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Considering temporal variations of spatial visual
distortions in video quality assessment

*Alexandre Ninassi, Olivier Le Meur, Patrick Le Callet, and Dominique Barba

Abstract—The temporal distortions such as flickering, jerki-
ness and mosquito noise play a fundamental part in video quality
assessment. A temporal distortion is commonly defined as the
temporal evolution, or fluctuation, of the spatial distortion on
a particular area which corresponds to the image of a specific
object in the scene. Perception along time of a spatial distortion
can be largely modified by its temporal changes, such as increase
or decrease of the distortions, or as periodic changes of the
distortions. In this work, we have chosen to design a perceptual
full reference video quality assessment metric by focusing on the
temporal evolutions of the spatial distortions. As the perception
of the temporal distortions is closely link to the visual attention
mechanisms, we have chosen to first evaluate the temporal distor-
tion at the eye fixation level. In this short-term temporal pooling,
the video sequence is divided into spatio-temporal segments in
which the spatio-temporal distortions are evaluated resulting in
spatio-temporal distortion maps. Afterwards, the global quality
score of the whole video sequence is obtained by the long-term
temporal pooling in which the spatio-temporal maps are spatially
and temporally pooled. Consistent improvement over existing
video quality assessments methods is observed. Our validation
has been realized with a dataset build from video sequences of
various contents.

Index Terms—Video quality assessment, temporal distortions,
temporal pooling, spatio-temporal tube, visual fixation.

I. INTRODUCTION

The purpose of an objective image or video quality evalua-
tion is to automatically assess the quality of images or video
in agreement with human quality judgments. Over the past
few decades, image and video quality assessment has been
extensively studied and many different objective criteria have
been built. Video quality metric may be classified into Full
Reference metrics (FR), Reduced Reference metrics (RR), and
No Reference (NR). This paper is dedicated to the design
of a FR video quality metric, for which the original video
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and the distorted video are both required. One obvious way
to implement video quality metrics is to apply a still image
quality assessment metric on a frame-by-frame basis. The
quality of each frame is evaluated independently, and the
global quality of the video sequence can be obtained by a
simple time average, or with a Minkowski summation of per-
frame quality. However, a more sophisticated approach would
model the temporal aspects of the Human Visual System
(HVS) in the design of a quality metric. A number of methods
have been proposed to extend the HVS features towards the
temporal dimension and motion [1]–[5].

In the scope of the error sensitivity-based approaches, Van
den Branden Lambrecht et al. [2], [4] has extended the HVS
modelling into the time dimension by modelling the temporal
dimension of the Contrast Sensitivity Function (CSF), and
by generating two visual streams tuned to different temporal
aspects of the stimulus from the output of each spatial chan-
nel. The two streams model the transient and the sustained
temporal mechanisms of the HVS respectively, which play an
important role in other metrics such as in [1], or in [5] where
only sustained temporal mechanism is taken into account. But,
in these metrics, the temporal variations of the errors are not
considered.

The approach of Wang et al. [6]–[8] was different. Rather
than assessing the error in term of visibility Wang et al. used
structural distortion [6] as an estimate of perceived visual
distortion. This approach had been extended to the temporal
dimension by using motion information in a more [7] or
less [8] sophisticated way. In [8], Wang et al. proposed an
heuristic weighting model which take into account the fact that
the accuracy of the visual perception is significantly reduced
when the speed of the motion is large. In [7], the errors are
weighted by the perceptual uncertainty based on the motion
information, which is computed from a model of human visual
speed perception [9]. However, these metrics do not take into
account the temporal variations of the errors.

Another approach is the one from the National Telecommu-
nications and Information Administration (NTIA), which has
developed a Video Quality Model (VQM) [10] adopted by the
ANSI as a U.S. national standard [11], and as international
ITU Recommendations [12], [13]. NTIA’s research has fo-
cused on developing technology independent parameters that
model how people perceive video quality. These parameters
have been combined using linear models. The General Model
contains seven independent parameters. Four parameters are
based on features extracted from spatial gradients of the Y
luminance component. Two parameters are based on features
extracted from the vector formed by the two (CB , CR)
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Fig. 1. Block diagram of the proposed video quality assessment system.

chrominance components. One parameter is based on the
product of features that measure contrast and motion, both of
which are extracted from the Y luminance component. This
last parameter deals with the fact that perception of spatial
impairments can be influenced by the amount of motion, but
once again the temporal variations of spatial impairments are
not considered.

