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    ‘ This is an excellent introduction to the theory and practice of psychophysics. The clear text and 
accompanying Matlab routines make it a uniquely useful resource. ’  
  N  .E. Scott-Samuel , Experimental Psychology, University of Bristol, Bristol, UK 

    ‘ For anyone who wants to know the way to do psychophysics, and wants to understand why it’s done 
in this way, there is now a resource that’s practical, thoughtful, and thorough. Kingdom and Prins 
have provided an exemplary guide to experimental practice. They lay out the methods for collecting 
and analyzing data, evaluate the up-sides and down-sides of the methods, and even include software 
to give the fl edgling experimenter a running start. Yet the book isn’t only for new-comers; many an 
old-timer will fi nd a thing or two here to spur a re-thinking of old methodological habits. For any psy-
chophysicist, from would-be to pro, this is a most useful book. ’  
Bart Farell, Institute for Sensory Research, Department of Biomedical & Chemical Engineering, 
Syracuse University and Departments of Ophthalmology & Physiology and Neuroscience, SUNY 
Upstate Medical University, Syracuse, NY, USA

 ‘Kingdom and Prins have done an excellent job of combining a clear, logical and critical explanation 
of psychophysical techniques with practical examples. The result is a detailed, engaging and accessi-
ble text that is highly recommended for students new to the topic of psychophysics, and that provides 
an invaluable resource for advanced students, clinicians and research scientists alike.’ 
 Benjamin Thompson, Department of Optometry and Vision Science, New Zealand National Eye 
Centre, University of Auckland 

 ‘This is an excellent, readable introduction to psychophysical methods. It covers all the basics from 
experimental methods, adaptive methods for setting stimulus levels, modern methods for analyzing 
the resulting data, and statistical methods for comparing alternative models of the data. I would rec-
ommend it heartily as a text for advanced undergraduate and beginning graduate students in any 
fi eld in which psychophysical methods are used in behavioral experiments.’ 
 Michael S. Landy, Department of Psychology, New York University, New York, NY, USA 

 ‘Kingdom and Prins have written a book that, though not exactly fun – let’s face it, psychophysics 
isn’t fun, it’s hard – is clear and intelligent. If you want to know about psychophysics this would be a 
good place to start. If you know about psychophysics and want the tools to analyse your psychophys-
ical experiments, then they have tools here aplenty with their ‘Palamedes’ toolbox of Matlab routines.’ 
 Peter Thompson, Department of Psychology, University of York, UK 

 ‘The history of Psychophysics spans more than 150 years, but this very welcome new book by 
Kingdom & Prins is the fi rst to consider systematically and in suffi cient detail how modern psycho-
physics should be done. Psychophysical methods are carefully described and compared, and linked 
to mathematical theory that motivates different forms of data analysis and model fi tting. A key fea-
ture is that the book is integrated with a software package (Palamedes) that enables readers to carry 
out sophisticated analyses and evaluations of their data that were impossible just a few years ago. 
Essential reading (and doing) for new and experienced researchers.’ 
 Mark Georgeson, Vision Sciences, Aston University, Birmingham, UK 

 ‘The clear and logical structure of each chapter makes the book very useful for students coming to 
terms with some of the many dichotomies of psychophysics: Class A vs. Class B observations, or Type 
1 and Type 2 experiments, for example. A student can be directed to read relevant sections of the book 
where they will fi nd clear, worked through examples for each defi nition. At the end of many of the 
chapters are some useful exercises by which the student can assess their understanding of the concepts 
introduced in each chapter. I am sure this book will instantly become the book of choice for graduate-
level courses in psychophysics.’ 
 Laurence Harris, Centre for Vision Research, York University, Toronto, Canada 
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   Preface 

 The   impetus for this book was a recur-
rent question posed not only by students 
but senior scientists using psychophysics 
for the fi rst time:  “ Is there a book that 
explains how to do psychophysics? ”  The 
question suggested the need not only 
for a book that explained the theory 
behind psychophysical procedures, but 
that also provided the practical tools 
necessary for their implementation. In 
particular, there seemed to be a press-
ing need for a detailed and accessible 
exposition of how raw psychophysical 
responses are turned into meaningful 
sensory measurements. 

 The   need for a practical book on psy-
chophysics inevitably led to a second 
need: a comprehensive package of soft-
ware for analyzing psychophysical data. 
The result was Palamedes. Although 
developed in conjunction with the book, 
Palamedes has since taken on a life 
of its own and is hence applicable to a 
much wider range of scenarios than are 
described in this book. 

 The   fi rst few chapters of the book are 
intended to introduce the basic concepts 
and terminology of psychophysics as 

well as familiarize readers with the full 
range of available psychophysical pro-
cedures. The remaining chapters focus 
on a series of specialist topics: psycho-
metric functions, adaptive procedures, 
signal detection theory, scaling meth-
ods and statistical model comparisons. 
There is also a quick reference guide 
to the terms, concepts and many of the 
equations described in the book. 

 Writing   this book has proved to be a 
considerable challenge for its authors. 
Much effort has been expended in the 
attempt to make accessible the theory 
behind different types of psychophysical 
data analysis. And because the mean-
ings of many psychophysical terms 
and concepts are open to interpretation, 
we have on occasion had to improvise 
our own defi nitions (e.g. for the term 
 ‘ appearance ’ ) and challenge existing 
conventions (e.g. by referring to a class 
of forced-choice tasks as 1AFC). Where 
we have challenged convention we have 
explained our reasoning, and hope that 
even if readers do not agree, they will 
at the very least fi nd our arguments 
thought-provoking.      



This page intentionally left blank



xiii

   Acknowledgements 

 We   are indebted to the following per-
sons for kindly reviewing and providing 
insightful comments on earlier drafts 
of the individual chapters in the book: 
Curtis Baker, Athena Buckthought, 
Douglas Creelman, Kathleen Cullen, 
Mark Georgeson, Julie Harris, Mike 
Landy, Neil Macmillan, Tim Meese, 
Jonathan Peirce, St é phane Rainville, 
Andrew Schofi eld, David Simmons, and 
Roger Watt. 

 Special   thanks also to: Neil Macmillan 
and Douglas Creelman for helping one 
of the authors (FK) get to grips with the 
calculation of  d  �  for same-different tasks 
(Chapter 6); Mark Georgeson for pro-
viding the derivation of the equation 
for the criterion measure ln  β   for a 2AFC 
task (also Chapter 6); Mark McCourt for 
providing the fi gures illustrating grat-
ing-induction (Chapter 3).       



This page intentionally left blank



xv

   About the Authors 

 Fred   Kingdom is a Professor at McGill 
University conducting research into a 
variety of aspects of visual  perception, 
including color vision, stereopsis, texture 
perception, contour-shape coding, the 
perception of transparency and visual 
illusions. 

 Nick   Prins is an Associate Professor at 
the University of Mississippi specializ-
ing in visual texture perception, motion 
perception, contour-shape coding and 
the use of statistical methods in the 
 collection and analysis of psychophysical 
data.      



This page intentionally left blank



1

C H A P T E R

          Introduction and Aims  

    1.1       WHAT IS PSYCHOPHYSICS? 

 According   to the online encyclopedia  Wikipedia , psychophysics is  “  …  a subdis-
cipline of psychology dealing with the relationship between physical stimuli and 
their subjective correlates, or percepts. ”  The term psychophysics was fi rst coined 
by Gustav Theodor Fechner (see front cover). In his  Elements of Psychophysics  
(1860/1966) Fechner set out the principles of psychophysics, describing the various 
procedures that experimentalists use to map out the relationship between matter 
and mind. Although psychophysics is a methodology, it is also a research area in its 
own right, and a great deal of time is devoted to developing new psychophysical 
techniques and new methods for analyzing psychophysical data. 

 Psychophysics   can be applied to any sensory system, whether vision, hearing, 
touch, taste or smell. This book primarily draws on research into the visual sys-
tem to illustrate psychophysical principles, but for the most part the principles are 
applicable to all sensory domains.  

1.1 What is Psychophysics?
1.2 Aims of the Book
1.3 Organization of the Book
1.4 Introducing Palamedes

1.4.1 Organization of Palamedes

1.4.2  Functions and Demonstration 
Programs in Palamedes

1.4.3 Error Messages in Palamedes
References

  1 
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    1.2       AIMS OF THE BOOK 

 Broadly   speaking, the book has three aims. The fi rst is to provide newcomers to 
psychophysics with an overview of different psychophysical procedures in order to 
help them select the appropriate designs and analytical methods for their experi-
ments. The second aim is to provide software for analyzing psychophysical data, 
and this is intended for both newcomers and experienced researchers alike. The 
third aim is to explain the theory behind the analyses, again mainly for newcom-
ers, but also for experienced researchers who may be unfamiliar with a particular 
method or analysis. Thus, although  Psychophysics: A Practical Introduction  is prima-
rily directed at newcomers to psychophysics, it is intended to provide suffi cient 
new material, either in the form of software or theory, to engage the seasoned prac-
titioner. To this end we have made every effort to make accessible, to both expert 
and non-expert alike, the theory behind a wide range of psychophysical proce-
dures, analytical principles and mathematical computations: for example, Bayesian 
curve fi tting; the calculation of d-primes ( d  � ); maximum likelihood difference scal-
ing; goodness-of-fi t measurement; bootstrap analysis and likelihood-ratio testing, to 
name but a few. In short, the book is intended to be both practical and pedagogical. 

 The   emphasis on practical implementation will hopefully offer the reader some-
thing not available in textbooks such as Gescheider’s (1997) excellent  Psychophysics: 
The Fundamentals . If there is a downside, however, it is that we do not delve as 
deeply into the relationship between psychophysical measurement and sensory 
function as  The Fundamentals  does, except when necessary to explain a particular 
psychophysical procedure. In this regard  A Practical Introduction  is not intended as 
a replacement for other textbooks on psychophysics, but as a complement to them, 
and readers are encouraged to read other relevant texts alongside our own. 

 Our   approach of combining the practical and the pedagogical into a single book 
may not be to everyone’s taste. Doubtless some would prefer to have the descrip-
tion of the software routines separate from the theory behind them. However we 
believe that by integrating the software with the theory, newcomers will be able to 
get a quick handle on the nuts-and-bolts of psychophysics methodology, the better 
to go on to grasp the underlying theory if and when they choose.  

    1.3       ORGANIZATION OF THE BOOK 

 The   book can be roughly divided into two parts. Chapters 2 and 3 provide an 
overall framework and detailed breakdown of the variety of psychophysical proce-
dures available to the researcher. Chapters 4 – 8 can be considered as technical chap-
ters. They describe the software routines and background theory for fi ve specialist 
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topics: Psychometric Functions; Adaptive Methods; Signal Detection Measures; 
Scaling Methods; and Model Comparisons. 

 In   Chapter 2 we provide an overview of some of the major varieties of psychophys-
ical procedures, and offer a framework for classifying psychophysics experiments. 
The approach taken here is an unusual one. Psychophysical procedures are discussed 
in the context of a critical examination of the various dichotomies commonly used 
to differentiate psychophysics experiments: Class A versus Class B; objective versus 
subjective; Type 1 versus Type 2; performance versus appearance; forced-choice ver-
sus non-forced-choice; criterion-dependent versus criterion-free; detection versus 
discrimination; threshold versus suprathreshold. We consider whether any of these 
dichotomies could usefully form the basis of a fully-fl edged classifi cation scheme for 
psychophysics experiments, and conclude that one, the performance versus appear-
ance distinction, is the best candidate. 

 Chapter   3 takes as its starting point the classifi cation scheme outlined in Chapter 2, 
and expands on it by incorporating a further level of categorization based on the 
number of stimuli presented per trial. The expanded scheme serves as the framework 
for detailing a much wider range of psychophysical procedures than described in 
Chapter 2. 

   Four of the technical chapters, Chapters 4, 6, 7 and 8, are divided into two sec-
tions. Section A introduces the basic concepts of the topic and takes the reader 
through the Palamedes routines (see below) that perform the relevant data analy-
ses. Section B provides more detail as well as the theory behind the analyses. The 
idea behind the Section A versus Section B distinction is that readers can learn about 
the basic concepts and their implementation without necessarily having to grasp 
the underlying theory, yet have the theory available to delve into if they want. For 
example, Section A of Chapter 4 describes how to fi t psychometric functions and 
derive estimates of their critical parameters such as threshold and slope, while 
Section B describes the theory behind the various fi tting procedures. Similarly, 
Section A in Chapter 6 outlines why  d  �  measures are useful in psychophysics and 
how they can be calculated using Palamedes, while Section B describes the theory 
behind the calculations.  

    1.4       INTRODUCING PALAMEDES 

 According   to Wikipedia, the Greek mythological fi gure Palamedes is said to have 
invented  “  …  counting, currency, weights and measures, jokes, dice and a forerun-
ner of chess called  pessoi , as well as military ranks. ”  The story goes that Palamedes 
also uncovered a ruse by Odysseus. Odysseus had promised Agamemnon that he 
would defend the marriage of Helen and Menelaus, but pretended to be insane to 
avoid having to honor his commitment. Unfortunately, Palamedes’s unmasking of 

 1.4. INTRODUCING PALAMEDES 3
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Odysseus led to a gruesome end; he was stoned to death for being a traitor after 
Odysseus forged false evidence against him. We chose Palamedes as the name for 
the toolbox for his (presumed) contributions to the art of measurement, interest in 
stochastic processes (he did invent dice!), numerical skills, humor and wisdom. The 
Palamedes Swallowtail butterfl y ( Papilio Palamedes ) on the front cover also provides 
the toolbox with an attractive icon. 

 Palamedes   is a set of routines and demonstration programs written in MATLAB ®  
for analyzing psychophysical data ( Prins  &  Kingdom, 2009 ). The routines can be 
found on the disc that accompanies the book or downloaded from  www.palamedes-
toolbox.org . We recommend that you check the website periodically, because new 
and improved versions of the toolbox will be posted there for download. Chapters 
4 – 8 explain how to use the routines and describe the theory behind them. The 
descriptions of Palamedes do not assume any knowledge of MATLAB, although 
a basic knowledge will certainly help. Moreover, Palamedes requires only basic 
MATLAB; the specialist toolboxes such as the Statistics Toolbox are not required. We 
have also tried to make the routines compatible with earlier versions of MATLAB, 
where necessary including alternative functions that are called when later versions 
are undetected. 

 It   is important to bear in mind what Palamedes is  not . It is not a package for gen-
erating stimuli, or for running experiments. In other words it is not a package for 
dealing with the  “ front-end ”  of a psychophysics experiment. The exceptions to this 
rule are the Palamedes routines for adaptive methods, which are designed to be 
incorporated into an actual experimental program, and the routines for generating 
stimulus lists for use in scaling experiments. But by-and-large, Palamedes is a differ-
ent category of toolbox from the stimulus-generating toolboxes such as VideoToolbox 
( http://vision.nyu.edu/VideoToolbox/ ), PsychToolbox ( http://psychtoolbox.org/
wikka.php?wakka     �     HomePage ), PsychoPy ( http://www.psychopy.org , see also 
       Peirce, 2007; 2009 ) and Psykinematix ( http://psykinematix.kybervision.net/ ) (for a 
comprehensive list of such toolboxes see  http://visionscience.com/documents/stras-
burger_fi les/strasburger.html ). Although some of these toolboxes contain routines 
that perform similar functions to some of the routines in Palamedes, for example for 
fi tting psychometric functions (PFs), they are in general complementary to, rather 
than in competition with Palamedes. 

 Of   the few software packages that deal primarily with the analysis of psycho-
physical data, psignifi t is perhaps the best known ( http://bootstrap-software.org/
psignifi t/ ; see also        Wichmann  &  Hill, 2001a,b ). Like Palamedes, psignifi t fi ts PFs, 
obtains errors for the parameter estimates of PFs using bootstrap analysis, and per-
forms goodness-of-fi t tests of PFs. Palamedes, however, does more; it has routines 
for calculating signal detection measures, implementing adaptive procedures and 
analyzing scaling data. For fi tting PFs, some advantages of psignifi t over Palamedes 
are that it executes much faster, its core function is a standalone executable fi le 
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(i.e., it does not require MATLAB) and it has a few useful options that Palamedes 
does not have (notably, it allows one to perform a few different types of bootstrap, 
each with their own advantages). The advantage of Palamedes is that it can fi t PFs 
to multiple conditions simultaneously, while providing the user considerable fl ex-
ibility in defi ning a model to fi t. Just to give one example, one might assume that 
the lapse rate and slope of the PF are equal between conditions, but that thresholds 
are not. Palamedes allows one to specify and implement such assumptions and fi t 
the conditions accordingly. Palamedes can also be used to perform statistical com-
parisons between models. Examples are to test whether thresholds differ signifi -
cantly between two or more conditions, to test whether it is reasonable to assume 
that slopes are equal between the conditions, to test whether the lapse rate differs 
signifi cantly from zero (or any other specifi c value), etc. Finally, Palamedes allows 
one to test the goodness-of-fi t of a user-defi ned model that describes performance 
across multiple conditions of an experiment. 

    1.4.1       Organization of Palamedes 
 All   the Palamedes routines are prefi xed by an identifi er  PAL , to avoid confu-

sion with the routines used by MATLAB. After  PAL , many routine names contain 
an acronym for the class of procedure they implement.  Table 1.1    lists the acronyms 
currently in the toolbox, what they stand for, and the book chapter where they are 
described. In addition to the routines with specialist acronyms, there are a number 
of general-purpose routines.  

 1.4. INTRODUCING PALAMEDES 5

 TABLE 1.1           Acronyms used in Palamedes, their meaning and the chapter 
in which they are described  

   Acronym  Meaning  Chapter 

    PF   Psychometric function  4 

    PFBA   Psychometric function: Bayesian  4 

    PFML   Psychometric function: maximum likelihood  4, 8 

    AMPM   Adaptive methods: psi method  5 

    AMRF   Adaptive methods: running fi t  5 

    AMUD   Adaptive methods: up/down  5 

    SDT   Signal detection theory  6 

    MLDS   Maximum likelihood difference scaling  7 

    PFLR   Psychometric function: likelihood ratio  8 
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    1.4.2       Functions and Demonstration Programs in Palamedes 

    1.4.2.1       Functions 
 In   MATLAB there is a distinction between a function and a script. A function 

accepts one or more input arguments, performs a set of operations and returns one 
or more output arguments. Typically, Palamedes functions are called as follows: 

         >      > [x y z]      =      PAL_FunctionName(a,b,c);  

 where    a ,  b  and  c  are the input arguments, and  x ,  y  and  z  the output arguments. 
In general, the input arguments are  “ arrays. ”  Arrays are simply listings of num-
bers. A scalar is a single number, e.g., 10, 1.5, 1.0e – 15. A vector is a one-dimensional 
array of numbers. A matrix is a two-dimensional array of numbers. It will help you 
to think of all as being arrays. As a matter of fact, MATLAB represents all as two-
dimensional arrays. That is, a scalar is represented as a 1      �      1 (1 row      �      1 column) 
array, vectors either as an m      �      1 array or a 1      �      n array, and a matrix as an m      �      n 
array. Arrays can also have more than two dimensions. 

 In   order to demonstrate the general usage of functions in MATLAB, Palamedes 
includes a function named  PAL_ExampleFunction   which takes two arrays of any 
dimensionality as input arguments and returns the sum, the difference, the product, 
and the ratio of the numbers in the arrays corresponding to the input arguments. 
For any function in Palamedes you can get some information as to its usage by typ-
ing  help  followed by the name of the function: 

         >      > help PAL_ExampleFunction  

 MATLAB   returns: 

  PAL_ExampleFunction  calculates the sum, difference, product, 
and ratio of two scalars, vectors or matrices. 

    syntax: [sum difference product ratio] = ... 
PAL_ExampleFunction(array1, array2)  

 This function serves no purpose other than to demonstrate the 
general usage of Matlab functions. 

     For example, if we type and execute: 

    [sum difference product ratio]      =      PAL_ExampleFunction(10, 5);  

 MATLAB   will assign the arithmetic sum of the input arguments to a variable 
labeled  sum , the difference to  difference , etc. In case the variable  sum  did not 
previously exist, it will have been created when the function was called. In case 
it did exist, its previous value will be overwritten (and thus lost). We can inquire 
about the value of a variable by typing its name, followed by  � return     �     : 

         >      > sum  
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 MATLAB   returns: 

  sum        =      15  

 We   can use any name for the returned arguments. For example, typing: 

         >      > [s d p r]      =      PAL_ExampleFunction(10,5)  

 creates   a variable  s  to store the sum, etc. 
 Instead   of passing values directly to the function, we can assign the values to 

variables and pass the name of the variables instead. For example the series of 
commands: 

         >      > a      =      10;  
         >      > b      =      5;  
         >      > [sum difference product ratio]      =      PAL_ExampleFunction(a, b);  

 generates   the same result as before. You can also assign a single alphanumeric 
name to vectors and matrices. For example, to create a vector called  vect1  with 
values 1,  � 2, 4, and 105 one can simply type and follow with a  � return     �     : 

         >      >  vect1      =      [1  − 2 4 105]  

 Note   the square, not round brackets.  vect1  can then be entered as an argu-
ment to a routine, provided the routine is set up to accept a 1      �      4 vector. To create 
a matrix called  matrix1  containing two columns and three rows of numbers, type 
and follow with a  � return     �     , for example: 

         >      >  matrix1      =      [.01 .02; .04 .05; 0.06 0.09]  

 where   the semicolon separates the values for different rows. Again,  matrix1  
can now be entered as an argument, provided the routine accepts a 3      �      2 (rows by 
columns) matrix. 

 Whenever   a function returns more than one argument, we do not need to assign 
them all to a variable. Let’s say we are interested in the sum and the difference of 
two matrices only. We can type: 

         >      > [sum difference]      =      PAL_ExampleFunction([1 2; 3 4], [5 6; ... 
7 8]);   

    1.4.2.2       Demonstration Programs 
 A   separate set  of Palamedes routines are suffi xed by  _Demo  . These are demon-

stration scripts that in general combine a number of Palamedes function routines 
into a sequence to demonstrate some aspect of their combined operation. They 
produce a variety of types of output to the screen, such as numbers with headings, 
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graphs, etc. While these programs do not take arguments when they are called, the 
user might be prompted to enter something when the program is run, e.g.: 

         >      > PAL_Example_Demo  
  Enter   a vector of stimulus levels  

 Then   the user might enter something like  [.1 .2 .3] . After pressing return 
there will be some form of output, for example data with headings, a graph, or both.   

    1.4.3       Error Messages in Palamedes 
 The   Palamedes toolbox is not particularly resistant to user error. Incorrect usage 

will more often result in a termination of execution accompanied by an abstract 
error message than it will in a gentle warning or a suggestion for proper usage. As 
an example, let us pass some inappropriate arguments to our example function and 
see what happens. We will pass two arrays to it of unequal size: 

         >      > a      =      [1 2 3];  
         >      > b      =      [4 5];  
         >      > sum      =      PAL_ExampleFunction(a, b);  

 MATLAB   returns: 

    ??? Error using  =      =      >  unknown  
  Matrix   dimensions must agree.  
  Error   in  =      =      >  PAL_ExampleFunction at 15  
  sum        =      array1      +      array2;  

 This   is actually an error message generated by a resident MATLAB function, not 
a Palamedes function. Palamedes routines rely on many resident MATLAB func-
tions and operators (such as  “      �      ” ), and error messages you see will typically be gen-
erated by these resident MATLAB routines. In this case, the problem arose when 
 PAL_ExampleFunction   attempted to use the  “      �      ” operator of MATLAB to add 
two arrays that are not of equal size.    
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C H A P T E R

                      Classifying Psychophysical 
Experiments  

    2.1       INTRODUCTION 

 This   chapter introduces some of the main classes of psychophysical procedure 
and proposes a scheme for classifying psychophysical experiments. The aim is not 
so much to judge the pros and cons of different psychophysical procedures  –  this will 
form part of the subject matter of the next chapter  –  but to consider how different psy-
chophysical procedures fi t together into the jigsaw we call psychophysics. The result-
ing classifi cation scheme is arrived at through a critical examination of the familiar 
 “ dichotomies ”  that make up the vernacular of psychophysics, for example  “ Class A ”  
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2.4 Classifi cation Scheme
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versus  “ Class B ”  observations,  “ Type 1 ”  versus  “ Type 2 ”  tasks,  “ forced-choice ”  ver-
sus  “ non-forced-choice, ”  etc. These dichotomies do not in every case mean the same 
thing to all people, so the aim here is both to clarify what they mean and to decide 
which of them, if any, might be useful as categories in a classifi cation scheme. 

 Why   a classifi cation scheme? After all, the seasoned practitioner designs a psycho-
physics experiment based on implicit knowledge accumulated over years of research 
experience as to what is available, what is appropriate, and what is valid, given the 
question about visual function being asked. And that is how it should be. However, 
a framework that captures both the critical differences and intimate relationships 
between different experimental approaches should be useful for newcomers to the 
fi eld, helping them to select the appropriate design from what might fi rst seem a 
bewildering array of possibilities. Thinking about a classifi cation scheme is also a use-
ful intellectual exercise, not only for those of us who like to categorize things, put them 
into boxes and attach labels to them, but for anyone interested in gaining a deeper 
understanding of psychophysics. But before discussing the dichotomies, let us fi rst 
consider the components that make up a psychophysics experiment.  

    2.2       TASKS, METHODS, AND MEASURES 

 Although   the measurement at the end of a psychophysics experiment refl ects 
more than anything else the particular question about sensory function being asked, 
other components of the experiment, in particular the stimulus and the observer’s 
task, must be carefully tailored to achieve the experimental goal. A psychophysics 
experiment consists of a number of components, and we have opted for the fol-
lowing breakdown: stimulus; task; method; analysis; and measure ( Figure 2.1   ). To 
illustrate our use of these terms, consider one of the most basic experiments in the 
study of vision: the measurement of a  “ contrast detection threshold. ”  A contrast 
detection threshold is defi ned as the minimum amount of contrast necessary for a 
stimulus to be just detectable.  Figure 2.2    illustrates the idea for a stimulus consist-
ing of a patch on a uniform background. The precise form of the stimulus must, of 
course, be tailored to the specifi c question about sensory function being asked, so 

Psychophysics
experiment

TaskStimulus Method MeasureAnalysis

 FIGURE 2.1          Components of a psychophysics experiment.    
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let us simply assume that the patch is the appropriate stimulus. The contrast of the 
patch can be measured in terms of Weber contrast, defi ned as the difference between 
the luminance of the patch and its background,   Δ L , divided by the luminance of 
the background  L  b , i.e.   Δ L/L  b . Thus the contrast detection threshold is the smallest 
value of Weber contrast an observer requires to detect the patch. There are many 
procedures for measuring a contrast detection threshold, and each involves a differ-
ent task for the observer. Before the advent of digital computers, a common method 
was to display the stimulus on an oscilloscope screen and require observers to adjust 
the contrast with a dial until the stimulus was just visible against the background. 
The just-visible contrast would be recorded as the measure of the contrast detec-
tion threshold. For this type of procedure, the task and the method are collectively 
termed the  “ method of adjustment. ”  

 Nowadays   the preferred approach is to present the stimulus on a computer dis-
play and use a standard  “ two-interval forced-choice, ”  or 2IFC task. Using this proce-
dure, two stimuli are presented briefl y on each trial, one a blank screen, the other the 
test patch. The order of stimulus presentation  –  blank screen followed by test patch 
or test patch followed by blank screen  –  is unknown to the observer (although of 
course  ‘ known ’  to the computer), and is typically random or quasi-random. The two 
stimuli are presented consecutively, and the observer must choose the interval con-
taining the test patch, indicating his or her choice by pressing a key. The computer 
keeps a record of the contrast of the patch for each trial, along with the observer’s 
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 FIGURE 2.2          Top: circular test patch on a uniform background. Bottom: luminance profi le of patch and the 
defi nition of Weber contrast. Right: results of a standard two-interval-forced-choice (2IFC) experiment. The 
various stimulus contrasts are illustrated on the abscissa. Black circles give the proportion of correct responses 
for each contrast. The green line is the best fi t of a psychometric function, and the calculated contrast 
detection threshold (CT) is indicated by the arrow. See text for further details.  L       �      luminance;  L b        �      luminance 
of background;  Δ  L       �      difference in luminance between patch and background;  C       �      Weber contrast.    
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response, which is scored as either  “ correct ”  or  “ incorrect. ”  A given experimental 
session might consist of, say, 100 trials, and a number of different patch contrasts 
would be presented in random order. 

 With   the standard 2IFC task, different methods are available for selecting the 
contrasts presented on each trial. On the one hand, they can be preselected before 
the experiment; for example, ten contrasts ranging from 0.01 to 0.1 at 0.01 inter-
vals. If preselected, the ten stimuli at each contrast would be presented in random 
order during the session, making 100 trials in total. This is known as the  “ method 
of constants. ”  At the end of each session the computer calculates the number of cor-
rect responses for each contrast. Typically, there would be a number of sessions and 
the overall proportion correct across sessions for each patch contrast calculated, 
then plotted on a graph as shown for the hypothetical data in  Figure 2.2 . On the 
other hand, one can use an  “ adaptive ”  (or  “ staircase ” ) method, in which the con-
trast selected on each trial is determined by the observer’s responses on previous 
trials. The idea is that the computer  “ homes in ”  on the contrasts that are close to the 
observer’s contrast detection threshold, thus not wasting too many trials presenting 
stimuli that are either too easy or too hard to see. Adaptive methods are the subject 
of Chapter 5. 

 The   term  “ analysis ”  refers to how the data collected during an experiment are con-
verted into measurements. For example, with the method of adjustment the observ-
er’s settings might be averaged to obtain the threshold. On the other hand, using the 
2IFC procedure in conjunction with the method of constants, the proportion correct 
data may be fi tted with a function whose shape is chosen to approximately match the 
data. The fi tting procedure estimates the contrast resulting in a criterion proportion 
correct, such as 0.75 or 75%, and this is the estimate of the contrast detection thresh-
old, as shown for our hypothetical data in  Figure 2.2 . Procedures for fi tting psycho-
metric functions are discussed in Chapter 4. 

 To   summarize: using the example of an experiment aimed at measuring a contrast 
detection threshold for a patch on a uniform background, the components of a psycho-
physical experiment are as follows. The  “ stimulus ”  is a uniform patch of given spatial 
dimensions and of various contrasts. Example  “ tasks ”  include adjustment and 2IFC. For 
the adjustment task, the  “ method ”  is the method of adjustment, while for the 2IFC task 
the methods include the method of constants and adaptive methods. In the case of the 
method of adjustment, the  “ analysis ”  might consist of averaging a set of adjustments, 
whereas for the 2IFC task it might consist of fi tting a psychometric function to the pro-
portion correct responses as a function of contrast. For the 2IFC task in conjunction with 
an adaptive method, the analysis might involve averaging contrasts, or it might involve 
fi tting a psychometric function. The  “ measure ”  in all cases is a contrast detection thresh-
old, although other measures may also be extracted, such as an estimate of the variabil-
ity or  “ error ”  on the threshold and the slope of the psychometric function. 

 The   term  “ procedure ”  is used ubiquitously in psychophysics, and can refer vari-
ously to the task, method, analysis or some combination of these. Similarly the term 
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 “ method ”  has broad usage. The other terms in our component breakdown are also 
often used interchangeably. For example, the task in the contrast detection thresh-
old experiment, which we termed adjustment or 2IFC, is sometimes termed a 
 “ detection ”  task and sometimes a  “ threshold ”  task, even though in our taxonomy 
these terms refer to the measure. The lesson here is that one must be prepared to be 
fl exible in the use of psychophysics terminology, and not overly constrained by any 
predefi ned scheme. 

 Our   next step is to consider some of the common dichotomies used to differ-
entiate psychophysical experiments. The aim here is to introduce some familiar 
terms used in psychophysics, illustrate other classes of psychophysical experiment 
besides contrast detection and examine which, if any, of the dichotomies might be 
candidates for a classifi cation scheme for psychophysical experiments.  

    2.3       DICHOTOMIES 

    2.3.1        “ Class A ”  Versus  “ Class B ”  Observations 
 An   infl uential dichotomy introduced some years ago by  Brindley (1970)  is that 

between  “ Class A ”  and  “ Class B ”  psychophysical observations. Although one rarely 
hears these terms today, they are important to our understanding of the relation-
ship between psychophysical measurement and sensory function. Brindley used the 
term  “ observation ”  to describe the perceptual state of the observer while executing 
a psychophysical task. The distinction between Class A and Class B attempted to 
identify how directly a psychophysical observation related to the underlying men-
tal processes involved. Brindley framed the distinction in terms of a comparison 
of sensations: a Class A observation refers to the situation in which two physically 
different stimuli are perceptually indistinguishable; whereas a Class B observation 
refers to all other situations. 

 The   best way to understand the distinction between Class A and Class B is by an 
example, and we have adopted Gescheider’s (1997) example of the Rayleigh match 
( Rayleigh, 1881 ;  Thomas  &  Mollon, 2004 ). Rayleigh matches are used to identify 
and study certain types of color vision defi ciency (e.g.,  Shevell, Sun  &  Neitz, 2008 ) 
although for the present discussion the purpose of a Rayleigh match is less impor-
tant than the nature of the measurement itself.  Figure 2.3    shows a bipartite circular 
stimulus, one half consisting of a mixture of red and green monochromatic lights, 
the other half a yellow monochromatic light.      1    The observer has free reign to adjust 
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   1  Because the lights are monochromatic, i.e., narrow band in wavelength, this experiment cannot 
be conducted on a CRT monitor, because CRT phosphors are relatively broadband in wavelength. 
Instead an apparatus is required that can produce monochromatic lights, such as a Nagel 
Anomaloscope or a Maxwellian view system.   
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both the intensity of the yellow light, as well as the relative intensities of the red and 
green lights. The task is to adjust the intensities of the lights until the two halves of 
the stimulus appear identical, as illustrated in the top of the fi gure. In color vision, 
two stimuli with different spectral (i.e., wavelength) compositions that nevertheless 
look identical are termed  “ metamers. ”  According to Brindley, metameric matches, 
such as the Rayleigh match, are Class A observations. The identifi cation of an obser-
vation as Class A accords with the idea that when two stimuli look identical to the 
eye they elicit identical neural responses in the brain. Since the neural responses are 
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 FIGURE 2.3          The Rayleigh match illustrates the difference between a Class A and Class B 
psychophysical observation. For Class A, the observer adjusts both the intensity of the yellow light in 
the right half of the bipartite fi eld, as well as the relative intensities of the red and green mixture in the 
left half of the bipartite fi eld, until the two halves appear identical. For Class B, the observer adjusts only 
the relative intensities of the red and green lights to match the hue of a yellow light that is different in 
brightness. See separate color plate section for the full color version of this fi gure.    
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identical, Brindley argues, it is relatively straightforward to map the physical char-
acteristics of the stimuli onto their internal neural representations. 

 An   example of a Class B observation is shown at the bottom of  Figure 2.3 . This 
time the observer has no control over the intensity of the yellow light  –  only con-
trol over the relative intensities of the red and green lights. The task is to match the 
hue (or perceived chromaticity) of the two halves of the stimulus, but under the 
constraint that the intensity (or brightness) of the two halves are different. Thus, 
the two halves will never look identical and, therefore, according to Brindley, nei-
ther will the neural responses they elicit. Brindley was keen to point out that one 
must not conclude that Class B observations are inferior to Class A observations. 
Our example Class B observation is not a necessary evil given defective equipment! 
On the contrary, we may want to know which spectral combinations match in hue 
when their brightnesses are very different, precisely in order to understand the way 
that hue and brightness interact. In any case, the aim here is not to judge the rela-
tive merits of Class A and Class B observations (for a discussion of this see  Brindley, 
1970 ), but to illustrate what the terms mean. 

 What   other types of psychophysical experiment are Class A and Class B? According 
to Brindley, experiments that measure thresholds, such as the contrast detection 
threshold experiment discussed above, are Class A. That a threshold is Class A might 
not be intuitively obvious. The argument goes something like this. There are two 
states: stimulus present and stimulus absent. As the stimulus contrast is decreased 
to a point where it is below threshold, the observation passes from one in which the 
two states are discriminable, to one in which they are indiscriminable. The fact that 
the two states may be indiscriminable even though physically different (the stimu-
lus is still present even though below threshold) makes the observation Class A. 
Two other examples of Class A observations that obey the same principle are shown 
in  Figure 2.4   . 

 Class   B observations characterize many types of psychophysical procedure. 
Following our example Class B observation in  Figure 2.3 , any experiment that 
involves matching two stimuli that remain perceptibly different on completion of 
the match is Class B. Consider, for example, the brightness-matching experiment 
illustrated in  Figure 2.5   . The aim of the experiment is to understand how the bright-
ness or perceived luminance of a circular test patch is infl uenced by the luminance 
of its surround. As a rule, increasing the luminance of a surround annulus causes the 
region it encloses to decrease in brightness, i.e., become dimmer. One way to meas-
ure the amount of dimming is to adjust the luminance (and since the background 
luminance is fi xed, also the contrast) of a second patch until it appears equal in 
brightness to the test patch. The second patch can be thought of as a psychophysical 
 “ ruler. ”  When the match is set equal in brightness to the test, the patches are said to 
be at the  “ point of subjective equality, ”  or PSE. The luminances of the test and match 
patches at the PSE will not necessarily be the same; indeed it is precisely that they 
will be, in most instances, different that is of interest. The difference in luminance 
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V

 FIGURE 2.4          Two other examples of Class A observations. Top: orientation discrimination task. The 
observer is required to discriminate between two gratings that differ in orientation, and a threshold 
orientation difference is measured. Bottom: line bisection task. The observer is required to position the 
vertical line midway along the horizontal line. The precision or variability in the observer’s settings is a 
measure of their line-bisection acuity.    

TestMatch(a)

(b)

(c)

 FIGURE 2.5          Two examples of Class B observations. In (a) the goal of the experiment is to fi nd the 
point of subjective equality (PSE) in brightness between the fi xed test and variable match patches, as 
a function of the luminance (and hence contrast) of the surround annulus; (b) shows the approximate 
luminance profi le of the stimulus; (c) Muller – Lyer illusion. The two center lines are physically identical, 
but appear different in length. The experiment described in the text measures the relative lengths of the 
two center lines at which they appear equal in length.    
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between the test and match at the PSE tells us something about the effect of context 
on brightness, the  “ context ”  in this example being the annulus. This type of experi-
ment is sometimes referred to as  “ asymmetric brightness matching, ”  because the 
test and match patches are set in different contexts (e.g.,  Blakeslee  &  McCourt, 1997 ; 
 Hong  &  Shevell, 2004 ). 

 It   might be tempting to think of an asymmetric brightness match as a Class A obser-
vation, owing to the fact that it differs in one important respect from the Class B obser-
vation in the brightness-unmatched version of the Rayleigh match discussed above. 
In the brightness-unmatched version of the Rayleigh match, the stimulus region that 
is matched in hue is  also  the region that is held different in brightness. In an asym-
metric brightness-matching experiment on the other hand, the stimulus region that is 
matched in brightness is  not  the region that defi nes the difference between the test and 
match; this is the annulus. However, one cannot  “ ignore ”  the annulus when decid-
ing whether the observation is Class A or Class B simply because it is not the part of 
the stimulus to which the observation is directed. Asymmetric brightness matches are 
Class B observations because, even when the stimuli are matched, they are recogniz-
ably different owing to the fact that one has an annulus and the other has not. 

 Another   example of a Class B observation is the Muller – Lyer illusion shown in 
 Figure 2.5c , a geometric visual illusion that has received much attention (e.g.,  Morgan, 
Hole,  &  Glennerster, 1990 ). The lengths of the center lines in the two fi gures are the 
same, yet they appear different due to the arrangement of fi ns at the ends. One method 
for measuring the size of the illusion is to require observers to adjust the length of one 
of the center lines until it matches the perceived length of the other. The physical dif-
ference in length at the PSE, which could be expressed as a raw, proportional or per-
centage difference, measures the size of the illusion. The misperception of relative line 
length in the Muller – Lyer fi gures is a Class B observation, because even when the lines 
are adjusted to make them perceptually equal in length the fi gures remain recogniz-
ably different, owing to their different fi n arrangements. 

 One   further example of a Class B observation is magnitude estimation  –  the pro-
cedure whereby observers provide a numerical estimate of the perceived magnitude 
of a stimulus along some dimension, e.g., contrast, speed, depth, size, etc. Magnitude 
estimation is Class B, because the perception of the stimulus and the judgement of its 
magnitude involve different mental modalities. 

