected the weakest impairment.   

The mean annoyance values for each test sequence were 
fitted with the standard logistic function [6]: 

( ) ( )( )( )βxxyyyy −−+−+= exp1minmaxmin  (5) 

where y is the predicted annoyance and x is the logarithmic error 
energy. The parameters ymin and ymax were set to ‘0’  and ‘100’ . 

The parameter x  translates the curve in the x-direction and the 
parameter 

�
 controls  the  steepness  of  the  curve. Columns 5, 

6, and  7 of Table 1 show the annoyance function fitting 
parameters ( x and β), and the sum of  squared fitting residuals. 
The fits of both functions were generally quite good. 

In Table 1, it can be seen that some of the original videos had 
higher visibility thresholds for ringing, while others had higher 
thresholds for blurring. The same is true for the annoyance 
parameter x .  This is shown in Figures 2-5 which depict the 
psychometric and annoyance functions for the test videos 
‘Cheerleader’  and ‘Calendar’ .  

From Table 1 it is clear that the values of xT and x  vary quite 
a bit over the different impairments (2 log units for xT and  1.4 
log units for x ).  However, these differences are due primarily to 
differences in the original videos and not due to the type of 
impairment inserted in them. To show this, we performed an 
ANOVA analysis to test for the main effects (‘original’  and 
‘ impairment type’ ) on fitting parameters. Table 2 shows the P 
values obtained from this analysis. As expected, ‘ impairment 
type’  did not have a significant effect on any of the fitting 
parameters. On the other hand, ‘original video’  had a significant 
effect on three out of the four parameters. Further, an interaction 
between ‘original video’  and ‘ impairment type’  seems apparent 
in the data, although our two-way ANOVA does not test for this. 
In bus, calendar, and flower ringing is more visible and 
annoying; in cheerleader and hockey blurring is more visible.  

It is interesting to observe that the same videos which had 
lower visibility thresholds for ringing, also had lower x  for 
ringing. This indicates a positive correlation between these two 
factors. We calculated the Pearson correlation [8] between xT  
and x . As expected, these parameters are highly correlated (R2= 
0.977) and are related by the following expression x = 1.29 xT – 
2.08. This implies that if we know the visibility thresholds of 
these impairments we can estimate their annoyance. Moore [7] 
also found a high correlation (0.971) between the xT and 
x values for MPEG blocky/blurry and fuzzy artifacts and the 
relation x = 1.15 xT .   
  We performed a linear regression analysis on our annoyance 
data to test if we could predict the MAVs of the combined 
artifacts from the  MAVs of the ringing and blurring. The  results 
show a very significant correlation (R2=0.96; t-test, P=1.8·10-19)  

Table 1:  Annoyance and visibility fitting parameters. 

Group xT  k ΣΣΣΣ(ri)2 x  ββββ ΣΣΣΣ(ri)2 

BlurBus 4.17 11.25 0.04 4.77 0.23 9.88 
BlurCalend 4.17 15.63 0.01 4.86 0.20 6.16 
BlurCheer 3.45 7.13 0.06 4.49 0.37 22.2 
BlurFlower 4.00 8.82 0.08 4.76 0.23 11.39 
BlurHockey 2.38 3.41 0.07 3.48 0.28 10.34 
MixBus 4.17 15.94 0.06 4.82 0.23 5.67 
MixCalend 4.17 16.52 0.03 4.84 0.21 4.61 
MixCheer 3.57 6.73 0.10 4.55 0.31 7.58 
MixFlower 4.00 14.09 0.02 4.71 0.21 7.87 
MixHockey     3.56 0.37 10.38 
RingBus 3.70 8.44 0.13 4.40 0.32 1.69 
RingCalend 3.45 9.11 0.06 4.25 0.34 4.57 
RingCheer 4.00 9.15 0.18 4.65 0.29 6.85 
RingFlower 3.45 14.81 0.06 4.11 0.23 8.41 
RingHockey 2.70 3.63 0.17 3.78 0.50 0.00 

Table 2: P values obtained from the ANOVA analysis on the 
annoyance and visibility fitting parameters (Table 1). 

x  ββββ 
Annoyance 

original impairment original impairment 
P 0.003 0.2348 0.609 0.1495 

S k 
Visibility 

original impairment original impairment 
P 0.057 0.3584 0.0152 0.7084 

 
among these values. We found coefficients of 0.631  and  
0.4058for blurring and ringing, respectively. Figure 6  depicts  
the   plot of the observed  MAV  ( combined artifacts) versus the 
predicted MAV. The line in the graph corresponds to y=x.  
 We also fitted a Minkowski metric to the data. We obtained a 
Minkowski factor of 1.017 and coefficients 0.633 and 0.411 for 
blurring and ringing, respectively. These results were very close 
to the linear fit, indicating that the linear model had a better fit 
with our data.  
 

5. CONCLUDING REMARKS 
 

A new algorithm for creating synthetic ringing was proposed. 
The resulting artifacts are ‘ relatively pure’  and provide a 
valuable tool for studying the characteristics of this type of 
artifact. A psychophysical experiment was performed to compare 
the annoyance and visibility of ringing and blurring.  

We used standard methods to find the psychometric and 
annoyance curves. We found that both of these curves have the 
same form as has been used for MPEG artifacts.  Although 
ringing occurs only near edges and blurring can occur over wide 
areas of the images, there is no consistent difference between 
either the thresholds or mid-annoyance strengths. There are, on 
the other hand, interactions between the specific video and 
artifact type in the determination of these values. What this 
means is that, although high strengths of ringing rarely occur in 
practice, annoyance depends on ringing strength in essentially 
the same way that it depends on the blurring strength. 

Mid-annoyance strength is highly correlated with the 
threshold, and the relation can be described by a linear function. 
We also found that a simple linear model with no interactions 
predicted how ringing and blurring combine to determine overall 



annoyance. The linear fit presented a high correlation and the 
weights for blurring and ringing are approximately 0.6 and 0.4, 
respectively. 
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Figure 2. Psychometric curve for  the sequence Calendar. 
 

 

Figure 3. Psychometric curve for  the sequence Cheerleader. 
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Figure 4. Annoyance curve for  the sequence Calendar 

 

Figure 5. Annoyance curve for  the sequence Cheerleader. 
 

 
 

Figure 6. Predicted MAV of combined artifacts. 