The effects of the introduction of the temporal dimension
in a quality assessment context can be addressed in a different
way. A major consequence of the temporal dimension is the
introduction of temporal effects in the distortions such as
flickering, jerkiness and mosquito noise. Broadly speaking, a
temporal distortion can be defined as the temporal evolution, or
fluctuation, of the spatial distortion on a particular area which
corresponds to the image of a specific object in the scene.
Perception along time of a spatial distortion can be largely
modified (enhanced or lessened) by its temporal changes.
The time frequency and the speed of the spatial distortion
variations, for instance, can significantly influence the human
perception. The temporal variations of the distortions has
been study in the scope of continuous quality evaluation
[14], [15], where objective quality metrics try to mimic the
temporally varying subjective quality of video sequences as
recorded by subjective continuous evaluation such as Single
Stimulus Continuous Quality Evaluation (SSCQE). In [15], the
existence of both a short-term and a long-term mechanisms
in the temporal pooling of the distortions is introduced. The
short-term mechanisms is a smoothing step of per-frame
quality scores, and the long-term mechanisms is addressed by
a recursive process on the smoothed per-frame quality scores.
This process includes perceptual saturation and asymmetrical
behavior.

In this work, we have chosen to address the effects of
the introduction of the temporal dimension by focusing on
the temporal evolutions of the spatial distortions. Then, the
question is how does a human observer perceive a temporal
distortion?

The perception of the temporal distortions is closely link

to the visual attention mechanisms. HVS is intrinsically a
limited system. The visual inspection of the visual field is
performed through many visual attention mechanisms. The eye
movements can be mainly decompose into three types [16]:
saccades, fixations and smooth pursuits. Saccades are very
rapid eye movements allowing human to explore the visual
field. Fixation is a residual movement of the eye when the
gaze is fixed on a particular area of the visual field. Pursuit
movement is the ability of the eyes to smoothly track the image
of a moving object. Saccades allow human to mobilize the
visual sensory resources (i.e. all parts of the HVS dedicated
to processing of the visual signal coming from the central
part of the retina: the fovea) on the different parts of a scene.
Between two saccade periods a fixation (or smooth pursuit)
occurs. When a human observer assesses a video sequence,
different spatio-temporal segments of the video sequence are
successively assessed. These segments are spatially limited by
the area of the sequence projected on both the fovea and the
perifovea. Even if the perifovea plays a role in the perception
of the temporal distortion, we have chosen to simplify the
problem by using a foveal model. Motion information is
essential to perform the temporal distortions evaluation of a
moving object, because the eye movement is very likely a
pursuit in this situation. In that case, the evaluation of the
temporal distortions must be done according to the apparent
movement of this object. Furthermore, these segments are
temporally limited by the fixation duration, or by the smooth
pursuit duration. The perception of a temporal distortion
likely happens during a fixation, or during a smooth pursuit.
The fixation duration being shorter than the smooth pursuit
duration, the temporal distortions must be evaluated first at
the eye fixation level. This short-term evaluation constitutes
the first stage of our approach. This stage then is completed
by a long-term evaluation in which the global quality of the
whole sequence is evaluated from the quality perceived over
each fixation.

In this paper, a objective video quality assessment method
is proposed. The spatio-temporal distortions are evaluated
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Fig. 2. Examples of WQA perceptual distortion maps: (a) and (d) are original Mandrill and Plane respectively; (b) is JPEG compressed Mandrill image; (c)
is WQA perceptual distortion map of JPEG compressed Mandrill image; (e) is JPEG2000 compressed Plane image; (f) is WQA perceptual distortion map of
JPEG2000 compressed Plane image. In (c) and (f), brightness indicates the magnitude of the perceptual distortion (black means no perceptual distortion).

through a temporal analysis of spatial perceptual distortion
maps. The spatial perceptual distortion maps are computed for
each frame with a wavelet based quality assessment (WQA)
metric developed in a previous study [17]. This paper is
decomposed as follows. In section II, the new video quality
assessment metric (VQA) is presented. In order to investigate
its efficiency, the VQA metric is compared with subjective
ratings and two state-of-the-art metrics (VSSIM [8], VQM
[10]) in section III. Finally conclusions are drawn.

II. VIDEO QUALITY ASSESSMENT METHOD

In the proposed video quality assessment system, the tem-
poral evolution of the spatial distortions is locally evaluated,
at short-term, through the mechanisms of the visual attention.
The mechanisms of the visual attention indicate that the HVS
integrates most of the visual information at the scale of the
fixations [16]. So, the spatio-temporal distortions are locally
observed and measured for each possible fixation. It does not
make sense to evaluate the distortion variations on a period
longer than the fixation duration, because it does not happen
in the reality. The duration of 400 ms is chosen in accordance
to the average duration of the visual fixation. This is the most
simple and straightforward solution. A better solution, but
much more complex, would be to adjust this value depending
on the local spatial and temporal properties. A rather simple
content, such as flat areas, probably requires less attentional
resources than a more complex area [18]. Moreover, a smooth
pursuit movement can be longer than a fixation duration. The

complexity as well as the validation of such a solution still
remains an issue.

Since the variations of the spatial distortions are evaluated
locally according to where humans gaze, a special attention
must be paid to the moving objects. In the case of a moving
object, the quality of its rendering cannot be evaluated if
it is not well stabilized on the fovea, which means that
eye movement is a pursuit. Consequently, the evaluation of
the temporal distortions must take into account the motion
information, and the locality of evaluation must be motion
compensated. These spatio-temporal segments of the sequence,
evaluated by human observer during fixations, can be roughly
linked to spatio-temporal distortion tubes (cf. section II-B1).
These structures contain the spatial distortion variations for
each possible fixation.