 An   interesting case that at fi rst defi es classifi cation into Class A or Class B is illus-
trated in  Figure 2.6   . The observer’s task is to discriminate the mean orientation of 
random arrays of line elements, whose mean orientations are right- and left-of-ver-
tical (e.g.,  Dakin, 2001 ). Below threshold, the mean orientations of the two arrays 
are by defi nition indiscriminable, yet the two arrays are still perceptibly different in 
terms of their element arrangements. In the previously-mentioned Class B e xamples 
the  “ other ”  dimension  –  brightness in the case of the Rayleigh match, annulus 
luminance in the case of the brightness-matching experiment  –  was relevant to 
the task. However, in the mean-orientation-discrimination experiment the  “ other ”  

 2.3. DICHOTOMIES 17
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dimension  –  element position  –  is irrelevant. Does the fact that element arrange-
ment is irrelevant make it Class A, or does the fact that the stimuli are discriminable 
below threshold on the basis of element arrangement make it Class B? Readers can 
make up their own mind. 

 In   conclusion, the Class A versus Class B distinction is important for understand-
ing the relationship between psychophysical measurement and sensory function. 
However, we have chosen not to use it as a basis for classifying psychophysics 
experiments, partly because there are cases that seem to us hard to classify into 
Class A or Class B, and partly because other dichotomies better capture for us the 
critical differences between psychophysical experiments.  

    2.3.2        “ Objective ”  Versus  “ Subjective ”  
 Although   rarely used in journal articles, the terms objective and subjective are com-

mon parlance among psychophysicists, so it is worth examining what they mean. The 
terms tend to be value-laden, with the connotation that objective is  “ good ”  and subjec-
tive  “ bad. ”  Whether or not this is intended, the objective versus subjective dichotomy 
is inherently problematic when applied to psychophysics. All psychophysical experi-
ments are in a trivial sense subjective, because they measure what is going on inside 
the head, and if this is the intended meaning of the term then the distinction is redun-
dant. The dichotomy is more often invoked, however, to differentiate between differ-
ent types of psychophysical procedure. The distinction has been used variously to 
characterize Class A versus Class B observations, tasks for which there is versus tasks 

 FIGURE 2.6          Class A or Class B? The observer’s task is to decide which stimulus contains elements 
that are on average left-oblique. When the difference in mean element orientation is below threshold, the 
stimuli are identical in terms of their perceived mean orientation, yet are discriminable on the basis of 
the arrangements of elements.    
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for which there is not a correct and an incorrect response, forced-choice versus non-
forced-choice procedures, and criterion-dependent versus criterion-free procedures. 
We have already discussed the Class A versus Class B distinction, so in what follows 
we primarily concentrate on the other usages of the objective-subjective distinction. 

 Consider   how the objective – subjective distinction might apply to the Muller –
 Lyer illusion mentioned above. As with the contrast detection threshold experi-
ment, there is more than one way to measure the size of the illusion. The adjustment 
method is one way. A forced-choice procedure is another. Using forced-choice, both 
stimuli are presented as alternatives during the trial. On each trial the length of the 
center line of one stimulus is selected from a pre-specifi ed set (call this the vari-
able stimulus), while the length of the center line of the other stimulus is fi xed (call 
this the fi xed stimulus). The observer’s task is to indicate the stimulus perceived 
to have the longer center line.  Figure 2.7    shows hypothetical results from such an 
experiment. Each data point represents the proportion of times the variable stimu-
lus is perceived as longer, as a function of its center line length relative to that of the 
fi xed stimulus. At a relative length of 1, meaning that the center lines are  physically  
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 FIGURE 2.7          Results of a hypothetical experiment aimed at measuring the size of the Muller – Lyer 
illusion using a forced-choice procedure and the method of constant stimuli. The critical measurement 
is the PSE, or point of subjective equality between the lengths of the center lines in the fi xed test and 
variable comparison stimuli. The graph plots the proportion of times subjects perceive the variable 
stimulus as  “ longer. ”  The continuous line through the data is the best-fi tting logistic function (see 
Chapter 4). The value of 1.0 on the abscissa indicates the point where the fi xed and variable lengths are 
physically equal. The PSE is calculated as the variable length at which the fi xed and variable lengths 
appear equal, indicated by the vertical green arrow. The horizontal green-arrowed line is a measure of 
the size of the illusion.    
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the same, the observer perceives the variable stimulus as longer almost 100% of the 
time. However, at a relative length of about 0.88 the observer chooses the variable 
stimulus as longer only 50% of the time. Thus, the PSE is 0.88. 

 Even   though this example illustrates how the Muller – Lyer illusion, like the con-
trast threshold experiment, can be measured using a forced-choice procedure, there 
is an important difference between the two experiments. Whereas in the forced-
choice contrast detection threshold experiment there is a correct and an incorrect 
response on every trial, there is no correct or incorrect response for the Muller – Lyer 
trials. Whatever response the observer makes on a Muller – Lyer trial, it is mean-
ingless to score it as correct or incorrect, at least given the goal of the experiment 
which is to measure a PSE. Observers unused to doing psychophysics often have 
diffi culty grasping this idea, and even when told repeatedly that there is no correct 
and incorrect answer, insist on asking at the end of the experiment how many trials 
they scored correct! 

 For   some researchers, judgements that cannot be evaluated in terms of being cor-
rect and incorrect are more subjective (or less objective) than those that can. This view 
presumably arises because judgements in correct-response experiments are evaluated 
against an  “ external ”  benchmark; the stimulus on each trial really  is  present or absent, 
or really  is  left or right oblique. The benchmark for tasks where there is no correct and 
incorrect response on the other hand is purely  “ internal; ”  the line only  appears  to be 
longer, or the patch only  appears  to be brighter. Psychophysical tasks that have correct 
and incorrect responses are termed Type 1, and those that do not are termed Type 2, a 
dichotomy to which we shall return in the next section. 

 For   other researchers, however, the objective – subjective distinction is more to do 
with the method of data collection than with the nature of the measurement. Some 
researchers feel that forced-choice methods are inherently more objective than non-
forced-choice methods, irrespective of whether they are Type 1 or Type 2. According 
to this point of view, both the contrast detection threshold and Muller – Lyer illusion 
experiments are more objective when using a forced-choice compared to an adjust-
ment procedure. 

 Why   might forced-choice experiments be considered more objective than non-forced-
choice experiments? It could be argued that forced-choice methods provide more 
 “ accurate ”  estimates of thresholds and PSEs than those obtained from non-forced-choice 
methods. Accuracy, in this context, refers to how close the measure is to its  “ true ”  
value. There is a problem, however, with this argument. How does one determine 
whether one method is more accurate than another? This is not easy to answer, par-
ticularly for PSEs. Another reason why forced-choice methods might be considered 
more objective is that they are more  “ precise. ”  Precision refers to the variability in the 
measurement. With the method of adjustment, precision is typically c alculated from 
the variance, or more usually the standard deviation of the observer’s settings, with 
a small standard deviation indicating a high precision. With forced-choice methods, 
precision is typically measured by the steepness or slope of the psychometric function 
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(see  Figure 2.7 ). The slope of the psychometric function is inversely proportional to 
the standard deviation parameter in the function used to fi t the data, so in this case a 
small standard deviation is an indication of high precision (see Chapter 4 for details). 
In principle, therefore, one could compare the precisions of adjustment and forced-
choice procedures, and from the result argue that one is more objective than the other. 
However, even this is problematic. Suppose, for example, that the forced-choice proce-
dure proved to be the more precise, but the experiment took much longer. One could 
argue that the superior precision was due to the longer experimental time, not the 
difference in method  per se . 

 All   of the above arguments lead us to conclude that the distinction between 
objective and subjective is too loosely-defi ned and inherently problematic to use as 
a basis for classifying psychophysical experiments.  

    2.3.3        “ Type 1 ”  Versus  “ Type 2 ”  
 In   the previous section, we drew attention to another important distinction, that 

between experiments for which there is and experiments for which there is not a cor-
rect and an incorrect response on each trial. This distinction has been termed Type 1 
versus Type 2 ( Sperling, 2008 ; see also  Sperling, Dosher  &  Landy, 1990 ).      2    The forced-
choice version of the contrast threshold experiment described above is therefore 
Type 1, whereas the brightness-matching and Muller – Lyer experiments are Type 2. 
The term Type 2 has also been used to refer to observers, own judgements of their 
Type 1 decisions ( Galvin et al., 2003 ). In this case, the Type 2 judgement might be a 
rating of, say, 1 – 5, or a binary judgement such as  “ confi dent ”  or  “ not confi dent, ”  in 
reference to the decision made in a correct-answer forced-choice task. 

 As   discussed in the previous section, the Type 1 versus Type 2 distinction may, 
for some researchers, be synonymous with objective versus subjective. However, 
Type 1 and Type 2 are not synonymous with Class A and Class B. The Rayleigh 
match experiment described above is Class A, but is Type 2 because there is no 
 “ correct ”  match. 

 The   Type 1 versus Type 2 dichotomy is an important one in psychophysics. It 
dictates, for example, whether observers can be provided with feedback during an 
experiment, such as a tone for a correct but not an incorrect response. However, 
one should not conclude that Type 1 is  “ better; ”  the value of Rayleigh matches for 
understanding color defi ciency is a clear case in point. Moreover, as we argue in the 
next section, Type 1 versus Type 2 is not for us the most important distinction in 
psychophysics.  
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   2  Note that the dichotomy is not the same as the Type I versus Type II error dichotomy used in 
statistical inference testing.   
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    2.3.4        “ Performance ”  Versus  “ Appearance ”  
 A   distinction closely related, but not synonymous with, Type 1 versus Type 2 

is  “ performance ”  versus  “ appearance. ”  Performance-based tasks measure  “ apti-
tude, ”  i.e.,  “ how good ”  an observer is at a particular task. For example, suppose 
one measures contrast detection thresholds for two sizes of patch, call them  “ small ”  
and  “ big. ”  If thresholds for the big patch are found to be lower than those for the 
small patch, one can conclude that observers are better at detecting big patches than 
small ones. By the same token, if orientation discrimination thresholds are found to 
be lower in central than in peripheral vision, one can conclude that orientation dis-
crimination is better in central vision than in the periphery. In these examples, per-
formance measures the  “ limits ”  of our perception. On the other hand, suppose we 
measure the Muller – Lyer illusion for two different fi n angles, say 45 and 60 degrees 
relative to the center line, and fi nd that the illusion is bigger for the 45 degree fi ns. 
It would be meaningless to conclude that we are  “ better ”  at the Muller – Lyer with 
the 45 degree fi ns. PSEs are not aptitudes. For this reason the Muller – Lyer experi-
ment is best considered as measuring stimulus  “ appearance. ”  A simple heuristic 
can be used to decide whether a psychophysical experiment/task/measurement 
is performance-based or appearance-based. If the measurement can be meaning-
fully considered to be better under one condition than under another, then it is 
a performance measure, if not it is an appearance measure. This still leaves open 
the question of a precise defi nition of appearance, other than  “ not performance. ”  
Appearance is not however an easy term to defi ne, but in many instances one can 
usefully think of appearance as measuring the  “ apparent ”  magnitude of some stim-
ulus dimension. 

 Sometimes   the same psychophysical task can be used to measure both perform-
ance  and  appearance. Consider the vernier alignment task illustrated in  Figure 2.8    
applied to two stimulus arrangements, A and B. On each trial the observer decides 
whether the upper black line lies to the left (or to the right) of the lower black line. 
The goal of experiment A is to measure vernier  “ acuity, ”  defi ned as the smallest 
misalignment that can be detected. The goal of experiment B, on the other hand, is 
to measure the effect of the fl anking white lines on the relative perceived position of 
the black lines. The white lines in B have a repulsive effect, causing the black lines 
to appear slightly shifted from their normal perceived position in a direction away 
from that of the white lines (e.g., Badcock  &  Westheimer, 1984). Hypothetical data 
for both tasks are shown in the graph on the right, and are fi tted with logistic func-
tions (see Chapter 4). 

 For   experiment A, vernier acuity can be calculated as the horizontal line separa-
tion which results in a proportion of 0.75  “ left ”  responses, the point on the graph’s 
abscissa indicated by the green arrow, and usually termed the vernier  “ threshold. ”  
Sometimes, however, the value shown by the green arrow is not a good estimate 
of the observer’s vernier threshold. The observer will sometimes have a small bias 
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towards perceiving the two lines as aligned when they are in fact slightly mis-
aligned. In other words, the  “ point of subjective alignment ”  or PSA may not be 
zero, but a small positive or negative value. A non-zero PSA may result from some 
sort of optical aberration in the observer’s eye, or because the observer’s internal 
representation of space is non-veridical, or because the monitor display is distorted. 
Given these possibilities it makes more sense to measure the vernier threshold as 
the separation (or half the separation) between the points on the abscissa corre-
sponding to the 0.25 and 0.75 response levels. This measure takes into account any 
bias. Alternatively, vernier acuity can be measured from the steepness, or slope, of 
the psychometric function. As we mentioned earlier, the slope of the psychomet-
ric function is inversely related to the standard deviation parameter of the function 
used to fi t the data, so this standard deviation is a measure of vernier acuity (e.g., 
 Watt  &  Morgan, 1983 ;  McGraw et al., 2004 ). Recall also that the standard deviation 
parameter is a measure of precision, with a small standard deviation indicating a 
high precision. Whether the threshold or the slope is used as the basis of the meas-
urement of vernier acuity, however, both are performance measures since the  “ bet-
ter than ”  heuristic applies equally. Note, however, that because the PSA might be 
biased, it would be a mistake to treat the experiment as Type 1, i.e., one with a cor-
rect and an incorrect response on each trial. This is important. Suppose the observ-
er’s bias was such that when physically aligned, the upper line appeared slightly 
to the left of the lower line. On trials where the upper line was positioned slightly 
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 FIGURE 2.8          Left: stimulus arrangements for two vernier alignment experiments. Right: hypothetical 
data from each experiment. The abscissa plots the horizontal physical separation between the black 
lines, with positive values indicating that the top line is physically to the left of the bottom line and 
negative values that the top line is physically to the right. The ordinate gives the proportion of times the 
observer responds that the top line is  “ left. ”  The continuous curves are best-fi tting logistic functions. The 
green arrows indicate for Task A the vernier threshold and for Task B the point-of-subjective alignment.    
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to the right of the lower line, the observer’s bias would result in a number of  “ left ”  
responses, and if feedback were given, such trials would be scored  “ incorrect. ”  This 
would inevitably cause confusion in the observer  –  after all they really  did  see those 
lines as  “ left. ”  Such confusion could be detrimental to performance. 

 The   fact that a performance measure, vernier acuity, is in some circumstances 
best measured without feedback exemplifi es how the performance versus appear-
ance distinction is not always synonymous with Type 1 versus Type 2. In fact, 
precision, which we have argued is a performance measure, can be measured for 
any Type 2 PSE. Other examples of performance measures that are not necessarily 
obtained from Type 1 experiments are contrast detection thresholds obtained using 
the method of adjustment, measures of accuracy (see next paragraph) and measures 
of reaction time. Thus, although all Type 1 experiments measure performance, not 
all performance measures are obtained from Type 1 experiments. 

 Not   only the precision but the bias in the vernier alignment task A can be con-
sidered to be a measure of performance. In Section 2.3.2 we defi ned the term accu-
racy as the closeness of a psychophysical measure to its true, i.e. physical value. For 
the vernier experiment, a bias indicates inaccurate alignment and thus the bigger 
the bias the lower the accuracy. A similar argument holds for the line bisection task 
illustrated in  Figure 2.4 . In this case, accuracy is measured by how close the observ-
er’s mean setting is to the physical mid-point of the line, while precision is related 
inversely to the variability of the observer’s settings. Since one can legitimately 
argue that one observer is more accurate than another in vernier alignment or line 
bisection, accuracy as measured in these tasks is a performance measure. As a per-
formance measure, accuracy is particularly germain to spatial vision where accu-
rate estimates of distances and other spatial relationships are necessary in order for 
the observer to navigate the visual world. However, as we shall now see, measures 
of bias in many circumstances are better considered as measures of appearance. 

   Consider vernier alignment task B. In this case, as with the Muller – Lyer and 
brightness-matching experiments, it is the bias that we are primarily interested in. 
We want to know by how much the PSA is shifted by the presence of the white 
lines. The shift in the PSA is the separation between the PSAs measured in experi-
ments A and B, with each PSA calculated as the point on the abscissa corresponding 
to 50%  “ left ”  responses. Assuming that the PSA from experiment A is at zero, the 
shift in PSA caused by the white lines is indicated by the green arrow on the graph 
associated with task B. This shift is a measure of appearance. All experiments that 
measure appearance are also Type 2. 

 Innumerable   aspects of stimulus appearance are open to psychophysical meas-
urement. To pick just four examples: choosing the computer sketch of a stimulus 
that best matches its appearance (e.g.,  Georgeson, 1992 ); indicating when a simu-
lated three-dimensional random-dot rotating cylinder appears to reverse direc-
tion (e.g.,  Li  &  Kingdom, 1999 ); adjusting the colors of a moving chromatic grating 
until the grating appears to almost stop ( Cavanagh, Tyler  &  Favreau, 1984 ); labeling 
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contour-defi ned regions in images of natural scenes as being either  “ fi gure ”  or 
 “ ground ”  (e.g.,  Fowlkes, Martin,  &  Malik, 2007 ). Are there, however, any broad 
classes of procedure for measuring appearance? Matching and scaling are arguably 
two classes. Matching experiments measure PSEs between two physically differ-
ent stimuli, as in the Rayleigh match, brightness-matching, Muller – Lyer, and ver-
nier task B experiments described above. Scaling experiments, on the other hand, 
determine the relationship between the perceptual and physical representations of a 
stimulus, for example the relationship between perceived contrast and physical con-
trast, hue (or perceive chromaticity) and wavelength, perceived velocity and physi-
cal velocity, perceived depth and retinal disparity. Although not all perceptual scales 
are appearance-based, most are. 

 Example   data from a scaling experiment are shown in  Figure 2.9   . Unlike the 
hypothetical data used so far to illustrate generic experimental results, every per-
ceptual scale has a unique shape, so for  Figure 2.9  we have reproduced a specifi c 
example from an experiment conducted by  Whittle (1992) . Whittle was interested 
in the relationship between the brightness (or perceived luminance) and physical 
luminance of uniform discs on a gray background. Observers were presented with 
a display consisting of 25 discs arranged in a spiral, with the fi rst and last fi xed in 
luminance at the lowest and highest available on the monitor  –   “ black ”  and  “ white. ”  
The observer adjusted the luminances of the remaining 23 discs until they appeared 
to be at equal intervals in brightness.  Figure 2.9  plots the number of the disc (1 – 25) 
against its luminance setting. If brightness (the perceptual dimension) was linearly 
related to luminance (the physical dimension) then the function would be a straight 
line. Instead, however, it has a complex shape. There are many different procedures  
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 FIGURE 2.9          Data from a brightness scaling 
experiment. The graph plots the number of the disc 
against its luminance, after the luminances of all 
the discs have been adjusted to make them appear 
at equal brightness intervals. The green arrow 
indicates the point where the discs change from being 
decrements to increments. Data based on  Whittle 
(1992) .    
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for deriving perceptual scales, and these are summarized in Chapter 3, with further 
details provided in Chapter 7. 

 Both   performance-based and appearance-based experiments are important to 
our understanding of vision. Measures from both types of experiment are probably 
necessary to fully characterize the system. The relationship between performance 
and appearance, and what each tells us about visual function, is a complex and 
interesting issue, but one beyond the remit of this book (e.g., in some instances they 
appear to measure closely-related psychological processes, as implied by  Whittle, 
1992 , while in others they arguably measure quite different psychological proc-
esses, as argued by  Gheorghiu  &  Kingdom, 2008 ) in relation to curvature process-
ing. However, we argue that the performance-versus-appearance dichotomy more 
than any other so far discussed represents the most fundamental dividing line in 
psychophysics. For this reason we propose it as the candidate for the superordinate 
division in our classifi cation scheme. In the next section, we discuss some of the 
possibilities for the second-level categories in the scheme.  

    2.3.5        “ Forced-choice ”  Versus  “ Non-forced-choice ”  
 Forced  -choice procedures are used extensively in psychophysics. There is more 

than one convention, however, for the use of the term  “ forced-choice. ”  In signal 
detection theory ( McNicol, 2004 ;  Macmillan  &  Creelman, 2005 ;  Wickens, 2002 ), dis-
cussed in Chapter 6, the term is mainly used to characterize experiments in which 
two or more stimulus alternatives are presented during a trial, one of which is the 
 “ target. ”  Example forced-choice tasks that accord with this usage are: deciding which 
of two stimuli, a blank fi eld or patch, contains the patch; deciding which of two 
patches is brighter; deciding which of three lines, two oriented  � 5 degrees and one 
oriented  � 5 degrees, is the  � 5 degree line. In each of these examples, the observer 
has to select a stimulus from two or more presented during the trial. Typically, at 
the end of the experiment the proportion of trials in which the target alternative was 
selected over the other(s) is calculated for each stimulus magnitude. Recall that the 
measure derived from these proportions may be a performance measure, such as a 
threshold, or an appearance measure such as a PSE. 

 In   the signal detection literature, most other types of discrimination task are not 
explicitly referred to as forced-choice, we understand to avoid the term becoming 
redundant. For example, take the procedure termed  “ yes/no, ”  in which only one 
stimulus is presented per trial.  Figure 2.10    illustrates the procedure when applied to 
a contrast detection threshold experiment, along with the two-stimulus-per-trial ver-
sion (2AFC) explicitly referred to as forced-choice in the signal detection literature. 
In the yes/no experiment, the target is typically presented on half the trials and the 
observer responds  “ yes ”  or  “ no ”  on each trial depending on whether or not they see 
the target. Although yes/no experiments fi gure prominently in the signal detection 
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literature, they are not widely employed today in visual psychophysics, as the 2AFC 
procedure is generally preferred for reasons discussed later and in Chapters 3 and 6. 
The more popular type of single-stimulus-per-trial experiment is the variety we 
term  “ symmetric, ”  meaning that the stimulus alternatives are akin, metaphorically, 
to mirror images, i.e., they are  “ equal and opposite. ”  Example symmetric one-stim-
ulus-per-trial experiments include the orientation discrimination task illustrated in 
 Figure 2.4  (grating left oblique versus grating right oblique) and the vernier task A in 
 Figure 2.8  (upper line to the left versus upper line to the right). Although in the ver-
nier alignment experiment two lines are presented to the observer on each trial, one 
should still think of this as a single stimulus alternative. As with the yes/no task, 
signal detection theory does not generally refer to symmetric single-stimulus-per-
trial experiments as forced-choice. 

 We argue however that in   the context of psychophysics as a whole it is impor-
tant to distinguish between procedures that require forced-choice responses and 
procedures that do not. Therefore, in this book, we have adopted the convention 
of referring to any procedure as forced-choice if the observer has two or more pre-
specifi ed response options. According to this convention, a yes/no experiment is 
forced-choice because there are two response options:  “ yes ”  and  “ no. ”  By the same 
argument, the single-alternative-per-trial orientation-discrimination and vernier 
acuity experiments described above are also forced-choice. We refer to this conven-
tion as the response-based defi nition of forced-choice. Readers may prefer to think 
of the response-based defi nition of forced-choice in terms of choices between  “ stim-
ulus states, ”  for example in the yes/no experiment between  “ stimulus present ”  and 
 “ stimulus absent ” . As it turns out, the response-based defi nition of forced-choice is 
widely adopted in both the literature and in common parlance, as exemplifi ed by the 
many single-stimulus-per-trial experiments that are routinely termed forced-choice 
(e.g.,  Dakin, Williams,  &  Hess, 1999 ). 
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 FIGURE 2.10          Yes/no versus 2AFC (two-alternative forced-choice) procedures. In the yes/no task 
the two alternatives  –   “ stimulus present ”  and  “ stimulus absent ”   –  are presented on separate trials, 
whereas in the 2AFC task they are presented within the same trial. Correct responses are indicated 
below the stimuli. In this book, both types of task are referred to as  “ forced-choice. ”     



2.   CLASSIFYING PSYCHOPHYSICAL EXPERIMENTS28

 Are   there drawbacks to a response-based defi nition of forced-choice? Consider 
the method of limits, used mainly to obtain thresholds. Observers are presented 
with a series of stimuli that are systematically increased (or decreased) in inten-
sity, and are prompted to indicate whether or not they can see the stimulus. The 
stimulus intensity at which the observer switches response from  “ no ”  to  “ yes ”  (or 
 vice versa ) is then taken as the threshold. With a response-based defi nition of forced-
choice, the procedure is arguably forced-choice. Suppose, however, the observer 
 “ takes control ”  of the stimulus presentation and adjusts the stimulus himself/her-
self. This is normally regarded as the method of adjustment and not forced-choice. 
But are the two procedures really so different? In both experimenter-controlled and 
observer-controlled procedures there is no correct and incorrect answer on each 
stimulus presentation, because the stimulus is always present, albeit with differ-
ent intensity, so both procedures are Type 2. Moreover, with the observer-controlled 
adjustment procedure the observer is constantly making a perceptual decision as 
to whether or not the stimulus is visible, so is this not forced-choice according to 
our defi nition? The example of the method of limits highlights a conundrum for 
the response-based defi nition of forced-choice: where does forced-choice end and 
method of adjustment begin? The resolution of the conundrum lies in a caveat to 
our defi nition of forced-choice, namely that the experiment must involve clearly 
demarcated trials. 

 Forced  -choice tasks are invariably denoted by the abbreviations AFC (alterna-
tive forced-choice) or IFC (interval forced-choice). AFC is the generic term, while 
IFC is reserved for procedures in which the stimulus alternatives are presented in 
temporal order. Both acronyms are invariably prefi xed by a number. In this book, 
this number is the number of stimulus alternatives presented on each trial, denoted 
by  M . The value of  M  is important for the signal detection analyses described in 
Chapter 6, since it relates to the degree of uncertainty as to the target interval/loca-
tion, as well as to the amount of information present during a trial. Because we 
have adopted the convention of characterizing all tasks that require forced-choice 
responses as AFC or IFC, we characterize single-stimulus-per-trial procedures such 
as the yes/no and symmetric single-interval tasks as 1AFC. To spell out our usage: 
1AFC means  “  …  a forced-choice task in which only one stimulus alternative is pre-
sented per trial. ”  Readers should be aware, however, that other investigators use 
the number of response choices as the prefi x when referring to single-stimulus-per-
trial experiments, which is typically 2 (e.g.,  Dakin et al., 1999 ). 

 We   denote on the other hand the number of response choices by  m.  In most pro-
cedures  M  and  m  are the same. For example, in tasks where one interval contains 
the target and the other a blank fi eld there are two alternatives per trial  –  blank fi eld 
and target  –  and two response choices per trial  –   “ 1 ”  (fi rst interval) and  “ 2 ”  (second 
interval). However, with a single-interval task with two response choices, the use of 
 m  as the prefi x leads to the notation 2AFC (e.g., as mentioned above for  Dakin et al., 
1999 ), rather than the 1AFC notation as employed here. In most other cases the use 
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of the prefi x  M  accords with current convention, e.g., two-alternative tasks are also 
here 2AFC, two-interval tasks are 2IFC, three-alternative tasks are 3AFC, and so on. 

 Our   choice of  M  rather than  m  as the prefi x for a forced-choice task is a conces-
sion to signal detection theory, where the distinction between single-interval/alter-
native and two-interval/alternative tasks needs to be explicit. Nevertheless,  m  is 
an important parameter as it determines the guessing rate in a forced-choice task. 
The guessing rate is the proportion of times an observer is expected to be correct if 
simply guessing, and is hence calculated as 1/ m , for example 0.5 in both a yes/no 
and 2AFC task. The guessing rate is a critical parameter when fi tting psychometric 
functions, as we shall see in Chapter 4. 

 A   third important parameter in forced-choice tasks is the number of stimuli pre-
sented per trial, denoted here by  N . Again, in most procedures  N  is the same as  M  
(and hence  m ). However, in some forced-choice tasks, such as the  “ same-different ”  
task that will be discussed in more detail in Chapters 3 and 6, the values of  N  and  M  
are not the same. Same-different tasks in vision research typically use either two or 
four stimuli per trial, i.e.,  N  is 2 or 4. In the  N       �      2 version, the two stimuli on each trial 
are either the same or are different, and the observer is required to respond  “ same ”  
or  “ different. ”  In the  N       �      4 version, a same pair  and  a different pair are presented in 
each trial, usually in temporal order, and the observer responds  “ 1 ”  or  “ 2 ”  depending 
on the interval perceived to contain the same (or different) pair. In both the  N       �      2 and 
 N       �      4 same-different versions,  m , the number of response alternatives, is 2.  M , the 
number of stimulus alternatives per trial, is, respectively 1 and 2. Values of  N ,  m  and 
 M  for a variety of different psychophysical tasks are given in Table 6.1 in Chapter 6.  

    2.3.6        “ Criterion-free ”  Versus  “ Criterion-dependent ”  
 The   yes/no task described above is often termed  “ criterion-dependent, ”  whereas 

the 2AFC/2IFC task is often termed  “ criterion-free. ”  Characterizing yes/no tasks as cri-
terion-dependent captures the fact that observers typically adopt different criteria as 
to how strong the internal signal must be before they respond  “ yes. ”  Different crite-
ria lead to different biases towards  “ yes ”  or  “ no, ”  irrespective of the actual strength 
of the internal signal. If a strict criterion is adopted, the internal signal must be 
relatively strong for the observer to respond  “ yes, ”  whereas if a loose criterion is 
adopted a weak internal signal is suffi cient. The adoption of different criteria might 
result from an unconscious bias, or it might be part of a conscious strategy. For 
example, observers might consciously bias their responses towards  “ yes ”  because 
they want to maximize the number of correct target detections or  “ hits, ”  even if this 
results in a number of  “ false alarms, ”  i.e.,  “ yes ”  responses when the target is absent. 
On the other hand, they might consciously adopt a strict criterion in order to mini-
mize the number of false alarms, even if this means fewer hits. 

 2AFC  /2IFC tasks can also be prone to bias, but a bias towards responding  “ 1 ”  
(fi rst alternative/interval) or towards  “ 2 ”  (second alternative/interval). However, 
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biases of this sort are less common because the two response choices are on an 
 “ equal footing; ”  the observer knows that on every trial the target will be present, so 
the option of consciously trading off hits and false alarms does not in the same way 
arise. When biases do occur in forced-choice tasks one cannot estimate the sensitivity 
of an observer to the target stimulus from the proportion correct responses. Chapter 
6 explains why this is so, and describes an alternative measure,  d  �  ( “ d-prime ” ), that 
is more valid in such cases. 

 There   is, however, another more general meaning to the terms criterion-free and cri-
terion-dependent. Occasionally one hears that Type 1 tasks are criterion-free and Type 2 
tasks criterion-dependent. This usage somewhat parallels the objective – subjective 
dichotomy discussed above.  

    2.3.7        “ Detection ”  Versus  “ Discrimination ”  
 The   terms  “ detection ”  and  “ discrimination ”  are used variously to character-

ize tasks, measures, procedures, and experiments. For example one might carry out 
a  “ detection experiment ”  using a  “ detection task ”  to obtain a  “ detection measure. ”  
The term detection is most frequently used to characterize experiments that measure 
thresholds for detecting the presence, as opposed to the absence, of a stimulus, for 
example a contrast  “ detection ”  threshold. However, the  “ null ”  stimulus in a detection 
experiment is not necessarily a blank fi eld. In curvature detection experiments the null 
stimulus is a straight line, as illustrated at the top of  Figure 2.11   . Similarly, in stere-
oscopic depth detection experiments the null stimulus lies at a depth of zero, i.e., in 
the fi xation plane, and in a motion detection experiment the null stimulus is one that 
is stationary. 

V

V

 FIGURE 2.11          Top: the task is to identify which of the two stimuli is curved. The task is sometimes 
termed curvature detection, sometimes curvature discrimination. Bottom: the task is to identify which 
stimulus is the more curved. This task is invariably termed curvature discrimination.    
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 The   term discrimination, on the other hand, is generally reserved for experi-
ments in which neither of the two discriminands (the stimuli being discriminated) 
is a null stimulus. Thus, in a curvature discrimination experiment, illustrated at the 
bottom of  Figure 2.11 , both stimuli in the forced-choice pair are curved, and the task 
is to decide which is more curved. Similarly, in a stereoscopic depth discrimination 
experiment both stimuli have non-zero depth, and the task is to decide which is 
nearer (or further) and in a motion discrimination experiment both stimuli are mov-
ing, and the task is to decide which is moving faster (or slower). 

 This   being said, the terms detection and discrimination tend to be interchange-
able. For example, the curvature task illustrated at the top of  Figure 2.11  is some-
times termed detection ( Kramer  &  Fahle, 1996 ) and sometimes discrimination (e.g., 
 Watt  &  Andrews, 1982 ), even though one of the discriminands is a straight line. 
Consider also the contrast discrimination experiment illustrated in  Figure 2.12   . The 
aim here is to measure the just-noticeable difference (JND) in contrast between two 
above-threshold stimuli. Typically, one of the contrasts, say the one on the left in 
the fi gure, is fi xed and termed the baseline or pedestal contrast. The other stimulus 
is varied to fi nd the JND. One can think of this experiment in two ways. On the one 
hand it measures a  “ discrimination ”  threshold between two contrasts, while on the 
other hand it measures a  “ detection ”  threshold for an increment in contrast added 
to a pedestal. In  Figure 2.12  the pedestal and pedestal-plus-increment are presented 
to the observer at the same time, termed by some the  “ pulsed-pedestal ”  paradigm 
(e.g.,  Lutze, Pokorny,  &  Smith, 2006 ). In another form of the procedure the pedes-
tals are fi rst presented together, and then after a short duration the increment is 
added to one of the pedestals, termed by some the  “ steady-pedestal ”  paradigm 
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Cp

 FIGURE 2.12          The task of the subject is to indicate the patch with the higher contrast. The lower 
contrast patch on the left is fi xed in contrast and is termed the pedestal contrast Cp. The variable 
contrast patch is the one on the right. The task can be regarded as either contrast  “ discrimination ”  
or contrast increment  “ detection. ”  The contrast increment is the test contrast, Ct.    



2.   CLASSIFYING PSYCHOPHYSICAL EXPERIMENTS32

(e.g.,  Lutze et al., 2006 ). One could make the argument that the two paradigms 
should be considered respectively discrimination and detection, but in reality there 
is no hard-and-fast rule here and both paradigms could be considered detection or 
discrimination. One should be prepared to be fl exible in the use of these terms. 

 Two   psychophysical terms closely related to detection and discrimination are 
 “ recognition ”  and  “ identifi cation. ”   “ Recognition ”  generally denotes experiments 
involving relatively complex stimuli such as faces, animals, and household objects, 
where the task is to select from two or more objects one either recently shown or 
long ago memorized. For example, in a prototypical face-recognition experiment a 
briefl y-presented test face is followed by two or more comparison faces from which 
the observer must choose the test face (e.g.,  Wilbraham et al., 2008 ). This type of 
procedure is known as  “ match-to-sample. ”  Another type of face recognition task 
requires the observer to simply name a briefl y-presented famous face (e.g.,  Reddy, 
Reddy,  &  Koch, 2006 ). 

 The   term  “ identifi cation ”  is sometimes used instead of recognition, sometimes 
instead of discrimination. Probably the most common usage of the term is to charac-
terize experiments in which the discriminands differ along two dimensions, both of 
which must be discriminated. For example, in a type of experiment termed  “ simul-
taneous detection and identifi cation ”  the observer is presented with two inter-
vals on each trial (i.e., 2IFC), one containing the target and the other a blank fi eld. 
However, the target can be one of two types of stimulus, e.g., red or green, moving 
left or moving right, near or far. The observer is required to make two judgements 
on each trial: one the interval containing the stimulus and the other the type of stim-
ulus. The fi rst judgement is usually termed detection, while the second is sometimes 
termed discrimination (e.g.,  Watson  &  Robson, 1981 ) and sometimes identifi cation 
(e.g.,  Kingdom  &  Simmons, 1998 ). Typically, the aim of the experiment is to decide  
whether the psychometric functions derived from the two types of decision are 
signifi cantly different (see Chapter 8 for details).  

    2.3.8        “ Threshold ”  Versus  “ Suprathreshold ”  
 As   with the terms detection and discrimination,  “ threshold ”  and  “ suprathresh-

old ”  can refer to experiments, tasks, procedures, or measures. In sensory science 
a threshold is roughly defi ned as the stimulus magnitude that results in the per-
ception of a new stimulus state. Traditionally, psychophysical thresholds have been 
divided into two categories:  “ absolute ”  and  “ difference. ”  An absolute threshold is 
the magnitude of a stimulus that enables it to be just discriminated from its null, 
as exemplifi ed by a contrast detection threshold ( Figure 2.12 ). A difference thresh-
old, on the other hand, is the magnitude of stimulus difference needed to make two 
stimuli that are both above their individual absolute thresholds just discriminable, 
as exemplifi ed by a contrast discrimination threshold ( Figure 2.12 ). 
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 Both   these examples of threshold measures are performance measures. However, 
not all thresholds are performance measures. Consider the phenomenon of binocular 
rivalry. Binocular rivalry is said to occur when different stimuli presented to the two 
eyes are perceived to alternate in dominance (e.g.,  Papathomas, Kovacs,  &  Conway, 
2005 ). A threshold for binocular rivalry can be defi ned as the minimum physical dif-
ference between the stimuli needed to produce rivalry. This is an appearance measure. 

 The   term suprathreshold has more than one defi nition. One defi nition is that it 
is any non-threshold experiment, task, procedure, or measure. According to this 
defi nition the contrast-matching and Muller – Lyer experiments described above are 
suprathreshold, but the contrast discrimination, vernier acuity, and curvature dis-
crimination experiments are not, because they measure thresholds. However, supra-
threshold can also refer to any experiment/task/procedure/measure that involves 
stimuli that are all individually above their own detection threshold. According to 
this defi nition the contrast discrimination, vernier acuity and curvature discrimina-
tion experiments are also suprathreshold. Once again, one has to be prepared to be 
fl exible when interpreting these terms.   

    2.4       CLASSIFICATION SCHEME 

 The   fi rst four levels of our proposed scheme are illustrated in  Figure 2.13   ; a fi fth level is 
added in the next chapter. Let us recap the meaning of these categories. Any experiment, 
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 FIGURE 2.13          The initial stages of a scheme based on the performance-appearance distinction. An 
expanded version of the scheme is provided in the following chapter.    



2.   CLASSIFYING PSYCHOPHYSICAL EXPERIMENTS34

task or procedure is performance-based if what it measures affords a comparison in 
terms of aptitude. Thus, a contrast-detection experiment is performance-based, because 
it affords the claim that contrast sensitivity is better in central compared to periph-
eral vision. Similarly, vernier acuity is a performance measure because it affords the 
claim that vernier acuity is better in the young than in the old, and speed discrimi-
nation is a performance measure because it affords the claim that speed discrimi-
nation is better at low than at high speeds. Appearance-based experiments, on the 
other hand, measure the apparent magnitude of some stimulus dimensions. Thus, 
an experiment that measures the Muller – Lyer illusion measures the apparent dif-
ference in line length between the two fi gures, while the asymmetric brightness-
matching experiment measures the apparent brightness of a patch surrounded by 
an annulus. Given that the same task can be used to obtain both performance and 
appearance measures, the performance-versus-appearance dichotomy speaks prima-
rily to the  “ goal ”  of a psychophysical experiment and the  “ measure ”  it provides. We 
regard performance and appearance measures of sensory function as equally impor-
tant to our understanding of sensory processes, and in the rest of the book we have 
attempted to balance their respective treatments. 

 Thresholds   (which here include precisions) are the best-known performance 
measures, but performance measures also include proportion correct,  d  � s (d-
primes), measures of accuracy and reaction times. The most common appearance-
based measures are PSEs (derived from matching procedures) and perceptual scales 
(derived from scaling procedures). Therefore, the third level in the scheme high-
lights thresholds, accuracies, reaction times, PSEs and scales. 

 The   fourth-level division into forced-choice and non-forced-choice is intended to 
shift the emphasis of the scheme from the measurement goal of a psychophysical 
experiment to its procedural form. In the next chapter a fi fth level is added, a divi-
sion by the number of stimuli presented per trial, providing the fi nal framework for 
systematically examining a wide range of psychophysical procedures.  