The description of the proposed method is divided into three
subsections. The general architecture of the proposed metric
is presented in section II-A. Section II-B is devoted to the
evaluation of the spatio-temporal distortions at the eye fixation
level. Finally, the evaluation of the temporal distortion on the
whole video sequence is described in section II-C.

A. General architecture

The proposed video quality assessment system is composed
of four steps as shown in Fig. 1. In the first step, numbered 1
in Fig. 1, for each frame t of the video sequence, a spatial
perceptual distortion map V Et,x,y is computed. Each site
(x, y) of this map encodes the degree of distortion that is
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perceived at the same site (x, y) between the original and
the distorted frame. In this first step, there is no temporal
consideration. In this work, the spatial perceptual distortion
maps are obtained through the WQA metric developed in our
previous work [17]. The WQA metric is a still image quality
metric, which is based on a multi-channel model of HVS. HVS
model of the low-level perception used in this metric includes
subband decomposition, spatial frequency sensitivity, contrast
masking and semi-local masking. The subband decomposition
is based on a spatial frequency dependent wavelet transform.
The spatial frequency sensitivity of the HVS is simulated
by a wavelet CSF derived from Daly’s CSF [19]. Masking
effects include both contrast masking and semi-local masking.
Semi-local masking allows to consider the modification of
the visibility threshold due to the semi-local complexity of
an image. The objective quality scores computed with this
metric are well correlated with subjective scores [17]. The
WQA distortion maps of a JPEG compressed image, and of a
JPEG2000 compressed image, are shown in Fig. 2.

The second step, numbered 2 in Fig. 1, performs the motion
estimation, in which the local motion between two frames
are estimated, as well as the dominant motion. This step
is achieved with the use of a classical Hierarchical Motion
Estimator (HME). The local motion is a block-based motion
estimation (block 8× 8). The motion estimated is expected to
be as close as possible to the real apparent movement. Local
motion and dominant motion is used to construct the spatio-
temporal structure (spatio-temporal tube) in which the spatio-
temporal distortions are evaluated. The local motion is used
to track a moving object in the past, and the dominant motion
is used to determine the temporal horizon on which the object
can be tracked (appearance or disappearance of the object).
Local motion −→V local at each site (x, y) of an image (or the mo-
tion vector) is produced by a hierarchical block matching. It is
computed through a series of levels (different resolution), each
providing input for the next. Dominant motion corresponds the
motion of the camera. To estimate the global transformation
that two successive images undergo, the dominant motion
or the global transformation is estimated from the previous
estimated local motion. The displacement −→V Θ(x, y), at site
(x, y) related to a motion model parametrized by Θ is given
by a 2D affine motion model:

−→
V Θ(s) =

(
a1 + a2x + a3y
a4 + a5x + a6y

)
, (1)

where Θ = [a1, a2, a3, a4, a5, a6] represents the 2D affine
parameters of the model. The affine parameters are computed
with a popular robust technique based on the M-estimators
[20].

Temporal evaluation of the quality is performed through
steps 3 and 4. Step 3 realizes the short-term evaluation of the
temporal distortions, in which the spatio-temporal perceptual
distortion maps VEt,k,l are computed from the spatial dis-
tortion maps and the motion information. For each frame of
the video sequence, a temporal perceptual distortion map is
computed. Each site (k, l) of this map encodes the degree
of distortion that is perceived between the block (k, l) of
the original frame and the block (k, l) of the distorted frame
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Fig. 3. Block diagram of the Spatio-temporal Perceptual Distortion Evalua-
tion.

including temporal considerations (temporal distortions, etc.).
The time scale of this evaluation is the one of the human eye
fixation [21] (around 400ms). This step is accurately described
in section II-B. Step 4 performs the long-term evaluation of the
temporal distortions, in which the quality score for the whole
video sequence is computed from the temporal perceptual
distortion maps. Section II-C will describe this last part.

B. Spatio-temporal distortion evaluation at the eye fixation
level

Spatio-temporal distortion evaluation is a complex problem.
The purpose of this step is to perform the short-term evaluation
of the temporal distortions at the eye fixation level. The
video sequence must be divided into spatio-temporal segments
corresponding to each possible fixation. It means that a fixation
can start at every time t, and every site (x, y) of the sequence.
At the eye fixation level, the temporal distortions evaluation
depends both on the mean distortion level, and on the temporal
variations of distortions. The temporal variations of distortions
have to be smoothed to obtain the mean distortion level
that is perceptible during fixation. The insignificant temporal
variations of distortions have to be discard, and only the most
perceptually important temporal variations of distortions have
to be taken into account. Fig. 3 gives the main components
involved in this evaluation. The first component (3.1) is dedi-
cated to the creation of the spatio-temporal structures required
to analyze the variation of the distortion during a fixation, i.e.
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the spatio-temporal tubes. The process is then separated into
two parallel branches. The purpose of the first branch is to
evaluate a mean distortion level during the visual fixation. The
aim of the second branch is to evaluate the distortion variations
occurring during a fixation, and at which humans are the most
sensitive. Next, these two branches are merged resulting in the
spatio-temporal distortion maps.