    Further Reading 
 A   discussion of Brindley’s distinction between Class A and Class B observations 

can be found in  Brindley (1970)  and  Gescheider (1997) . Sperling has written a short 
guide to Type 1 and Type 2 ( Sperling, 2008 ), although see also  Galvin et al. (2003)  
for a somewhat different interpretation. Discussions of yes/no versus forced-choice 
procedures from the standpoint of signal-detection theory can be found in  McNicol 
(2004) ,  MacMillan  &  Creelman (2005) , and  Wickens (2002) . A good example of the 
congruency of threshold and scaling measures can be found in  Whittle (1992) , while 
a discussion of the incongruency between performance and appearance measures 
can be found in the discussion of studies of curvature perception in the introduc-
tion of  Gheorghiu  &  Kingdom (2008) .
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        Exercises      
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        1.     Categorize the following observations as Class A or Class B. 
    a.     Choosing a previously shown face from a set of fi ve alternatives (a match-to-

sample face recognition task).  
    b.     Deciding whether a particular purple is more reddish or more bluish.  
    c.     Measuring the effect of contrast on the perceived speed of a moving object.  
    d.     Measuring the just-noticeable-difference between the lengths of two lines.  
    e.     Naming a briefl y-presented famous face.  
    f.     Measuring the reaction time to the onset of a grating.  
    g.     Measuring the threshold for identifying that an image of an everyday scene has 

been artifi cially stretched.  
    h.     Measuring the duration of the motion-after-effect (the illusory reversed motion 

seen in an object following adaptation to a moving object).     
    2.     Which of the following could be measured using a Type 1 forced-choice task 

(i.e. with a correct and an incorrect response on each trial)? 
    a.     Estimating the perceived speed of a moving pattern.  
    b.     Bisecting a line into two equal halves.  
    c.     Deciding whether a particular purple is more reddish or more bluish.  
    d.     Measuring the just-noticeable-difference between the curvature of two lines.  
    e.     Discriminating male from female faces.     

    3.     Make a table with nine rows labeled by the dichotomies described in the chapter 
and six columns a – f. For each of the following tasks, consider which term from each 
dichotomy, if at all, is appropriate and write the answer in the table. 
    a.     The observer adjusts the contrast of a patch until it looks just-noticeably-brighter 

than another patch.  
    b.     The observer presses a button in response to a decremental change in contrast 

and his/her reaction time is measured.  
    c.     The observer chooses from two colors the one appearing more yellowish.  
    d.     The observer adjusts the speed of a drifting grating until it matches the perceived 

speed of another drifting grating with a different spatial frequency (the spatial fre-
quency of a grating is the number of cycles of the grating per unit visual angle).  

    e.     The observer selects on each trial which of two depth targets appears to lie in 
front of the fi xation plane.  

    f.     The observer identifi es whether the face presented on each trial is male or female.              
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C H A P T E R

              Varieties of Psychophysical 
Procedure  

    3.1           INTRODUCTION 

 In   this chapter we delve into the design details of psychophysical procedures and 
consider their relative advantages and disadvantages. The term  “ procedure ”  refers 
to both the observer’s task and the method of data collection, in other words the 
 “ front-end ”  of a psychophysics experiment. Subsequent chapters will deal with the 
analysis of psychophysical data  –  the  “ back-end ”  of a psychophysics experiment. 
The procedures described in this chapter are organized according to the perform-
ance versus appearance classifi cation scheme described in Chapter 2.  Figure 3.1    
expands the scheme to include a further level of categorization based on the 
number of stimuli presented per trial, or  N. N  seems to us the natural way to extend 
the scheme in order to incorporate the many variants of each class of psychophysi-
cal procedure. 

3.1 Introduction
3.2 Performance-based Procedures

3.2.1 Thresholds
3.2.2 Non-threshold Procedures

3.3  Appearance-based Procedures
3.3.1 Matching
3.3.2 Scaling

3.4  Further Design Details
3.4.1 Method of Constant Stimuli
3.4.2 Adaptive Procedures
3.4.3 Timing of Stimulus 

Presentation
Further Reading
References
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 FIGURE 3.1          Expanded scheme for classifying psychophysical experiments.    
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 Recall   the meaning of the major categories in the classifi cation scheme. Performance-
based procedures measure aptitude or  “ how good one is ”  at a particular visual task. In 
Chapter 2 we included in this category most types of threshold measure, simple pro-
portion correct,  d  �  measures of precision, accuracies and reaction times. We pointed out 
that while many types of performance measure could be obtained using Type 1 tasks, 
i.e., tasks with a correct and an incorrect response on each trial, not all were Type 1. For 
example, measures of reaction time, some measures of precision, accuracies and some 
types of threshold measure could be obtained using procedures that were Type 2, i.e., 
had no correct and incorrect response. 

 Appearance  -based procedures, on the other hand, generally measure the appar-
ent magnitude (relative or absolute) of some stimulus dimension. Appearance-based 
procedures can only be Type 2. This does not imply that appearance-based meas-
urements are less useful or less valid than performance-based measurements for 
understanding sensory function. Both types of measurement are arguably necessary 
to fully characterize the system. 

 Forced  -choice procedures, as defi ned here, refer to procedures in which the observer 
is required on each trial to make a response from two or more pre-specifi ed options. Our 
defi nition of forced-choice is not restricted to situations where two or more stimuli are 
presented per trial; a single-stimulus-per-trial presentation with two response options 
is here regarded as forced-choice. Moreover, the term forced-choice applies to both 
performance-based and appearance-based procedures.  

    3.2           PERFORMANCE-BASED PROCEDURES 

    3.2.1           Thresholds 

    3.2.1.1           Forced-choice Threshold Procedures 
 Although   we have chosen to categorize forced-choice procedures according to 

the number of stimuli presented per trial,  N , recall from Chapter 2 that the acro-
nyms AFC and IFC are not prefi xed by  N , but  M , the number of stimulus alterna-
tives presented per trial. In many types of forced-choice procedure,  N  and  M  are 
the same, but in some, such as the same-different and match-to-sample procedures 
discussed later, they are different. 

 Consider   the various ways one might measure an orientation discrimination 
threshold for grating patches. The goal is to measure the minimum discriminable 
difference in orientation between a left-oblique and a right-oblique patch of grating. 
The fi rst thing to note is that the potential number of stimuli that could be presented 
during a trial is infi nite. For example, the display screen could be divided into 100 
squares by an 11      �      11 grid of lines, with 99 locations containing, say, a left-oblique 
grating and 1 location containing the right-oblique  “ target ”  grating. The task for the 
observer would be to choose the location containing the target, and the response 
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would be scored as either correct or incorrect. In principle this seems fi ne, but think 
about what the task would involve. During each trial the observer would need to 
scan all 100 locations in order to be sure not to miss the target. Therefore, each trial 
would invariable take several seconds or longer. The experiment would take a long 
time to complete, assuming one wants to collect enough data to obtain a good esti-
mate of the threshold, say from a psychometric function of proportion correct ver-
sus orientation difference. The procedure seems impractical, unless of course one 
specifi cally wants to study how observers perform with large  N  displays. For most 
purposes, however, a small value of  N  is preferable. In the limit  N       �      1, but there 
can be drawbacks to  N       �      1. In fact, as we shall see, there are both advantages and 
disadvantages to each of  N       �      1, 2, 3, 4, and  N      �     4. 

    Figure 3.2    summarizes the common varieties of performance-based forced-choice 
tasks using small  N , applied to the orientation discrimination experiment. We will dis-
cuss the various options illustrated in the fi gure as we proceed through this section. 
Note how the value of  M , which prefi xes the acronym AFC, is not always the same as  N . 

    3.2.1.1.1            N       �      1 (one stimulus per trial) 
    Method of limits 

 Although   rarely used these days, this procedure is a quick method of obtaining a 
rough estimate of a threshold. It is probably most useful for getting a handle on the 
appropriate stimulus levels to use in subsequent more rigorous experiments. The 
method of limits may also be desirable in situations where the experimenter needs 
to maintain close verbal contact with the observer. A verbal report may be the only 
possible type of response with for example, young children or clinically impaired 
persons, or indeed in any circumstance where it is diffi cult for the observer to be 
 “ in the driving seat. ”  

 The   observer is presented with a series of temporally or spatially demarcated 
stimuli of increasing (ascending method of limits) or decreasing (descending 
method of limits) magnitude, including sometimes the null or baseline stimulus at 
one end of the continuum. In a contrast detection threshold experiment, the ascend-
ing series might be contrasts of, say, 0, 0.01, 0.02, 0.04, 0.08, etc. For our orienta-
tion discrimination example the series might be grating patch orientations of, say, 0, 
0.25, 0.5, 0.75, 1.0, 1.25, etc., degrees. On each presentation the observer is required 
to report  “ yes ”  or  “ no, ”  depending on whether the stimulus appears noticeably dif-
ferent from the null or baseline level (zero in both examples). The threshold in each 
case is measured as the stimulus magnitude at which the response switches from 
 “ no ”  to  “ yes ”  and/or  vice versa . This is a Type 2 performance procedure, because 
the observer’s response is never evaluated in terms of whether it is correct or incor-
rect. Typically, the ascending and descending series are presented alternately, and 
the thresholds from each averaged. 

 A   potential disadvantage of the method of limits is that the observer may become 
accustomed to reporting that they perceive (or not) a stimulus, and as a result 
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c ontinue to give the same report even at stimulus magnitudes that are higher (or 
lower) than the  “ real ”  threshold. This is termed the error of habituation. Conversely, 
the observer may anticipate that the stimulus is about to become detectable, or unde-
tectable, and make a premature judgement. This is called the error of expectation. 

 3.2. PERFORMANCE-BASED PROCEDURES 43

Stimuli presented during trialN

1

2

3

3

4

2

1AFC
Symmetric

Standard
2AFC

3AFC
Oddity

2AFC
Match-to-
sample

2AFC
Same-

Different

Task name

1AFC
Same-

Different

Respond
“left-oblique”

or “right-oblique”

Select stimulus
that is left-oblique

Select stimulus
that is the oddity

Select from the 
two bottom stimuli
the one that is the
same as the top

stimulus

Select the pair
(top or bottom)
that is different

(or same)

Task

Respond
“same” or
“different”

V

V

V V

V

V

 FIGURE 3.2          Different methods for measuring an orientation discrimination threshold.  N       �      number 
of stimuli presented on each trial. Note that the number that prefi xes the acronym AFC (alternative-
forced-choice) is  M , the number of stimulus alternatives presented per trial.    
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Errors due to habituation and expectation may be minimized by averaging thresh-
olds from ascending and descending series.  

    Yes/No 
 The   yes/no procedure is employed primarily for measuring detection thresh-

olds. Typically, half the trials contain the target stimulus and half no target stimu-
lus, and the task for the observer is to respond  “ yes ”  or  “ no ”  on each trial. Since the 
responses are evaluated as either correct or incorrect, the procedure is Type 1. As 
in all forced-choice tasks, the order of presentation of the target-present and target-
absent trials must be random, or quasi-random. With quasi-random presentation a 
rule precludes long sequences of either target-present or target-absent trials. 

 Yes  /no tasks are particularly prone to the effects of bias. The bias in this case means 
that observers may adopt, intentionally or unintentionally, different criteria as to how 
much sensory evidence they require before being prepared to give a  “ yes ”  response. 
If they adopt a strict criterion, they will respond  “ yes ”  only on those trials when they 
are very confi dent that the target is present. On the other hand if they adopt a loose 
criterion, they will respond  “ yes ”  on the fl imsiest of evidence. Experimenters some-
times use the yes/no task  because  it is criterion-dependent, for example in order to 
study the effect of incentives on performance. The incentive might be to maximize the 
number of  “ hits ”   –  these are  “ yes ”  responses when the target is present, or minimize 
the number of  “ false alarms ”   –  these are  “ yes ”  responses when the target is absent. 
In situations where the observer is biased towards either responding  “ yes ”  or  “ no, ”  
the proportion of correct decisions is a poor measure of how sensitive the observer 
is to the target stimulus. To circumvent this problem, experimenters typically prefer 
the measure of performance  d  �  that can be calculated from the proportions of hits and 
false alarms. The method for doing this is discussed in Chapter 6.  

    Symmetric 
  N         �      1 forced-choice procedures can also be used when the two discriminands are 

 “ symmetric, ”  as in the orientation discrimination task illustrated at the top of  Figure 3.2 . 
Here, the two discriminands are left- and right-oblique grating patches, but of course 
only one is presented during each trial. Because the two discriminands are  “ equal but 
opposite, ”  it is less likely that observers will be biased towards responding to one more 
than the other. Hence, many experimenters treat symmetric  N       �      1 tasks as  “ bias-free ”  
and use proportion correct as the measure of performance. However, to be sure, one 
should analyze the data in a similar way to the yes/no task, as described in Chapter 6. 
To minimize the possibility of bias it is important to make observers aware that the dis-
criminands are presented an equal number of times, or with equal probability. 

 The   main advantages of the symmetric  N       �      1 task is that a large number of 
responses can be collected within a relatively short time, and the task has mini-
mum cognitive load. Inexperienced observers often fi nd this task one of the easiest. 
Typically, the experimenter presents the observer with different stimulus magnitudes 
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during an experimental session, either by the method of constants or by an adap-
tive procedure (see below).   

    3.2.1.1.2            N       �      2 
    Standard 2AFC/2IFC 

 In   what is probably the most popular design in performance-based forced-
choice psychophysics, observers are presented on each trial with two stimuli, and 
are required to select one as the target ( Figure 3.2 ). In one form of the task the two 
stimuli are presented together on the screen (2AFC), while in the other they are pre-
sented in the same display position but in temporal order (2IFC). For a given stimu-
lus exposure time one can gather twice as many responses with 2AFC compared 
to 2IFC for the same session duration, but one must be careful. If the intention is 
to present the stimuli to parafoveal or peripheral vision, 2AFC is the preferred 
method because when the stimuli are placed either side of fi xation the observer is 
less inclined to make an eye movement to one or the other stimulus and uninten-
tionally foveate it, a temptation that is harder to resist with 2IFC. However, if the 
intention is that both stimuli be scanned foveally, then the 2IFC version is prefer-
able. If the presentation time of a 2AFC task is too short ( � 1 second) observers may 
become frustrated while attempting to scan both stimuli within the time allocated. 
If presentation time is too long, the time-advantage of 2AFC is lost, and one might 
as well use 2IFC. Typically, proportion correct is used as the measure of perform-
ance with 2AFC/2IFC, but observers can sometimes be biased towards responding 
to one location/interval more than the other, in which case proportion correct is not 
a good measure and  d  �  should be used (Chapter 6).  

    1AFC Same-different 
 In   this task observers are presented with a pair of stimuli on each trial, with half 

the trials containing a pair that is the same and half the trials a pair that is differ-
ent. The task is to decide whether the pair on each trial is the  “ same ”  or  “ different ”  
( Figure 3.2 ). The main reason for using a same-different task is that the observer 
does not need to know the basis on which the discriminands differ. This is desir-
able in a variety of situations. One situation is when the experimenter is not sure 
on what basis observers will discriminate the stimuli, for example if the stimuli 
are faces with different expressions, and is loath to give precise instructions as to 
what observers should look for. Another situation is when the experimenter wants 
to present observers with multiple discriminand pairs from across a wide range of 
a stimulus dimension. For example, one might want to obtain an overall measure 
of orientation discrimination across all orientations, or an overall measure of color 
discrimination across a variety of different colors. In these circumstances it is pref-
erable not to burdon observers with having to learn the basis for discriminating 
each stimulus pair; this can be especially diffi cult with circular dimensions such as 
orientation or color. 
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 In   the 1AFC version of the same-different task only two stimuli are involved, say 
 S  1  and  S  2.  Hence there are two Same combinations,  S  1  S  1  and  S  2  S  2 , and two Different 
combinations,  S  1  S  2  and  S  2  S  1.  All four combinations are typically presented an equal 
number of times or with equal probability during a session. Because the two discri-
minands (Same and Different) are not symmetric, this task is particularly prone to 
the effects of bias, in this case a tendency towards responding  “ same ”  or towards 
responding  “ different. ”  Thus, it is advisable to analyze the data to take into account 
any bias (see Chapter 6). The less-bias-prone 2AFC version of same-different is 
described later. The 1AFC same-different task is popular in animal experiments as a 
method for determining an animal’s ability to recognize a previously-shown object. 
When employed for this purpose, the two stimuli are presented in temporal order 
and the animal is typically rewarded after correctly identifying a Same stimulus 
(e.g.,  Vallentin  &  Nieder 2008 ).   

    3.2.1.1.3            N       �      3 
    3AFC Oddity 

 In   the oddity task, sometimes termed  “ odd-man-out, ”  all stimuli bar one are the 
same and the observer selects the stimulus that is different ( Figure 3.2 ). Like the 
same-different task, an attractive feature of the oddity task is that the observer need 
not know the basis on which the stimuli differ. The minimum  N  for an oddity task 
is 3, and this version, sometimes termed the  “ triangular method, ”  is undoubtedly 
the most popular (e.g.,  Huang, Kingdom,  &  Hess, 2006 ). Oddity tasks can be either 
three-alternative (3AFC) or three-interval (3IFC). With the 3AFC version the three 
stimuli are best positioned in a triangular arrangement on the screen (e.g.,  Pitchford  &  
Mullen, 2005 ). 

 Are   there disadvantages to the oddity task? Some observers fi nd it diffi cult and 
frustrating. In the case of the 3IFC version, for example, the observer needs to hold in 
short-term memory three pieces of information prior to making a decision, and 
observers sometimes report diffi culty remembering  “ what the fi rst stimulus looked 
like. ”  The 3AFC version avoids this problem providing observers are given plenty 
of time to compare all three stimuli, and probably the most successful version of the 
oddity task is the 3AFC version with unlimited stimulus exposure. However, many 
experimenters prefer the 2AFC match-to-sample or 2AFC same-different task to the 
3AFC oddity task, for reasons now discussed.  

    2AFC Match-to-sample 
 In   this task the observer views a  “ sample ”  stimulus and is then required to select 

the same stimulus from one of two  “ match ”  stimuli. As with the oddity and same-
different tasks, the observer does not need to know the basis on which the stim-
uli differ. Match-to-sample tasks are particularly popular in animal (e.g.,  Jordan, 
MacLean,  &  Brannon, 2008 ), child vision ( Pitchford  &  Mullen, 2005 ), and cognitive 
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vision studies, such as on face recognition (e.g.,  Wilbraham et al., 2008 ). A particu-
larly attractive feature of the match-to-sample task is that it can be used to study rec-
ognition memory, since the time delay between sample and match can be a variable. 
Part of the reason for the task’s popularity is that it is an easy task for human observ-
ers to understand and for animals to learn. The relative ease with which it can be 
understood and learned may in part be due to the fact that the  “ same as ”  concept 
is easier to grasp than the  “ different from ”  concept needed for both the oddity and 
same-different tasks. The match-to-sample task is also less cognitively demanding 
than the oddity task, because there is one less alternative to choose from.   

    3.2.1.1.4            N       �      4 
    2AFC/2IFC Same-Different 

 In   this form of same-different task, the two pairs of stimuli, Same and Different, 
are presented together on a trial, and the observer chooses the pair that is Different 
(or Same). This version of same-different is less prone to bias than the 1AFC version 
described above, and for this reason is preferable. Because there are four stimuli per 
trial, a popular scenario is to present the two members of each pair together on the 
display, but in temporal order (e.g.,  Yoonessi  &  Kingdom, 2008 ). Presenting all four 
stimuli one after the other will likely be too cognitively demanding. Observers often 
prefer the 2AFC same-different task to the 3AFC oddity task because, although the 
former involves one extra stimulus, there is one less alternative to have to choose 
from on each trial.   

    3.2.1.1.5            N   >      4 
    M-AFC tasks 

 Although   we have argued that small- N  forced-choice procedures are generally 
preferable to large- N  ones, there are experimental questions that demand large  N , 
and for this the standard forced-choice, oddity, and match-to-sample tasks are all 
available. The  M -AFC match-to-sample task in particular is a very fl exible tool 
offering a myriad of design possibilities. One can use the task for testing the abil-
ity of observers to select a sample not only from two stimulus states, but also from 
a large number of stimulus states, for example a red object from an array of green, 
red, yellow, blue, etc., match objects. Moreover, the stimuli can be defi ned along 
multiple dimensions, such as color and form. For example the observer might be 
required to select a red T-shape from an array of green O-, yellow B-, red T-, Blue Z-,
etc., shapes. Another variant is to require observers to select the match that has one 
attribute in common with the sample even though differing in all other attributes, 
for example to select the match with the same color as the sample, even though dif-
ferent in form and motion, or to select the match with the same motion as the sam-
ple, even though different in form and color (e.g.,  Pitchford  &  Mullen, 2001 ).    
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    3.2.1.2           Non-forced-choice Thresholds 
    3.2.1.2.1           Method of Adjustment 

 The   method of adjustment is rarely used nowadays to obtain performance meas-
ures, since forced-choice procedures are easy to set up on a computer and are widely 
regarded as superior. However, the method of adjustment can be useful for obtaining 
a rough threshold estimate in order to guide the choice of stimulus magnitudes for an 
in-depth experiment, especially when there are a large number of different conditions 
to be measured (e.g.,  Nishida, Ledgeway,  &  Edwards, 1997 ).    

    3.2.2           Non-threshold Tasks Procedures 

    3.2.2.1           Accuracies and Reaction Times 
  Accuracy refers to how close a measure is to its true value, and can be measured 

using both forced-choice and method-of-adjustment. Examples of accuracy measures 
are described in the previous chapter. 

Reaction times refer to the time taken for an observer to respond to the onset or 
offset of a stimulus. Reaction time is an important aptitude measure, and is often 
an accompaniment to other performance measures such as proportion correct (e.g., 
 Ratcliff  &  Rouder, 2009 ). Reaction times are used as the main performance measure 
in studies of visual search, where the experimenter is interested in the time taken by 
observers to fi nd a target among a set of distractors (e.g.,  Treisman  &  Gelade, 1980 ; 
 McIlhagga, 2008 ). The analysis of reaction time data and its value for understanding 
psychological processes is a large topic that is outside the scope of this book; some 
useful summaries of the fi eld are given at the end of the chapter.    

    3.3           APPEARANCE-BASED PROCEDURES 

 All   appearance-based procedures are Type 2, since there can never be a correct 
and an incorrect response to a judgement about appearance. We have chosen to 
divide appearance procedures into matching and scaling, and then subdivide each 
of these categories into forced-choice and non-forced-choice. Note, however, that as 
we said in the previous chapter, matching and scaling procedures constitute only a 
fraction of the procedures used to measure stimulus appearance. Matching proce-
dures aim to measure the point of subjective equality (PSE) between two stimuli. 
Although matching procedures can be used to derive perceptual scales, scaling pro-
cedures are explicitly aimed at uncovering the relationship between the perceived 
and physical magnitudes of a stimulus dimension. Let us fi rst consider matching. 

    3.3.1           Matching 
 In   Chapter 2 we described a number of matching experiments. The Rayleigh 

match aimed to determine which combinations of wavelengths matched a single, 
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narrowband wavelength in both brightness and hue. The brightness-matching 
experiment measured the luminance of a disc that matched the brightness of a test 
disc surrounded by an annulus. The Muller – Lyer illusion experiment measured the 
length of the center line of one of the two Muller – Lyer fi gures that matched the per-
ceived length of the center line of the other. The vernier experiment measured the 
offset of two lines at which they appeared aligned. Each of these experiments meas-
ured some form of the point of subjective equality (PSE) between physically dif-
ferent stimuli. Although the term  “ matching ”  conjures up an image of an observer 
adjusting something until it looks like something else, three of the above experi-
ments used forced-choice procedures rather than the method of adjustment. With a 
forced-choice matching procedure the observer is required to make a comparative 
judgement of two stimuli on each trial, for example which stimulus looks brighter, 
which stimulus looks longer, etc., but the goal is in every case to establish a PSE. 

    3.3.1.1           Forced-choice Matching 
    3.3.1.1.1            N       �      2: Matching Using 2AFC/2IFC 

 The   reader is once again referred to the examples of the brightness-matching, 
Muller – Lyer, and vernier acuity experiments described in Chapter 2. There is lit-
tle to add here except to emphasize that a forced-choice procedure enables the 
experimenter to derive a full psychometric function, and thus to obtain estimates of 
parameters beside the PSE and precision, such as the errors on the parameters. Full 
details of how to obtain parameter estimates from appearance-based psychometric 
functions are provided in Chapter 4.   

    3.3.1.2           Non-forced-choice Matching 
    3.3.1.2.1            N       �      2: Matching Using Adjustment 

 Adjustment   is still widely employed to obtain PSEs. Observers freely adjust one 
stimulus, termed the  “ match, ”   “ adjustable, ”  or  “ variable ”  stimulus, until it appears 
equal along the dimension of interest to the  “ test ”  stimulus. If enough matches are 
made the variance or standard deviation of the settings can be used to provide a 
measure of precision.  

    3.3.1.2.2            N       �      2: Nulling Using Adjustment 
 A   variant on matching that frequently uses the method of adjustment is  “ nulling ”  

or  “ cancellation. ”  In some instances nulling and matching can be considered two 
sides of the same coin. Consider, for example, the brightness-matching experiment 
illustrated in Figure 2.5 (previous chapter). One can think of the annulus as induc-
ing an  “ illusory ”  brightness in the test patch, because even though the luminance of 
the test patch remains fi xed, its brightness changes with the luminance of the annu-
lus. However, instead of the observer adjusting the luminance of the match patch 
to match the brightness of the test patch for each annulus luminance, the observer 
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could instead  “ null ”  or  “ cancel ”  the effect of annulus luminance by adjusting the  test  
luminance to match that of the fi xed-in-luminance match patch. By the same token, 
if the observer adjusted the length of the central line of one of the Muller – Lyer fi g-
ures (say the one with acute fi ns) until it matched that of the length of the line in the 
other Muller – Lyer fi gure (the one with obtuse fi ns), one could say that the illusion 
was being nulled or cancelled. 

 The   difference between nulling and matching emerges more forcefully when 
applied to the grating-induction illusion illustrated in  Figure 3.3    ( McCourt, 1982 ). In 
the left fi gure one observes an illusory modulation in brightness in the gray stripe 
that runs horizontally through the grating. The modulation is illusory because the 
gray stripe is actually uniform in luminance. The illusory modulation is an instance 
of the well-known phenomenon termed  “ simultaneous brightness contrast. ”  Notice 
how the illusory brightness modulation is out-of-phase with the real luminance mod-
ulation in the surround grating (i.e. the ordering of bright and dark is opposite). The 
strength or contrast of the illusory or  “ induced ”  modulation depends on a number 
of factors, and to study these factors one needs a method of measuring the size of the 
induction. Two methods are illustrated in  Figure 3.3 . The matching procedure uses a 
second grating with similar spatial dimensions to the induced grating, as illustrated 
on the far right of the fi gure. The observer adjusts the contrast of the matching grating 
until it appears equal in apparent contrast to that of the induced grating. The contrast 
of the matching grating is typically measured using the metric of contrast known as 
Michelson contrast, defi ned as ( L  max       �       L  min )/( L  max       �       L  min ), where  L  max  and  L  min  are 
the maximum and minimum luminances of the grating. Thus, with the matching 

Match or Nulling stimulusTest alone Test + Nulling stimulus

 FIGURE 3.3          Matching versus nulling. Left: grating induction stimulus. The horizontal gray stripe 
running through the middle of the luminance grating is uniform yet appears modulated in brightness due 
to simultaneous brightness contrast. Right: an adjustable second grating with similar spatial dimensions 
to the induced grating can be used to match its apparent contrast. The same grating, however, can also be 
used instead to null or cancel the induced grating when added to it, as in the middle fi gure. Note that the 
cancellation is not perfect, because of the limitations of reproduction. See text for further details.    
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procedure, the magnitude of brightness induction is measured by the contrast of the 
matching grating at the PSE. In the nulling procedure, on the other hand, the second 
grating is  added  to the induced grating and its contrast adjusted until the induced 
grating just disappears ( McCourt  &  Blakeslee, 1994 ) – this is illustrated in the middle 
fi gure. Note that with the nulling procedure the phase of the added grating must be 
opposite to that of the induced grating in order for the cancellation to work, as in the 
fi gure (this is not necessary for the matching procedure). With the nulling procedure, 
the contrast of the nulling grating that cancels the induced grating is the measure of 
the size of the induction.    

    3.3.2           Scaling 

    3.3.2.1           Types of Perceptual Scale 
 Recall   that a perceptual scale describes the relationship between the perceptual 

and physical magnitudes of a stimulus dimension. There are three types of percep-
tual scale that are most relevant to psychophysics: ordinal; interval; and ratio. In 
an ordinal perceptual scale, stimulus magnitudes are numbered according to their 
rank order along the perceptual continuum. However, the difference between any 
pair of numbers does not necessarily correspond to the magnitude of the percep-
tual difference. For example, consider a stimulus with three contrasts: 0.1; 0.7; and 
0.8. On an ordinal scale these might be numbered 1, 2, and 3, but this does not 
imply that the perceptual difference between the 0.1 and 0.7 contrasts on the one 
hand, and between the 0.7 and 0.8 contrasts on the other, are equal. On the contrary, 
the perceptual differences will almost certainly be very different. To represent the 
perceptual differences between these pairs of contrasts, an interval or ratio scale is 
required. In an interval scale, the differences between numbers correspond to per-
ceptual differences, even though the numbers themselves are arbitrary. Using the 
example of the three contrasts above, an interval scale might be 1, 5, and 6. This 
time the numbers capture the observation that the perceptual difference between 
the fi rst and second contrasts  –  a difference of four scale units  –  is four times greater 
than the perceptual difference between the second and third contrasts  –  a difference 
of one scale unit. However, the interval scale could just as easily be written 4, 12, 
and 14, since these numbers embody the same difference-relations as the 1, 5, and 6 
scale. Formally, an interval scale can be transformed without loss of information by 
the equation a X       �      b, where  X  is the scale value, and a and b are constants. 

 The   limitation of an interval scale is that it does not capture the perceived rela-
tive magnitudes of the stimulus dimension. For example, interval scale values of 1 
and 5 do not indicate that the second value is fi ve times the perceived magnitude of 
the fi rst. Perceptual scales that capture relative perceived magnitude are known as 
ratio scales, and can be transformed only by the factor a X . 

 The   relationship between perceived and physical contrast is an example of a one-
dimensional perceptual scale. However, perceptual scales can be two-dimensional. 
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The best-known example of a two-dimensional perceptual scale is a color space 
(such as the CIE), in which each color is defi ned by a point on a plane with an  X  and 
a  Y  coordinate, and where the distance between points corresponds to the perceived 
distance in hue, or perceived chromaticity. Two-dimensional perceptual scales are 
invariably interval scales.  Figure 3.4    summarizes the main varieties of one-dimensional 
interval-scaling tasks that are now described.  

    3.3.2.2           Forced-choice Scaling Procedures 
    3.3.2.2.1            N       �      2: Paired Comparisons 

 The   simplest forced-choice method for deriving a perceptual scale is the method 
of paired comparisons. If the stimulus space is sampled only coarsely, paired com-
parisons can only provide an ordinal perceptual scale. For example, suppose one 
wants to rank order, say, ten photographs of faces according to how happy they 
look. On each trial observers are shown two faces drawn from the set and asked 
to indicate which face looks happier. There would be a total of (10 2       �      10)/2      �      45 
possible face pairs, or twice this number if every pair was shown in both order. On 
each trial the face selected to be the happier is given a score of one, while the other 
face is given a score of zero. If the procedure is repeated for all possible pairs of 
faces, the ten faces can be rank-ordered by perceived happiness according to their 
accumulated scores. 

 In   order to generate an interval scale using paired comparisons, however, the dif-
ferent stimulus levels must be close enough to ensure that the responses to any pair 
are not always the same. Instead, the data must be a  “ proportion ”  of times that one 
member of a pair is chosen over the other. With proportions as the data one can 
estimate the perceptual distances between stimulus levels, and hence generate an 
interval perceptual scale. Chapter 7 describes the Palamedes routines for generating 
stimulus lists, simulating observer responses, and analyzing responses to produce 
an interval perceptual scale using the method of paired comparisons. The chapter 
also includes a critical discussion of the strengths and limitations of the paired com-
parison method.  

    3.3.2.2.2            N       �      3: Method of Triads 
 This   method can also be used to derive either an ordinal or interval scale, but 

uses judgements of relative perceived similarity (or difference). Unlike the  N       �      2 
paired-comparison method, the method of triads does not require prior knowledge 
of the dimension along which the stimuli differ. 

 In   one version of the method of triads, one of the three stimuli is designated 
the target, the other two the comparisons. The observer is required to compare the 
perceived similarity (or difference) between the target and each of the two com-
parisons, and choose the pair that is the more (or less) similar. Typically, the pair 
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scaling. In the non-forced-choice methods in the lower panel the double arrows refer to disks whose 
luminances are freely adjusted by the observer.    
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perceived to be more similar would be given a value of one, the pair perceived to be 
less similar a value of zero. One can think of this version of the task as the appear-
ance analog of the 2AFC match-to-sample performance task described earlier in the 
chapter. In another version of the method of triads there is no designated target, 
and the observer compares all of the three possible pairs, giving ranking them one, 
two, or three. Palamedes routines for deriving an interval perceptual scale using the 
method of triads is described in Chapter 7.  

    3.3.2.2.3            N       �      4: Method of Quadruples 
 In   this procedure, observers are presented with two pairs of stimuli on each trial, 

and the task is to decide which pair is the more (or less) similar. As with the method 
of triads, the observer need not know the basis on which the stimuli differ. The 
Palamedes routines for deriving interval scales using the method of quadruples are 
described in Chapter 7.  

    3.3.2.2.4            N   >      4: Multi-stimulus Scaling 
 An   alternative to the paired comparison method for deriving an ordinal percep-

tual scale is to present observers with the entire stimulus set together and ask them 
to arrange the stimuli in rank order. The best known example of this method is 
the Farnsworth – Munsell 100 hue test for color defi ciency. Observers are presented 
with a randomly-arranged series of disks that vary systematically along a partic-
ular color dimension (e.g., green to red), and are asked to arrange them in order 
according to hue (e.g., green, yellowish-green, more-yellowish-green, yellow, red-
dish-yellow, more-reddish-yellow  …  red). The resulting arrangement is compared 
to that typically made by a person with normal color vision. One can think of the 
order made by a person with normal color vision as the  “ correct ”  order, but it is 
only  “ correct ”  in relation to an internal standard, not to a physical standard as with 
a Type 1 experiment. The pattern of errors made by observers with the Farnsworth –
 Munsell test can be used to identify certain types of color defi ciency.  

    3.3.2.2.5           Multi-dimensional Scaling 
 Multi  -dimensional scaling (MDS) is used to determine whether two or more per-

ceptual dimensions underlie the perceived similarities between stimuli. Earlier we 
mentioned the CIE color space as an example of a two-dimensional representation 
of perceived color similarities. MDS algorithms provide multi-dimensional arrange-
ments of stimuli in which the distances between stimuli correlate with their per-
ceived dissimilarity. The method of triads and quadruples can be used to generate 
data for MDS (e.g.,  Gurnsey  &  Fleet, 2001 ). The analysis of MDS data is, however, 
outside of the scope of this book, but some example reading material is provided at 
the end of this chapter.   
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    3.3.2.3           Non-forced-choice Scaling Procedures 
    3.3.2.3.1            N       �      1: Magnitude Estimation 

 In   magnitude estimation the observer makes a direct numerical estimate of the per-
ceived magnitude of the stimulus along the dimension of interest. Magnitude estima-
tion produces a ratio scale if observers are instructed to allocate numbers that refl ect 
the relative perceived magnitudes of the stimuli. In one form of magnitude estima-
tion, the experimenter starts with a stimulus designated as an  “ anchor ”  and asks the 
observer to suppose that it has a perceived magnitude of, say, 50. The other stimuli 
are then estimated relative to the anchor, i.e., 25 (half as much), 100 (twice as much), 
175 (3.5 times as much), etc. The scale values can then be normalized to the stimulus 
with lowest perceived magnitude by dividing all values by 50. Psychophysicists tend 
to regard magnitude estimation as a rather blunt tool, because it requires observers 
to translate a perceptual experience into a numeric, i.e., symbolic, representation. 
Observers often fi nd magnitude estimation diffi cult and unsatisfactory, and for this 
reason other scaling methods are recommended whenever possible.  

    3.3.2.3.2            N       �      3: Partition Scaling 
 In   partition scaling, sometimes termed  “ equisection ”  or  “ bisection ”  scaling, 

observers adjust the magnitudes of stimuli in order to make them appear at equal 
perceptual intervals. Partition scaling methods therefore generate interval scales. 
There are a variety of partition scaling methods, and the principle behind two of 
them is illustrated at the bottom of  Figure 3.4 . One version that is intuitively easy 
for the observer, but which has some drawbacks, is termed by Gescheider (1997) 
the  “ progressive solution. ”  The experimenter starts by providing the observer with 
two  “ anchors ”  that defi ne the start and end points of the stimulus dimension. The 
observer then divides the perceptual distance between the two anchors into two 
equal parts by adjusting a third stimulus until it appears perceptually midway 
between the anchors.      1    The resulting two intervals are then each bisected in a similar 
manner, resulting in four intervals, and so on. This method, however, suffers from 
the problem that errors will tend to accumulate as the intervals become smaller.  

    3.3.2.3.3        N       >  3: Multi-partition Scaling 
 In   what Gescheider (1997) terms the  “ simultaneous solution, ”  and termed here 

multi-partition scaling ( Figure 3.4 ), observers are presented with the full set of stim-
uli together on the display. Two stimuli at the ends of the range serve as anchors, 
and observers adjust the remaining stimuli until they appear to be at equal percep-
tual intervals. Recall Whittle’s (1992) multi-partition scaling experiment described in 
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   1  Note that the bisection scaling task is different from the bisection acuity task described in Chapter 2. 
The latter is a performance-based task that measures the accuracy and/or precision of bisecting a line.   
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Chapter 2. The aim of the experiment was to derive an interval scale of brightness for 
discs of adjustable luminance arranged in the form of a spiral on a uniform gray back-
ground. The anchor discs were set to the lowest and highest luminances available on 
the monitor and observers adjusted the luminances of the remaining discs until they 
appeared to be at equal intervals in brightness. Intuitively, this is not an easy task, 
since adjustment to any one disc would tend to  “ throw out ”  previous adjustments, 
requiring a number of iterations to achieve a perceptually satisfactory solution.     

    3.4           FURTHER DESIGN DETAILS 

    3.4.1           Method of Constant Stimuli 
 In   any forced-choice procedure, whether performance-based or appearance-

based, the question arises as to how to present the different magnitudes of a stimu-
lus during an experimental session. One popular solution is the method of constant 
stimuli, or as it is sometimes termed, the  “ method of constants. ”  In this method, 
the stimulus magnitude on each trial is randomly selected from a predefi ned set. 
For a performance-based experiment, the range is typically chosen to straddle 
the expected threshold value in order that performance ranges from near-chance 
to near-100% correct. For example, in a standard 2AFC procedure with threshold 
defi ned at the 75% correct level, performance should range from close to 50%, to 
close to 100%, with roughly equal numbers of stimulus magnitudes producing less 
than and greater than 75% correct. This generates data that, when fi tted with the 
appropriate psychometric function, provides the most accurate estimates of the 
threshold as well as other parameters, such as the slope. Full details of the pro-
cedures for fi tting psychometric functions are described in Chapter 4. The choice 
of stimulus set usually requires some pilot work to obtain a rough estimate of the 
threshold, and the method of adjustment is useful for doing this. 

 The   method of constant stimuli can also be used in conjunction with appearance-
based procedures. For forced-choice matching experiments in which the PSEs are 
estimated from a psychometric function, the above considerations equally apply, 
though this time the data are not proportions correct but proportions of times one 
stimulus is perceived to be greater than the other along the dimension of interest.  

    3.4.2           Adaptive Procedures 
 To   avoid the problem of inappropriately-chosen stimulus sets, adaptive (or stair-

case) procedures are often used instead of the method of constant stimuli. In an 
adaptive procedure the stimulus magnitude on each trial is selected by an algorithm 
that analyzes the previous trial responses, in order to  “ zero in ”  on the threshold. 
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Some adaptive procedures can be used in conjunction with conventional meth-
ods for fi tting psychometric functions, enabling estimates of both the threshold 
and slope to be obtained. Adaptive methods can be used in conjunction with both 
performance-based and appearance-based tasks. Adaptive procedures are the sub-
ject of Chapter 5.  

    3.4.3           Timing of Stimulus Presentation 
 The   timing of stimulus presentations is very important in psychophysics, and for 

an observer can make the difference between an experiment that feels diffi cult and 
frustrating and one feeling comfortable and engaging. To illustrate what’s at stake, 
take a prototypical 2IFC task.  Figure 3.5    is a schematic of the temporal arrangement 
and terminology. The example is of an observer-paced trial, in which each trial is 
triggered by the observer’s response to the previous trial. In general, 2IFC tasks are 
best when self-paced, as this gives the observer control over the pace of the experi-
ment, without disrupting the critical temporal parameters. 

 The   choice of within-trial temporal parameters is crucial for making a task feel 
comfortable. For example, if the fi rst stimulus of the forced-choice pair is presented 
too soon after the observer responds to the previous forced-choice pair, the observer 
can become confused as to what his/her response is  “ attached to; ”  the response 
may become associated in the observer’s mind with the stimulus that follows it 
rather than with the stimulus that precedes it. An appropriate inter-stimulus inter-
val (ISI) is also important to minimize both forward and backward masking effects 
between stimuli. There is no hard-and-fast rule here, and the experimenter needs to 
try out different ISIs until the task feels comfortable. As a rule of thumb, a stimulus 
exposure duration of 250 ms, an ISI of 500 ms, and an inter-trial-interval (ITI) of 
1000 ms is a good starting point.   
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    Further Reading 
 An   excellent and user-friendly introduction to much of what is discussed here 

can be found in Gescheider (1997). Reviews of the use of reaction times in psycho-
logical research can be found in  Pachella (1974)  and  Meyer et al., (1988) . Multi-
dimensional scaling is discussed in Borg & Groenen (2005).     
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    4.1       INTRODUCTION 

 Psychometric   functions, or PFs, relate the behavior on a given psychophysical 
task (e.g., proportion of correct responses, proportion of trials perceived brighter) 
to some physical characteristic of the stimulus (e.g., contrast, length). Typically, 
although not always, one measures a PF in order to determine one or more param-
eters that summarize the behavior, e.g., a threshold contrast or a point of subjec-
tive equality. Chapter 2 showed examples of PFs and the parameters determined 
by them. In this chapter we will introduce the reader to methods of determining 
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the chosen parameters from a PF. It is important to note that PFs can be fi tted to the 
data for both performance-based and appearance-based psychophysical tasks, and 
by and large the procedures for fi tting PFs are common to both classes of data. 

 The   chapter is divided into two sections. The fi rst section introduces the reader to 
the general procedures involved in fi tting PFs, determining the chosen parameters 
from the fi ts and getting estimates of how well the PFs have been fi t, as well as the 
variability of the estimated parameters. The second section of the chapter will con-
sider the underlying theory behind PFs, fi tting PFs and parameter estimation. The 
reader may choose to read the second section or to skip it without loss of continuity.  

    4.2       SECTION A: PRACTICE 

    4.2.1       Overview of the Psychometric Function 
    Figure 4.1    illustrates the general idea. The fi gure shows hypothetical data from 

an experiment aimed at measuring a contrast detection threshold. The data were 
obtained from a 2IFC task using the method of constant stimuli. The graph plots 
the proportion of correct responses for each stimulus contrast. Note that the con-
trast values on the abscissa are arranged at equal logarithmic intervals. However, 
other arrangements such as linear spacing of values are often used. The observer 
performed 50 trials for each stimulus contrast. Threshold contrast is defi ned as 
the contrast at which the proportion correct response reaches some criterion, here 
0.75 or 75%. In order to obtain the value corresponding to the threshold a continu-
ous function has been fi tted to the data. The function in this example is known as 
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 FIGURE 4.1          Example of a psychometric function from a hypothetical experiment aimed at 
measuring a contrast detection threshold. The threshold is defi ned here as the stimulus contrast at which 
performance reaches a proportion correct equal to 0.75. Data are fi tted using a Logistic function.    
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a Logistic function, and is one of a variety of functions that can be used to fi t PFs. 
To fi t the logistic curve to the data the computer iteratively searched through a 
range of possible values of two parameters,   α   (alpha) and   β   (beta). The   α   param-
eter determines the overall position of the curve along the abscissa, and for the 
Logistic function corresponds to the contrast value at which the proportion correct 
is halfway between the lower and upper asymptote, here 0.75 or 75% correct. The 
  β   parameter determines the slope or gradient of the curve. The parameters   α   and   β   
are properties of the observer and we will never know their exact value. Rather, the 
fi tting procedure found estimates of the values of   α   and   β   that generated a curve 
that best matched the experimental data. We use a  “ hat ”  over the symbol for a 
parameter to mean  “ estimate of ”  that parameter. Thus, the value of  α̂     for the best-
fi tting curve is the estimate of the true contrast threshold,   α  , and  β̂     is the estimate 
of the true slope   β  . 

 Four   additional values make up the complete description of the PF. Two of these, 
the  “ standard error ”  (SE) of the threshold and the SE of the slope, are measures of 
the precision, or rather imprecision, of  α̂     and  β̂   , i.e., how far they are likely to be 
from the  “ true ”  value of   α   and   β  . Put another way, they are estimates of the errors 
associated with our estimates of   α   and   β .  The remaining two measures,  “ deviance ”  
and its associated  p -value, are used to determine whether the fi tted function pro-
vides an adequate model of the data. We will discuss goodness-of-fi t briefl y in 
Section 4.2.6 and in much more detail in Chapter 8.  Table 4.1    gives the values of all 
six of these measures for the PF in  Figure 4.1 . 

 This   example PF illustrates the key components to measuring and fi tting a psy-
chometric function. In summary these are: (1) choosing the stimulus levels; (2) 
selecting the function to fi t the data; (3) fi tting the function; (4) estimating the errors 
on the function’s parameter estimates; (5) determining the goodness-of-fi t of the 
function. In what follows we consider these components in turn.  

    4.2.2       Number of Trials and Stimulus Levels 

    4.2.2.1       Number of Trials 
 How   many trials are needed to estimate a psychometric function? As a rule, the 

more trials there are the more accurate the estimates on the fi tted parameters, such 
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 TABLE 4.1          Six values describing a fi tted psychometric function  

   Threshold  α̂      Slope  β̂      SE threshold  SE slope  Deviance  p value 

    � 2.046  1.984  0.1594  .6516  1.35  0.738 
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as the threshold, slope, or point of subjective equality (PSE) will be. So the answer 
to the question primarily rests on how precise one wants one’s parameter estimates 
to be. If one anticipates that different conditions will produce very different thresh-
olds or PSEs, then this can be demonstrated in fewer trials than if one anticipates 
that there will be slight differences in thresholds or PSEs. In addition, curve fi tting 
procedures might not converge on a fi t if there are insuffi cient data. Although there 
is no hard-and-fast rule as to the minimum number of trials necessary, 400 trials is 
a reasonable number to aim for when one wants to estimate both the threshold and 
the slope of the PF.  

    4.2.2.2       Range of Stimulus Levels 
 As   a general rule-of-thumb, for a performance-based task one wants to choose 

a set of stimulus levels that will result in performance that ranges from just above 
chance to just under 100% correct. If more than one stimulus level produces approx-
imately chance performance this means that the lower end of the stimulus range 
needs to be shifted to a higher level. Similarly, if more than one stimulus level pro-
duces approximately 100% correct performance, the highest stimulus level needs to 
be shifted to a lower level. There is no need to use many, fi nely spaced stimulus lev-
els. Concentrating responses at just a few appropriately distributed stimulus levels 
should suffi ce to obtain reliable estimates of the parameters of a PF. 

 We   will have much more to say about the number of trials needed, as well as the 
range of stimulus values to use, in Chapter 5. Chapter 5 will discuss adaptive test-
ing methods which, in essence, aim to increase the effi ciency of the experimental 
procedure. That is, they aim to gather the greatest amount of information as pos-
sible about the PFs parameters of interest while using as few trials as possible. They 
do this by presenting the stimuli at levels that are expected to provide the most 
information possible about the parameters of interest.  

    4.2.2.3       Linear Versus Logarithmic Spacing of Stimulus Levels 
 An   issue that always seems to come up is how to space the values of the inde-

pendent variable. The two choices are usually linear or logarithmic (log). Which one 
should one choose? One of the reasons given for log spacing is that it allows for 
a greater range of values. However, this makes no sense  –  you can have as big a 
range with linear spacing as with log spacing. Whether using linear or log spacing, 
the bigger the range, the bigger the interval between values. A more sensible rea-
son for using logarithmic spacing is that you want relatively small intervals at the 
low and relatively large intervals at the high end of the range. One reason for want-
ing the interval to increase with the stimulus value is because this gives a closer 
approximation to how intervals might be represented in the brain. The relationship 
between the physical and internal representation of a dimension is called the  “ trans-
ducer function. ”  In the auditory and visual domains, these transducer functions are 
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generally decelerating, such as that shown in  Figure 4.2   . That is, as stimulus inten-
sity increases constant increases in stimulus intensity lead to smaller and smaller 
increases in internal intensity. Of course, the precise form of the bow-shape varies 
between dimensions, and if one knew the shape exactly, one could space the cor-
responding  x -axis value accordingly. But, given that most dimensions have a bow-
shaped transducer function, log spacing of values is a  “ good bet. ”  

 To   derive a set of logarithmically-spaced values you need to decide on the fi rst 
and last values of the series (call these  a  and  b ), and how many values you want 
(call this  n ). The  i th value of the sequence ( i       �      1. . .  n ) is given by the equation: 

  x
a i b a n

i �
� � �10 1 1[ / / ]log ( )log( ) ( )   (4.1)      

 The   MATLAB ®  function  logspace  implements this equation: 

         >      > StimLevels      =      logspace(log10(a),log10(b),n)  

 For   example, suppose you want fi ve values of contrast, ranging from 0.025 to 0.8. 
Thus  a       �      0.025,  b       �      0.8 and  n       �      5. Substituting these values in the above command 
will output: 

  StimLevels        =      0.0250 0.0595 0.1414 0.3364 0.8000  

 Note   that the values are not actual log values, just values that are logarithmically 
spaced. The sequence is sometimes known as a geometric series, because the ratio 
of any pair of adjacent values is the same  –  you can check this yourself (note that 
the ratios will not be exactly the same because the numbers are only given with a 
maximum of four decimal places). If you choose to use log spacing, you have to be 
careful when fi tting your psychometric function. If you are using a standard curve 
fi tting program and enter the values above for the  x -axis, the fi tting procedure will 
not  “ take into account ”  the fact that your values are logarithmically spaced, and 
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 FIGURE 4.2          Typical transducer function between the physical intensity of a stimulus and the 
corresponding subjective or internal intensity.    
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will just treat them as raw values. As a result the fi t you get might not be particu-
larly good, because the function you are fi tting has a shape that may not correspond 
to the  “ stretching out ”  of values at the high end of the scale. The solution is to con-
vert your  x  values into actual log values and  then  fi t the psychometric function, 
because when you convert values that are logarithmically spaced into log values, 
they will be evenly spaced. Of course, having fi tted your psychometric function to 
the actual log values you may want to report the raw thresholds. The raw threshold 
is simply the antilog of the log threshold.   

    4.2.3       Types and Choice of Function 

    4.2.3.1       Types of Function 
 In   this section we introduce fi ve functions that can be used to model psychomet-

ric data. They are: Cumulative Normal; Logistic; Weibull; Gumbel; and Hyperbolic 
Secant. Formal details of the equations of these functions, their strengths and lim-
itations will be provided in Section B. To illustrate the shapes of these functions, 
 Figure 4.3    shows an example of a set of data fi tted with these functions. These 
functions all have the familiar sigmoidal shape. As can be seen, the estimate of the 
thresholds at the 0.75 correct level would be near-identical for all four functions. 

 In   the Introduction we introduced two parameters that were estimated by the 
fi tting procedure:   α   and   β  . These parameters describe properties of the underlying 
sensory mechanism. Two other parameters, however, are needed to specify the psy-
chometric function fully. These are   γ   (gamma) and   λ   (lambda). These parameters 
do not correspond to properties of the underlying sensory mechanism, but rather 
describe chance-level performance and lapsing, respectively. We will discuss the two 
parameters in turn. 
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 The   parameter   γ   is known as the guessing rate. In Section B we argue that this 
is a bit of a misnomer, since it is believed that an observer never truly guesses. 
Nevertheless, if an observer  were  to guess on a trial there is a certain probability that 
the guess would be correct. For example, in a performance-based task   γ   is simply 
assumed to equal the reciprocal of the number of alternatives in the forced-choice 
task, or 1/ m  in an  M -AFC task (remember that  m  corresponds to the number of 
response choices in an  M -AFC task. For all tasks described in this chapter  m       �       M ). 
Thus, for 2AFC   γ   is 1/2 (0.5), for 3AFC it is 1/3, etc.  Figure 4.4    shows examples of 
the Logistic function fi tted to performance-based 2AFC, 3AFC, and 4AFC data, with   γ   
respectively set to 0.5, 0.33, and 0.25. Notice how the range of proportion correct 
on the  y  axis is different for the three plots. The proportion correct responses at the 
threshold parameter   α   vary with the guessing rate. Using the Logistic function, pro-
portion correct at the threshold corresponds to 0.625, 0.667, and 0.75, respectively, 
for 4AFC, 3AFC, and 2AFC, respectively. For the Logistic function these values are 
calculated as   γ   �  (1      �        γ  )/2. 

 The   guess rate parameter is also important when fi tting PFs for 2AFC data in 
which responses are coded not in terms of proportion correct but as proportions of 
one judgment over another, for example the porportion of “brighter” responses in a 
brighter-versus-darker brightness task, or the proportion of “left” responses in a left-
versus-right vernier alignment task. In such experiments the resulting proportions 
range from 0-1, and the fi tted PFs can be used to obtain either appearance-based 
measures such as PSEs (as in the brightness matching experiment), or performance-
based measures such as accuracy (as in the vernier alignment experiment) and 
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precision (as in both the brightness matching and vernier alignment experiments) 
(see Chapter 2 Section 2.3.4).  Figure 4.5    shows data from a hypothetical appearance-
based task. Suppose the aim of the experiment is to fi nd the PSE for the length of two 
bars of different width. One bar is fi xed in length, the other is varied. On each trial 
the task is to judge which bar appears longer. The length of the variable bar is shown 
on the abscissa. The ordinate of  Figure 4.5  gives the proportion of times the variable 
bar is perceived as the longer. Thus, a Y value of 0.0 means that the variable bar was 
always perceived as shorter than the fi xed bar, while a value of 1.0 means that the 
variable bar was always perceived as longer than the fi xed bar. The PSE is the length 
of the variable bar which would be perceived just as many times shorter as it is per-
ceived longer than the fi xed bar. In other words, it would be perceived as longer on 
a proportion of 0.5 of the trials. To estimate the PSE parameterized by   α  , we have 
fi tted a Logistic function and set the guessing rate   γ   to 0. Remember that, using the 
Logistic function, threshold   α   corresponds to a proportion correct in a performance-
based task given by   γ        �      (1      �        γ  )/2. For the appearance-based task we use the same 
equation, which gives 0.5 with   γ        �      0. This value of   γ   will be typical for appearance-
based matching tasks. Some prefer to plot data in appearance-based tasks on graphs 
in which the ordinate ranges from  � 1 to  � 1, presumably so as to have a score 
of 0 correspond to the PSE, which has some intuitive appeal. This can simply be 
achieved by rescaling the plot in  Figure 4.5 . However, for the purposes of  “ fi tting ”  
the function, an ordinate scale of 0      �      1 needs to be used. In the framework of theo-
ries of the psychometric function (Section 4.3.1 discusses two of these theories) the 
y-values correspond to the probabilities of observing one response rather than some 
other, and as such are constrained to have a value between 0 and 1, inclusive. 

 The   fourth parameter associated with a PF,   λ ,  is known as the lapse rate. On a small 
proportion of trials, observers will respond independently of stimulus level. For exam-
ple, observers may have missed the presentation of the stimulus, perhaps due to a 
sneeze or a momentary lapse of attention. On such trials, observers may produce an 

10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

Length of variable stimulus

P
ro

po
rt

io
n 

of
 ti

m
e 

pe
rc

ei
ve

d 
lo

ng
er

α = PSE

 FIGURE 4.5          PF for an appearance-based task.    



67 

incorrect response even if the stimulus level was so high that they would normally 
have produced a correct response. As a result of these lapses, the PF will asymptote 
to a value which is slightly less than 1. The upper asymptote of the PF corresponds to 
1      �        λ  . Note that if a lapse is defi ned as a trial on which the observer misses the presen-
tation of a stimulus and consequently guesses, lapse rate is really not the appropriate 
term for the parameter   λ  . Rather,   λ   corresponds to the probability of responding incor-
rectly as a result of a lapse (but on some lapse trials, the observer will respond correctly 
by guessing). We will discuss this issue in more detail in Section B of this chapter. 

 Of   the four parameters of the PF, researchers are typically interested only in 
threshold   α   and slope   β  , in that only   α   and   β   tell us something about the underlying 
sensory mechanism. The guessing rate   γ   is typically determined by the psychometric 
procedure (2AFC, 3AFC, etc.), and lapse rate   λ   tells us not about the sensory mecha-
nism, but rather something about perhaps such things as the alertness or motivation 
of the observer. Researchers will usually allow only   α   and   β   to vary during the fi t-
ting procedure, and assume fi xed values for   γ   and   λ  . Parameters that are allowed to 
vary during fi tting are referred to as  “ free parameters, ”  those that are not allowed to 
vary are referred to as  “ fi xed parameters. ”  The guessing rate in an  M -AFC task can 
in most cases safely be assumed to equal 1/ m . However, it is debatable whether it is 
reasonable to assume any fi xed value for the lapse rate. Researchers often implicitly 
assume the lapse rate to equal 0. Even the most experienced and vigilant observer, 
however, will occasionally respond independently of stimulus level. When it is 
assumed that lapse rate equals 0, but lapses do in fact occur, this may produce a sig-
nifi cant bias on the threshold and slope parameters. The bias may be largely avoided 
if we allow a few lapses to occur by assuming the lapse rate to have a fi xed small 
value, such as 0.01. An alternative, of course, is to make the lapse rate a free param-
eter, thereby simply estimating its value from the data. The issue will be discussed in 
more detail in Section B of this chapter. The function that allows one to fi nd values 
of PFs in the Palamedes toolbox is of the general form: 

  y        =      PAL_[NameOfFunction](paramValues, x);  

 where    [NameOfFunction]  can be  CumulativeNormal ,  Logistic ,  Weibull , 
 Gumbel , or  HyperbolicSecant .  paramValues  is a vector which contains values 
of the parameters of the PF   (α  ,   β  ,   γ  ,  λ ), and  x  is a scalar, vector, or matrix containing 
the values at which the function should be evaluated. Try, for example, generating 
six values for the Logistic, fi rst setting the stimulus levels to range from 1 through 6 
as follows: 

         >      > StimLevels      =      [1:1:6];  
         >      > pcorrect      =      PAL_Logistic([3 1 0.5 0],StimLevels)  

 The   output is: 

  pcorrect   =  0.5596 0.6345 0.7500 0.8655 0.9404 0.9763  
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 The   command: 

         >      > plot(StimLevels, pcorrect,  ‘ ko ’ );  

 will   generate a crude plot of the PF. 
 The   vector  paramsValues  does not need to contain values for all four param-

eters of the PF, but does need to contain at least the values for the threshold and 
the slope. If  paramsValues  contains only two entries, they are interpreted as val-
ues for the threshold and slope, respectively, and the guess rate and lapse rate are 
assumed to be zero. If a third value is provided it is interpreted as the guess rate, a 
fourth will be interpreted as the lapse rate. As an example, in the function call: 

         >      > pcorrect      =      PAL_Logistic([3 1 0.5],StimLevels)  

 the   vector passed to the function contains three values only, and as a result the 
lapse parameter is assumed to equal 0. The function thus returns the same results 
as above. Try generating  pcorrect  values using some of the other types of PF, and 
also investigate the effect of changing the four parameters:   α  ,   β  ,   γ  , and   λ  .  

    4.2.3.2       Choice of Function 
 What   function should one choose? Essentially there are two criteria. The fi rst is 

that one chooses the function based on an  a priori  theory of the  “ true ”  internal shape 
of the psychometric function. Different theories lead to the use of different func-
tions, although the different functions that are in use are very similar ( Figure 4.3 ), 
such that in practice the choice of function is often made based on convenience. In 
Section 4.3.2 we provide some of the theoretical background that might inform one 
as to which type of function one might want to choose, based on  a priori  consid-
erations. The second criterion is based on  a posteriori  considerations, specifi cally 
using the function that most easily and accurately fi ts the data. Many practitioners, 
rightly or wrongly, base their choice on this second criterion. 

 Once   a researcher has decided on which function should be used to model 
the data, the next step is to fi nd the values of the parameters of that function that 
describe the data best. To this problem we turn in the next section.   

    4.2.4       Methods for Fitting Psychometric Functions 
 There   are different methods to fi nd the best fi tting curve to data. The methods 

differ with respect to the criterion by which  “ best-fi tting ”  is defi ned. Here, we will 
discuss the most commonly used method for fi tting the PF. It uses a maximum 
likelihood (ML) criterion, which defi nes the best-fi tting PF to be that PF which 
would be most likely to replicate the experiment exactly as it was completed by 
the human observer. For a detailed discussion of the theory behind this procedure 
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as well as a second, related procedure (Bayesian estimation) the reader is referred 
to Section B of this chapter. Here we will discuss, in the most general of terms, the 
basic idea behind the  “ maximum likelihood ”  method, and demonstrate how to 
perform a fi t. 

 The   example we will discuss uses the maximum likelihood criterion applied to fi t-
ting the Logistic function to a performance-based 2AFC task. First, we have to set up 
a series of vectors that contain the data. There are three that are required. As above, 
 StimLevels  provides the data values for the  x  axis.  NumPos  gives the number of 
trials in which the observer gave a correct response.  OutOfNum  gives the number of 
trials for each stimulus level. You can use any other name for any or all of these vec-
tors if you like. 

         >      > StimLevels      =      [0.01 0.03 0.05 0.07 0.09 0.11];  
         >      > NumPos      =      [45 55 72 85 91 100];  
         >      > OutOfNum      =      [100 100 100 100 100 100];  

 Next   we have to specify the type of function we wish to use. The following com-
mand assigns the Logistic function to the variable PF as a MATLAB  inline  function. 
Other functions can be substituted for  Logistic : 

         >      > PF      =      @PAL_Logistic;  

 The   following three commands set up parameters for the fi tting procedure. In 
 paramsValues , we give our initial guesses for   α   (threshold at 0.75 correct), and 
  β   (slope), as well as   γ   (guess rate), and   λ   (lapse rate). From a cursory inspection of 
the data we can see that performance is somewhere near 0.75 proportion correct 
when the stimulus level is about 0.05, so we enter 0.05 as the initial value of the fi rst 
parameter,   α  . The slope parameter   β   is more diffi cult to estimate by inspection, but 
one can see that there is a large change in the number correct over a small change in 
stimulus level, so we put in a high number here, say 50. The guess rate   γ   is 0.5, and 
we will assume a lapse rate   λ   of 0 for this example.  paramsFree  specifi es which of 
the four parameters   α  ,   β  ,   γ  , and   λ   are free parameters, that is parameters that the algo-
rithm will attempt to fi nd the best-fi tting values for. We put 1 for a free parameter and 
0 for a fi xed parameter. Hence we have: 

         >      > paramsValues      =      [0.05 50 .5 0];  
         >      > paramsFree      =      [1 1 0 0];  

 Now   we can run the curve fi tting procedure as follows: 

         >      > [paramsValues LL exitfl ag]      =      PAL_PFML_Fit(StimLevels, ... 
NumPos,OutOfNum,paramsValues,paramsFree,PF)  
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 The   output is: 

  paramsValues    =   
  0  .0584 66.4520 0.5000 0  

  LL    =   
    -273.4364  

  exitfl ag    =   
  1    

 Note   the new values of   α   and   β   in the vector  paramsValues  –  these are the fi t-
ted values. The meaning of  LL  will be given in Section B of this chapter. The value 
of 1 for  exitfl ag  means that the fi t was successful. 

 The   function  PAL_PFML_Fit   fi nds the best-fi tting parameters by way of an itera-
tive search through different possible values of the parameters. It is possible to specify 
some of the characteristics of the search, for example the desired precision with which 
the parameter values are estimated. In Section B of this chapter we explain how to use 
this option (Section 4.3.3.1.2). In case the search characteristics are not specifi ed by the 
user default values will be used, which for most practical purposes will be just fi ne. In 
Section B of this chapter it is also explained how you can limit the range of possible 
values that the lapse rate can assume such as to avoid impossible (e.g., negative) or 
improbable values. 

 Although   it is the values of   α   and   β   that are important, it’s nice to see what the 
fi tted function looks like. The following creates a graph showing the data and the 
smooth fi tted function. 

         >      > PropCorrectData      =      NumPos./OutOfNum;  
         >      > StimLevelsFine      =      [min(StimLevels):(max(StimLevels)- ... 
min(StimLevels))./1000:max(StimLevels)];  
         >      > Fit      =      PF(paramsValues,StimLevelsFine);  
         >      > plot(StimLevels,PropCorrectData,‘k. ’ ,’markersize ’ ,40);  
         >      > set(gca,  ‘ fontsize ’ ,12);  
         >      > axis([0 .12 .4 1]);  
         >      > hold on;  
         >      > plot(StimLevelsFine,Fit,’g- ’ ,’linewidth ’ ,4);  

 The   graph should look like  Figure 4.6   . Note that the graph plots proportion 
correct, not number correct against stimulus level. Note from the fi gure that the 
estimate of  α α ( )ˆ .� 0 0584     corresponds to the stimulus level at which the fi tted 
function is at 0.75 proportion correct.  

    4.2.5       Estimating the Errors 
 Because   the estimates of parameters   α   and   β   are based on a limited number of tri-

als, they are indeed only estimates of the  “ true ”  values of   α   and   β  , the exact values 
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of which we will never know. So even if we repeated the experiment under identical 
conditions, the estimated values of   α   and   β   would not come out exactly the same, 
due to the fact that we have a noisy brain. It would be useful, therefore, to obtain 
some sort of estimate of how much we might expect our estimates of   α   and   β   to vary 
from their true values. We could of course get a good idea of this by repeating our 
experiment, say 1,000 times, obtain estimates of   α   and   β   for each experiment, and 
then calculate the variance or standard deviation of the values across all experiments. 
Unfortunately we don’t have the time to do this, but fortunately we can get a rough 
estimate of the likely variability in these parameters from just one set of data. 

 The   preferred method for doing this is called  “ bootstrap analysis, ”  and the details 
of the method are given in Section B of this chapter. The basic idea behind boot-
strap analysis is that the computer randomly generates many sets of hypothetical 
data based on the actual experimental data obtained. Each new hypothetical data 
set is then fi tted with the chosen function and estimates of   α   and   β   are obtained. The 
standard deviations of the   α   and   β   estimates across all the sets is then calculated, 
and these are the estimates of the errors on the parameters. 

 The   function in the Palamedes toolbox that implements bootstrapping is  PAL_
PFML_BootstrapParametric  . It requires that the PF fi tting routine has already 
been run, and requires the same vectors as arguments as does the curve-fi tting 
routine described in the previous section. Make sure that in  paramsValues  the 
parameter estimates as determined by  PAL_PFML_Fit   are used. One more argu-
ment is required. The argument  B  specifi es how many simulated data sets are gen-
erated. The larger is  B , the better the error estimate will be, but also the longer the 
routine will take to complete. Setting  B  to 400 should give an acceptable degree of 
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accuracy on the error estimate, and it should also lead to an acceptable completion 
time. Here is an example implementation: 

         >      > B      =      400;  
         >      > [SD paramsSim LLSim converged]      =   ...   
PAL_PFML_BootstrapParametric(StimLevels, OutOfNum, ... 
paramsValues, paramsFree, B, PF);  

 In   this example, the semicolon has been appended to the last line to prevent it 
from displaying the 400 estimates of   α   and   β  . To inspect the standard deviation of 
the estimates, type: 

         >      > SD  

 An   example output might be: 

  SD    =   
  0  .0035  11.7045  0  0  

 The   four values are the estimates of the errors of our estimates of   α  ,   β  ,   γ  , and   λ  . Of 
course the values are only non-zero for the free parameters   α   and   β .  If you run the 
routine again and type out  SD , the error estimates will be slightly different, because 
they will be based on a new set of simulated datasets. The larger the value of  B , the 
closer will be the error estimate to the  “ true ”  error. 

 As   its name suggests, the function  PAL_PFML_BootstrapParametric   performs 
what is known as a parametric bootstrap. An alternative is to perform a non-para-
metric bootstrap using the functions  PAL_PFML_BootstrapNonParamet ric . An 
explanation of the distinction will have to wait for Section B of this chapter. Both  PAL_
PFML_BootstrapParametric   and  PAL_PFML_BootstrapNonParamet ric  have 
a few optional arguments which will also be explained in Section B of this chapter.  

    4.2.6       Estimating the Goodness-of-Fit 
 The   goodness-of-fi t is a measure of how well the fi tted PF accounts for the data. 

In general, if the data fall precisely along the fi tted PF then this would be indica-
tive of a good fi t, whereas if the data points fall some way away from the fi tted 
PF, this would indicate a bad fi t. Goodness-of-fi t measures of PFs can be useful for 
telling whether one type of fi tting function is more appropriate than another. For 
example, a goodness-of-fi t measure may guide one in deciding which of the differ-
ent functions (Weibull, Logistic, etc.) is the better to use to model experimental data. 
A bad fi t of a function may also be indicative of a high proportion of lapse trials 
when these are not accommodated for by the PF that is fi tted. 

 The   goodness-of-fi t is determined by comparing two models statistically. For 
that reason, we will discuss the details of the procedure and the underlying ration-
ale in Chapter 8, which deals with statistical model comparisons. For now, we will 
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d emonstrate the function in the Palamedes toolbox that performs a goodness-of-fi t test 
and what to look for when deciding whether the PF fi ts your data well. The goodness-
of-fi t function in the Palamedes toolbox delivers two numbers:  Dev , which stands for 
deviance, and  pDev . The meaning of  Dev  will be explained in Chapter 8. The actual 
goodness-of-fi t measure is given by  pDev .  pDev  will always have a value between 0 
and 1; the larger the value of  pDev , the better the fi t. By somewhat arbitrary conven-
tion, researchers agree that the fi t is unacceptably poor if  pDev  is less than 0.05. 

 The   goodness-of-fi t routine in the Palamedes toolbox is  PAL_PFML_Goodness
OfFit , and requires the best fi tting parameter estimates found earlier by the PF fi t-
ting routine. The routine uses the same arguments as the error estimation routines 
described in the previous section, and these must of course all be defi ned. Here is 
an example implementation: 

         >      > B      =      1000;  
         >      > [Dev pDev DevSim converged]      =    ... 
  PAL_PFML_GoodnessOfFit(StimLevels, NumPos, OutOfNum, ...
paramsValues, paramsFree, B, PF);  

 Note   the semi-colon to prevent a full printout. Here also,  B  determines the 
number of simulations on which to base  pDev . Once again, the higher the value 
assigned to  B , the better the estimate of  pDev  will be, but the longer the routine 
will take to complete. After running the routine, type  Dev  and  pDev  to display the 
deviance and associated  p -value: 

  Dev    =   
  7  .9773  
  pDev    =   
  0  .1013  

  pDev    will have a slightly different value each time you run the function, because 
of the stochastic nature of the bootstrap.  

    4.2.7       Putting It All Together 
 Of   course, one can put all the various components described in the previous 

sections together into a single MATLAB m-fi le. The Palamedes toolbox contains 
an m-fi le which does just that. The m-fi le is named  PAL_PFML_Demo  , and can be 
executed simply by typing its name at the command prompt. First, the program 
will prompt the user to select either a parametric or a non-parametric bootstrap. It 
then fi ts a Logistic function to some 2AFC data using the maximum likelihood cri-
terion. The routine uses the same input vectors  StimLevels ,  NumPos ,  OutofNum , 
 params Values ,  paramsFree  as in the above examples, and outputs the estimates 
of the six values described above: threshold   α  ; slope   β  ; SEs of both   α   and   β  ; good-
ness-of-fi t deviance; and  p -value. Finally it generates a graph of the data and fi tted 
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function. In the m-fi le, all of the optional arguments to the functions are also dem-
onstrated. These will be explained fully in Section B of this chapter. The routine 
simulates the experiment 4,400 times (for a total of 2,640,000 simulated trials!) so 
it will require a bit of time to complete. The modest laptop computer on which this 
sentence is being written just completed this routine in a little over a minute.   

    4.3       SECTION B: THEORY AND DETAILS 

    4.3.1       Psychometric Function Theories 
 As   discussed in Section A, the psychometric function (PF) relates performance 

on a psychophysical task (e.g., probability of a correct response) to some character-
istic of the stimulus (e.g., stimulus contrast). Following general consensus, we will 
denote performance on the task as a function of stimulus intensity  x  by   ψ  ( x ). The 
shape of the PF is remarkably similar across a wide variety of tasks, and is typically 
well described by a sigmoidal function. More often than not, however, we are not 
directly interested in the measured performance in our experiment. Rather, we are 
interested in the sensitivity of the sensory mechanism underlying this performance. 
We will use F( x ;   α  ,   β  ) (or simply F( x )) to symbolize the function describing the prob-
ability of correct stimulus detection or discrimination  by the underlying sensory mech-
anism  as a function of stimulus  x . Section 4.3.2 discusses various models for F( x ) and 
its two parameters. F( x ) cannot be measured directly by psychophysical methods, 
and can only be inferred from performance as we measure it,   ψ  ( x ). 

 Thus  , it is worth considering, in some detail, how   ψ  ( x ) and F( x ) might be related. 
We will consider this issue fi rst in the context of  “ high-threshold theory, ”  as this will 
lead us to the most commonly used expression of the relation between   ψ  ( x ) and F( x ). 
We will then discuss how  “ signal detection theory ”  relates internal sensory mecha-
nisms to the psychometric function. Other theories exist, and we refer the interested 
reader to  Green and Swets (1966)  for a more complete discussion. 

    4.3.1.1       High-threshold Theory 
 Let   us imagine a simple two-interval forced-choice (2IFC) experiment in which 

the observer is presented on each trial with two intervals, one containing a stimu-
lus, the other containing no stimulus. The stimulus interval is often denoted S (for 
signal), whereas the blank interval is denoted N (for noise). The observer is to deter-
mine, on each trial, which of the two intervals contained the stimulus. 

 Whether   or not the sensory mechanism will detect the stimulus on any trial is 
determined by the amount of sensory evidence accumulated by the visual system 
as a result of the presentation of the stimulus. One may think of sensory evidence 
as some aggregate of the activity of a population of neurons selective for the to-be-
detected stimulus. Due to external and internal noise, the amount of sensory evidence 
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accumulated will fl uctuate randomly from stimulus presentation to stimulus presen-
tation, such that any given stimulus may give rise to varying amounts of sensory evi-
dence. Let us assume that the mean amount of sensory evidence resulting from the 
presentation of a stimulus is a linear function of stimulus intensity  x :   μ  ( x )      �        π        �        ρ x.  
Let us further assume that the random fl uctuations in sensory evidence are distrib-
uted according to a normal distribution. The situation is depicted in  Figure 4.7   . This 
fi gure shows the probability density with which a stimulus at intensity k generates 
different amounts of sensory evidence. Also shown is the probability density asso-
ciated with the interval that does not contain the stimulus (i.e., stimulus intensity 
 x       �      0). It can be seen in the fi gure that the probability density function of the stimulus 
with intensity  x       �      k is centered around a higher average degree of sensory evidence. 
In general, increasing stimulus intensity will move the probability density function to 
higher degrees of expected sensory evidence. 

 According   to high-threshold theory, the sensory mechanism will detect the 
stimulus when the amount of sensory evidence exceeds a fi xed internal criterion 
or threshold. As its name implies, high-threshold theory assumes that the internal 
threshold is high. More specifi cally, the threshold is assumed to be high enough 
such that the probability that the threshold is exceeded when  x       �      0 (i.e., by noise 
alone) is effectively zero. This idea is refl ected in the fi gure by the threshold being 
beyond the grasp of the  x       �      0 stimulus, thus the noise interval will never result in 
sensory evidence in excess of the threshold. It is this critical assumption of the high-
threshold model which sets it apart from low-threshold theories. Another critical 
assumption of the high-threshold theory is that the decision process has no access 
to the exact amount of sensory evidence accumulated in case the threshold is not 
exceeded. The decision is based on binary information only: either the sensory evi-
dence was in excess of the threshold, or the sensory evidence was not in excess of 
the threshold. This second critical assumption sets high-threshold theory apart from 
signal detection theory (Section 4.3.1.2 and Chapter 6). Given the assumptions we 
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 FIGURE 4.7          High-threshold theory and the psychometric function.    
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have made, function F( x ), which describes the probability that the threshold will be 
exceeded by a stimulus of intensity  x , will be the cumulative normal distribution. 
Function F( x ) is shown in the inset in  Figure 4.7 . 

 The   decision process is straightforward. Since the threshold cannot be exceeded 
by the noise interval, the sensory mechanism does not generate  “ false alarms. ”  When 
the threshold is exceeded in one of the two intervals, it  must  have been because the 
signal was presented during that interval. In this situation the observer will iden-
tify the interval in which the stimulus was presented correctly. On those trials where 
the signal fails to exceed the threshold, however, the observer is left to guess which 
interval contained the signal. In this example, the observer will generate a correct 
response with a probability of 0.5 when the sensory evidence fails to exceed the 
internal threshold. In general, the probability of producing a correct response based 
on guessing is 1/ m  in an  M -AFC task. As mentioned in Section A, the guess rate is 
conventionally denoted   γ  . 

 We   need to make one more consideration before we are ready to consider how 
  ψ  ( x ) and F( x ) relate. In Section A, we mentioned that on each trial there is a small 
probability of an incorrect response which is independent of  x . This probability is 
commonly referred to as the lapse rate, and is typically symbolized by   λ  . Lapses 
may occur because, for example, the observer did not witness the stimulus presen-
tation (sneezes are often blamed). Another reason for a lapse might be a response 
error, in which the sensory mechanism may have identifi ed the correct stimulus 
interval but, for some reason or another, the observer presses the incorrect response 
button. Anybody who has ever participated in psychophysical experiments will 
recognize that sometimes our thumbs seem to have a mind of their own. 

 We   will illustrate how   ψ  ( x ) and F( x ) are related in  Figure 4.8   . This fi gure depicts the 
various series of events that lead to correct and incorrect responses. Starting at the top 
node, we separate the trials on which a lapse occurs (with probability   λ   * ) from those 

λ* (1 −λ*) 

γ (1 −γ)

F(x;α, β) (1− F(x;α, β)) 

γ (1−γ) 

1: correct 2: incorrect 3: correct 4: correct 5: incorrect

ψ(x;α,β,γ,λ) = γ + (1 −γ−λ* + γλ*)F(x;α,β) = γ + (1 −γ−λ)F(x;α,β) 

 FIGURE 4.8          Relation between F( x ;   α  ,   β  ) and   ψ  ( x ;   α  ,   β  ,   γ  ,   λ  ) according to high-threshold theory.    
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where a lapse does not occur (1      �        λ   * ). We use the symbol   λ   *  to distinguish this prob-
ability from the lapse rate, as defi ned above. Above, we defi ned the lapse rate as the 
probability of an  incorrect  response which is independent from  x  (which is the most 
common defi nition in the literature). However, in  Figure 4.8  we use   λ   *  to symbolize 
the probability that the observer responds independently of stimulus intensity  x  (for 
example, resorts to a guess when the stimulus was not witnessed due to a sneeze). 
In such a situation, the response might still be correct with a probability equal to the 
guess rate,   γ  . This sequence actually corresponds to path 1 in the fi gure; the observer 
lapses (  λ   * ), then guesses correctly (  γ  ). Since these two consecutive events are inde-
pendent, the probability of this sequence is simply the product of the probabilities of 
the individual events (i.e.,   λ   *   γ  ). In path 2, the observer lapses, resorts again to a guess 
but this time guesses wrong. The probability of this sequence is   λ   * (1      �        γ  ). 