1) Spatio-temporal tube creation: In step 3.1, the Spatio-
temporal Distortion Tubes are created. The aim of this step
is to divided the video sequence into the spatial-temporal
segments corresponding to each possible fixation. A spatio-
temporal distortion tube is computed for each block of a
frame t. A spatio-temporal distortion tube is a spatio-temporal
structure containing the past of a block in terms of spatial
distortion (cf. Fig. 4). It means that this structure contains the
different distortion values of this block for each past frame
over a specific temporal horizon. The motion vectors MVt,k,l

are used to find the different position of a block (k, l) in
the past frames of its temporal horizon. The positions of the
past blocks are then motion compensated in order to have
its real trajectory. The temporal horizon is limited to 400ms,
and can be shortered if the object inside the block appears or
disappears in the image of the scene. To detect appearance
or disappearance of an object, each block is classified by
comparing its motion with the parametric representation of
the dominant motion: each block is either inlier or outlier
to the dominant motion. A modification of the classification
(inlier/outlier) of a block between two consecutive frames
means appearance or disappearance of the object it belongs
to, and so indicates the limit of the temporal horizon of this
block.

2) Temporal filtering of the spatial distortion in the tube:
Step 3.2 realizes the Temporal Filtering of Spatial Distortions.
The goal of this step is to obtain a mean distortion level
over the fixation duration. The large temporal variations of
distortions are the most annoying for observers, and their
contribution should be more important than limited temporal
variations of distortions. The spatial distortions are then tem-
porally filtered in each tube of a frame t. The temporal filter is
a recursive filter. The characteristics of the filter are modified
according to the importance of the temporal variations of
distortions. The contribution of the large temporal variations
of the distortions is increased compare to the contribution of
the limited temporal variations of distortions. Time constant
of this filter changes depending on the value of the corre-
sponding distortion gradient value (cf. step 3.4). Time constant
α1 = 200ms is used if the absolute value of the distortion
gradient value is greater than µ, otherwise α2 = 400ms is
used. The output of this step is the map VE

tube

t,k,l where each
block (k, l) is the result of the temporal filtering of the spatial
distortions in each tube finishing at frame t.

3) Temporal distortion evaluation in the tube: The purpose
of step 3.3 is to evaluate the temporal variation of distortions.
The temporal gradients of the spatial distortions in the tubes
are computed, in order to evaluate the most perceptually
important temporal variations of distortions during fixations. In
a tube, the distortion gradient ∇VEtube

ti,k,l at time ti is computed
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Fig. 5. Plot of the fs response. The function reaches his maximum around
one sign change of the distortion gradients per fixation.

as follows:

∇VEtube
ti,k,l =

δVEtube
ti,k,l

δt

∣∣∣∣ δt = ti − ti−1

ti ∈ TemporalHorizon
, (2)

where VEtube
ti,k,l is the distortion value at instant ti.

The limited temporal variations of distortions which are
probably not annoying must not be taken into account. The
aim of step 3.4 is to delete them. In this step, a thresholding
operation is performed on the absolute value of the gradient
values. The purpose is to reduce the weight of the limited
temporal variations of distortions (below µ) compare to large
temporal variations of distortions (above µ). If the absolute
value of the gradient is lower than µ the gradient value
becomes 0. This thresholding operation is also used to manage
the temporal filtering of the step 3.2, as described in the
previous section.

The characteristics of temporal distortions, such as time
frequency and amplitude of the variations, impact the percep-
tion. The purpose of step 3.5 is to evaluate the perceptual
impact of temporal distortions according to the characteristics
of the temporal variations of distortions. In this step, the
temporal filtering of distortion gradient is realized, in which
the distortion gradients are temporally filtered in each tube
of a frame t. This temporal filtering operation is achieved by
counting the number of sign changes of the distortion gradi-
ents nStube

t,k,l along the tube duration. The maximal distortion
gradient Max∇VEtube

t,k,l is computed, and used as maximal
response of the filter. The temporal filtering result is obtained
by:

VĔtube
t,k,l = Max∇VEtube

t,k,l · fs(nStube
t,k,l ) , (3)

where fs is the response of the filter depending on the number
of sign changes:

fs(n) =
gs

σs

√
2π
· e

− (n−µs)2

2σ2
s , (4)

The response of the function fs(n) is given Fig. 5. Function
fs(n) gives more importance to temporal distortion at medium
frequencies than at low or high frequencies. The HVS is the
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most sensitive to temporal variations around 2cy/s, which
correspond to about one sign change by fixation duration. The
output of this step is the map VĔtube

t,k,l where each block (k, l)
is the result of the temporal filtering of the distortion gradient
in each tube finishing at frame t.