 On   those trials where the observer does not lapse (with probability 1      �        λ   * ), the sen-
sory threshold will be exceeded with probability F( x ;   α  ,   β  ). If this happens, the observer 
responds correctly and this completes path 3. The probability of this sequence of events 
equals (1      �        λ   * )F( x ;   α  ,   β  ). In path 4, the observer does not lapse (1      �        λ   * ), the sensory 
threshold is not exceeded [1      �      F( x ;   α  ,   β  )], the observer resorts to a guess and guesses 
correctly (  γ  ). The probability of this series of events is (1      �        λ   * )(1      �      F( x ;   α  ,   β  ))(  γ  ). Path 5 
is identical to path 4, except that the observer guesses incorrectly. The probability with 
which this sequence occurs equals (1      �        λ   * )(1      �      F( x ;   α  ,   β  ))(1      �        γ  ). 

 Paths   1, 3, and 4 all result in a correct response. Since the fi ve paths are mutually 
exclusive (only one can occur on any given trial), the probability of either one of these 
three paths occurring is the sum of the probabilities of the individual paths. Thus: 

  ψ α β γ λ λ γ λ α β λ α β γ( ; , , , ) ( ) ( ; , ) ( )( ( ; , ))( )* * * *x F x F x� � � � � �1 1 1 ,       

 which   simplifi es to: 

  ψ α β γ λ γ γ λ λ γ α β( ) ( ) ( )*x F x; , , , ; ,* *� � � � �1   (4.2a)      

 Remember   that the symbol   λ   *  refers to the probability with which the observer 
responds  independently  of the value of  x , for example because the trial was not wit-
nessed. On such trials a correct response may still occur by lucky guessing. More 
commonly, the following expression is used: 

  ψ α β γ λ γ γ λ α β( ) ( ) ( )x F x; , , , ; ,� � � �1   (4.2b)      

 The   symbol   λ   used in this expression corresponds to the probability which is 
independent of  x  with which the observer will generate an incorrect response. The 
value (1      �        λ  ) corresponds to the upper asymptote of   ψ  ( x ). 

 The   parameter   λ   *  is more easily interpreted behaviorally than   λ  . For example, the 
value of   λ   *  for an observer who sneezes on every tenth trial and resorts to a guess 
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on those trials, is simply 1/10 (0.1). The value of   λ  , on the other hand, will also 
depend on the guess rate. In a 2AFC task, for example, the observer who sneezes 
on every tenth trial is expected to guess correctly on one half (  γ  ) of the sneeze tri-
als, and thus   λ        �        λ   * (1      �        γ  )      �      (0.1)(0.5)      �      0.05.  Figure 4.9    displays   ψ   W ( x ;   α  ,   β  ,   γ  ,   λ  ), 
where the subscript W indicates that function F is the Weibull function (Section 
4.3.2),   α        �      1,   β        �      3,   γ        �      0.25, and   λ        �      0.05.  

    4.3.1.2       Signal Detection Theory 
 The   assumption, critical to high-threshold theory, that the amount of sensory 

evidence accumulated is unavailable to the decision process unless it exceeds some 
internal threshold stands in direct contrast to a central tenet of signal detection 
theory (SDT). According to SDT, there is no such thing as a fi xed internal thresh-
old. Instead, SDT makes the assumption that for all stimulus intensities  x  (includ-
ing  x       �      0), the sensory mechanism generates a  graded  signal corresponding to the 
degree of sensory evidence accumulated. A decision process follows which consid-
ers the magnitude of this sensory evidence on both S and N intervals. If we again 
consider the two-interval forced-choice (2IFC) task from above, under the SDT 
framework both the noise and the signal intervals result in a degree of sensory evi-
dence. This degree of evidence is again subject to external and internal noise, such 
that it will vary randomly from occasion to occasion even when identical stimuli 
are used. The situation is depicted in  Figure 4.10   . Under the SDT framework, the 
decision process has access to the degree of sensory evidence accumulated in both 
of the intervals. We may think of any presentation of a stimulus as a sample from 
the probability density function associated with the stimulus. Even in the absence 
of a stimulus, differing degrees of sensory evidence result, and we may think of 
the presentation of the noise interval as a sample from the probability density func-
tion associated with the noise stimulus. Thus, each of the two intervals on any trial 
gives rise to sensory evidence, the amount of which is known to the decision process. 
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 FIGURE 4.9            ψ  W  ( x ;   α  ,   β  ,   γ  ,   λ  ), where F is modeled by the Weibull function  F W  ( x ;   α  ,   β  ), threshold 
  α        �      1, slope   β        �      3, guess rate   γ        �      0.25, and lapse rate   λ        �      0.05.    
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The decision rule of the observer is based directly on the relative amplitude of the 
two samples and is rather simple; the observer will report that the stimulus was 
presented in the interval from which the greater of the two samples was obtained. It 
is now easy to see how an incorrect response might arise. If we refer again to  Figure 
4.10 , there is considerable overlap between the two functions. As a consequence, 
it is possible that the sensory activity sampled during the noise interval is greater 
compared to the activity sampled during the signal interval. 

 How   is the probability of a correct response related to stimulus intensity? In order 
to generate a specifi c form of the PF we need to make a few assumptions, and we 
will do so now. Let us again assume that the mean sensory activity (  μ  ) is a linear 
function of stimulus intensity level  x :   μ  ( x )      �        π        �        ρ x , and that the variance is inde-
pendent of stimulus level and equal to   σ   2 . In other words, the probability density 
function describing the sensory activity in noise intervals is normal, with mean   π   
and variance   σ   2 : N(  π  ,  σ   2 ) and that in stimulus intervals is N(  π        �        ρ x ,   σ   2 ). This situation 
is depicted schematically in  Figure 4.10a . 

 Thus  , each trial may be thought of as taking a sample from N(  π  ,   σ   2 ) in the noise 
interval and a sample from N(  π        �        ρ x ,   σ   2 ) in the stimulus interval. We assume the 
observer utilizes a simple (but, given the assumptions, optimal) decision rule; the sam-
ple with the greater value was obtained in the stimulus interval. Thus, the response 
will be correct if the sample taken during the stimulus interval has a value greater 
than the sample taken during the noise interval. It will be convenient to rephrase this 
assumption as: if the difference between the sample value derived from the s ignal 
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 FIGURE 4.10          The relationship between SDT and the PF.    
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interval and the sample value derived from the noise interval exceeds zero, the 
response will be correct. It is well-known that the probability density of the difference 
between two normally distributed variables is itself normally distributed with mean 
equal to the difference in means of the individual distributions and variance of the dif-
ference equal to the sum of the variances of the individual distributions. Thus, specifi c 
to this example, the difference in sensory evidence will be distributed as N(  ρ x , 2  σ   2 ). 
 Figure 4.10b  shows the density function for the difference in sensory evidence on a 
trial in which the signal is presented at intensity  x       �      k. As noted, the stimulus interval 
will be correctly identifi ed when the sampled difference in sensory activity exceeds 
zero. The probability with which this will occur corresponds to the shaded area in the 
fi gure. When the stimulus intensity equals zero the difference distribution will be N(0, 
2  σ   2 ) and the probability that the difference score will exceed zero is 0.5. This makes 
sense, of course, at stimulus intensity 0, N and S are identical and the probability that 
S will produce a greater sensory activity than N is obviously 0.5. Increasing the stimu-
lus intensity will move the difference distribution towards higher values, which cor-
responds to an increase in the probability that the difference score will exceed zero. 
Note that, under the assumptions of signal detection theory, the observer never truly 
guesses. The observer’s response is on all trials determined by the relative degree of 
sensory evidence resulting in each of the stimulus intervals. 

 Under   the assumptions made here, the PF will be the upper half of the cumula-
tive normal density function (shown in the fi gure’s inset). This shape of the PF is 
not encountered often. However, when we change our assumptions, especially with 
regard to the transducer function (which we above somewhat na ï vely assumed to 
be linear) this would change the shape of the PF. The PF plotted in the fi gure’s inset 
would take on the more commonly observed sigmoidal shape when we plot stimu-
lus intensity  x  on a log scale, which is how stimulus intensities typically are plotted. 

 While   the critical assumptions of high threshold theory have largely been dis-
credited (e.g.,  Nachmias, 1981 ) in favor of those of SDT (for a detailed discussion 
of the issue see, for example,  Swets (1961) ), high-threshold theory lives on in the 
form of Equations 4.2a and 4.2b which are the most common formulaic expressions 
of the psychometric function used in the literature. Our nomenclature for two of 
the parameters of a PF is also based on high-threshold theory. Of course, the name 
 “ threshold ”  for the location parameter of a PF is based on high-threshold theory. 
Note that within the framework of the high-threshold theory the threshold defi ned 
as the amount of sensory evidence which needs to be exceeded before detection 
takes place is closely tied to the threshold as defi ned by the location parameter of 
a PF. Under the SDT framework there exists no fi xed amount of sensory evidence 
beyond which the stimulus is detected and below which it is not. Nevertheless, we 
still refer to the location parameter as  “ threshold. ”  

 The   name  “ guess rate ”  which we use for the lower asymptote (parameter   γ  ) also 
has its basis in threshold theory. The assumption in high-threshold theory is that the 
stimulus is either detected or not, and if not, the observer guesses. The p robability 
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of a correct response on a trial in which the observer guesses corresponds to the 
lower asymptote. Quite naturally, under high-threshold theory the lower asymptote 
came to be referred to as the  “ guess rate. ”  Today, we still refer to the lower asymp-
tote as the guess rate. Moreover, in this text, we sometimes take even greater liber-
ties. For example, where we should really say:  “ The amount of sensory evidence 
accumulated while sampling from the signal presentation happened to exceed the 
amount of sensory evidence accumulated while sampling from the noise presenta-
tion ”  we might say instead:  “ The observer guessed correctly. ”    

    4.3.2       Details of Function Types 
 Above   we derived the generic formulation of the psychometric function (Section 

4.3.1.1): 

  ψ α β γ λ γ γ λ α β( ) ( ) ( )x F x; , , , ; ,� � � �1   (4.2b)      

 As   discussed there, under the high-threshold detection model implied by this 
formulation, F( x ;   α  ,   β  ) describes the probability of detection of the stimulus by the 
underlying sensory mechanism as a function of stimulus intensity  x ,   γ   corresponds to 
the guess rate (the probability of a correct response when the stimulus is not detected 
by the underlying sensory mechanism), and   λ   corresponds to the lapse rate (the prob-
ability of an incorrect response which is independent of stimulus intensity). 

 Several   functions are in use for F( x ;   α  ,   β  ). We list here the most commonly used 
functions. Examples of all these are shown in  Figure 4.3 . We will consistently use 
the symbol   α   to denote the location parameter (threshold), and the symbol   β   to 
denote the rate-of-change or slope parameter, even where this fl ies in the face of 
convention. We will also use expressions of F in which increasing values of   β   cor-
respond to increasing slopes of F, even if this defi es convention. 

    4.3.2.1       Cumulative Normal Distribution 
 The   Cumulative Normal distribution is perhaps the most justifi able form of F( x ;   α  ,   β  ) 

theoretically. If one assumes that the noise which underlies the variability of sensory 
evidence is a linear combination of many independent noise sources, the total result-
ing noise would be approximately normally distributed, by the well-known Central 
Limit Theorem (e.g.,  Hays, 1994 ). The Cumulative Normal distribution is given as: 
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  with  x  �  ( �  
 ,  �  
 ),   α   �  ( �  
 ,  �  
 ),   β   �  (0,  �  
 ). No analytical solution to the inte-
gral is known, but the distribution may in practice be approximated by a numerical 
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method. Parameter   α   corresponds to the threshold:  F N  ( x       �        α  ;   α  ,   β  )      �      0.5. 
Varying   α   while keeping   β   constant corresponds to a translation of the function. 
Parameter   β   corresponds to the reciprocal of the standard deviation of the nor-
mal distribution, and determines the slope of the PF. Since  F N   ( x       �      0;   α  ,   β  )      �      0 and 
lim ; ,

x
NF x

→−∞
( ) =α β 0  for all values in the domains of   α   and   β  , the Cumulative 

Normal would be inappropriate in a task in which  x       �      0 corresponds to an absence 
of signal, unless  x  is log-transformed.   

 The   function  PAL_CumulativeNormal   returns values of the psychometric 
function   ψ  ( x ;   α  ,   β  ,   γ  ,   λ  ) where F( x ;   α  ,   β  ) is the cumulative normal distribution. Its 
usage is as follows: 

         >      > pcorrect      =      PAL_CumulativeNormal([alpha beta gamma  ...
lambda], StimLevels)  

 where    alpha ,  beta ,  gamma  and  lambda  correspond to the parameter val-
ues characterizing the PF, and  StimLevels  is a scalar, vector, or matrix con-
taining values at which the PF is to be evaluated. The user may opt to provide 
values only for alpha and beta, in which case gamma and lambda are assumed 
to be zero. In that case, the function simply returns the values of  F N   (that is:   ψ   N ( x ; 
  α  ,   β  ,   γ        �      0,   λ        �      0)      �       F N  ( x ;   α  ,   β  )). The return argument is a matrix of same size as 
 StimLevels , which contains the function evaluations at each of the values con-
tained in  StimLevels . For example, to produce a plot of a PF in which F( x ;   α  ,   β  ) is 
the cumulative normal with threshold   α        �      2 and slope   β        �      1, the guess rate   γ        �      0.5, 
and the lapse rate   λ        �      0, type: 

         >      > StimLevels      =      [0:.01:4];  
         >      > pcorrect      =      PAL_CumulativeNormal([2 1 .5 0], StimLevels);  
         >      > plot(StimLevels, pcorrect);   

    4.3.2.2       Logistic 
 The   logistic function is given as: 

  
F x

xL( )
( ( ))

; ,
exp

α β
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1

  (4.4)     

  with  x  �  ( �  
 ,  �  
 ),   α   �  ( �  
 ,  �  
 ),   β   �  (0,  �  
 ). Parameter   α   corresponds to the 
threshold:  F L   ( x       �        α  ;   α  ,   β  )      �      0.5, parameter   β   determines the slope of the PF. The 
logistic function is a close approximation to the Cumulative Normal distribution 
(after a linear transformation of the slope parameter   β  :   β   L       �      1.7    �      β   N ). An advan-
tage of the Logistic function over the Cumulative Normal is that the former can be 
evaluated analytically while the latter can not. For the same reasons as outlined for 
the Cumulative Normal distribution, the Logistic is inappropriate when a stimulus 
intensity  x       �      0 corresponds to an absence of signal, unless  x  is log-transformed.   
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 Use   of the toolbox function  PAL_Logistic   is analogous to that of  PAL_Cumu
lativeNormal .  

    4.3.2.3       Weibull 
 The   Weibull function is given as: 
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  (4.5)     

  with  x  �  [0,  �  
 ),   α   �  (0,  �  
 ),   β   �  (0,  �  
 ). Threshold   α   corresponds to  F W  ( x       �        α  ; 
  α  ,   β  )      �      1      �      exp ( � 1) � 0.6321, parameter   β   determines the slope in conjunction with 
  α  . That is, changing the value of   α   will alter the slope of the function, even when 
  β   is held constant. However, when plotted against log  x , a change in   α   will result 
in a translation of the function when   β   is held constant.  F W  (0;   α  ,   β  )      �      0 for all   α  ,   β  . 
Note that since the domain of  x  includes positive numbers only, the Weibull func-
tion should not be used when  x  is measured in logarithmic units; the Gumbel func-
tion should be used instead.   

    Quick (1974)  has argued that the Weibull function provides an excellent approx-
imation to the PF when performance is determined by probability summation 
among channels with normally distributed noise. Use of the toolbox function  PAL_
Weibull  is analogous to that of  PAL_CumulativeNormal  .  

    4.3.2.4       Gumbel (Also Known as Log-Weibull) 

      F xG
x( ; , ) ( )( )α β β α� � � �1 10exp   (4.6)     

  with  x     �    ( �  
 ,  �  
 ),   α      �    ( �  
 ,  �  
 ),   β      �    (0,  �  
 ). Threshold   α   corresponds to 
 F G  ( x       �        α  ;   α  ,   β  )      �      1 �  exp ( � 1) � 0.6321. The Gumbel function is the analog of the 
Weibull function when a log-transform on  x  is used. For that reason, in the litera-
ture the Gumbel function is often referred to as the log-Weibull function or, some-
what confusingly, simply as the Weibull function.   

 Use   of the toolbox function  PAL_Gumbel   is analogous to that of  PAL_Cumula
tiveNormal .  

    4.3.2.5       Hyperbolic Secant 

      
F x xHS( ; , ) tan ( )α β

π
π
β α� ��2

2
1 exp

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟   (4.7)     

  with  x     �    ( �  
 ,  �  
 ),   α      �    ( �  
 ,  �  
 ),   β      �    (0,  �  
 ). Threshold   α   corresponds to 
 F HS  ( x       �        α  ;   α  ,   β  )      �      0.5. Use of the Hyperbolic Secant is relatively rare in the psycho-
physical literature. We include it here for completeness.   
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 Use   of the toolbox function  PAL_HyperbolicSecant   is analogous to that of 
 PAL_CumulativeNormal  .  

    4.3.2.6       Inverse Psychometric Functions 
 The   inverse PFs are also included in the Palamedes toolbox. In general, given a 

function f( x ), its inverse function f  � 1 ( x ) is defi ned such that f  � 1 [f( x )]      �       x . Thus, whereas 
a PF gives the probability of a correct response as a function of a specifi c stimulus level, 
an inverse PF gives the stimulus level which corresponds to a specifi c probability of a 
correct response. The general use of these functions in Palamedes is as follows: 

         >      > StimLevels      =      PAL_inverse[NameOfFunction](params, pcorrect);  

 For   example, to fi nd the stimulus levels at which a logistic function with   α        �      1, 
  β        �      2,   γ        �      0.5, and   λ        �      0.01 has the values 0.65, 0.75, and 0.85, type: 

         >      > StimLevels      =      PAL_inverseLogistic([1 2 .5 0.01], [0.65  ...
0.75 0.85]);  
         >      > StimLevels  

 MATLAB   reports: 

  StimLevels    =   
  0  .5908  1.0204  1.4581   

    4.3.2.7       The Spread of Psychometric Functions 
 We   have used   β   in all of the forms of the PF above to symbolize the parameter 

which determines the steepness of the PF. Because   β   affects the steepness of the PF, 
it is often referred to as the slope parameter, or simply  “ the slope ”  of the PF. This is 
not entirely proper, as   β   does not directly correspond to the slope of the function as 
it is defi ned in calculus. Moreover, values of   β   cannot be compared directly between 
the different forms of PF. For example, a Cumulative Normal function with   β        �      2 
is much steeper compared to a Logistic function with   β        �      2. A common measure 
related to the steepness of PFs is the  “ spread ”  (or  “ support ” ). The spread will actu-
ally have an inverse relation to the slope of the PF. Remember that all of the PFs 
display asymptotic behavior. That is, as stimulus intensity increases   ψ   asymptotes 
towards 1      �        λ  , but will never actually attain that value. Similarly, as stimulus inten-
sity decreases,   ψ   asymptotes towards   γ   (with the exception of the Weibull whose 
value at  x       �      0 actually equals   γ  ). As such, we cannot defi ne spread as the range of 
stimulus intensities within which   ψ   goes all the way from the lower asymptote   γ   
to the upper asymptote 1      �        λ  . Instead, we pick an arbitrary number   δ   (e.g., 0.01) 
and defi ne the spread to be that stimulus range within which   ψ   goes from   γ        �        δ   to 
1      �        λ        �        δ  . Formally, if we let   σ   symbolize spread: 

  σ ψ λ δ α β γ λ ψ γ δ α β γ λ� � � � �� �1 11( ; , , , ) ( ; , , , )   (4.8)     
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  where   ψ    � 1 ( y ;   α  ,   β  ,   γ  ,   λ  ) is the inverse of the psychometric function   ψ  ( x ;   α  ,   β  ,   γ  , 
  λ  ). The value of   δ   must, of course, be between 0 and (1      �        γ        �        λ  )/2. The Palamedes 
function  PAL_spreadPF   gives the spread of a PF. We demonstrate use of  PAL_
spreadPF  by example. In order to fi nd the spread (using   δ        �      0.01) of a logistic 
function characterized by   α        �      2,   β        �      3,   γ        �      0.5, and   λ        �      0.01 we type:   

         >      > params      =      [2 3 0.5 0.01];  
         >      > delta      =      0.01;  
         >      > spread      =      PAL_spreadPF(params, delta,  ‘ logistic ’ )  

 MATLAB   returns: 

  spread    =   
  2  .5808  

 Instead   of using   ‘ logistic ’   as an argument, we may use   ‘ cumulativenor-
mal   ’ ,    ‘ weibull   ’ ,    ‘ gumbel   ’  , or   ‘ hyperbolicsecant   ’  . We do not need to 
worry about capitalization of this argument as case is ignored by  PAL_spreadPF  .   

    4.3.3       Methods for Fitting Psychometric Functions 
 The   raw data resulting from a psychophysical experiment are the proportions of 

correct responses measured at a number of different stimulus intensities  x . Each of 
these is based on a limited number of trials, and hence is only an estimate of the 
true probability with which the observer generates a correct response. We assume 
that the true probabilities of a correct response as a function of  x  are given by 
Equation 4.2b. Since, in most situations, we are interested in describing the proper-
ties of the underlying sensory mechanism we are interested only in determining the 
values of the threshold (  α  ) and slope (  β  ) of the function F( x ;   α  ,   β  ). The guess rate 
(  γ  ) is usually known (1/ m  in an  M -AFC task). The lapse rate (  λ  ) is unknown, but 
is considered to be a nuisance parameter as it tells us nothing about the sensory 
mechanism  per se . We may, of course, attempt to estimate it, but when we do so it is 
to improve our estimates of   α   and   β   (although situations might be imagined where 
the lapse rate is of interest for its own sake, in which case   α   and   β   might be con-
sidered nuisance parameters). We might also be interested in the precise shape of 
the function F( x ;   α  ,   β  ). For example, it might be of theoretical interest to determine 
whether the Weibull function, say, provides a better fi t to our data compared to the 
Logistic function. 

 We   have a number of methods available to us to fi nd the best-fi tting psychomet-
ric function (PF) to our data. These methods differ ultimately with respect to the 
criterion by which  “ best-fi tting ”  is defi ned. We will discuss two different methods 
in some detail. The fi rst method uses the criterion of maximum likelihood to defi ne 
best-fi tting, the second uses a Bayesian criterion. 
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    4.3.3.1       Maximum Likelihood Criterion 
    4.3.3.1.1       A Simple 1-Parameter Example 

 Let   us start with a simple example to introduce the concept of  “ likelihood. ”  
Imagine that we have a coin and we wish to estimate the parameter correspond-
ing to the probability that our coin lands  “ heads ”  on any given fl ip of the coin. We 
will designate this parameter  α . We perform a (rather modest) experiment which 
consists of fl ipping the coin 10 times. After each fl ip, we note whether it landed 
 “ heads ”  (H) or  “ tails ”  (T). The results of our ten trials are respectively: 

 HHTHTTHHTH   
 The   likelihood function associated with our parameter of interest is: 
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   (e.g.,  Hoel, Port,  &  Stone, 1971 ), where  a  is a potential value for our parameter 
of interest,  p ( y k   |  a ) is the probability of observing outcome  y  on trial  k  given or (per-
haps more appropriately in this context)  “ assuming ”  value  a  for our parameter 
and  N  is our total number of trials (here,  N       �      10). In our example, it is obvious that 
 p ( y k        �       H  |  a )      �       a  and  p ( y k        �       T  |  a )      �      1      �       a . Equation 4.9 utilizes what is known as the 
multiplicative rule in probability theory (sometimes referred to as the  “ and rule ” ), 
which states that the probability of observing two or more events is equal to the 
product of the probabilities of the individual events when the events are independ-
ent. Thus, the likelihood associated with, say,  a       �      0.4 is: 
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 In   words, the likelihood  L (0.4  |  y ) is calculated as the probability of observance 
of the outcome of 10 fl ips,  exactly as they occurred in our experiment , from a coin for 
which   α   is known to be 0.4. Importantly, contrary to intuitive appeal perhaps, it 
would be inappropriate to consider  L ( a  |  y ) a probability, although we calculate it 
as such. In the context of our experiment we cannot think of  L ( a  |  y ) as the prob-
ability of obtaining our experimental outcome, simply because our experiment is 
over and there is no uncertainty (anymore) as to the outcome. Thus, our obtained 
value for  L (0.4  |  y ) does not give us information about the outcome of our com-
pleted experiment. Rather, we calculate it to gain information about the value for   α  . 
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Our obtained value for  L (0.4  |  y ), however, is also most certainly not the probability 
of parameter   α   having the value 0.4. Thus,  L ( a  |  y ) is not the probability of anything, 
and using the term  “ probability ”  would be inappropriate. Instead, we use the term 
 “ likelihood. ”  

 The   likelihood function is a function of  a  and we may calculate  L ( a  |  y ) for any 
value of  a .  Figure 4.11    plots  L ( a  |  y ) as a function of  a  across the range 0      �       a       �      1 
(since  a  represents a probability, it must have a value within this range). As the term 
implies, the maximum likelihood estimate of parameter   α   is that value of  a  that 
maximizes the likelihood function  L ( a  |  y ). In our example,  L ( a  |  y ) is at maximum 
when  a  equals 0.6. Thus,  ˆ .α � 0 6     is our maximum likelihood estimate of   α  . 

 It   may be noted that Equation 4.9 calculates the probability of observance of an 
exact  “ ordered ”  sequence of, for example, heads and tails (more generally,  “ successes ”  
and  “ failures ” ), on a series of  N  independent trials. Some authors opt to include the 
binomial coeffi cient in Equation 4.9 to arrive at the probability of observing the num-
bers of successes and failures  in any order : 
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  where  m  is the number of successes (heads). However, since the value of the bino-
mial coeffi cient is determined entirely by the observed outcome of the experiment 
and does not depend on  a , inclusion of the binomial coeffi cient amounts merely to a 
linear rescaling of the values of  L ( a  |  y ), and thus will not affect our estimate of   α  .   
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 FIGURE 4.11          Plotted is the likelihood as a function of  a , the (hypothesized) value for the probability 
of observance of heads on any given fl ip of our coin with unknown   α  .    
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 One   should not be discouraged by the small values of  L ( a  |  y ) obtained. Even 
the likelihood for our best estimate of   α   (0.6) amounts to a mere 0.0012. In other 
words, a coin for which   α        �      0.6 would, when fl ipped ten times, have a probabil-
ity of only 0.0012 of generating the sequence of outcomes we have observed in our 
experiment. This seems so unlikely that it might be tempting to conclude that our 
estimate  ˆ .α � 0 6     is not a very good one! This conclusion would be inappropriate, 
however. In effect, we have witnessed the occurrence of an event and have calcu-
lated  post hoc  the probability that this event  would  occur under certain assumptions 
(specifi cally, for a range of values of  a ). However, as argued above, this probabil-
ity can be interpreted neither as the probability of our experiment resulting in the 
observed sequence, nor as the probability of   α   having the value of 0.6.  

    4.3.3.1.2       The Psychometric Function and the Likelihood Function 
 Typically  , we wish to estimate two parameters of the psychometric function: its 

threshold (  α  ); and its slope (  β  ). Thus the likelihood function is now a function of 
two parameters and becomes: 
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  where  p ( y k   |  x k  ;  a ,  b ) is the probability of observance of response  y  (in an  M -AFC 
task typically  “ correct ”  or  “ incorrect ” ) on trial  k  given stimulus intensity  x k   and 
assuming threshold   α        �       a  and slope   β        �       b  of the psychometric function. Let us 
again imagine a modest experiment: an observer is to decide which of two tem-
poral intervals contains a low-intensity visual stimulus. Five stimulus intensities  x  
are used and the observer is tested four times at each of the fi ve stimulus intensi-
ties.  Table 4.2    presents the responses observed for each of the twenty trials (1: cor-
rect; 0: incorrect). Also listed for each response is the likelihood for two, somewhat 
arbitrary, assumed psychometric functions. These individual trial likelihoods are, of 
course, simply equal to   ψ  ( x k  ;  a ,  b ,   γ  ,   λ  ) if the response is correct or 1      �        ψ  ( x k  ;  a ,  b ,   γ  ,   λ  ) 
if the response is incorrect. One of the functions is characterized by  a       �      1,  b       �      1, the 
other by  a       �      10,  b       �      1. We assume the guess rate   γ   equals 0.5, and the lapse rate   λ   
equals 0. Since   γ   and   λ   are fi xed we will denote the probability of a correct response 
as   ψ  ( x k  ;  a ,  b ) for purposes of brevity. The two PFs for which we explicitly calculate 
the likelihoods are shown in  Figure 4.12   . Following Equation 4.11, the likelihood 
based on all twenty responses is simply calculated as the product of the likeli-
hoods based on all individual trials. These overall likelihoods are also listed in the 
table. The interpretation of the likelihood here is analogous to that in the previous 
 section. For example, the value  L ( a       �      1,  b       �      1  |  y )      �      4.078      �      10  � 5  can be interpreted 
as the probability that an observer whose true underlying PF is characterized by 
  α        �      1 and   β        �      1 would generate the exact sequence of responses as that produced 
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by our observer. Again, we should not be discouraged by the minute value of the 
likelihood: even if our observed proportion of correct for each of the stimulus levels 
would be perfectly predicted by the PF, our likelihood would be rather minute.   

 Of   course, we may calculate the likelihood for any particular combination of  a  
and  b .  Figure 4.13    presents a contour plot of  L ( a ,  b  |  y ) as a function of log  a  and log  b  
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 TABLE 4.2          The log-transformed stimulus level [log( x )], the observed outcome of the trial 
( y , 0      �      incorrect, 1      �      correct), the probability of a correct response for two assumed PFs [  ψ   ( xk ; 
 a       �      1,  b       �      1) and   ψ   ( xk ; a      �      10, b      �      1)], and the likelihood of each of the observed outcomes for 
both assumed PFs [ p ( yk  |  xk ;  a       �      1, b       �      1) and  p ( yk  |  xk ;  a       �      10,  b       �      1)] are shown for each of 20 trials 
(also shown are the likelihoods for the two PFs considered across the entire experiment [ L (1,1  |  y ) 
and  L (10,1  |  y )])  

    k    log( x )  y  
   ψ  ( x  k ;  a       �      1, 
 b       �      1)   p ( y  k  |  x  k ;  a       �      1,  b       �      1) 

   ψ  ( x k  ;  a       �      10, 
 b       �      1)   p ( y  k  |  x  k ;  a       �      10,  b       �      1) 

   1   � 2  1  0.5596  0.5596  0.5237  0.5237 

   2   � 2  0  0.5596  0.4404  0.5237  0.4763 

   3   � 2  1  0.5596  0.5596  0.5237  0.5237 

   4   � 2  0  0.5596  0.4404  0.5237  0.4763 

   5   � 1  0  0.6345  0.3655  0.5596  0.4404 

   6   � 1  1  0.6345  0.6345  0.5596  0.5596 

   7   � 1  1  0.6345  0.6345  0.5596  0.5596 

   8   � 1  1  0.6345  0.6345  0.5596  0.5596 

   9  0  1  0.7500  0.7500  0.6345  0.6345 

   10  0  1  0.7500  0.7500  0.6345  0.6345 

   11  0  0  0.7500  0.2500  0.6345  0.3655 

   12  0  1  0.7500  0.7500  0.6345  0.6345 

   13  1  1  0.8655  0.8655  0.7500  0.7500 

   14  1  1  0.8655  0.8655  0.7500  0.7500 

   15  1  1  0.8655  0.8655  0.7500  0.7500 

   16  1  0  0.8655  0.1345  0.7500  0.2500 

   17  2  1  0.9404  0.9404  0.8655  0.8655 

   18  2  1  0.9404  0.9404  0.8655  0.8655 

   19  2  1  0.9404  0.9404  0.8655  0.8655 

   20  2  1  0.9404  0.9404  0.8655  0.8655 

            L (1,1  |  y )      �      4.078      �      10  � 5      L (10,1  |  y )      �      2.654      �      10  � 5  
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 FIGURE 4.12          Shown is the probability correct (  ψ  ) for two PFs (both are Logistic, one characterized 
by   α        �      1,   β        �      1, the other by   α        �      10,   β        �      1) as a function of log stimulus intensity [log( x )]. Also shown 
are the results of our experiment as the proportion of correct responses for each of the fi ve stimulus 
intensities used.    
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 FIGURE 4.13          Shown is a contour plot of the likelihood function as a function of assumed threshold  a  
and slope  b . Square symbols correspond to the two PFs considered in  Table 4.2  and shown in  Figure 4.12 . 
Contour lines correspond to  L ( a ,  b  |  y )      �      0.5      �      10  � 5 , 1      �      10  � 5 , . . . , 4      �      10  � 5 .    
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across the ranges log ( a )  �  [ � 2, 2] and log ( b )  �  [ � 1, 2]. The two specifi c PFs whose 
likelihoods are calculated in  Table 4.2  are indicated in the fi gure by the square sym-
bols. Analogous to the previous one-parameter coin-fl ipping experiment described 
above, the maximum likelihood estimates of the threshold and slope of the PF are 
those values of  a  and  b  that maximize  L ( a , b  |  y ). 

 In   practice, we perform our calculations using log-transformed probabilities: 

  
LL a b p y x a be k k
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 where    LL ( a ,  b  |  y ) is the  “ log likelihood ”  and  p ( y k   |  x k  ;  a ,  b ) is as defi ned above. Since 
the log-transform is monotonic, the maximum value of  LL ( a ,  b  |  y ) and that of  L ( a , 
 b  |  y ) will occur at corresponding values of  a  and  b . One reason for performing our 
calculations on the log-transform is that, with increasing  N , likelihoods become van-
ishingly small and may, in many practical applications, become too small to be rep-
resented (other than as  “ 0 ” ), as (64-bit) data type  “ double ”  in MATLAB (the smallest 
positive number that can be represented by a double is 2.22507      �      10  � 308 ). 

 Note   that, in the above, the probability of a correct response for the observer on 
any trial is assumed to be a function only of stimulus intensity. In other words, the 
probability of a correct response given stimulus intensity  x  is assumed to be identi-
cal, regardless of whether it is the fi rst trial an observer performs, or the last trial, 
or any in between. We will call this the  “ assumption of stability. ”  Due to practice 
and fatigue effects, the assumption of stability is almost certainly never strictly true. 
Another assumption which is implicitly made, when we assume that the probabil-
ity of a correct response is a function of stimulus intensity only, is what we refer to 
as the  “ assumption of independence. ”  The assumption of independence states that 
whether an observer responds correctly on any trial is affected by stimulus inten-
sity only, and is not affected by whether the observer responded correctly or incor-
rectly on any other trial. In practice, the assumption of independence is also almost 
certainly never true. An example of a violation of this assumption would be if, after 
a series of incorrect responses, an observer becomes frustated and increases her 
concentration and attention in order to optimize the probability of getting the next 
trial correct. 

 We   will not attempt here to visualize a three- or four-dimensional likelihood 
function, but we may include the guess rate and/or the lapse rate as parameters 
in the log likelihood function in order to estimate them as well. In an  M -AFC task 
the guess rate is known, but situations can be imagined where the guess rate is not 
known and it may need to be estimated. In practice, we do not know what the lapse 
rate is. In theory, we can estimate the lapse rate, but we might run into problems 
when we attempt to do so. Some of these problems will be discussed below. In prac-
tice, many researchers implicitly assume a lapse rate equal to zero in their fi tting 
procedure. When we do this, however, even a single lapse during an experiment 
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may have a signifi cant effect on our estimates of the threshold and slope param-
eters. We will elaborate a bit on the issues involved. 

 Imagine   a 2AFC experiment in which we aim to estimate the threshold and slope 
of a psychometric function. The method of constant stimuli is used with stimulus 
values  x       �       � 4,  � 3, . . . , 4. Let us assume that the observer’s actual F( x ) is the logis-
tic function with   α        �      0 and   β        �      2. We will consider here the effect of a lapse at a 
single trial in which the stimulus intensity equals 4. Under the assumption that our 
observer’s lapse rate equals 0, the probability that this observer would generate an 
incorrect response at the highest stimulus intensity is extremely low:   ψ  L  ( x       �      4;   α        �      0, 
  β        �      2,   γ        �      0.5,   λ        �      0)      �      0.99983. Remember that the likelihood associated with a par-
ticular PF may be thought of as the probability that this PF would produce the exact 
sequence of responses (including this particular trial) that was in fact observed. Thus, 
when a lapse does occur on this trial and an incorrect response is produced, the like-
lihood associated with this PF will be severely defl ated as a consequence. Specifi cally, 
due to the lapse, the likelihood will be multiplied by 1      �      0.99983 or 0.00017 based 
on this one trial’s observed response. However, had the observer not lapsed and 
responded correctly, the likelihood would be multiplied by 0.99983. Thus, the occur-
rence of the lapse affected the likelihood by a factor of 0.00017/0.99983      �      0.00017 
relative to the situation in which the lapse had not occurred. 

 Let   us also examine the effect of this lapse on the likelihood associated with a dif-
ferent PF: that characterized by   α        �      1 and   β        �      1.   ψ  L  ( x       �      4;   α        �      1,   β        �      1,   γ        �      0.5, 
  λ        �      0)      �      0.9763. In other words, this PF may, on occasion, produce an incorrect response 
when  x       �      4. Following the same logic as above, the lapse affected the likelihood of this 
PF by a factor of 0.0237/0.9763      �      0.0243. Thus, the effect of the lapse is much less dra-
matic for this PF compared to the PF discussed above. In general, the effect of lapses 
on likelihoods will vary systematically across the parameter space. Generally speak-
ing, lapses that occur at high stimulus intensities will severely suppress the likelihoods 
associated with PFs that are highly unlikely to produce incorrect responses at these 
stimulus intensities. Lapses affect the likelihoods associated with PFs that allow for 
occasional incorrect responses at these stimulus intensities to a much lesser degree. In 
general, then, lapses occurring at high stimulus intensities will lead to an overestima-
tion of the threshold parameter and an underestimation of slope parameters. 

 How   can we minimize the effect of lapses? First, we should try to avoid the occur-
rence of lapses as much possible. However, this is easier said than done. Anybody 
who has ever participated in psychophysical experiments will know that lapses are 
impossible to avoid entirely. There are a few procedural methods we could consider 
to avoid lapses due to the observer being trigger-happy. Due to the repetitive nature 
of psychophysical testing, observers naturally automate responding to some extent, 
and occasionally a response button may be pressed without conscious intent. In an 
 M -IFC task, observers may have made up their mind and initiated a response after 
having witnessed only the fi rst interval. Such issues may be alleviated simply by 
disallowing early responses. One may even consider s ounding an unpleasant beep 
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when the observer responds too early.  Meese and Harris (2001)  have proposed 
a procedure which allows observers to reconsider responses that are the result of 
being trigger-happy. In this procedure, responses are recorded only when a response 
button is released (rather than depressed). 

 Given   that lapses will occur, we have several options to minimize their effect 
when they do occur. One option we have is to free the lapse parameter during our 
fi tting procedure. As it turns out, however, since lapses are rare, the estimate of 
our lapse rate is typically not very accurate (e.g.,  Wichmann  &  Hill, 2001 ). From our 
own experience, the estimate for the lapse rate will often have a negative value. 
Also, in general, the more parameters we attempt to estimate the more likely it is 
that our fi tting procedure will fail. For example, when we use a search algorithm to 
fi nd the maximum likelihood it will be more likely that we fi nd a local maximum 
rather than the absolute maximum in the likelihood function when we increase the 
number of free parameters to be included in the fi t. 

 We   may avoid negative values for the estimate of our lapse rate and also reduce 
the probability that fi ts will fail by constraining the lapse rate to have a value within 
a narrow range of reasonable values, say 0      �        λ        �      0.06 (e.g.,  Wichmann  &  Hill, 2001 ). 
However, when we do so, estimates of lapse rates tend to end up at either limit of 
the range in many realistic situations (e.g.,  Garc í a-P é rez  &  Alcal á -Quintana, 2005 ). 
Whereas setting the lower limit at zero is quite natural, the upper limit is inherently 
somewhat arbitrary. Also, one might argue that when we recognize the need to con-
strain the lapse rate to a range of values, we implicitly acknowledge that our data 
are insuffi cient to result in a reliable estimate of the lapse rate. 

 If   we do wish to estimate our lapse parameter,  Treutwein (1995)  suggests we 
include a relatively high proportion of trials in our experiment at high stimulus 
intensities. Responses at high stimulus intensities give much information as to the 
lapse rate. This strategy is, however, rather expensive in terms of the number of 
trials required. Since we can expect lapses to occur on only a few percent of trials, 
we would need many trials at high stimulus intensities to acquire an accurate esti-
mate of the lapse rate. However, responses at these stimulus intensities give us little 
information as to the threshold and slope parameters. 

 In   a typical psychophysical experiment, observers will test under several experi-
mental conditions. For example, sensitivity to a particular stimulus might be deter-
mined both with and without adaptation. Since the probability with which the 
observer will lapse is, by defi nition, independent of the stimulus, we can assume 
that the true lapse rate is identical across all conditions of an experiment. This raises 
the possibility of estimating a single lapse rate based on the entire experiment. The 
lapse rate will be estimated much more accurately, since it will be based on many 
more trials compared to estimates of lapse rates based on the results in a single con-
dition. In Chapter 8 we will show how we can estimate a single lapse rate across 
several conditions of an experiment while still being able to estimate individual 
thresholds and slopes for each of the conditions. 
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 If   we do not wish to estimate our lapse rate, we should avoid extremely high 
stimulus intensities. As shown above, when the probability of detection by the 
underlying mechanism of a stimulus is near 1, but the response is incorrect due to a 
lapse, the likelihood associated with the true PF is severely defl ated. However, when 
the stimulus intensity is very low and the probability of detection by the underlying 
mechanism (i.e., F( x )) is near 0, it does not matter much whether the observer lapses 
or not. The observer performs around chance level either way. In general, the higher 
the stimulus intensity, the greater the effect of a lapse will be on our threshold and 
slope parameter estimates. Also, the cost associated with avoiding high stimulus 
intensities is very low, because one should avoid extremely high stimulus intensi-
ties anyway, since responses here provide little information as to the values of our 
threshold and slope parameters (Chapter 5 will discuss this issue in more detail). 

 A   fi nal strategy to minimize lapse effects is to fi x the lapse rate during the fi tting 
procedure at a small but non-zero value, such as 0.02. While lapses will still affect 
our parameter estimates, the occurrence of a lapse at a stimulus intensity where F( x ) 
is near 1 will not have the catastrophic effect it would have if we fi xed the lapse rate 
at 0.  Wichmann and Hill (2001)  have systematically studied the effect of lapses on 
the estimates of the parameters of a PF. 

 An   analytical solution to the problem of fi nding the maximum value of the log 
likelihood is in most practical situations diffi cult, if not impossible, to accomplish. 
However, we may use a search algorithm to fi nd the maximum value of the log 
likelihood, and the corresponding values of  a  and  b  to any desired fi nite degree of 
precision. For example, the Nelder – Mead simplex method implemented in the  fmin-
search  function in MATLAB is well-suited to this problem. 

 Given   a large enough number of trials in an experiment, the likelihood function 
is typically unimodal, like that shown in  Figure 4.13 . It should be mentioned here 
that the results of the above-described and very modest experiment were not typical: 
most repetitions of the experiment would not result in unimodal likelihood functions. 
Whether an experiment will result in a unimodal likelihood function depends on 
other factors besides  N . From our own experience these factors include the guess rate, 
the lapse rate, and the distribution of stimulus intensities used in the experiment. 

 Function    PAL_PFML_Fit   in the Palamedes toolbox estimates any or all of the four 
parameters associated with a PF using the maximum likelihood criterion. It utilizes the 
 fminsearch  function in MATLAB to maximize the log likelihood. Its usage is as follows: 

    [paramsValues LL exitfl ag output]      =      PAL_PFML_Fit(StimLevels, ...  
NumPos, OutOfNum, paramsValues, paramsFree, PF)  

 The   input variables are as follows: 
  StimLevels   : vector containing the stimulus intensities utilized in the experi-

ment. For the modest experiment described above we would defi ne: 

         >      > StimLevels      =      [-2 -1 0 1 2];  
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  NumPos   : vector of equal length to  StimLevels  containing, for each of the stim-
ulus levels, the number of positive responses (e.g.,  “ yes ”  or  “ correct ” ) observed. 
Thus, with reference to the above experiment we defi ne: 

         >      > NumPos      =      [2 3 3 3 4];  

  OutOfNum   : vector of equal length to  StimLevels  containing the number of tri-
als tested at each of the stimulus levels. To fi t the above experiment we defi ne: 

         >      > OutOfNum      =      [4 4 4 4 4];  

  paramsValues   : vector containing values for each of the four parameters of the 
PF: alpha (threshold); beta (slope); gamma (guess rate); lambda (lapse rate). We need 
to provide a value for each of these parameters. For those we wish to fi t we provide 
the initial search values (we would use our best guesses for the parameter values), 
for those parameters we wish to remain fi xed we provide their assumed or known 
fi xed values. Let us say that in the above experiment we wish to fi t the threshold and 
the slope, but assume fi xed values for the guess rate and the lapse rate. Our initial 
guess for the value of log alpha is 0, our initial guess for the slope is 1. Since data 
were obtained in a 2AFC experiment we fi x the guess rate at 0.5, and since we have 
high confi dence in our observer’s vigilance, we set the lapse rate to 0. We defi ne: 

         >      > paramsValues      =      [0 1 .5 0];  

  paramsFree   : vector containing a code for each of the four parameters indicat-
ing whether it is a free parameter (coded by 1) or a fi xed parameter (coded by 0). 
As noted above, we wish to estimate the threshold and the slope, but we wish the 
guess rate and the lapse rate to be fi xed parameters. We defi ne: 

         >      > paramsFree      =      [1 1 0 0];  

  PF   : Of course, we need to specify the form of the PF we wish to fi t. We will pass 
the appropriate function as a MATLAB  inline  function to the routine. PFs supported 
are those described above (Section 4.3.2): the Logistic ( PAL_Logistic  ), Weibull 
( PAL_Weibull  ), Cumulative Normal ( PAL_CumulativeNormal  ), Hyperbolic 
Secant ( PAL_HyperbolicSecant  ), and Gumbel ( PAL_Gumbel  ) functions. We will 
use the Logistic function and defi ne: 

         >      > PF      =      @PAL_Logistic;  

 We   may now place our function call: 

         >      > [paramsValues LL exitfl ag output]      =   ...   
PAL_PFML_Fit(StimLevels,NumPos, OutOfNum, .. .
paramsValues, paramsFree, PF)  

 The   output in MATLAB is as follows: 

  paramsValues    =   
  0  .0102  0.9787  0.5000  0  
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  LL    =   
    -10.1068  
  exitfl ag    =   
  1    
  output    =   
  iterations  : 31  
  funcCount  : 58  
  algorithm  :  ‘ Nelder-Mead simplex direct search ’   
  message  : [1      ×      196 char]  

  paramsValues    again contains our four PF parameters. For those parameters we 
wished to estimate (here, the slope and the threshold)  PAL_PFML_Fit   returns the 
best-fi tting values for the threshold and slope parameters. For those parameters we 
indicated to be fi xed,  PAL_PFML_Fit   simply returns the fi xed values we chose (0.5 
for the guess rate, and 0 for the lapse rate). The scale on the returned value of   α   
(threshold) will be the same as the scale we used to defi ne our stimulus levels (in 
 StimLevels ). Here, we provided the function with log-transformed values of our 
stimulus levels, and thus the fi rst value in  paramsValues  returned by the function 
is actually  logα    . 

  LL    is the value of the log likelihood (calculated as in Equation 4.12) associated 
with the fi t. 

  exitfl ag    is the exit fl ag of  fminsearch . A value of 1 indicates that the search ter-
minated successfully. Note that an exit fl ag equal to 1 does not necessarily mean 
that we found the global maximum likelihood; we may have found a local maxi-
mum. A solution that has converged on anything other than the global maximum is 
usually easily detected, since local maxima typically occur at parameter values that 
are clearly wrong. Comparison of our estimates with  Figure 4.13  indicates that the 
obtained parameter estimates correspond to the global maximum likelihood. 

  output   : the output structure provides information about the simplex search. It 
gives the number of iterations performed, the number of function evaluations per-
formed, the algorithm used, and a message. When we type: 

         >      > output.message  

 MATLAB   tells us: 

  Optimization   terminated:  
  the   current x satisfi es the termination criteria using 
OPTIONS.TolX of 1.000000e-004  
  and   F(X) satisfi es the convergence criteria using OPTIONS.
TolFun of 1.000000e-004  

 The   above message contains the utilized criterion for the tolerance on the esti-
mates of the parameters ( OPTIONS.TolX ) and on the value of the log likelihood 
( OPTIONS.TolFun ). 
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 The   values listed in  output.message  are the default values used in the  fmin-
search  function in MATLAB, simply because we did not tell MATLAB to do oth-
erwise. We can choose to perform the fi tting using different criterion values for 
tolerance. We can also override other default settings. This requires us fi rst to 
change the values in the options structure that holds these values. First we create 
an options structure by copying the default options structure: 

         >      > options      =      optimset( ‘ fminsearch ’ );  

 We   can then change individual entries. For example: 

         >      > options.TolFun      =      1e-09;  

 We   then pass the new options structure to function  PAL_PFML_Fit   by adding 
an extra argument   ‘ SearchOptions   ’  , followed by the new  options  structure: 

         >      > [paramsValues LL exitfl ag output]      =   ...   
PAL_PFML_Fit(StimLevels, NumPos, OutOfNum,paramsValues, ... 
paramsFree,PF, ‘ SearchOptions ’ ,options);  

 For   additional information about the  options  structure type: 

         >      > help optimset  

 or   visit the MATLAB Function Reference section for the function  optimset . 
 Another   optional argument allows us to constrain the estimate of the lapse rate 

to a specifi ed range of values. To do this, we add an argument   ‘ LapseLimits   ’,   
followed by a 1      �      2 vector containing the lower limit and the upper limit we wish 
to place on the lapse rate parameter estimate. For example, the call: 

         >      > [paramsValues LL exitfl ag output]      =   ... 
  PAL_PFML_Fit(StimLevels, NumPos, OutOfNum,paramsValues, ...
paramsFree,PF, ‘ LapseLimits ’ ,[0 0.06]);  

 would   constrain the lapse rate parameter to have a value between 0 and 0.06 
(inclusive). Keep in mind that this optional argument only makes sense when the 
lapse parameter is set to be a free parameter and will be ignored otherwise. 

 It   is not necessary to combine trials with equal stimulus intensities in single 
entries in our vectors  StimLevels ,  NumPos , and  OutOfNum . For example, it may 
be convenient to have as many entries in these vectors as we have trials in the exper-
iment. In this case, we would obtain identical results if we defi ne  StimLevels , 
 NumPos , and  OutOfNum  as follows: 

         >      > StimLevels      =      [-2 -2 -2 -2 -1 -1 -1 -1 0 0 0 0 1 1 1 1 2 ...
2 2 2];  
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         >      > NumPos      =      [1 0 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1];  
         >      > OutOfNum      =      ones(1,20);  

 The   m-fi le  PAL_PFML_Demo.m   demonstrates use of the function  PAL_PFML_Fit  .  

    4.3.3.1.3       Error Estimation 
 The   above section describes how to fi nd the best-fi tting parameters of a PF using 

the maximum likelihood criterion. Because our estimates are based on what is nec-
essarily a limited number of observations we realize, though, that our estimates are 
exactly that: estimates. The estimates we have obtained from our sample will not 
be exactly equal to the true parameter values. If we were to repeat our experiment 
under exactly identical conditions and estimate our parameter values again, our 
second set of estimates will also not be equal to the true parameters, nor will they 
be equal to our original estimates. This is simply due to noise; our observers have a 
noisy brain, our stimuli may have a stochastic element, etc. 

 So  , we will arrive at different threshold estimates when we repeat an experi-
ment, even when we use identical conditions. We call this sampling error. This is 
a problem, especially when we are interested in determining whether experimental 
manipulations affect the parameters of our PF. We can never know for sure whether 
differences between parameter estimates in different conditions are a result of the 
experimental manipulation or sampling error. However, there are methods available 
to us to make at least a reasonable guess whether the experimental manipulation 
affected the parameters of the PF. Here we will discuss a method which allows us to 
estimate by how much we can expect our parameter estimates to differ from the true 
value of the parameter. 

 So  , we would like to gain some information as to the magnitude of the error to 
which our parameter estimates are subject. We will address this issue by consider-
ing a different, but similar question. The question we ask ourselves is: given par-
ticular values for the true parameters and an infi nite number of experiments like 
ours, all resulting in estimates of the true parameters, what degree of error are these 
estimates subject to? More generally, given particular values for the true parame-
ters, what are the probability density functions of our parameter values? This is, 
of course, a hypothetical question because we will never know the true values of 
the parameters, and we certainly do not wish to repeat our experiment an infi nite 
number of times. Not only is this question hypothetical, but it also seems backward. 
When we have completed our single experiment and fi t our data we will know the 
parameter estimates and would like to know the true parameter values, but the 
question assumes knowledge of the true parameters and asks about the parameter 
estimates. As backwards as this question may appear, let us attempt to answer it 
anyway, and see where that leads us. 

 The   distribution of parameter estimates resulting from a hypothetical infi nite 
number of experiments is known as a  “ sampling distribution. ”  In certain circumstances 
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sampling distributions for parameters may be derived analytically. These are typi-
cally algebraically simple parameters, such as the mean. As an example, let us 
consider the sampling distribution of the mean. By the well-known Central Limit 
Theorem (e.g.,  Hays, 1994 ), given a population of scores with mean   μ   and standard 
deviation   σ  , the sampling distribution of the (sample) mean  X    will have a mean ( μX    ) 
equal to   μ   and a standard deviation ( σX    ) equal to  σ N    , where  N  is the sample size. 
Moreover, if our sample size  N  is large enough, the sampling distribution of the 
mean will closely approximate the normal distribution. By way of example, let us 
say that we have a population with known mean   μ        �      100 and standard deviation 
  σ        �      20. If we were to collect an infi nite number of samples of size  N       �      100, and for 
each of these samples calculated the sample mean  X    , the resulting distribution of 
sample means would have mean  μX     equal to 100 and the standard deviation of 
sample means (the standard error) would be equal to  σ σX N� �2    . If we use 
the normal distribution as an approximation to the sampling distribution (which is 
appropriate given that our  N       �      100), we are now in a position to make some inter-
esting statements. For example, approximately 68% of our sample means would 
have a value between 98 and 102  ( )μ σX X	    . This may, of course, be paraphrased 
as: 68% of sample means would be in error by less than 2 points. We can also deter-
mine that a very large proportion ( � 0.9999) of sample means would have a value 
between 92 and 108, which may be paraphrased as: almost all sample means would 
be in error by less than 8 points. We may paraphrase even further, and state that 
if we were to take a single sample of size  N       �      100 from this population there is a 
probability of about 68% that the sample mean will be in error by less than two 
points, and also that the probability that the sample mean will be in error by less 
than 8 points is near unity. 

 Let   us now envision a situation in which we have a large population of scores and 
we wish to estimate the mean of this population. Somehow we know that the stand-
ard deviation of the population is equal to 20. We reason that if we take a sample of 
 N       �      100 and calculate the sample mean, the probability that this sample mean will 
be in error by less than 2 points is approximately 68%. Next, we actually do take a 
sample of  N       �      100, and we calculate the sample mean which comes out at, say, 50. It 
sounds as if we can now argue that there is a 68% probability that our sample mean is 
in error by less than 2 points and thus, that the probability that the population mean 
has a value between 48 and 52 is 68%. We cannot make this argument though, simply 
because the experiment is over and the sample mean is known, and it is either in error 
by less than 2 points or it is not. Similarly, the population mean is not a random varia-
ble. That is, it either has a value between 48 and 52 or it does not. Despite the fact that 
we cannot use the term probability, it seems like a reasonable argument. We present 
our statement using the term  “ confi dence. ”  We might say:  “ We are 68%  confi dent  that 
the population mean has a value between 48 and 52. ”  Mission accomplished! 

 Thus  , once we have conducted our psychophysical experiment, we would like to 
know the characteristics of the sampling distributions of our parameters. From this, 
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we could determine by how much we can expect our estimate for, say, the threshold 
to be in error. To determine the sampling distribution, we would fi rst need to know 
the population parameters, which of course we do not (if we did, there would be 
no need for our experiment). This problem also exists when we wish to estimate 
the mean of a distribution as we did above. Our example there assumed knowl-
edge of the population standard deviation. In any practical situation, the popula-
tion standard deviation will be just as unknown as the population mean we wish to 
estimate. The solution is to consider the sample to be representative of the popula-
tion, and to use the sample to estimate the population parameters. In the case of 
the mean we would have to estimate the population standard deviation from our 
sample (our sampling distribution would then have to be the t-distribution, but 
that aside). We could do the same for our purposes here. Even though we do not 
know the true PFs parameters, we have estimates of them based on our sample. For 
the purposes of fi nding our sampling distribution we will use these as estimates 
of the true PFs parameters and derive a sampling distribution for a PF with these 
parameters. 

 Our   second problem is that even if we assume our population parameters to 
equal our sample parameters, no one as of yet has analytically derived the sampling 
distribution of, say, the threshold parameter of a PF as estimated by the maximum 
likelihood method. However, we may approximate our sampling distribution by 
simulating our experiment many times using the estimated true PF parameters to 
defi ne the generating function. That is, we simulate an observer to act according to 
our estimated true PF. We run this observer through simulations of our experiment 
many, many times. Each time we derive estimates of the PFs parameters. These esti-
mates then serve as our empirically-derived sampling distribution. 

 An   example is probably in order here. We wish to measure the threshold of a 
human observer on a 2AFC psychophysical task. We use the method of constant 
stimuli to collect 100 responses at each of 7 equally spaced (in log units) stimulus 
levels:  � 3,  � 2, . . . , 3. The observed number of correct responses at these stimulus 
levels are: 55, 55, 66, 75, 91, 94, and 97, respectively. We can use  PAL_PFML_Fit   to 
fi nd the best-fi tting PF. We wish to estimate the threshold and slope, but we fi x the 
guess rate at 0.5 and we will also assume that the lapse rate equals 0. In order to 
perform the fi t, we type: 

         >      > PF      =      @PAL_Logistic;  
         >      > StimLevels      =      [-3:1:3];  
         >      > NumPos      =      [55 55 66 75 91 94 97];  
         >      > OutOfNum      =      100.*ones(size(NumPos));  
         >      > paramsValues      =      [0 1 .5 0];  
         >      > paramsFree      =      [1 1 0 0];  
         >      > paramsValues      =      PAL_PFML_Fit(StimLevels,NumPos, ... 
OutOfNum, paramsValues, paramsFree, PF)  



101 

 The   output in MATLAB is: 

         >      > paramsValues  =   
    -0.1713  0.9621  0.5000  0  

 Thus   our best maximum likelihood estimate for the threshold is  � 0.1713 (in log 
units, since we entered  StimLevels  in log units), and for the slope is 0.9621. We 
now wish to obtain the sampling distribution of our parameter estimates. This will 
allow us to get some idea as to how much error our parameter estimates might be 
subject to. We imagine an observer whose PFs true parameters are those we have 
estimated from our observer (i.e., log   α        �       � 0.1713,   β        �      0.9621). We then simulate 
this observer as a participant in our experiment many, many times. In the simula-
tions, we use the same stimulus intensity values and the same number of trials at 
each of the stimulus intensities as we did for our human observer. From the results 
of each simulated experiment, we estimate the PFs parameters. For all these esti-
mates we know exactly by how much they are in error, because we know the true 
parameters of the generating PF. Our distributions of these estimates are our empir-
ically derived sampling distributions. The left panels of  Figure 4.14    show sampling 
distributions of the estimates for the threshold and slope based on B      �      40,000 simu-
lated experiments. The results of all these simulated experiments were generated by 
a PF with known parameter values (log   α        �       � 0.1713,   β        �      0.9621). These generating 
parameters are indicated in the fi gure by the vertical lines through the histograms. 
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 FIGURE 4.14          Empirical sampling distributions of the threshold and slope parameters of a PF. 
Distributions on the left were obtained using a parametric bootstrap, those on the right using a non-
parametric bootstrap. Vertical lines indicate the best-fi tting values of the threshold and slope of the 
results of the human observer, which are also the values used to generate the bootstrap samples.    
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 Let   us make a few observations. First, the mean of the sampling distribution for the 
threshold equals  � 0.1761. This is quite close in value to the threshold of the generat-
ing PF. This means that, although some estimates were too high and others too low, 
on average they were approximately on target; our fi tting procedure results in thresh-
old estimates that have little bias, at least under the conditions of this experiment. 
Second, the mean of the sampling distribution for the slope equals 0.9835. Again 
some estimates were too high, some were too low, but now the average, frankly, is a 
little high too (compare to generating slope 0.9621). Thus, our estimates for the slope 
parameter have, on average, overestimated the true slope parameter a bit. We also 
note that, whereas the sampling distribution of thresholds is symmetrical, that for 
slopes is positively skewed. In skewed distributions, the median is sometimes used as 
a measure of central tendency. The median of the sampling distribution for the slope 
equals 0.9705, closer to the true (i.e., generating) value, but still too high. 

 The   bias of our estimates says, of course, nothing about how much any given 
 individual  estimate may be in error. For that we need to look at the standard devia-
tion of our sampling distribution of parameter estimates (i.e.,  “ the standard error of 
estimate ”  or SE). The SE is calculated as: 

  
SE Bb
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 where    B  equals the number of simulations (here,  B       �      40,000),  α̂b     is the thresh-
old estimate resulting from bootstrap simulation b (actually, since we have used a 
log-transform of stimulus intensities, in this particular example we should use the 
log-transformed value of the threshold estimate),  α̂     is the mean threshold estimate 
(again, here, we should use the mean of the log-transformed threshold estimates). 

 The   standard error of the threshold (calculated as in Equation 4.13) equals 0.2121. 
Since we note that the shape of the sampling distribution is approximately normal, 
this would mean that about 68% of threshold estimates deviated from the generat-
ing threshold by less than 0.2121 log units. We may assume that the true generating 
PF of our human observer is much like that used to create these sampling distribu-
tions (after all, we modeled our simulated observer after our human observer), and 
thus that the sampling distribution of our human observer’s threshold would be 
much like that shown in the fi gure. Thus, we can now make statements such as: 
 “ We can be 68% confi dent that our human observer’s true threshold has a value in 
the range  � 0.1713      	      0.2121. ”  

 Calculated   analogously to the standard error of the threshold, the standard error 
of the slope estimate is equal to 0.1461. The shape of this sampling distribution 
deviates systematically from normal, so we cannot translate this value easily into a 
confi dence interval. Also, as the sampling distribution of the slope is asymmetrical, 
we might wish to determine two standard errors: one for estimates that were below 
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the generating value; the other for estimates that were above the generating value. 
The SE for low estimates equals 0.1300, and that for the high estimates is 0.1627. 

 A   good case can be made for an alternative calculation of standard errors. In 
Equation 4.13, we have used deviations from the sampling distribution’s mean 
threshold  ( )α̂ αb �     as our basis for the calculation of the SE. However, these values 
are not truly the errors of estimate. We know the true threshold that generated the 
sampling distribution, thus we need not estimate it. The true error of estimate of 
any  α̂b     is not  ( )α̂ αb �    , it is  ( )α̂ αb g�    , where   α  g   is the threshold of the PF that gen-
erated the sampling distribution. If we use instead the equation: 
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 to   calculate the standard error of estimate, we fi nd that the value is nearly identical 
in value to that obtained using Equation 4.13. Note that the denominator now is  B , 
since we use the known generating   α  g   and did not estimate it by  α̂    . Whether we 
use  α̂     or   α  g   has very little effect on the obtained standard error of estimate; this is 
because  α̂     and   α  g   are nearly identical in value. However, when we make the same 
adjustment in the calculation of the standard error of estimate of the slope, we do 
arrive at somewhat different estimates (0.1477 versus 0.1461). The difference can be 
attributed to  β̂    having overestimated   β  g  . When we calculate separate estimates for the 
low estimates and the high estimates using   β  g  , we arrive at SEs of 0.1199 (at the lower 
end) and 0.1690 (at the higher end), compared to 0.1300 and 0.1627, respectively, 
when we use  β̂    . 

 The   procedure above is referred to as  “ parametric ”  bootstrapping. The sampling 
distribution was created using a simulated observer characterized by the parame-
ters of the best-fi tting PF to our human observer’s data. In other words, we have 
assumed that our human observer’s true PF is, in this case, the logistic. The accuracy 
of our obtained estimated standard errors relies on this assumption being correct. 

 We   may also perform a  “ non-parametric ”  bootstrap procedure, in which we do not 
summarize our human observer by a parametric description of his or her assumed 
PF to generate the sampling distribution. Rather, we use the observed proportions 
correct at each of the stimulus intensities directly to generate the bootstrap simula-
tions of the experiment. For example, here the human observer responded correctly 
on proportions 0.55, 0.55, 0.66, 0.75, 0.91, 0.94, and 0.97 of trials at each of the stimulus 
intensities, respectively. We may run our simulations without fi rst summarizing this 
performance by a PF, as we did above. We may instead use these proportions directly 
in our simulations. That is, at each of the trials at stimulus intensity  � 3, our simulated 
observer will generate a correct response with probability 0.55, etc. The panels at the 
right hand side of  Figure 4.14  display the sampling distributions of the threshold and 
slope generated by a non-parametric bootstrapping procedure. The SEs obtained are 
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close in value to those obtained by the parametric procedure (0.2059 versus 0.2121 for 
the SE in threshold, and 0.1530 versus 0.1461 for the SE in slope). The two methods 
generate very similar results here, because our human observer’s proportions correct 
are well described by our fi tted PF. When our fi tted PF is not a very good fi t, the two 
bootstrapping methods might generate somewhat different results. Thus, it is good 
practice to perform a goodness-of-fi t test of the PF and perform a parametric boot-
strap only when the PF fi ts the data well. When the goodness-of-fi t is unacceptable, 
one should perform a non-parametric bootstrap. 

 A   few more words of caution should be given here. The accuracy of our SEs 
depends critically on the accuracy of our parameter estimates based on our human 
observer (e.g.,  Efron  &  Tibshirani, 1993 ;  Kuss, J ä kel,  &  Wichmann, 2005 ). The SEs 
estimated by the parametric bootstrap are actually those that are associated with 
the function that we used to generate our bootstrap samples. They are accurate 
only to the extent that our human observer’s PF corresponds to our estimate of it. 
We should realize that our estimated slope for the human observer’s PF might be 
biased. When we use a positively biased estimate as the slope of the generating PF 
in our bootstrap simulations, the bootstrap simulations will be generated by a less 
noisy observer than our human observer. This will lead to an underestimation of 
the SE of the threshold parameter. For this reason we might prefer to perform the 
non-parametric bootstrap procedure, which does not involve estimating the human 
observer’s threshold or slope in order to perform the simulations. 

 On   the other hand, when we use an adaptive method during our experi-
ment (Chapter 5), the parametric bootstrap procedure might be preferable. This is 
because, when we use an adaptive procedure, we may have very few observations 
at any utilized stimulus intensity. Consider a situation in which only one trial was 
presented at stimulus intensity  x . Let us assume that our human observer produced 
a correct response on this trial. When we use the non-parametric bootstrap proce-
dure in this case, our simulated observer will, in all of the simulations, also produce 
a correct response to this trial. In the extreme case where any given  x  was utilized 
on only one trial, the simulated observer will respond identically to our human 
observer on every trial in all simulations. In this case the parameter estimates from 
all simulations will, of course, be identical to the estimates of our human observer. 
Our SEs of estimate will then, of course, be zero. 

 The   function  PAL_PFML_BootstrapParametric   in the Palamedes toolbox 
performs a parametric bootstrap simulation. Its syntax is as follows: 

         >      > [SD paramsSim LLSim converged]      =   ... 
  PAL_PFML_BootstrapParametric(StimLevels, OutOfNum, ... 
paramsValues, paramsFree, B, PF)  

 The   input arguments  StimLevels ,  OutOfNum ,  paramsValues ,  paramsFree , 
and  PF  are as defi ned in the function  PAL_PFML_Fit  . For these we will not provide 
details again (please refer to Section 4.3.3.1.2), but instead demonstrate their usage 
by way of example below. The input argument  B  is the number of simulations to be 
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performed in the bootstrap. The more simulations we include in our estimate of the 
standard error of estimate the more reliable it becomes, of course. The function will, 
however, also take longer to execute. 

 For   the purposes of estimating the standard error of estimates, a few hundred 
simulations should suffi ce (e.g.,  Efron  &  Tibshirani, 1993 ). In order to replicate, albeit 
on a smaller scale ( B       �      400), the bootstrap simulation from above, we would type: 

         >      > PF      =      @PAL_Logistic;  
         >      > StimLevels      =      [-3:1:3];  
         >      > OutOfNum      =      100.*ones(size(StimLevels));  
         >      > paramsValues      =      [-0.1713 0.9621 .5 0];  
         >      > paramsFree      =      [1 1 0 0];  
         >      > B      =      400;  
         >      > [SD paramsSim LLSim converged]      =   ... 
  PAL_PFML_BootstrapParametric(StimLevels, OutOfNum, ... 
paramsValues, paramsFree, B, PF);  

 The   function will simulate an observer whose PF is characterized by  PF  and 
 paramsValues , and run this observer through the experiment for a total of  B  simu-
lations. The stimulus intensities used and the number of trials at each of these inten-
sities are those specifi ed by  StimLevels  and  OutOfNum , respectively. The results 
of each simulation will be fi t with a PF of type  PF . After the function fi nishes, we 
may inspect the standard error of estimates: 

         >      > SD  
  SD    =   
  0  .2119  0.1585  0  0  

 The   fi rst two entries are the estimates of the standard error of estimate for the 
threshold and slope as calculated by Equation 4.13. These values will vary some-
what each time we perform a bootstrap, due to the stochastic nature of the boot-
strap procedure. We note, though, that those obtained here are in close agreement 
to those obtained above. Since we specifi ed (in  paramsFree ) that the guess rate 
and lapse rate parameters are fi xed parameters, these were not estimated for any of 
the simulations, and thus their standard error is zero. 

 The   functions also returns (in  paramsSim ) the parameter estimates for each indi-
vidual simulation.  paramsSim  is a  B       �      4 (alpha, beta, gamma, lambda) matrix. This 
may be useful in case one wishes to inspect characteristics of the sampling distribu-
tions. One may wish to check these distributions for symmetry, or for outliers, for 
example. Outliers may be indicative of a fi t having found a local maximum in the 
likelihood function rather than the global maximum likelihood.  paramsSim  may 
also be used when one wishes to calculate SEs in a manner different from that of 
Equation 4.13.  LLSim  is a vector of length  B , which contains for each of the bootstrap 
simulations the log likelihood associated with the fi t. Finally,  converged  is a vector 
of length  B  which contains, for each simulated experiment, a 1 in case the simulated 

 4.3. SECTION B: THEORY AND DETAILS 105



4.   PSYCHOMETRIC FUNCTIONS106

experiment was fi t successfully or a 0 in case it was not. Of course, if this vector con-
tains 0s, our sampling distributions are fl awed. The function will issue a warning 
whenever a simulated experiment could not be fi t successfully, for example: 

  Warning  : Fit to simulation 226 of 400 did not converge.  
     >>  In PAL_PFML_BootstrapParametric at 165  

 If    converged  contains zeros when all simulations have completed, the function 
will again issue a warning and indicate how many of the simulations successfully 
converged, for example: 

  Warning  : Only 398 of 400 simulations converged  
     > > In PAL_PFML_BootstrapParametric at 173  

 When   not all simulations result in a successful fi t, there is no solution which is 
truly elegant; a few tempting, but inappropriate, ideas spring to mind. One idea 
would be to ignore the failed simulations and calculate the standard error across 
the subset of simulations that did converge. Another tempting, but equally inap-
propriate, idea would be to generate new simulated datasets to replace those which 
resulted in failed fi ts in the original set. One more seemingly innocent, but once 
again inappropriate, solution would be to try the entire set of, say, 400 simulations 
again. We could continue to produce sets of 400 simulations until we have a set 
for which all 400 fi ts were succesful. We would then calculate the standard errors 
across that complete set. The problem with all these ideas is that the resulting error 
estimates would not be based on a random sample from the population of possible 
simulations. Rather, the estimates would be based on a select subset of the popula-
tion of simulations, namely those that can be fi tted successfully. 

 So  , what is one to do when some simulations fail to converge? Generally, fi ts 
are more likely to converge when we have fewer free parameters in our model. 
Thus, we could fi x one of the free parameters. Another manner in which to increase 
our chances of having all simulations fi t successfully is to gather more responses, 
because the chances of obtaining a succesful fi t generally increase with an increas-
ing number of responses. One fi nal solution which requires that all but a very few 
fi ts converged succesfully is to calculate standard errors across the succesful fi ts 
only, but to acknowledge to our audience (and ourselves) that our error estimate is 
based on a sample which was not entirely random. 

 In   order to perform a non-parametric bootstrap we use the function  PAL_PFML_
BootstrapNonParametric . This function is called as: 

         >      > [SD paramsSim LLSim exitfl ag]      =    ...
 PAL_PFML_BootstrapNonParametric(StimLevels, NumPos, ... 
OutOfNum, paramsValues, paramsFree, B, PF);  

 The   function is similar to  PAL_PFML_BootstrapP arametric , except that it char-
acterizes the simulated observer not by the best-fi tting PF to our human observer’s 
data, but rather uses the raw observed proportions correct at each of the stimulus 
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intensities directly. All arguments in the function call are identical to those for  PAL_
PFML_BootstrapParametric  , except that we now also provide the function with 
the number of correct responses at each of the stimulus intensities ( NumPos ): 

         >      > NumPos      =      [55 55 66 75 91 94 97];  

 On   completion of the function call, we may inspect the standard errors of estimate: 

         >      > SD  
  SD    =   
  0  .2082  0.1576  0  0  

 Once   again, these values closely match those obtained above. Return arguments 
 paramsSim ,  LLSim , and  converged  are as above. 

 Note   that here we also need not group our trials by stimulus intensity; if it is more 
convenient to pass  StimLevels ,  NumPos , and  OutOfNum  such that every entry in 
these vectors corresponds to a single trial, we may do so. The function will group tri-
als presented at identical stimulus intensities before it will calculate the proportions 
correct at each of these stimulus intensities. For reasons mentioned above, a warning 
will be issued when one or more of the stimulus intensities were used only on a single 
trial. The warning will be accompanied by a listing of all stimulus intensities used and 
the corresponding number of trials that were presented at these stimulus intensities. 

 Both    PAL_PFML_BootstrapParametric   and  PAL_PFML_BootstrapNon
Parametric  have a few optional arguments. The fi rst is   ‘ SearchOptions ’   fol-
lowed by an options structure. The use of this optional argument is analogous to 
its use in  PAL_PFML_Fit  , except that when we include the options structure in 
the call here its entries will be used when the simulated data sets are fi tted. When 
we do not include the options structure, the default values will be used. A second 
optional argument allows for the function to retry failed fi ts. Some fi ts to simulated 
data may fail to converge, for example when the search algorithm gets stuck in a 
local maximum, or when it wanders into a region of parameter space which is not 
in the domain of the parameter values. Failed fi ts provide a serious nuisance for rea-
sons mentioned above. Sometimes such failed fi ts can be salvaged by retrying the 
fi t but starting the search at different parameter values. The initial search will start 
at the values specifi ed in  paramsValues . There is an option to have the function 
try failed fi ts again for any specifi ed maximum number of tries, each time starting 
the search at different parameter values. In order to use this option we fi rst need to 
set the value of  maxTries  to the maximum number of times we wish the function 
to try the fi t. The default value of  maxTries  is 1. In other words, unless we change 
the value, the function will try each fi t just once, and in the case where that initial fi t 
fails it will give up. We can change the value of  maxTries  by passing the argument 
  ‘ maxTries ’   to the bootstrap function, followed by an integer argument indicating 
the maximum number of tries we would like the function to perform before it gives 
up. Each try the function will choose a new random starting value for the search. It is 
wise, but optional, to provide the function with a sensible range of starting values to 
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pick from. This range is specifi ed in the vector  rangeTries , which has four entries, 
one for each parameter of the PF. For each parameter, starting values will be from 
a range of values as wide as specifi ed in  rangeTries , and centered on the value 
specifi ed in  paramsValues . For example, let’s say that  paramsValues  is defi ned 
as  [2 50 .5 0]  and  RangeTries  is defi ned as  [2 60 0 0] . The initial search 
will start with a threshold value of 2, and a slope value of 50. In case it fails, each of 
the following tries will start with a random value between 1 and 3 for the threshold 
and a random value between 20 and 80 for the slope. Each try will use a value of 0.5 
for the guess rate and 0 for the lapse rate. Note that some simulated datasets may 
never be successfully fi t, no matter what value you set  maxTries  to. As mentioned 
above, when this happens the routine will issue a warning. This may happen espe-
cially when the number of trials in an experiment is small, the number of free param-
eters is high and/or the stimulus levels are inappropriately chosen. 

 Finally  , we have the option to constrain the lapse parameter to have a value 
within any range of values. We use the optional argument   ‘ lapseLimits ’  , fol-
lowed by a vector containing the lower and upper limit of the interval as we did 
above in  PAL_PFML_Fit  . 

 The   following is an example function call where all the optional arguments are used. 
It is a variation of the example above, but now we set the generating lapse parameter 
to 0.02 (note that in real life it would be inappropriate to use parameters that are differ-
ent from those estimated or assumed in the fi t to the observer’s data). We free the lapse 
parameter in the simulated fi ts, but constrain it to have a value between 0 and 0.06: 

         >      > PF      =      @PAL_Logistic;  
         >      > StimLevels      =      [-3:1:3];  
         >      > OutOfNum      =      100.*ones(size(StimLevels));  
         >      > paramsValues      =      [-0.1713 0.9621 .5 0.02];  
         >      > paramsFree      =      [1 1 0 1];  
         >      > B      =      400;  
         >      > options      =      optimset( ‘ fminsearch ’ );  
         >      > options.TolFun      =      1e-09;  
         >      > [SD paramsSim LLSim converged]      =    ...
 PAL_PFML_BootstrapParametric(StimLevels, OutOfNum, ... 
paramsValues, paramsFree, B, PF,  ‘ SearchOptions ’ , ... 
options,  ‘ maxTries ’ , 10,  ‘ rangeTries ’ , [.2 1.9 0 0.04], ... 
 ‘ lapseLimits ’ ,[0 .06]);  

 Note   that with the lapse parameter freed, some fi ts might fail initially but suc-
ceed on a successive try. In the example above, you would be able to tell whether a 
fi t has failed on the fi rst try when MATLAB produces a message such as: 

         <      < Exiting: Maximum number of function evaluations has been 
exceeded  
    - increase MaxFunEvals option.  
  Current   function value: 349.536759  
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 To   prevent such messages, set the  Display  fi eld in the  options  structure you 
pass to the function to   ‘ off   ’  . By default, the bootstrap functions in Palamedes 
do this, but in the example above we have overridden this default by passing an 
 options  structure to the function in which  Display  is set to   ‘ on ’   (this is the 
default value MATLAB assigns when  optimset  is called).   