The results coming from the two branches are then mixed
together in step 3.6. This step performs the Fixation Pooling,
in which the map VEt,k,l and the map VĔt,k,l are merged
in order to obtain the final spatio-temporal distortion map
VEt,k,l. If there is no temporal variations of distortions in the
video sequence the final map VEt,k,l is equal to the VEt,k,l

map. But when temporal variations of distortions occurred,
the VEt,k,l map are consolidated by the temporal variation
evaluation of the map VĔt,k,l. This map is computed according
to the following relation:

VEt,k,l = VEt,k,l · (1 + β · VĔt,k,l) , (5)

where value of parameter β is empirically deduced from
experiments on synthetic sequences. These experiments aimed
at obtaining relevant spatio-temporal distortion maps from
synthetic sequences with synthetic distortions. It was achieved
by setting the value β at 3.

Until now, the impact of the temporal distortions has been
evaluated at the fixation level, resulting in the final spatio-
temporal distortion maps VEt,k,l. However, a human observer
scores a video sequence using the impairments he perceived
during the whole sequence. This is the issue addressed by the
next section.

C. Temporal distortion evaluation on the whole video se-
quence

The long-term temporal pooling is the final stage that
allows to construct the global objective quality score of a
video sequence. The global objective quality score depends
both on the mean distortion level over the whole sequence,
and on the temporal variations of distortions over the whole
sequence. The temporal variations of the distortions along a
video sequence play an important part in the global score, and
a mean distortion level on the whole sequence is not sufficient
to evaluate the quality of the video. The evaluation process of
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Fig. 6. Block diagram of the long-term temporal pooling.

a human observer could be sum up by the following sentence
quick to criticize and slow to forgive. So, the overall temporal
distortions evaluation of the whole video sequence is divided
in two steps as shown in Fig. 6.

1) Spatial pooling: The purpose of the step 4.1 is to obtain
a perceptual distortion score for each frame. A per-frame
perceptual distortion score Dt is computed from the spatio-
temporal distortion map of each frame through a classical
Minkowski summation:

Dt =
(

1
K · L

K∑
k=1

L∑
l=1

(
VEt,k,l

)βs
) 1

βs

, (6)

where K and L are the height and the width of the spatio-
temporal distortion maps respectively (i.e. the vertical and the
horizontal number of blocks in the original frame), and βs is
the Minkowski exponent (βs = 2).

2) Temporal pooling: The global objective perceptual dis-
tortion score, called D, depends both on the average of
distortion level over the whole sequence, and on the tem-
poral variations of distortions over the whole sequence. The
perceptual distortion is increase by the temporal variations of
distortions over the whole sequence. The proposed temporal
pooling contains two main elements: perceptual saturation and
asymmetric behavior. There are limitations in viewer’s ability
to observe any further changes in the frame quality after it
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exceeds certain thresholds, either toward better or worse qual-
ity [14]. This is what we called the perceptual saturation. The
asymmetrical behavior is the fact that humans are better able to
remember unpleasant experiences than pleasant moments, and
also experience with great intensity of feelings from disliked
situations compared to favorable situations [14].

The global perceptual distortion score D of a video is
computed from every per-frame perceptual distortion scores
Dt, as the sum (D = D̄+∆D) of the time average of distortion
D̄, and a term representing the variation of distortions along
the sequence ∆D. But to limit the influence of too high
distortion variations, D is computed with a saturation effect
as follows:

D =
{

D̄ + ∆D for ∆D < λ1 · D̄
D̄ + λ1 · D̄ for ∆D ≥ λ1 · D̄

. (7)

The global distortion score D increases linearly with the tem-
poral variation until a saturation threshold value proportional
to D̄. The term ∆D favours the most important variations of
distortions, and is computed as follows:

∆D = λ2 · avgn %(abs(∇′Dt)) , (8)

where ∇′Dt is the temporal gradient of the per-frame dis-
tortion values Dt after the asymmetrical transformation of
the gradient values, abs(X) is the absolute value of X , and
avgn %(X) is the average of X values above the nth percentile
of X. The asymmetrical transformation of the gradient values
is computed as follows:

∇′Dt =
{

λ3 · ∇Dt for ∇Dt < 0
∇Dt for ∇Dt ≥ 0

∣∣∣∣ λ3 ≤ 1, (9)

where value of λ3 controls the asymmetrical behavior. If λ3 <
1, more weight is given to the distortion increases than to
distortion decreases.

Finally, the global quality score VQA is computed from per-
ceptual distortion score D by using a psychometric function,
as recommended by the Video Quality Expert Group (VQEG)
[22]:

VQA =
b1′

1 + e−b2′·(D−b3′)
, (10)

where b1′, b2′ and b3′ are the three parameters of the psy-
chometric function. These psychometric function is also used
to compared VQA, with state-of-the-art metrics (cf. section
III-C).