    4.3.3.2       Bayesian Criterion 
    4.3.3.2.1       Bayes ’  Theorem 

 The   likelihood associated with assumed values  a  and  b  for the threshold and 
slope, respectively, of the PF is equivalent in value to the probability that a PF 
with   α        �       a  and   β        �       b  would result in the exact outcome of the experiment as we 
have already observed it. As discussed above (Section 4.3.3.1), this likelihood can 
be interpreted neither as the probability of our exact experimental outcome having 
occurred, nor as the probability that the threshold has value  a , and the slope has 
value  b . A somewhat similar issue exists in classical ( “ Fisherian ”  or  “ frequentist ” ) 
Null Hypothesis testing. The  p -value that is the inevitable fi nal result of a classical 
hypothesis test, and which eventually leads us either to reject the Null Hypothesis 
(if  p       �      0.05 or some other criterion value) or accept it (otherwise) is, as our statistics 
instructors have stressed to us, not the probability that the Null Hypothesis is true. 
Rather, the  p -value we calculate in a classical hypothesis test corresponds to (some-
thing like) the probability that our experimental results could have occurred by 
sheer coincidence if, in fact, the null hypothesis were true. We can write this prob-
ability as  p ( D  |  H ), where  D  represents the outcome of our experiment ( D  stands for 
 “ data ” ) and  H  is shorthand for  “ the Null Hypothesis is true. ”  Of course, in classical 
testing, we do not consider  D  to be the exact outcome of our experiment, rather 
we consider  D  to be a range of outcomes (specifi ed before we started collecting 
our results) that are unlikely to be obtained if  H  were true. Notwithstanding the 
tremendous intuitive appeal of the validity of concluding that  H  is likely false if 
 p ( D  |  H ) is small, this conclusion is nevertheless without merit. To conclude that  H  is 
unlikely given our experimental results is to make a statement regarding the value 
of  p ( H  |  D ); unfortunately, we have a value only for  p ( D  |  H ). However, we may 
relate  p ( H  |  D ) and  p ( D  |  H ) using Bayes ’  Theorem: 
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 One   may think of Equation 4.15 as expressing the central Bayesian concept that 
we use our experimental results  D  as serving to adjust the probability of  H  as we 
estimated it before considering the results of our experiment. As an illustration 
of this concept let us consider the entirely hypothetical case of Mr J. Doe. As part 
of his routine annual medical exam, Mr Doe is administered a diagnostic test D 
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which tests for the presence of the rare medical condition H. Test D is known to 
be highly accurate; whereas the test results will be positive (D  �  ) for 99% of those 
individuals affl icted with the condition (H  �  ), test results will be negative (D  �  ) for 
99% of those individuals not affl icted with the condition (H  �  ). We may write this 
as  p ( D   �   |  H   �  )      �      0.99 and  p ( D   �   |  H   �  )      �      0.01. In other words, test D diagnoses 99% of 
individuals correctly, whether they are affl icted with H or not. 

 Unfortunately  , Mr Doe’s test results are positive. Applying Fisherian logic leads 
us to conclude that Mr Doe is affl icted with H. After all, the probability that Mr Doe 
would test positive under the hypothesis that he is not affl icted with H is quite low: 
 p ( D   �   |  H   �  )      �      0.01. 

 Mr   Doe’s outlook is not as bleak, however, when considered from a Bayesian 
perspective. The Bayesian perspective considers, besides the test results, another 
piece of information; if you will recall, medical condition H is rare. Let us assume 
that it is known that a proportion of only 1/10,000 of the population is affl icted 
with H. We may write this as  p ( H   �  )      �      0.0001.  p ( H   �  ) is known as the  “ prior prob-
ability ”  of H  �  . That is, prior to learning of Mr Doe’s test results, our best estimate 
for the probability that Mr Doe was affl icted with H would have been 0.0001. In 
the Bayesian framework, the positive test result is considered to be merely a second 
piece of evidence which is used to adjust our prior probability, now also taking into 
account Mr Doe’s positive test result, to derive the posterior probability ( H   �   |  D   �  ). 
According to Bayes ’  Theorem: 
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≈ 998       

 In   words, despite Mr Doe’s positive test result, the odds are still strongly in favor 
of Mr Doe not being affl icted with H. 

 The   obtained value for the posterior probability fl ies in the face of common sense. 
Indeed, students introduced to Bayesian reasoning by way of the above example 
often suspect something akin to sleight-of-hand, even if these students agree with 
every intermediate step performed. MDs, somewhat disconcertingly, do not do well 
either when it comes to Bayesian reasoning (e.g.,  Hoffrage  &  Gigerenzer, 1998 ).  
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    4.3.3.2.2       Bayes ’  Theorem Applied to the Likelihood  L ( a ,  b  |  y ) 
 We   might apply Bayes ’  theorem to derive the posterior probability density func-

tion on our values for  a  and  b . The situation is a little different here, since the likeli-
hood is a function of  a  and  b , which are continuous variables. In practice, however, 
we discretize our likelihood function. The appropriate formulation of Bayes ’  Theorem 
in this case becomes: 
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 where    L ( a ,  b  |  y ) is our likelihood function as calculated in Section 4.3.3.1 and  p ( a , 
 b ) is the prior distribution. The resulting posterior distribution  p ( a ,  b  |  y ) is a prob-
ability density function. That is, it allows one to determine the probability that the 
values of  a  and  b  lie within a specifi ed range of values. 

 What   should we use as our prior distribution? The prior distribution should, 
according to the Bayesian framework, refl ect our prior beliefs regarding the val-
ues of the threshold and slope of our PF. We might perhaps base our prior beliefs 
on research preceding ours. We might also base our prior beliefs on informal pilot 
experiments. Defi ning a prior is, of course, somewhat of a subjective exercise. For this 
reason, and as one might imagine, the Bayesian approach is not without its critics. 

 Before   we will argue that the Bayesian approach does not need to be as subjec-
tive an exercise as one may have concluded from the above, let us fi rst illustrate 
Equation 4.16 by example. Let us imagine that, prior to performing our experiment 
of which  Figure 4.13  shows the likelihood function, we formed beliefs regarding the 
values of the threshold and slope. Perhaps we did so by considering existing litera-
ture on similar experiments, or perhaps we did so based on our own informal pilot 
experiments. Either way, let us imagine that we judge our prior beliefs to be well 
described by the 2D Gaussian: 
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 with     σ        �      0.5. This prior distribution is illustrated in  Figure 4.15   . Also shown in 
 Figure 4.15  is our likelihood function again, as well as the posterior distribution 
derived by Equation 4.16. It is clear that the posterior distribution is determined 
primarily by our choice of the prior, and bears little resemblance to the likelihood 
function which was derived from our experimental data. We should keep in mind 
though, that our example is not very typical for two reasons. First, our prior beliefs 
are quite specifi c. For example, our prior indicates a belief that the probability 
that log   α   has a value in the interval ( � 0.5, 0.5) is near unity. Thus, apparently we 
already know a considerable amount about the values of   α   and   β   before we started 
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our experiment. Second, our experiment was based on a very small number of tri-
als ( N       �      20). Thus, it is not surprising that the results of our very small experiment 
hardly changed our strong prior beliefs. 

 For   illustrative purposes, let us briefl y consider two more priors, each at one of 
the two extreme ends of specifi city. First, let us assume that the exact values of   α   
and   β   are known with certainty before we conduct our experiment. Thus, our prior 
will be the unit impulse function located at the known values of   α   and   β  . Providing 
additional evidence by our experimental results will not alter our beliefs, and 
indeed our posterior will also be the unit impulse function located at the known 
values of   α   and   β   regardless of what our likelihood function might be. The prior 
at the other extreme of specifi city is the uniform prior. The uniform prior does not 
favor any values of   α   and   β   over any others, and is thus consistent with a complete 
lack of knowledge or belief of what the values of   α   and   β   might be before we start 
our experiment. For this reason, some refer to the uniform prior as the  “ prior of 
ignorance. ”  If our prior is the uniform prior, our posterior distribution is propor-
tional to our likelihood function, and our parameter estimates will be determined 
entirely by the results of our experiment. 

 In   practice it is diffi cult, if not impossible, to derive the continuous likelihood 
function analytically. Instead, we approximate the likelihood function across a dis-
cretized parameter space which is necessarily of fi nite extent. Thus, given that we 
can only consider a limited extent of the parameter space, a strictly uniform prior is 
not possible. The best we can do is to create a rectangular prior which, in essence, 
assigns a prior probability of 0 to values of   α   and   β   that lie outside our limited 
parameter space, but which, within the considered parameter space, favor no val-
ues of   α   and   β   over other values. 
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 FIGURE 4.15          Contour plots of the prior distribution (left), the Likelihood function (middle), and 
the posterior distribution (right). The prior distribution refl ects the researcher’s beliefs regarding the 
value of the threshold and slope parameter before the results of the experiment are taken into account, 
the Likelihood function is based on the results of the experiment only, and the posterior distribution 
combines the prior and the Likelihood according to Equation 4.16.    
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 We   are fi nally ready to discuss how to derive parameter estimates based on the 
posterior distribution, and we will do so by example.  Figure 4.16    presents the pos-
terior distribution based on the 2AFC experiment we fi tted using a maximum like-
lihood criterion before (Section 4.3.3.1). The experiment consisted of 700 trials, 100 
trials at each of 7 stimulus intensities  x  which were equally spaced on a logarithmic 
scale between log ( x )      �       � 3 and log ( x )      �      3. The number of correct responses (out of 
the 100 trials) for each of the 7 stimulus levels was respectively: 55, 55, 66, 75, 91, 94, 
and 97. The prior used here was the uniform prior limited to  a  �  [ � 1, 1],  b  �  [ � 0.5, 
0.5]. We fi rst calculated the likelihood function across the (discretized) parameter 
range defi ned by the prior (see Section 4.3.3.1). We used a guess rate (  γ  ) equal to 0.5, 
and a lapse rate (  λ  ) equal to 0. Since our prior is uniform and the posterior distribu-
tion is, by defi nition, a probability density function, our calculations simplify to: 
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 That   is, our posterior distribution is simply our likelihood function rescaled such 
that  p a b

ba
( , | )y � 1∑∑    , which is a quality of any probability density function. 
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 FIGURE 4.16          The posterior distribution.    
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 Also   shown in  Figure 4.16  are the marginal probability densities across  a  and  b  
individually which are derived from  p ( a ,  b  |  y ) as follows: 
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 Our   Bayesian estimator of log   α   is the expected value of log  a . That is: 
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 Similarly  , 
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 In   this example,  log .α̂ � �0 1715     and  log .β̂ � �0 0225   . 
 We   may note from  Figure 4.16  that the parameter space included in the prior was 

such that it excluded only parameter values associated with extremely small like-
lihoods (remember that, using a uniform prior, the likelihood function is propor-
tional to the posterior distribution, and thus  Figure 4.16  may also be regarded as a 
contour plot of the likelihood function). As such, our exact choice for the range of 
values for log  a  and log  b  to be included in the prior would have a negligible effect 
on our fi nal parameter estimates. Had we instead limited our prior to, for exam-
ple,  a  �  [ � 0.5, 0.5],  b  �  [ � 0.25, 0.25] our likelihood function would have  “ run off the 
edge ”  of our prior (specifi cally the edge log  a       �       � 0.5) and this would have affected 
our parameter estimates signifi cantly. However, whenever we utilize a uniform 
prior which encompasses all but the extremely small likelihoods, the contribution 
of our subjective prior to our parameter estimates will be negligible. 

 Function    PAL_PFBA_Fit   derives the Bayesian estimators for the threshold and 
slope of a PF. A uniform prior across a limited parameter space, defi ned by the user, 
is used. Its syntax is as follows: 

         >      > [paramsValues posterior]      =      PAL_PFBA_Fit(StimLevels, ... 
NumPos, OutOfNum, priorAlphaValues, priorBetaValues, ... 
gamma, lambda, PF)  

 The   input variables are as follows: 
  StimLevels   : vector containing the stimulus intensities utilized in the experi-

ment. For the experiment described above we would defi ne: 

         >      > StimLevels      =      [-3:1:3];  
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  NumPos   : vector of equal length to  StimLevels  containing for each of the stimu-
lus levels the number of positive responses (e.g.,  “ yes ”  or  “ correct ” ) observed. Thus, 
with reference to the above experiment we defi ne: 

         >      > NumPos      =      [55 55 66 75 91 94 97];  

  OutOfNum   : vector of equal length to  StimLevels  containing the number of tri-
als tested at each of the stimulus levels. To fi t the above experiment we defi ne: 

         >      > OutOfNum      =      [100 100 100 100 100 100 100];  

  priorAlphaValues   : vector of any length which specifi es which threshold val-
ues  a  are to be included in the prior. Since our stimulus levels were defi ned in loga-
rithmic units, we do the same for  priorAlphaValues : 

         >      > priorAlphaValues      =      [-1:.01:1];  

  priorBetaValues   : vector of any length which specifi es which slope values  b  
are to be included in the prior. Values for  b  are defi ned in logarithmic units: 

         >      > priorBetaValues      =      [-.5:.01:.5];  

  gamma   : scalar corresponding to the assumed guess rate. Since the experiment is a 
2AFC, we set  gamma  to equal 0.5: 

         >      > gamma      =      0.5;  

  lambda   : scalar corresponding to the assumed lapse rate. We set  lambda  to equal 0: 

         >      > lambda      =      0;  

  PF   : The psychometric function to be fi tted. This needs to be passed as an inline 
function. We choose the Logistic function: 

         >      > PF      =      @PAL_Logistic;  

 We   are now ready to call our function: 

         >      > [paramsValues posterior]      =      PAL_PFBA_Fit(StimLevels, ... 
NumPos, OutOfNum, priorAlphaValues, priorBetaValues, ... 
gamma, lambda, PF);  

 We   suppress the output in MATLAB by following the command by a semico-
lon, because the output would include the entire matrix containing the posterior. 
The posterior is defi ned across the same parameter space as the prior and has 
101 (length of  priorBetaValues  vector)  � 201 (length of  priorAlphaVal-
ues ) entries in this example. However, we can inspect the parameter estimates by 
typing: 

         >      > paramsValues  
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 The   output in MATLAB is: 

  paramsValues    =   
    -0.1715  -0.0225  0.2106  0.0629  

 The   fi rst value corresponds to the Bayesian estimate of the log threshold (since 
we defi ned  StimLevels  and our prior in logarithmic units). The second value cor-
responds to the Bayesian estimate of the log slope. These values correspond quite 
closely to those derived using a maximum likelihood criterion (Section 4.3.3.1). If 
you will recall, the maximum likelihood estimate of log threshold was  � 0.1713, 
compared to  � 0.1715 using the Bayesian estimate here. That of the slope was 
0.9621, compared to 10  � 0.0225       �      0.9495 obtained here. 

 We   may inspect the posterior distribution visually by typing, for example: 
         >      > contour(posterior);  

 which   produces a contour plot similar to that in  Figure 4.16  above. Generally, it is 
a good idea to inspect the posterior distribution visually to check for edge effects. If 
the posterior is cut off abruptly at one or more of the edges of the parameter space, 
our particular choice of parameter space to be included in the prior distribution has 
a signifi cant effect on our parameter estimates. In the example here, the contour 
plot of the posterior distribution indicates that edge effects will be negligible. 

 During   the execution of  PAL_PFBA_Fit  , MATLAB may generate one or more 
  ‘ Log of Zero ’   warnings. These will occur whenever a likelihood associated 
with a particular stimulus intensity, response, and combination of  a  and  b  values 
is smaller than the smallest positive value that a double data type can represent 
(2.22507      �      10  � 308 ). This might occur, for example, when we include in our prior 
distribution PFs with excessively steep slopes (i.e., high values for log  b ). The prob-
ability that a (hypothetical) observer characterized by a PF with an excessively steep 
slope would generate an incorrect response to a stimulus of high intensity is indeed 
near zero. In this situation, MATLAB assigns the value of zero to the likelihood, in 
essence excluding the PFs with the excessively steep slopes. These warnings may be 
disregarded. When we run the above example exactly as above, except that we now 
include excessively high values for the slope in the prior, for example: 

         >      > priorBetaValues      =      [-.5:.01:2];  

 the     ‘ Log of Zero ’   warning is issued four times, but the values for our param-
eter estimates are not affected. 

 The   user has the option to defi ne a custom prior in case the uniform prior is 
deemed inappropriate.  PAL_PFBA_Fit   has an optional argument ‘prior .  ’   The m-
fi le  PAL_PFBA_Demo   demonstrates the use of this optional argument. If the ‘prior ’   
argument is left out (as above) the uniform prior is used by default.  

    4.3.3.2.3       Error Estimation 
 The   posterior distribution is a probability density function across the parameter 

space. As such, we may use it to derive probabilities of either parameter having a 
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value within any range of values. For example, we may derive the probability that 
our (log-transformed) threshold parameter has a value between  � 0.25 and 0 as: 

  
p p a b

ba

( . log ) (log , log | ) .
loglog ( . , )

� � � � �
�

0 25 0 0 4267
0 25 0

α y∑∑
∈       

 Due   to the discretization of the parameter space, this value will only be approx-
imate. The fi ner the grid of our parameter space, the more accurate the approxi-
mation will be. We may derive the standard errors of estimate of our parameter 
estimates as the standard deviation of the posterior distributions: 

  
SE a p a b

ba
log (log log ) (log , log | )α α� � ˆ 2 y∑∑   (4.22)      

 The   SE for the threshold and slope are returned by the function  PAL_PFBA_Fit   
as the third and fourth entry in the vector  paramsValues , respectively. If you will 
recall, MATLAB returned  paramsValues  above as: 

  paramsValues    =   
    -0.1715  -0.0225  0.2106  0.0629  

 As   described above, the fi rst and second entries (i.e.,  � 0.1715 and  � 0.0225) are 
the Bayesian estimates of the log-transformed threshold value and slope, respec-
tively. The third entry (0.2106) is the standard error on log threshold calculated as 
in Equation 4.22; the fourth entry (0.0629) is the standard error on log slope. The 
function also returns the entire posterior distribution such that we may choose to 
calculate our SEs in an alternative fashion. For example, we may calculate a lower 
SE and a higher SE if our posterior distribution is asymmetric. We note that the 
standard error on log threshold obtained here corresponds closely to that obtained 
from bootstrap analysis under the maximum likelihood framework (Section 4.3.31). 
There we estimated SE on log threshold as 0.2121 and 0.2059 using a parametric 
and a non-parametric bootstrap, respectively. The comparison of SE on slope is not 
quite as obvious, since here the value is the SE on log slope, whereas in the maxi-
mum likelihood bootstrap we determined the SE on the slope parameter proper. 
However, we note that  log . . .logβ β� � � � �SE ˆ 0 0225 0 0629 0 0404   , which cor-
responds to a slope of 10 0.0404       �      1.0975, and that  log .logˆ ˆβ β

� � �SE 0 0854   , which 
corresponds to a slope of 0.8215. For comparison, under the maximum likelihood 
framework, we found that  ˆ .β � 0 9621    and that  SE ˆ .β � 0 1461     using a parametric 
bootstrap and  SE ˆ .β � 0 1530     using a non-parametric bootstrap. Thus,  ˆ

ˆβ β� SE     was 
0.9621      �      0.1461      �      1.1082 (parametric bootstrap) and 0.9621      �      0.1530      �      1.1151 (non-
parametric bootstrap), both of which correspond closely to the Bayesian analog 
obtained here (1.0975). We leave it to the reader to verify that the same is true of the 
values corresponding to 1 SE below our estimates.     
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    Further Reading 
    Swets (1961)  provides a very readable discussion of threshold theories. Chapter 

6 of this text contains much more information on signal detection theory. Maximum 
likelihood estimation is a standard technique, and is discussed in any introduc-
tory statistical text. An excellent text on bootstrap methods is  Efron and Tibshirani 
(1993) . Our example of Mr Doe was adapted from many similar examples given 
in many places, among which is  Cohen (1994)  which discusses in a very readable 
manner some hypothesis testing issues.

        Exercises      

          References  
        Cohen ,    J.             ( 1994 )       .   The earth is round (p      �      0.05)                      .      American Psychologist       ,  49         ,  997  –       1003               .     
        Efron ,    B.  ,  &    Tibshirani ,    R.   J.             ( 1993 )    .        An introduction to the bootstrap                  .  Boca Raton, FL      :  Chapman  &  

Hall/CRC            .     
        Garc í a-P é rez ,    M.   A.  ,  &    Alcal á -Quintana ,    R.             ( 2005 )       .   Sampling plans for fi tting the psychometric function                      . 

     The Spanish Journal of Psychology       ,  8      ( 2 )       ,  256  –       289               .     
        Green ,    D.   M.  ,  &    Swets ,    J.   A.             ( 1966 )    .        Signal detection theory and psychophysics                  .  New York, NY      :  Wiley            .     
        Hays ,    W.   L.             ( 1994 )    .      Statistics                      .  Belmont, CA      :  Wadsworth Group/Thomson Learning            .     
        Hoel ,    P.   G.  ,   Port ,    S.   C.  ,  &    Stone ,    C.   J.             ( 1971 )    .        Introduction to Statistical Theory                  .  Boston, MA      :  Houghton 

Miffl in Company            .     
        Hoffrage ,    U.  ,  &    Gigerenzer ,    G.             ( 1998 )       .   Using natural frequencies to improve diagnostic inferences                      . 

     Academic Medicine       ,  73         ,  538  –       540               .     
        Kuss ,    M.  ,   J ä kel ,    F.  ,  &    Wichmann ,    F.   A.             ( 2005 )       .   Bayesian inference for psychometric functions                      .      Journal of 

Vision       ,  5         ,  478  –       492               .     
        Meese ,    T.   S.  ,  &    Harris ,    M.   G.   H.             ( 2001 )       .   Independent detectors for expansion and rotation, and for orthog-

onal components of deformation                      .      Perception       ,  30         ,  1189  –       1202               .     

       1.     A two-alternative forced-choice experiment is conducted in which the log stimulus 
levels are  � 2,  � 1, 0, 1, and 2. 100 trials are presented at each of the stimulus levels. 
The observer responds correctly on respectively 48, 53, 55, 100, and 100 trials. 
    a.     Plot the results of this experiment  
    b.     By visual inspection, what do you estimate the 75% correct threshold to be?  
    c.     Use  PAL_PFML_Fit   to fi t these data.  
    d.     Offer some suggestions to help improve on the design of the experiment.     

    2.     As more trials are included in the computation of the likelihood associated with a 
parameter value, will this likelihood increase or decrease or does it depend on the 
outcome of the trial? Why?  

    3.     It is said sometimes that  “ extraordinary claims require extraordinary evidence ”  (Carl 
Sagan coined the phrase). Explain how this statement relates to Bayes ’  theorem.   
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C H A P T E R

                 Adaptive Methods  

    5.1           INTRODUCTION 

 Measuring   performance on a psychophysical task can be a time-consuming and 
tedious exercise. The purpose of adaptive methods is to make life easier for both 
observer and experimenter by increasing the effi ciency of the testing procedure. 
Effi ciency increases as the amount of effort required to reach a particular level of 
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precision in the estimate of a parameter, such as the threshold of a psychometric 
function, decreases.  Taylor and Creelman (1967)  proposed a quantifi cation of effi -
ciency in the form of what they called the  “ sweat factor, ”  which is symbolized as  K  
and is calculated as the number of trials multiplied by the variance of the parameter 
estimate (the variance of the parameter estimate is, of course, simply the standard 
error squared). Adaptive methods aim to increase effi ciency by presenting stimuli 
at stimulus levels where one might expect to gain the most information about the 
parameter (or parameters) of interest. Adaptive methods are so termed because 
they adjust the stimulus level to be used on each trial based on the responses to 
previous trials. 

 Many   specifi c adaptive methods have been proposed, and we could not pos-
sibly discuss them all here. However, adaptive methods can be grouped roughly 
into three major categories. This chapter discusses all three categories in turn. 
Section 5.2 discusses what are commonly referred to as up/down methods. The 
basic idea behind up/down methods is straightforward. If the observer responds 
incorrectly to a trial, the stimulus intensity is increased on the next trial, whereas 
if the observer responds correctly on a trial (or a short series of consecutive trials), 
stimulus intensity is decreased on the next trial. In such a procedure, the stimulus 
level will tend towards a specifi c proportion correct and oscillate around it once 
it is reached. While up/down methods work well if one is interested only in the 
value of the psychometric function’s (PFs) threshold, they provide little information 
regarding the slope of the PF. 

 Section   5.3 discusses adaptive methods which perform a  “ running fi t ”  on the 
data. That is, after every response a PF is fi t to the responses of all preceding tri-
als. The stimulus intensity to be used on the next trial is that which corresponds to 
the best estimate of the PFs threshold, based on all previous trials. As was the case 
with up/down methods, running fi t methods also provide information only about 
thresholds, not slopes of the PF. 

 In   Section 5.4 we will discuss the  “ psi method. ”  The psi method combines ideas 
from several adaptive methods proposed earlier. The psi method selects stimu-
lus intensities on every trial that maximize the effi ciency with which not only the 
threshold, but also the slope of the psychometric function is estimated. The psi 
method is arguably the most sophisticated of the adaptive methods in use today.  

    5.2           UP/DOWN METHODS 

    5.2.1           Up/Down Method 
 The   up/down method was developed initially by  Dixon and Mood (1948) . We 

will explain the logic using the same example that Dixon and Mood used, which 
is that of determining the sensitivity of explosive mixtures to shock. Apparently, 
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it was common practice to do this by dropping weights from different heights on 
specimens of explosive mixtures, and noting whether an explosion resulted. The 
idea is that there will be a critical height which, if exceeded, will result in a mix-
ture exploding whereas below this height it will not explode. Let us say we drop 
a weight from a height of 20 feet and no explosion occurs. We now know that the 
critical height is greater than 20 feet. We could investigate further by increasing the 
height in steps of, say, one foot. We drop the weight from 21 feet . . . nothing, 22 feet 
. . . still nothing, 23 feet . . . Kaboom! We now know that the critical height has a 
value between 22 and 23 feet. 

 In   reality, things are a little bit more complicated, of course, in that no two explo-
sive mixtures are identical, and no two drops and consequent impacts of a weight 
are identical either. We are no experts on explosive mixtures, but we imagine that 
other factors also play a role. Thus, it would be more appropriate to say that for 
every drop-height there is some probability that it will cause an explosive mixture 
to explode; the greater the height, the higher the probability that the mixture will 
explode. We might defi ne the critical height as that height at which a mixture has a 
probability of, say, 50% of exploding. You will have realized the similarity between 
the problem of determining such an  “ explosion threshold ”  and that of determining, 
say, a detection threshold in the context of a sensory experiment. 

 Keeping   the above in mind, the most we can conclude for certain from the above 
experiment is that the probability that a mixture will explode at 23 feet has a value 
greater than 0, and the probability that it will explode at 22 feet has a value less 
than 1. In order to get a better idea of what the value of the  “ explosion threshold ”  
is, we should get more data. From what we have done so far, it seems reasonable to 
assume that the explosion threshold has a value somewhere around 22 or 23 feet. It 
would be silly to start dropping weights from a height of 150 feet or 1 foot at this 
point. The former is almost certain to result in an explosion, the latter is almost cer-
tain not to result in an explosion. 

    Dixon and Mood (1948)  suggest a very simple rule to decide which height we 
should drop a weight from on any trial. The rule simply states that if an explosion 
occurs on a trial, we should decrease the drop height on the next trial. If an explo-
sion does not occur on a trial, we should increase the height on the next trial. In 
other words, our decision regarding the height to use on any trial is determined 
by what happened on the previous trial, and for this reason this method is termed 
an adaptive method.  Figure 5.1    shows the results of a simulated experiment which 
continues the series started above following the simple up/down rule. Any trials 
that resulted in an explosion are indicated by the star-shaped, fi lled symbols, trials 
that did not are indicated by the open circles. The height corresponding to the 50% 
threshold that was used in the simulations is indicated in the fi gure by the broken 
line. We will discuss how to derive an explosion threshold estimate from these data 
later (Section 5.2.5), but for now we note that almost all trials (16 of 17 trials, or 
94%) where the drop height was 23 feet resulted in an explosion, and that only 7 of 
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the 23 trials (30%) where the drop height was 22 feet resulted in an explosion. Thus, 
it seems reasonable to assume that the explosion threshold has a value somewhere 
between 22 and 23 feet. 

 Dixon   and Mood’s up/down method targets the point on the psychometric func-
tion at which either of two responses is equally likely to occur. This makes it particu-
larly useful when one is interested in determining the point of subjective equality in 
an appearance-based task. For example, in the Muller – Lyer illusion (see Chapter 2) 
one could use the up/down method to fi nd the ratio of line lengths at which the 
observer is equally likely to respond with either line when asked to indicate which of 
the lines appears to be longer.  

    5.2.2           Transformed Up/Down Method 
 As   mentioned, Dixon and Mood’s up/down method targets the stimulus inten-

sity at which either of two possible responses is equally likely to occur. In many 
experimental situations this will be no good. In a 2AFC task, for example, 50% cor-
rect corresponds to chance performance. In such situations, we could use  Wetherill 
and Levitt’s (1965)   “ transformed ”  up/down method. In the transformed up/down 
method the decision to decrease stimulus intensity is based on a few preceding tri-
als, rather than the very last single trial. For example, we could adopt a rule that 
increases stimulus intensity after every incorrect response as before, but decreases 
stimulus intensity only after two consecutive correct responses have been observed 
since the last change in stimulus intensity. Such a rule is commonly referred to 
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 FIGURE 5.1          Simulated run of Dixon and Mood’s (1948) up/down method. The fi gure follows 
the example described in the text. Weights are dropped from various heights (ordinate) on explosive 
mixtures. If an explosion occurs (fi lled symbols) the drop height is reduced by 1 foot on the next trial, 
if no explosion occurs (open circular symbols), the drop height is increased by 1 foot. The targeted 
height (22.3 feet) is indicated by the broken line. Responses were generated by a Logistic function with 
  α        �      22.3,   β        �      5,   γ        �      0, and   λ        �      0. The generating function (  ψ   gen ) is shown on the right.    
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as a 1 up/2 down rule. Wetherill and Levitt make the argument that the 1 up/2 
down rule targets 70.71% correct. Another commonly used rule is similar to the 
1 up/2 down except that stimulus intensity is decreased only after three consecu-
tive responses have been observed since the last change in stimulus intensity. This 
1 up/3 down rule targets 79.37% correct. A simulated experimental run using the 
1 up/2 down rule is shown in  Figure 5.2a   . Correct responses are indicated by the 
fi lled symbols, incorrect responses are shown by the open symbols. Note that 
the 1 up/2 down rule came into effect only after the fi rst incorrect response was 
observed. Before this point, a 1 up/1 down rule was employed. In the run shown, 
the simulated observer responded correctly on all of the fi rst fi ve trials. This was 
because the run started out at a stimulus intensity which was well above the tar-
geted threshold, and possibly a bit of luck. Either way, had we adopted the 1 up/2 
down rule from the start, it would have likely taken many more trials to reach stim-
ulus intensities around threshold levels. The strategy to adopt a 1 up/1 down rule 
until a fi rst reversal of direction is needed was suggested by Wetherill and Levitt in 
order to avoid presenting many trials at intensities which are far above threshold at 
the start of the run.  

    5.2.3           Weighted Up/Down Method 
 Another   possibility is to adopt a  “ weighted ”  up/down method ( Kaernbach, 1991 ) 

in which a 1 up/1 down rule is used, but the steps up are not equal in size to the 
steps down. Kaernbach argues that the rule targets a probability correct equal to: 

  
ψtarget �
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  (5.1a)     

  where  Δ   �   and  Δ   �   are the sizes of the steps up and steps down, respectively and 
  ψ   target  is the targeted proportion correct. A little algebra reveals:   
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 Let  ’s say you wish to target 75% correct performance. Using a value of 0.75 for 
  ψ   target  in Equation 5.1b gives: 
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    Figure 5.2b  shows a simulated run of 50 trials using a 1 up/1 down rule and a 
ratio of stepsizes equal to 1/3.  
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Transformed: 1 up / 2 down; Δ− / Δ+ = 1
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 FIGURE 5.2          Examples of simulated staircases following a transformed up/down rule (a); a 
weighted up/down rule (b); and a transformed and weighted up/down rule (c). Correct responses 
are indicated by the fi lled symbols, incorrect responses are indicated by open symbols. Stimulus levels 
corresponding to the targeted percent correct values are indicated by the broken lines (note that the 
different procedures target different performance levels). In all example runs the responses were 
generated by a Gumbel function with   α        �      0,   β        �      2,   γ        �      0.5, and   λ        �      0.01. The generating PF (  ψ   gen ) is 
shown to the right of each graph.  Δ   �  : size of step up;  Δ   �  : size of step down (see Section 5.2.3).    
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    5.2.4           Transformed and Weighted Up/Down Method 
 In   the  “ transformed and weighted up/down method ”  ( Garc í a-P é rez, 1998 ), steps 

up and steps down are, as in the weighted method, not of equal size. Also, stimulus 
intensity is decreased only after a set number of consecutive incorrect responses, as 
in the transformed up/down method. The proportion correct targeted by the trans-
formed and weighted up/down method is given as: 
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  (5.2)     

  where  Δ   �  ,  Δ   �   and   ψ   target  are as before, and  D  is the number of consecutive cor-
rect responses after which a step down is to be made. Dixon and Mood’s up/down 
method, the weighted up/down method and the transformed up/down method 
are, of course, also covered by Equation 5.2, as they are all particular cases of the 
transformed and weighted up/down method.  Figure 5.2c  shows an example run of 
50 trials using a transformed and weighted up/down method.    

    5.2.5           Termination Criteria and the Threshold Estimate 
 Several   methods are in use to estimate a threshold after a run of trials has com-

pleted. Most commonly, researchers will terminate a run after a specifi c number of 
reversals of direction have occurred ( Garc í a-P é rez, 1998 ). The threshold estimate is 
consequently calculated as the average stimulus intensity across the last few trials 
on which a reversal occurred in the run. For example, a run may be terminated after 
ten reversals have taken place, and the threshold estimate is calculated as the aver-
age stimulus intensity across the last eight trials on which a reversal occurred. Less 
frequently, the run is terminated after a specifi ed number of trials have occurred 
and the threshold is calculated as the average stimulus intensity across the last so 
many trials. 

 Yet   another strategy is to adopt what  Hall (1981)  has termed a  “ hybrid adaptive 
procedure ”  in which an up/down method is used to select stimulus intensities, after 
which a threshold estimate is derived by fi tting a PF to all the data collected using, 
for example, a maximum likelihood criterion (see Chapter 4). This strategy has the 
obvious disadvantage that fi tting the data with a PF requires us to assume a shape of 
the PF, as well as values of some of its parameters (such as the guess rate, lapse rate, 
and perhaps the slope). The up/down methods themselves are non-parametric; 
they do not assume a particular shape of the underlying PF, other than that it is a 
monotonic function of stimulus intensity. 

 After   we have determined the thresholds for the individual runs we face another 
decision. Typically, we would want to use more than one run, and thus we end up 
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with several threshold estimates which should be combined into a single estimate. 
The obvious, and indeed most common, solution is to average the individual thresh-
old estimates. The standard deviation of threshold estimates may serve the function 
of standard error of estimate. The hybrid adaptive procedure allows us to combine 
trials across the different runs before we fi t them with a single PF. When we do use 
the hybrid procedure, we should keep in mind that by the nature of the up/down 
procedure trials will be concentrated around a single point on the PF. Such data do 
not lend themselves well to the estimation of the slope of the PF. Combining all data 
and fi tting them with a single PF will also allow us to determine the reliability of 
our estimate by performing a bootstrap analysis or by using the standard deviation 
of the parameter’s posterior distribution (see Chapter 4).  

    5.2.6           Up/Down Methods in Palamedes 
 The   core function associated with the up/down methods in Palamedes is  PAL_

AMUD_updateUD  . The function  PAL_AMUD_updateUD   is called after every trial 
with two arguments: a structure which we call  UD  (although you may give it a dif-
ferent name); and a scalar which indicates whether the observer gave a correct (1) 
or an incorrect (0) response on the trial. The structure  UD  stores things such as the 
stimulus intensity used on each trial, the response of the observer, etc., and this 
information is updated after every trial when the function  PAL_AMUD_updateUD   
is called. The  UD  structure also stores such things as the up/down rule to be used, 
stepsizes to be used, the stimulus value to be used on the fi rst trial, etc. 

 Before   trials can begin, the function  PAL_AMUD_setupUD   must be called in order 
to create the  UD  structure and initialize some of its entries. Let’s fi rst create the  UD  
structure using the default values and inspect it: 

         >      > UD  =  PAL_AMUD_setupUD;  
         >      > UD  
  UD    =   
   up  :                 1  
   down  :                 3  
   stepSizeUp  :                 0.0100  
   stepSizeDown  :                 0.0100  
   stopCriterion  :                  ‘ reversals ’   
   stopRule  :                 32  
   startValue  :                 0  
   xMax  :                 []  
   xMin  :                 []  
   truncate  :                  ‘ yes ’   
   response  :                 []  
   stop  :                 0  
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   u  :                 0  
   d  :                 0  
   direction  :                 []  
   reversal  :                 0  
   xCurrent  :                 0  
   x  :                 0  
   xStaircase  :                 []  

 The    up  and  down  fi elds indicate which up/down rule should be used. By default 
the values are set to 1 and 3, respectively, such that a 1 up/3 down rule will be 
used. Of course, the default values can be changed to suit your needs. You can pass 
optional arguments to  PAL_AMUD_setupUD   to make such changes. These argu-
ments come in pairs. The fi rst argument of each pair indicates which option should 
be changed, and the second argument of the pair indicates the new value. For 
example, let’s say you would like to use a 1 up/2 down rule instead of the default 
1 up/3 down rule. You would change the  UD  fi eld  down  to 2 by giving the follow-
ing command: 

         >      > UD  =  PAL_AMUD_setupUD(UD,  ‘ down ’ , 2);  

 In   this call we also passed the existing  UD  structure as the fi rst argument. When 
an existing  UD  structure is passed to  PAL_AMUD_setupUD   as the fi rst argument, 
the existing structure  UD  will be updated according to the additional arguments. It 
is also possible to create an entirely new structure  UD  using optional arguments to 
override the default values. For example, the call: 

         >      > UD  =  PAL_AMUD_setupUD( ‘ down ’ , 2);  

 creates   a new structure  UD , but with the fi eld  down  set to 2 instead of the default 
value 3. It is important to realize that when the latter syntax is used, a new struc-
ture is created and any previous changes made to  UD  will be undone. Before we 
worry about the other options, let us demonstrate how to use the function  PAL_
AMUD_updateUD   to update the stimulus level on each trial according to the chosen 
up/down rule. As we go along, we will explain some of the other options. 

 Imagine   we are measuring a contrast threshold for an observer and we would 
like to use a 1 up/3 down rule. We vary contrast amplitudes on a logarithmic scale 
and wish to use stepsizes equal to 0.05 log units for steps up as well as steps down. 
We fi rst create a new  UD  structure with the above options. 

         >      > UD  =  PAL_AMUD_setupUD( ‘ up ’ , 1,  ‘ down ’ , 3,  ‘ stepsizeup ’ , ... 
0.05,  ‘ stepsizedown ’ , 0.05);  

 We   also wish the procedure to terminate after, say, 50 trials have occurred. We 
can change the relevant settings in the existing  UD  structure by calling the function 
again and passing it the existing structure as the fi rst argument followed by the 
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other settings we wish to change. We set the value of  stopCriterion  to the string 
  ‘ trials ’   to indicate that we wish to terminate the run after a set number of trials 
(the default setting is to terminate after a set number of reversals of direction have 
occurred). Because we wish the run to terminate after 50 trials, we set the value of 
 stopRule  to 50. 

         >      > UD  =  PAL_AMUD_setupUD(UD,  ‘ stopcriterion ’ ,  ‘ trials ’ , ... 
 ‘ stoprule ’ , 50);  

 We   should also indicate what contrast amplitude should be used on the fi rst trial 
(or accept the default value of 0): 

         >      > UD  =  PAL_AMUD_setupUD(UD,  ‘ startvalue ’ , 0.3);  

 Note   that all changes to the default entries could have also been made in a single 
call, and also that the case of the string arguments will be ignored. 

 We   are now ready to present our fi rst stimulus to our observer. The con-
trast amplitude that we should use on any trial is given in  UD ’s fi eld  xCurrent . 
Currently, the value of  UD.xCurrent  is 0.3. This is, after all, the value that we sub-
mitted as   ‘ startvalue ’  . After we present our stimulus at the amplitude given in 
 UD.xCurrent  we collect a response from the observer. We create a variable 
 response  and assign it the value 1 in case the response was correct, or the value 0 
in case the response was incorrect. 

         >      > response  =  1;  

 Now   we call the function  PAL_AMUD_updateUD  , passing it the structure  UD  and 
the value of  response : 

         >      > UD  =  PAL_AMUD_updateUD(UD, response);  

  PAL  _AMUD_updateUD   makes the appropriate changes to  UD  and returns the 
updated version. You will have noted that the above call assigns the returned struc-
ture to  UD . In effect, the updated  UD  will replace the old  UD . The value of  UD.xCur-
rent  has now been updated according to the staircase rules, and should be used as 
the contrast amplitude to be used on the next trial. 