III. EXPERIMENTATION

A. Video database

1) Participants: Thirty six compensated participants are
asked to assign each sequence with a quality score, indicating
the extent to which the artifacts were more or less annoying.
Prior to the test, subjects were screened for visual acuity by
using a Monoyer optometric table. Besides, test for normal
color vision were performed using Ishihara’s tables. So, all
observers had normal or corrected to normal visual acuity
(Monoyer test), and normal color perception (Ichihara test).
All were inexperienced observers (not familiar with video
processing) and naive to the experiment.

2) Method: The standardized method DSIS (Double Stimu-
lus Impairment Scale) is used to determine the Mean Opinion
Score (MOS). In DSIS, each observer views an unimpaired
reference video sequence followed by its impaired version,
each lasting 8s. Experiments were conducted in normalized
viewing conditions [23]. The scale used to score the distortion
level is composed of 5 distortion grades:

• imperceptible (MOS=5);
• not annoying (MOS=4);
• slightly annoying (MOS=3);
• annoying (MOS=2);
• very annoying (MOS=1).
3) Stimuli: The video database is build from ten unimpaired

video sequences of various contents as illustrated in Fig. 7.
The spatial resolution of video sequence is 720x480 with a
frequency of 50Hz in a progressive scan mode. Each clip lasts
8s. They were displayed at a viewing distance of four times the
height of the picture (66 cm). These video sequences have been
degraded by using a H.264/AVC compression scheme at five
different bitrates, resulting in fifty impaired video sequences.
The five different bitrates were chosen in order to generate
degradations all over the distortion scale (from imperceptible
to very annoying).

The impairments produced by the encoding are evidently
neither spatially nor temporally uniform, and therefore depend
on each video content. Fig. 8a illustrates the temporal varia-
tions of the quality through the scores given by the WQA
metric (cf. Section II). This example indicates that the quality
of the sequences varies from frame to frame, which is a clue
on the presence of temporal distortions.

B. Video quality metrics tested

Several quality assessment metrics have been compared with
subjective scores (MOS):

• The proposed video quality metric VQA (achromatic
version),

• The usual PSNR (achromatic version). The PSNR global
score is the temporal average of the per-frame PSNR.

• VSSIM developed by Wang et al. [8]. We used all the
parameters described in [8], except for the normalization
factor KM of the frame motion level which has been
adapted to our frame rate.

• VQM developed by NTIA [10]. Among the different
models of VQM, we have chosen to use the General
Model which is considered to be the most accurate.
The General Model is known as metric H in the Video
Quality Experts Group (VQEG) Phase II Full Reference
Television (FR-TV) tests [24].

In order to evaluate the different steps of the VQA metric
two alternative video perceptual distortion scores (VQA1,
VQA2) are computed in addition to the global quality score.

The first intermediate video perceptual distortion score is a
purely spatial quality score called VQA1; It is computed from
the spatial distortion maps of the still image metric WQA [17]
as follows:

VQA1 =
1
T

T∑
t=1

dt , (11)
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(a) (b) (c)

(d) (e) (f)

Fig. 7. Examples of video sequences from the database. (a) MobCal, (b) InToTree, (c) ParkJoy, (d) DucksTakeOff, (e) CrowdRun, and (f) ParkRun.
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Fig. 8. Temporal evolution of the per-frame distortion score dt (a), and the per-frame distortion score Dt (b) for the three impaired sequences of the database:
Hockey (MOS=1.4), PrincessRun (MOS=2.6) and MobCal (MOS=1.3). The horizontal scale is the frame number, and the vertical scale is a distortion scale,
which goes from 0 (best quality) to 0.5 (worst quality).

where T is the total number of frames and dt is a frame score
computed as follows:

dt =
(

1
K · L

K∑
k=1

L∑
l=1

(
VEt,k,l

)βs
) 1

βs

, (12)

where VEt,k,l are the spatial distortion maps computed with
WQA [17], K and L are the height and the width of the
spatial distortion maps, respectively, and βs is the Minkowski
exponent.

In the second intermediate quality score called VQA2

the fixation temporal pooling is disabled, which means that
perceptual distortion score is computed from the long-term
temporal pooling (Eq. 7) where Dt is replaced by dt. Dt is the

spatio-temporal per-frame distortion score (with the fixation
temporal pooling), whereas dt is the purely spatial per-frame
distortion score (without the fixation temporal pooling).

Comparison between VQA2 and VQA allows to evaluate
the improvement due to spatio-temporal distortion evaluation
at the eye fixation level (or short-term temporal pooling). On
the other hand, comparison between VQA1 and VQA allows
to evaluate the improvement due to temporal pooling.

C. Results

As said previously, prior to evaluate the objective image
quality measures, a psychometric function (Eq. 10) is used
to transform the different objective quality score in predicted
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MOS (MOSp), as recommended by VQEG [22]. The objective
quality metrics are evaluated using three performance indica-
tors recommended by VQEG [22]. The three performance indi-
cators are the linear correlation coefficient (CC), the Spearman
rank order correlation coefficient (SROCC) and the root-mean-
square-error (RMSE). The CC between the MOS and MOSp
scores provides an evaluation of the prediction accuracy. The
SROCC between the MOS and MOSp is considered as a
measure of prediction monotonicity.

TABLE I
PERFORMANCE COMPARISON OF QUALITY METRICS ON THE ENTIRE

DATASET IN TERMS CC, SROCC AND RMSE.

Metrics (MosP) CC SROCC RMSE

PSNR 0.516 0.523 0.982

VQM 0.854 0.898 0.597

VSSIM 0.738 0.758 0.773

VQA 0.892 0.903 0.519

VQA1 0.831 0.872 0.638

VQA2 0.834 0.863 0.633

Results, presented in Table I, are reported for the different
metrics (VSSIM, VQM and VQA) and for the two intermedi-
ate quality score (VQA1 and VQA2) of VQA. PSNR results
are provided for information and to allow readers to make
their own opinions on the image dataset. Fig. 9 shows the
scatter plots of the MOS/MOSp comparisons on the whole
database given by PSNR, VSSIM, VQM, VQA, and by the
two intermediate video quality score (VQA1 and VQA2) of
VQA. The PNSR does not lead to a good prediction of quality
as CC is only 0.516. This result gives a clue of how the quality
of the video sequences of the database is difficult to evaluate.

The proposed method provides good results compared with
the other approaches. It is important to mention that the
parameters of the proposed method (VQA) were selected
empirically, without any optimization process for the video
database (λ1=1, λ2=10, λ3=0.25, and n=95). Fig. 9 shows
that the prediction performances of the metrics depend of
the video content, and the video content does not disturb
the different metrics in the same way. For example, VQM
overestimates the quality of sequence Ducks, whereas VQA
does not overestimate it. VQA overestimates the quality of
sequences PrincessRun and Dance, and underestimates the
quality of sequence Hockey. A possible explanation lies in
the fact that the spatial distortions are also overestimated, and
underestimated respectively. Fig. 8 shows that the per-frame
distortion scores (dt and Dt) of sequence Hockey are lower
that the per-frame distortion scores of sequence PrincessRun,
whereas the MOS of sequence Hockey are lower than the MOS
of sequence PrincessRun. In these sequences, the temporal
variations of the distortions could not explain the prediction
errors of the quality. It shows that, in the proposed metric,
the evaluation of temporal distortions is dependent of a good
evaluation of the spatial distortion in the first step of the metric.

Comparison between the results from VQA1, VQA2 and
VQA shows the positive contribution of the different steps
of the proposed metric. The prediction improvement of the

quality from the purely spatial quality score (VQA1) to the
spatio-temporal quality score (VQA) is significant. For exam-
ple, ∆CC between these two configurations is +0.061. As
expected, it shows that temporal distortions play an important
part in video quality assessment. The prediction improvement
of quality between VQA2 and VQA shows the importance
of the spatio-temporal distortion evaluation at the eye fixation
level (short-term temporal pooling). This step seems funda-
mental prior to the long-term temporal pooling. One possible
explanation is the smoothing effect of the short-term temporal
distortion variations due to the fixation temporal pooling. This
effect enables a better analysis of the long-term temporal
distortion variations, by eliminating parasite temporal distor-
tion variations. This smoothing effect is illustrated Fig. 8, by
comparing the temporal variation of the per-frame distortion
scores dt (Fig. 8(a)) and Dt (Fig. 8(b)). The fixation temporal
pooling does not only improve the prediction performance of
the metric, but it also improves the relevancy of distortions
maps.

TABLE II
PERFORMANCE COMPARISON OF VQA FOR DIFFERENT VALUES OF THE

PARAMETERS λ3 AND n, IN TERMS CC, SROCC AND RMSE. THE
PARAMETERS λ1 AND λ2 ARE CHOSEN TO OPTIMIZE PREDICTION

PERFORMANCES. RESULTS ON THE ENTIRE DATASET.

λ3 nth percentile CC SROCC RMSE

0 0 0.85 0.874 0.605

0 80 0.879 0.892 0.547

0 85 0.885 0.893 0.535

0 90 0.892 0.901 0.518

0 95 0.895 0.912 0.512

0.25 0 0.851 0.874 0.601

0.25 80 0.88 0.892 0.545

0.25 85 0.885 0.893 0.533

0.25 90 0.892 0.901 0.518

0.25 95 0.895 0.912 0.511

0.5 0 0.853 0.875 0.599

0.5 80 0.877 0.89 0.551

0.5 85 0.883 0.895 0.539

0.5 90 0.89 0.901 0.522

0.5 95 0.894 0.912 0.513

0.75 0 0.854 0.878 0.597

0.75 80 0.872 0.89 0.561

0.75 85 0.876 0.893 0.552

0.75 90 0.883 0.896 0.538

0.75 95 0.892 0.91 0.519

1 0 0.854 0.877 0.596

1 80 0.867 0.883 0.571

1 85 0.87 0.886 0.565

1 90 0.875 0.89 0.554

1 95 0.887 0.908 0.53

Results, presented in Table II, are reported for VQA and
for different values of the parameters λ3 and n. In this
experiment, values of parameters λ1 and λ2 are selected to
optimize prediction performances. The parameter λ3 modifies
the asymmetrical behavior of the long-term temporal pooling.
The prediction modification of quality as function of λ3 shows
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that long-term temporal pooling with symmetrical behavior
(λ3=1) leads to lower results than long-term temporal pooling
with asymmetrical behavior. It is interesting to note that, to
reach the best prediction performances, asymmetrical behavior
must give, at least, twice more weight to the distortion in-
creases than to distortion decreases. Besides, the choice of the
empirical value of λ3 (λ3=0.25), seems to be a good option.

The parameter n modifies the weight given to maximal
temporal gradients of per-frame distortion values. The worst
results are obtained when all temporal gradients of per-frame
distortion values are considered (n=0). The prediction modi-
fication of the quality as function of n shows that long-term
temporal pooling takes advantage of using maximal temporal
gradients of per-frame distortion values. Even if the best
prediction performances are obtained with n=95, the results
are robust to high value of n. It is interesting to note that n=95
means that the most important distortion variations occurring
5 percent of the time are the most significants in term of
prediction performance. It strengthens the fact that distortion
variations with high dynamic range must be considered.

TABLE III
PERFORMANCE COMPARISON OF VQA2 FOR DIFFERENT VALUES OF THE

PARAMETERS λ3 AND n, IN TERMS CC, SROCC AND RMSE. THE
PARAMETERS λ1 AND λ2 ARE CHOSEN TO OPTIMIZE PREDICTION

PERFORMANCES. RESULTS ON THE ENTIRE DATASET.

λ3 nth percentile CC SROCC RMSE

0 0 0.831 0.872 0.638

0 80 0.831 0.872 0.638

0 85 0.831 0.872 0.638

0 90 0.831 0.872 0.638

0 95 0.832 0.869 0.636

0.25 0 0.831 0.872 0.638

0.25 80 0.831 0.872 0.638

0.25 85 0.831 0.868 0.638

0.25 90 0.832 0.867 0.636

0.25 95 0.834 0.863 0.633

0.5 0 0.831 0.872 0.638

0.5 80 0.831 0.868 0.638

0.5 85 0.832 0.866 0.636

0.5 90 0.833 0.87 0.634

0.5 95 0.839 0.866 0.624

0.75 0 0.831 0.872 0.638

0.75 80 0.832 0.868 0.636

0.75 85 0.833 0.867 0.635

0.75 90 0.834 0.869 0.633

0.75 95 0.846 0.869 0.611

1 0 0.831 0.872 0.638

1 80 0.832 0.867 0.636

1 85 0.833 0.87 0.634

1 90 0.835 0.869 0.632

1 95 0.85 0.865 0.605

Results are also reported for VQA2 (without the fixation
temporal pooling), presented in Table III, and for different
values of parameters λ3 and n. In this experiment, values of
parameters λ1 and λ2 are selected to optimize prediction per-
formance. The results show that long-term temporal pooling

failed to improve the prediction performance when the fixation
pooling is disabled. This observation is still valid whatever are
the values of the parameters λ1, λ2, λ3, and n. Consequently,
the fundamental nature of fixation pooling step is enhanced
by these results.

IV. CONCLUSION

This paper described a full reference video quality assess-
ment metric. This metric focuses on the temporal variations of
the spatial distortions. The temporal variations of the spatial
distortions are evaluated both at the eye fixation level, and
on the whole video sequence. The former, and the latter are
assimilated to a short-term temporal pooling, and a long-term
temporal pooling respectively.

Consistent improvement over existing video quality assess-
ments methods is observed. CC between VQA and subjective
scores is 0.892, and the prediction improvements in term of CC
are +73%, +21% and +4% compare to PSNR, VSSIM and
VQM, respectively. Results also show the positive contribution
of the different steps of the proposed metric. In particularly
it shows that the short-term temporal pooling is fundamental
prior to the long-term temporal pooling, as its use significantly
improves the prediction performances of VQA. An interesting
point of the proposed method is that the spatial distortion
maps could be considered as an input. In this work, we used a
still image quality metric WQA developed in a previous work
to compute the spatial perceptual distortion map, but we can
imagine to replace it by any still image quality metric which
compute a spatial perceptual distortion map. The performance
comparison of the proposed method, using different models
to obtain the spatial perceptual distortion maps, could be an
interesting investigation.

Further work includes further research to find a more
sophisticated way to realize the long-term temporal pooling.
In the proposed metric, we think that relevant information are
lost in the spatial pooling step, and a more sophisticated long-
term temporal should suppress this step.
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Fig. 9. Scatter plot comparison of different video quality assessment metrics on our video database. Vertical and horizontal axes are for subjective (MOS)
and objective measurement (MOSp), respectively. Each sample point represents one test video sequence. The same marker type is used for each impaired
video obtained from the same original video: (a) PSNR, (c) VSSIM, (e) VQM, (b) VQA1, (d) VQA2, and (f) VQA.
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