         >      > UD.xCurrent  

  ans    =   
  0  .2500  

 The   process then repeats itself: we present the next trial at the new value of 
 UD.xCurrent , collect a response from the observer, and call  PAL_AMUD_updateUD   
again. When the criterion number of trials has been reached, the  stop  fi eld of the  UD  
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structure will be set to 1, and this will be our signal to exit the testing procedure. The 
program that controls your experiment would contain a trial loop such as this: 

  while   ~UD.stop  
    %Present trial here at stimulus intensity UD.xCurrent  
    %and collect response (1: correct [more generally: too high],  
    %0: incorrect)  
  UD    =  PAL_AMUD_updateUD(UD, response); %update UD structure  
  end    

 The    UD  structure maintains a record of stimulus intensities and responses for all 
trials. The stimulus amplitudes of all trials are stored in  UD.x , and the responses 
are stored in  UD.response . The fi le  PAL_AMUD_Demo   demonstrates how to use 
the functions in the Palamedes toolbox to implement the 1 up/3 down staircase dis-
cussed here. It simulates responses of a hypothetical observer who acts according to 
a Gumbel function. The program will produce a plot such as those in  Figure 5.2 . A 
correct response to a trial is indicated by a fi lled circle, an incorrect response by an 
open circle. Note again that at the start of the series, the procedure decreases the 
stimulus intensity after every correct response. It is only after the fi rst reversal of 
direction occurs that the 1 up/3 down rule goes into effect. 

 The   fi eld  UD.reversal  contains a 0 for each trial on which a reversal did not 
occur and the count of the reversal for trials on which a reversal did occur. For 
example, in the run shown in  Figure 5.2a  the fi rst reversal took place due to an 
incorrect response on trial 6, the second reversal took place following the second 
of two consecutive correct responses on trial 11. Thus, the fi eld  UD.reversal  will 
start:  [0 0 0 0 0 1 0 0 0 0 2 ....] . 

 The   function  PAL_AMUD_analyzeUD   will calculate the mean of either a specifi ed 
number of reversals, or a specifi ed number of trials. By default, it will calculate the 
average of all but the fi rst two reversal points. Usage of the function is as follows: 

         >      > Mean  =  PAL_AMUD_analyzeUD(UD);  

 where    UD  is the result of a run of an up/down adaptive procedure. You may over-
ride the default and have the mean calculated across a specifi c number of reversals. 
For example, in order to calculate the mean across the last fi ve reversals use: 

         >      > Mean  =  PAL_AMUD_analyzeUD(UD,  ‘ reversals ’ , 5);  

 You   may also calculate the mean across the last so many trials. For example, in 
order to calculate the mean across the last ten trials use: 

         >      > Mean  =  PAL_AMUD_analyzeUD(UD,  ‘ trials ’ , 10);  

 Keep   in mind that all data are stored in the  UD  structure and you may use them 
as you please. For example, you could use  PAL_PFML_Fit   (Chapter 4) to fi t a PF to 
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the data using a maximum likelihood criterion. For example, to fi t a threshold value 
to the data assuming the shape of a Logistic function, a slope of 2, a guess rate of 0.5 
and a lapse rate of 0.01 use: 

         >      > params  =  PAL_PFML_Fit(UD.x, UD.response, o nes(1, ... 
length(UD.x)), [0 2 .5 .01], [1 0 0 0], @PAL_Logistic);   

    5.2.7           Some Practical Tips 
 Using   a large number of simulated up/down staircases,  Garc í a-P é rez (1998)  has 

investigated the behavior of up/down staircases systematically. Somewhat surpris-
ingly perhaps, the staircases converged reliably on the proportion correct given 
by Equation 5.2 only when specifi c ratios of the up and down stepsizes ( Δ   �  / Δ   �  ) 
were used. These ratios are listed in  Table 5.1   . At other ratios, the proportion correct 
on which the staircases converged depended greatly on the ratio of the stepsize to 
the spread of the psychometric function (Section 4.3.2.7). For certain stepsize ratios 
and up/down rule combinations the staircases converged on proportions correct 
nowhere near those given by Equation 5.2. Note that the run shown in  Figure 5.2c  
uses the suggested stepsize ratio for the 1 up/3 down rule employed. 

 Large   stepsizes should be used, with steps up having a value between   σ  /2 and 
  σ  , where   σ   is the spread of the underlying PF using   δ        �      0.01 (Section 4.3.2.7). Of 
course, the spread of the underlying PF will not be known, but we can generate 
a rough estimate based on intuition or previous research. Large stepsizes produce 
reversals more quickly and allow for a faster return to stimulus intensities near the 
targeted threshold after, for example, a series of lucky responses. The use of large 
stepsizes also ensures that near-threshold levels are reached early in the run. As a 
result, we may determine the threshold by averaging stimulus intensities across all 
but the fi rst few reversals. 

 TABLE 5.1          Ratios of down stepsize and up stepsize  Δ   �  / Δ   �   that will reliably 
converge on the targeted   ψ   values given by Equation 5.2. These values are suggested 

by  Garc í a-P é rez (1998)  and are based on a large number of simulated runs  

   Rule   Δ   �  / Δ   �    Targeted   ψ   (%) 

   1 up/1 down  0.2845  77.85 

   1 up/2 down  0.5488  80.35 

   1 up/3 down  0.7393  83.15 

   1 up/4 down  0.8415  85.84 
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 Stepsizes   should be defi ned in whatever metric appears appropriate. When we 
started our discussion of up/down methods we used the example of explosive 
mixtures. We defi ned the stepsize in terms of drop height (in feet). Consequently, 
the procedure used steps that were equal in terms of drop height in feet. Perhaps 
it would have made more sense to use stepsizes that correspond to equal changes 
in the speed with which the weights hit the explosive mixture. If so, we should 
simply defi ne our stepsizes in terms of speed at impact. In the context of psycho-
physical measurements, stepsizes should be defi ned in physical units that would 
correspond to linear units in the internal representation of the stimulus dimension. 
Our choice should thus be guided by what we believe the transducer function to be 
(see Section 4.2.2.3). Our choice will ordinarily be between defi ning stepsizes on a 
linear scale or on a logarithmic scale. If we wish steps to be constant on a logarith-
mic scale, we should defi ne our stimulus intensities and stepsizes as such. The fi nal 
threshold should be calculated as the arithmetic mean calculated across the reversal 
values in whatever scale our stepsizes were defi ned in. For example, if we defi ned 
our stimulus intensities and stepsizes on a logarithmic scale, we should calculate 
the arithmetic mean of the reversal values in logarithmic terms, which is equivalent 
to the geometric mean of the values on a linear scale. 

 Note   that you may set a minimum or maximum stimulus value in the  UD  struc-
ture ( Textbox 5.1   ). You should avoid this if you can, but sometimes you have no 
other choice. For example, if stimulus intensity is defi ned as Michelson contrast 
on a linear scale, and you do not set the minimum stimulus value to 0, the proce-
dure might assign a negative value to  UD.xCurrent . Of course, we cannot present 
stimuli at negative contrast and setting the minimum stimulus value to 0 will avoid 
assigning a negative value to  UD.xCurrent . 

 An   issue is raised when possible stimulus values are constrained to a range of 
values. Suppose you are measuring a contrast threshold. Your stimulus inten-
sities and stepsizes are defi ned as Michelson contrast on a linear scale. You use a 
1 up/1 down with  Δ   �        �      0.1 and  Δ   �        �      0.05. Having defi ned your stimulus intensity 
in terms of Michelson contrast you set the minimum stimulus intensity to 0. As it 
happens your observer has had a few consecutive lucky responses and the stimulus 
intensity on trial  t  (let’s call it  x  t ) equals 0. In case your observer responds correctly 
on trial  t , the up/down rule states that stimulus intensity on trial  t       �      1 should be 
 x t    � 1       �       x t        �       Δ   �        �      0      �      0.05      �       � 0.05. However, having defi ned the minimum stimu-
lus intensity as 0, the value of  UD.xCurrent  will actually be set to 0. 

 Imagine   the observer now produces an incorrect response on trial  t       �      1. Should 
we make our step up relative to what the intensity should have been  on trial t  �  1 
( x t    � 2       �       � 0.05      �       Δ   �        �      0.05) or relative to what it actually was ( x t    � 2       �      0      �       Δ   �        �      0.1)? 
Somewhat counterintuitively, perhaps, the former strategy has been shown to pro-
duce better results ( Garc í a-P é rez, 1998 ). You can indicate whether you wish the 
up/down rule to be applied to stimulus intensities as truncated by the minimum and 
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   Textbox 5.1.            Options for the Palamedes up/down routines that may be changed 
using the function  PAL_AMUD_setupUD   . Default values are those shown in curly 
brackets   {}  .      

  Up                         positive integer scalar  {  1  }  

 Number   of consecutive incorrect responses after which stimulus intensity should 
be increased. 

  Down                         positive integer scalar  {  3  }  

 Number   of consecutive correct responses after which stimulus intensity should be 
decreased. 

  stepSizeUp                         positive scalar  {  0.01  }  

 Size   of step up 

  stepSizeDown                         positive scalar  {  0.01  }  

 Size   of step down 

  stopCriterion                           ‘ trials ’   |   {  ‘ reversals ’ }    

 When   set to   ‘ trials   ’,   staircase will terminate after the number of trials set in 
 stopRule . When set to   ‘ reversals   ’  , staircase will terminate after the number of 
reversals set in  stopRule . 

  stopRule                         see  stopCriterion   {  32  }  

  startValue                         scalar  {  0  }  

 Stimulus   intensity to be used on fi rst trial. 

  xMax                         scalar  {  []  }  

 Maximum   stimulus intensity to be assigned to  UD.xCurrent . In case value is set 
to an empty array ( [] ) no maximum is applied. 

  xMin                         scalar  {  []  }  

 Minimum   stimulus intensity to be assigned to  UD.xCurrent . In case value is set 
to an empty array ( [] ) no minimum is applied. 

  truncate                           {  ‘ yes ’  }  |  ‘ no ’   

 When   set to   ‘ yes ’  , up/down rule will be applied to stimulus intensities as lim-
ited by  xMax  and  xMin . When set to   ‘ no ’  , up/down rule will be applied to stimu-
lus intensities untruncated by  xMax  and  xMin  (but stimulus intensities assigned to 
 UD.xCurrent  will be truncated by  xMax  and  xMin) .   
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maximum values by setting the value of   ‘ truncate ’  to  ‘ yes ’ .  In case you wish 
to allow stimulus values to go beyond the minimum and maximum as far as appli-
cation of the up/down rule is concerned, you should set   ‘ truncate ’   to   ‘ no ’  . 
Beside the fi eld  UD.x , which keeps track of stimulus intensities that are actually 
used, the  UD  structure has another fi eld ( UD.xStaircase ) which contains for each 
trial the stimulus intensity to which the up/down rule is applied. In case   ‘ trun-
cate ’   is set to   ‘ yes ’  , the two fi elds will have identical entries. 

 By   the very nature of the up/down procedures, strong trial-to-trial dependencies 
within a single staircase exist. Observers are very good at discovering rules such as: 
 “ A series of consecutive lucky guesses is followed by one or more trials on which I 
also feel like I am guessing. This continues until I give a few incorrect responses. ”  
Some evidence even suggests that humans can discover such simple contingency 
rules implicitly and begin to act accordingly before the rules are consciously known 
( Bechara et al., 1997 ). In order to avoid trial-to-trial dependencies and observer 
strategies which are based on trial-to-trial contingencies, it is a good idea to alter-
nate trials randomly between a few interleaved up/down staircases.   

    5.3            “ RUNNING FIT ”  METHODS: THE BEST 
PEST AND QUEST 

 The   methods that we will describe here perform a running fi t of the results. The 
idea was fi rst proposed by  Hall (1968)  at a meeting of the Acoustical Society of 
America. After every trial a psychometric function is fi t to all the data collected so far. 
The fi tted PF then serves to select a stimulus intensity for the upcoming trial. After 
each trial, the fi t is updated based on the new response and the process repeats itself. 

    5.3.1           The Best PEST 
 The   fi rst running fi t method to be proposed in detail was the  “ best PEST ”  ( Pentland, 

1980 ). The best PEST assumes a specifi c form of the psychometric function and esti-
mates only the threshold parameter of the psychometric function. Values for the 
other parameters (slope, guess rate, and lapse rate) need to be assumed. After each 
trial, the likelihood function (Chapter 4) is calculated based on the responses to all 
previous trials. The likelihood function is defi ned across a range of possible thresh-
old values believed to include the observer’s threshold value. After each trial a value 
for the threshold parameter is estimated using a maximum likelihood criterion. The 
stimulus intensity to be used on the next trial corresponds to the threshold estimate 
determined from all previous trials. 

 A   simulated example run of the best PEST in a 2AFC procedure is shown 
in  Figure 5.3a   . As can be seen from the fi gure, a run controlled by the best PEST 
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has some similarities to runs controlled by the up/down procedures discussed in 
Section 5.2. Foremost, the best PEST decreases stimulus intensity after a correct 
response and increases stimulus intensity after an incorrect response. Keep in mind, 
though, that in the case of the best PEST this is an emergent property, it is not a rule 
that is explicitly incorporated in the procedure. Unlike in the up/down procedures 
of Section 5.2, however, stepsizes in the best PEST are not of fi xed size. Generally, 
stepsizes tend to decrease as the run proceeds. This makes sense when one consid-
ers that the relative contribution of each additional trial to the overall fi t becomes 
smaller and smaller, given that the fi t is based on  all  of the preceding trials. 

 Note   that the fi rst stepsize is exceptionally large. As a matter of fact, the size of 
the fi rst step is bound only by the interval of stimulus values defi ned by the experi-
menter. The maximum likelihood estimate of the threshold after a single trial will 
always be positive infi nity (if the response was incorrect) or negative infi nity (if 
the response was correct), and thus the stimulus amplitude on the second trial will 
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 FIGURE 5.3          Examples of a simulated best PEST staircase (a) and a Quest staircase (b). Correct 
responses are indicated by the fi lled symbols, incorrect responses are indicated by open symbols. Stimulus 
levels corresponding to the generating PFs threshold are indicated by the broken lines. In both example 
runs the responses were generated by a Gumbel function with   α        �      0,   β        �      2,   γ        �      0.5, and   λ        �      0.01. The 
generating PF ( ψ gen) is shown to the right of each graph.    
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always correspond to the highest or lowest value of the interval across which the 
likelihood function is considered. In the example shown in the fi gure, the fi rst trial 
resulted in a correct response and the second trial is presented at the lowest stimu-
lus intensity in the interval across which the likelihood function is calculated. The 
response on the second trial is also correct and, judging by the generating PF on 
the right of the fi gure, this should be considered mostly a result of luck. As a result, 
the third trial is also presented at the same extremely low stimulus intensity. The 
response to the third trial was incorrect, and as a result the fourth trial is presented 
at a much higher stimulus intensity, although still at a stimulus intensity where we 
would expect near-chance-level performance. The following few trials once again 
appear to be the result of some luck. As a result, it takes a while for the best PEST 
to reach stimulus intensities near threshold in this particular run. It should be 
pointed out that this particular run was selected because it displayed this behavior. 
However, although it may not be typical, this behavior is certainly not uncommon 
using the best PEST.  

    5.3.2           Quest 
 Quest   ( Watson  &  Pelli, 1983 ) is essentially a Bayesian version of the best PEST. To 

refresh your memory, Bayes ’  Theorem (Chapter 4) can be used to combine the results 
of an experiment (in the form of the likelihood function) with pre-existing knowl-
edge or beliefs regarding the value of the threshold parameter (in the form of a 
prior probability distribution) to derive the posterior probability distribution across 
possible values of the threshold parameter. One may think of this procedure as the 
new data merely serving to adjust our pre-existing knowledge or beliefs regarding 
the value of the threshold parameter. A best-fi tting estimate of the threshold param-
eter is then derived from the posterior distribution using the method outlined in 
Chapter 4. Thus, before a Quest run can start, the researcher needs to postulate a 
prior probability distribution which refl ects the researcher’s belief about the value 
of the threshold. In  Figure 5.3b , we show an example Quest run in which the prior 
distribution was a Gaussian distribution with mean 0 and standard deviation 1. 
The simulated observer in the Quest run of  Figure 5.3  had identical properties to 
the simulated observer in the best PEST run in the fi gure. As can be seen by com-
paring the best PEST and Quest run, the prior has the effect of curbing the exces-
sive stepsizes that were observed at the beginning of the best PEST run. The prior 
could thus be considered to act as somewhat of a guide to the selection of stimulus 
intensities. This is especially true at the onset of the run when stimulus selection is 
primarily determined by the prior. As data collection proceeds, the prior will start 
to play a smaller and smaller role relative to the contribution of the data collected. 

 In   the example run of Quest shown in  Figure 5.3 , the mode of the posterior dis-
tribution was used as the threshold estimate, as proposed by Watson and Pelli in 
the original Quest procedure.  King-Smith et al. (1994)  show that using the mean of 
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the posterior distribution, rather than its mode, leads to more effi ciently obtained 
parameter estimates which are also less biased.  Alcal á -Quintana and Garc í a-P é rez 
(2004)  further recommend the use of a uniform prior (i.e., one that favors no par-
ticular threshold value over another). Remember that when a uniform prior is 
used, the posterior distribution will be proportional to the likelihood function (see 
Chapter 4). Thus, when the prior is uniform and we use the mode of the posterior 
distribution as our estimate of the threshold, Quest is equivalent to the best PEST.  

    5.3.3           Termination Criteria and Threshold Estimate 
 Most   commonly, a session is terminated after a specifi c number of trials. Alternatively 

one can terminate a session after a specifi c number of reversals have occurred. The 
threshold estimate is, of course, updated every trial and the fi nal threshold estimate is 
simply the estimate which was derived following the fi nal response. In case we have 
used a non-uniform prior, we may opt to ignore it in our fi nal threshold estimate. 
Remember from Chapter 4 that the posterior distribution is proportional to the prod-
uct of the prior distribution and the likelihood function. In other words, if we divide 
the prior out of the posterior distribution the result is proportional to our likelihood 
function. Since choosing a prior is a bit of a subjective exercise, some researchers opt 
to derive the fi nal threshold estimate from the (recovered) likelihood function. As with 
the up/down methods we may also use a hybrid approach in which we use a running 
fi t method to guide stimulus selection, but we derive our fi nal threshold estimate and 
its standard error after we combine trials across several sessions.  

    5.3.4           Running Fit Methods in Palamedes 
 The   routines in Palamedes that manage a running fi t adaptive method are  PAL_

AMRF_setupRF   and  PAL_AMRF_updateRF  . The general usage of these functions 
is analogous to the functions  PAL_AMUD_setupUD   and  PAL_AMUD_updateUD   
described in Section 5.2.6. We fi rst create a structure  RF  using  PAL_AMRF_setupRF  . 

         >      > RF  =  PAL_AMRF_setupRF;  

  RF    is a structure which is similar to the structure  UD  in Section 5.2.6. 

         >      > RF  
  RF    =   

   priorAlphaRange  :                 [1   ×   401 double]  
   prior  :                 [1   ×   401 double]  
   pdf  :                 [1   ×   401 double]  
   mode  :                 0  
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   mean  :                 1.9082e-017  
   sd  :                 1.1576  
   modeUniformPrior  :                 []  
   meanUniformPrior  :                 []  
   sdUniformPrior  :                 []  
   response  :                 []  
   stopCriterion  :                  ‘ trials ’   
   stopRule  :                 50  
   stop  :                 0  
   PF  :                 @PAL_Gumbel  
   beta  :                 2  
   gamma  :                 0.5000  
   lambda  :                 0.02  
   xMin  :                 []  
   xMax  :                 []  
   direction  :                 []  
   reversal  :                 0  
   meanmode  :                  ‘ mean ’   
   xCurrent  :                 1.9082e-017  
   x  :                 []  
   xStaircase  :                 1.9082e-017  

 The   value of the  mean  fi eld is calculated as the expected value of the prior distri-
bution and differs (very slightly) from zero due to rounding error only. As a result, 
 xCurrent  and  xStaircase  also differ slightly from zero. Changing the settings 
to suit your needs is done in a manner similar to changing the values in the  UD  
structure in Section 5.2. Let’s say we wish to specify the prior to be something dif-
ferent from the uniform prior (which is the default). We must specify the range and 
resolution of values of possible thresholds to be included in the prior (or accept the 
default range and resolution:  - 2:.01:2) and defi ne a prior distribution across that 
range: 

         >      > alphas  =  -3:.01:3;  
         >      > prior  =  PAL_pdfNormal(alphas, 0, 1);  

 The   above call to  PAL_pdfNormal   returns the normal probability densities at 
the values in  alphas  using a mean equal to 0 and standard devation equal to 1. 
Next, we update the relevant fi elds in  RF : 

         >      > RF  =  PAL_AMRF_setupRF(RF,  ‘ priorAlphaRange ’ , alphas, ... 
 ‘ prior ’ , prior);  

 The    RF  options and their default values are given in  Textbox 5.2   . 
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   Textbox 5.2.            Options for the Palamedes running fi t routines that may be changed 
using the function  PAL_AMRF_setupRF  . Default values are those shown in curly 
brackets   {}  .      

  priorAlphaRange                         vector  {  [ − 2:.01:2]  }  

 Vector   containing values of threshold to be considered in fi t. 

   prior                         vector  {uniform across   priorAlphaRange  }  

Prior distribution. 

  beta                         positive scalar  {  2  }  

 Slope   parameter of PF to be fi tted. 

  gamma                         scalar in range [0–1]  { . 5  }  

 Guess   rate to be used in fi ts. 

  lambda                         scalar in range [0–1]  { . 02  }  

 Lapse   rate to be used in fi ts. 

  PF                         inline function  {  @PAL_Gumbel   }  

 Form   of psychometric function to be used in fi t. Refer to Section 4.3.2 for other pos-
sible functions. 

  stopCriterion                   {   ‘ trials ’   }  |   ‘ reversals ’   

 When   set to   ‘ trials   ’,   staircase will terminate after the number of trials set in 
 stopRule . When set to   ‘ reversals   ’,   staircase will terminate after the number of 
reversals set in  stopRule . 

  stopRule                         positive integer  {  50  }  

 see    stopCriterion  

  startValue                         scalar  {  0  }  

 Stimulus   intensity to be used on fi rst trial. 

  xMin                         scalar  {  []  }  

 Minimum   stimulus intensity to be assigned to  RF.xCurrent . If set to empty 
array, no minimum will be applied. 

  xMax                         scalar  {  []  }  

 Maximum   stimulus intensity to be assigned to  RF.xCurrent . If set to empty 
array, no maximum will be applied. 

  meanmode                          {   ‘ mean ’   }  |   ‘ mode ’   

 Indicates   whether the mean or the mode of the posterior distribution should be 
assigned to  RF.xCurrent .   
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 During   the testing session, the function  PAL_AMRF_updateRF   updates the pos-
terior distribution after each trial and keeps a record of the stimulus intensities, 
responses, etc. In the code that controls our experiment we would have a loop: 

  while   ~RF.stop  
  amplitude    =  RF.xCurrent; %  Note that other value may be used  
    %Present trial here at stimulus intensity  ‘ amplitude ’   
    %and collect response (1: correct, 0: incorrect)  
  RF    =  PAL_AMRF_updateRF(RF, amplitude, response); %update RF  
  end    

 Note   that we also pass the stimulus intensity ( amplitude ) to  PAL_AMRF_
updateRF  (we did not do this with the up/down routines). This is because we are 
entirely free to ignore the value suggested by the procedure and present the stimu-
lus at some other intensity. As such, we need to tell the procedure what stimulus 
intensity we actually used. 

 The    RF  structure stores the stimulus intensities that were actually used on each 
trial in the fi eld  RF.x , and the corresponding responses in the fi eld  RF.response . 
The stimulus intensities that were suggested by the procedure on each trial are 
stored in the fi eld  RF.xStaircase . The fi nal estimates of the threshold in the  RF  
structure are  RF.mode  (the mode of the posterior distribution), and  RF.mean  (the 
mean of the posterior distribution).  RF.sd  contains the standard deviation of the 
posterior distribution. This standard deviation may serve as the standard error of 
estimate of the threshold if the threshold is estimated by the mean of the posterior 
distribution. The entries  RF.modeUniformPrior ,  RF.meanUniformPrior  and 
 RF.sdUniformPrior  are analogous, except that they ignore the prior distribution 
provided by the researcher and instead use a uniform prior.  

    5.3.5           Some Practical Tips 
 The   running fi t methods described here are  “ parametric methods. ”  What this 

means is that they assume that our observer responds according to a specifi c form 
of PF with a specifi c value for its slope, guess rate, and lapse rate. We need to spec-
ify all these assumptions, and the method is optimal and accurate only insofar as 
these assumptions are true. This was not the case for the up/down methods of 
Section 5.2. There, we do not have to assume anything about the shape of the PF 
(other than that it is monotonic). The running fi t methods appear a bit awkward 
perhaps, because we pretend to know all about the observer’s PF except for the 
value of the threshold. As it turns out, though, the procedures are relatively robust 
when inaccurate assumptions regarding the PF are used. Nevertheless, we should 
use our best efforts to have our assumptions refl ect the true state of the world as 
accurately as possible. We might base our guesses on our experience with similar 
experimental conditions, or we could perform some pilot experiments fi rst. 
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 The   value we use for the slope affects the stepsizes that the running fi t methods use. 
When a value for the slope is used that is much too high, the methods will use very 
small stepsizes. As a result, the method becomes sluggish, in that it will have a rela-
tively hard time recovering from a series of lucky responses at very low stimulus inten-
sities, for example. We might also consider allowing for some lapses to occur by setting 
the lapse parameter to a small value, such as 0.02 (which is the default). The risk you 
run by setting the lapse rate to 0 is that when a lapse does occur at a high stimulus 
intensity, it will be followed by a series of trials at intensities well above threshold. 

 It   is not necessary to present the stimulus on any trial at the intensity suggested 
by the running fi t method. For example, you might prefer to present a stimulus at 
an intensity which is a bit higher than the threshold intensity in order to avoid frus-
tration on the part of the observer. Presenting a stimulus at a high intensity every 
once in a while will remind the observer what to look for and might act as a confi -
dence booster. You might also target a few distinct points along the PF so as to gen-
erate data that are suitable to estimate the threshold as well as the slope of the PF 
(although we recommend you to keep reading and use the psi method if your goal 
is to estimate the slope of the PF as well as the threshold). 

 Here  , as with the up/down methods, it is a good idea to intertwine a few stair-
cases randomly to avoid trial-to-trial dependencies. It is always possible to combine 
observations from the different staircases later and fi t all simultaneously with a sin-
gle PF, as in Hall’s (1981) hybrid procedure (Section 5.2.5). 

 The   choice of the prior to use deserves some attention. Remember that even if you 
choose to use a uniform prior, it is in practice not truly uniform as it will be defi ned 
across a fi nite range of values (by your choice of values to include in  priorAlpha-
Range  in Palamedes). In other words, threshold values within the fi nite range of 
values are given equal likelihoods, but values outside of that range are assigned a 
likelihood of 0. It is important to let your threshold estimates not be affected sig-
nifi cantly by your choice of the range of the prior. For example, if you use the mode 
of the posterior distribution, make sure that the value of the mode is in the range 
of values included within the prior and not at either boundary of the prior. When 
you use the mean of the posterior distribution as your threshold estimate, make sure 
that the posterior distribution is (effectively) contained entirely within the range of 
values in the prior, at least when your fi nal estimate of the threshold is made. In 
case the posterior distribution is chopped off abruptly by the limits of the prior, your 
choice of these limits will have a signifi cant effect on the threshold estimate. 

 In   case observers are tested in multiple sessions in the same experimental condi-
tions, we advise the use of the posterior distribution resulting from the previous 
session as the prior for a new session. In a sense, the staircase will proceed from ses-
sion to session as if data were collected in a single session. The MATLAB ®  fi le that 
demonstrates the RF routines ( PAL_AMRF_Demo  ) shows how to accomplish this. In 
effect, at the end of a session the  RF  structure is saved to disc. Before the next ses-
sion starts, the  RF  structure is loaded from the disc and used in the new session. 
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Caution should be exercised when there is reason to suspect that sensitivity varies 
from session to session, for example due to learning or fatigue. In such situations it 
might be best to start consecutive sessions with identical priors.   

    5.4           PSI METHOD 

 The   up/down and running fi t methods of Sections 5.2 and 5.3 both target a sin-
gle point on the psychometric function. As such, data collected by these methods 
do not provide much information regarding the slope of the psychometric function. 
However, one may also be interested in determining the slope of the psychomet-
ric function. For example, when simulations are to be used to determine standard 
errors (Chapter 4) or the statistical signifi cance of a model comparison (Chapter 8), 
it is critical to derive an accurate estimate of the slope of the psychometric function. 
This is because the slope of the PF ultimately describes the noisiness of the results. 
For example, if we overestimate the value of the slope of the PF and we simulate 
the experiment using this biased slope, the simulated observer will produce cleaner 
results compared to our human observer, and we would underestimate the standard 
error of the threshold estimate. One may also be interested in the value of the PFs 
slope for its own sake. As mentioned, the slope describes the noisiness of the results 
and this noisiness is in part due to noise which is internal to the observer. Research 
questions regarding the effect of, for example, attention or perceptual learning on 
the noisiness of the perceptual system may be answered by investigating effects on 
the slope of the PF. 

 The   fi rst adaptive method designed to assess both the threshold and the slope of a 
PF was Adaptive Probit Estimation (APE;  Watt  &  Andrews, 1981 ). In APE, estimates 
of the location and slope parameters of the PF are obtained periodically during test-
ing through probit analysis. The estimates are based on a fi xed number of imme-
diately preceding trials and are used to adjust the selection of stimulus levels to be 
used on subsequent trials.  King-Smith and Rose (1997)  proposed the modifi ed ZEST 
method which updates a posterior distribution across a two-dimensional parame-
ter space after each response. Here, we will discuss the psi method ( Kontsevich  &  
Tyler, 1999 ) in some detail. Currently, the psi method is arguably the most effi cient 
of the adaptive methods which target both an estimate of the location and the slope 
parameter of the PF. 

    5.4.1           The Psi Method 
 The   psi method ( Kontsevich  &  Tyler, 1999 ) is a sophisticated method which selects 

stimulus amplitudes so as to result in effi cient estimation of both the threshold and 
the slope parameter of a psychometric function. In many ways, it is similar to the 
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Quest procedure. After each response, the psi method updates a posterior distribu-
tion, but now the posterior distribution is defi ned not only across possible thresh-
old values, but also across possible values of the slope parameter. We have discussed 
such posterior distributions in Chapter 4, and examples are shown in Figures 4.15 
and 4.16. As such, the psi method is similar to King-Smith and Rose’s (1997) modifi ed 
ZEST method which also defi ned the posterior distribution across possible values of 
the threshold and the slope parameter. In the modifi ed ZEST method, estimates for 
both the threshold and slope parameters are continuously modifi ed. Stimulus levels 
are selected to correspond to specifi c probabilities of a correct response based on the 
current estimate of the PF. The psi method, however, will select that stimulus inten-
sity for the upcoming trial which minimizes the expected entropy in the posterior 
distribution after that trial. The use of entropy as the metric in which to defi ne the 
amount of information gained from a trial was proposed by  Pelli (1987) , and was 
used to optimize information gained regarding an observer’s membership in a cat-
egorical classifi cation by  Cobo-Lewis (1997) . 

 The   psi method combines some quite complex issues. In order to break it down a 
bit, consider the following analogy. Imagine you are in a casino and you face a choice 
between two rather simple games:  “ Pick a Queen ”  and  “ Grab a Spade. ”  In Pick a 
Queen you draw a card from a standard deck randomly. If you draw a queen, you 
win the game and receive $26, but if you draw something other than a queen, you 
lose the game and pay $3. In the game Grab a Spade, you pick a random card from a 
regular deck of cards and if it is a spade you win the game and receive $20, but if it is 
not a spade you lose the game and pay $8. Which game should you pick? One way 
to decide is to fi gure the expected monetary gain of each game. In the game Pick a 
Queen there is a 1/13 chance that you will indeed pick a queen, consequently win 
the game and gain $26. However, there is a 12/13 chance that you lose the game and 
pay $3. The expected value of your monetary gain ( x ) in dollars is: 
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 You   can think of the expected gain as your average gain per game if you were to 
play this game an infi nite number of times. Note that your expected gain is negative. 
You are, after all, in a casino and casinos only offer games for which your expected 
monetary gain is negative. In a similar fashion, you can fi gure the expected mon-
etary gain in the game Grab a Spade: 
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 The   game Pick a Queen has a higher expected monetary gain (albeit still negative) 
so you choose to play Pick a Queen. 
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 The   strategy utilized by the psi method to decide which stimulus intensity to use 
on any trial is very similar. Where we are faced with a choice between two games 
to play, the psi method is faced with a choice between various stimulus levels to 
be used on the next trial. And where we select that game which maximizes our 
expected monetary gain, the psi method selects that stimulus intensity which mini-
mizes the expected  “ entropy ”  in the posterior distribution. 

 The   term entropy is used here as it is defi ned in the context of information theory 
(i.e., so-called Shannon entropy). Entropy in this context is a measure of uncertainty. 
A simple example will demonstrate the concept. Imagine a game in which a card is 
randomly drawn from a standard deck of cards and you are to determine the suit 
of the card. On any given draw there is, of course, a probability equal to 1/4 that a 
heart is drawn, 1/4 that a spade is drawn, etc. We can express the degree of uncer-
tainty with regard to the suit of a randomly drawn card by the entropy  H : 
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i
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  where  i  enumerates the four possible suits and  p i   stands for the probability that 
the card is of suit  i . So, in the above scenario the entropy is:   

  
H � � � �

1
4

1
4

1
4

1
4

1
4

1
42 2 2log log log

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟� �

1
4

1
4

22log
      

 Since   we used the logarithm with base 2 to calculate the entropy, the unit of 
measurements is  “ bits. ”  As such, you can think of the entropy as the number of 
(smart) yes/no questions that stand between the current situation and certainty 
(i.e., knowing for sure which suit the card is from). Imagine that you get to ask a 
yes/no question regarding the suit of the card. Let’s say you ask the question:  “ Is 
the color of the suit red? ”  Whether the answer is  “ yes ”  or  “ no, ”  it will reduce uncer-
tainty by half. For example, let’s say the answer is  “ yes. ”  We now know that the 
card is either a heart or a diamond with equal probability. The entropy becomes: 
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   (Note that we have defi ned 0 log 2 (0) to equal 0, as  lim log
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answer to the question reduced the uncertainty from 2 bit to 1 bit. We need one more 
question to attain certainty. For example, in case we ask:  “ Is the card a heart? ”  and the 
answer is  “ no, ”  we know for certain that the card must be a diamond. Numerically, 
entropy would indeed be reduced by another bit to equal zero: 

  H � � � � � �( ( ) ( ) ( ) ( ))1 1 0 0 0 0 0 0 02 2 2 2log log log log      
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  refl ecting the absence of uncertainty altogether.   
 In   the context of the psi method, entropy measures the uncertainty associated 

with the values of the threshold and slope of the PF. From the posterior distribution 
we get the probability associated with each pair of threshold value ( a ) and slope 
value ( b ) contained in the posterior distribution (let’s call this  p ( a ,  b ) here) and cal-
culate the entropy thus: 

  
H p a b p a b

ba

� � ( ) ( ), log ,2∑∑   (5.4)      

 By   decreasing the entropy in the posterior distribution one would increase the 
precision of the parameter estimates. 

 Thus  , the psi method considers a range of possible stimulus intensities to use on 
the next trial (compare: games to play) and for each calculates what the probabili-
ties of a correct response and incorrect response are (compare: probability of win 
or loss of game). It also considers the entropy (compare: monetary outcome) which 
would result from both a correct response and an incorrect response. From these, 
the psi method calculates the expected entropy (compare: expected monetary gain). 
It then selects that stimulus intensity that is expected to result in the lowest entropy. 

 Note   that stimulus intensity is a continuous variable such that, in theory, the 
psi method has the choice between an infi nite number of values. In practice, the 
psi method chooses a stimulus intensity from a relatively large number of discrete 
stimulus intensities in a specifi ed range. The principle is the same compared to 
choosing one of the two card games to play, however. That is, the expected entropy 
is calculated for all possible discrete stimulus intensities and the psi method selects 
that intensity which will lead to the highest expected entropy. 

    “ Wait a minute! ”  you may have thought,  “ How does the psi method know what 
the probability of a correct response is for any given stimulus intensity? Wouldn’t 
the psi method need to know what the PF is in order to do that? Isn’t that exactly 
what we are trying to fi gure out? ”  Indeed, the problem that the psi method faces is 
a bit more daunting than our problem of deciding which game to play. In deciding 
which game to play, we know what the probability of a win or loss is for each game. 
The probability of winning Pick a Queen is 1/13, that of winning Grab a Spade is 
1/4. The psi method, however, does not know what the probability of a correct or 
incorrect response is on any given trial. Instead, on each trial it estimates what these 
probabilities might be, based on the outcomes of all previous trials. It is as if we were 
to choose between Pick a Queen or Grab a Spade not knowing how many queens or 
spades are in the deck. However, as we play the games and witness the outcomes of 
the draws, we start to get an idea as to the make-up of the deck of cards, and we use 
this to adjust our choice of game. 

 Specifi cally  , from the posterior distribution and using a Bayesian criterion 
(Chapter 4), the psi method fi nds the best-fi tting PF to the responses collected on 
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all of the previous trials in the staircase. The probability of a correct response on the 
next trial at each of the stimulus intensities under consideration is then determined 
from the best-fi tting PF. 

 An   example run in which stimulus intensity was guided by the psi method is 
shown in  Figure 5.4   . The same plotting conventions are used here as in        Figures 5.2 
and 5.3 , except that the threshold estimates on each trial (black line) are also shown 
here. A couple of observations should be made. First, it is apparent that, at the start 
of the run, the psi method selects stimulus intensities that are at or near the cur-
rent threshold estimate. This is, of course, the best placement rule to determine the 
value of the threshold. However, in order to gain information regarding the slope of 
the PF, measurements need to be made at multiple points along the PF. Indeed, as 
the run proceeds, the psi method also starts to select stimulus intensities well above 
and below the running threshold estimate.  

    5.4.2           Termination Criteria and the Threshold and Slope Estimates 
 When   the psi method is used, it would make no sense to use the number of revers-

als as a termination criterion. In the up/down and running fi t methods, reversals 
occur mainly when the stimulus amplitude has crossed the targeted threshold. As 
such, the number of reversals is closely tied to the degree of accuracy with which the 
threshold can be determined. In the psi method, there is no such close relationship. 
From  Figure 5.4 , the pattern with which stimulus amplitudes are selected and revers-
als occur in the psi method appears much more haphazard compared to the up/
down and running fi t methods. For example, stimulus amplitude may be increased 
after a correct response (e.g., after the correct response on trial 41 in  Figure 5.4 ). 
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 FIGURE 5.4          Example of a simulated psi method staircase. Correct responses are indicated by the fi lled 
symbols, incorrect responses are indicated by open symbols. The black line displays the running estimate 
of the threshold based on the posterior distribution. The responses were generated by a Gumbel function 
with   α        �      0,   β        �      2,   γ        �      0.5, and   λ        �      0.01. The generating function (  ψ   gen ) is shown on the right in green, the 
function fi tted by the psi method (  ψ   fi t ) after completion of the 50 trials is shown on the right in black.    
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Thus, when the psi method is used, a run is terminated after a certain number of tri-
als have occurred. 

 Most   naturally, one would use the posterior distribution created during a run 
to derive an estimate of the threshold and the slope, and their standard errors. 
This would be done by the methods described in Chapter 4. However, as with the 
other adaptive methods, one is free to collect data using the psi method, and con-
sequently use any method to derive one’s fi nal parameter estimates. One specifi c 
suggestion might be to divide out the prior before we make our fi nal parameter 
estimates, for the same reasons we discussed in the context of the Quest procedure.  

    5.4.3           The Psi Method in Palamedes 
 The   functions that implement the psi method in the Palamedes toolbox are used 

in a fashion very similar to those that implement the up/down methods and the 
running fi t methods. We fi rst set up a structure  PM  by calling  PAL_AMPM_setupPM  : 

         >      > PM  =  PAL_AMPM_setupPM;  

 In   case we wish to change some of the options, we can of course do so (for a 
listing of options see  Textbox 5.3   ). Let’s say we wish the testing to terminate after 
50 trials, we would like the threshold values to be included in the posterior dis-
tribution to be  [-2:.1:2] , we would like the psi method to consider stimulus 
intensities from the vector  [-1:.2:1] , and we wish to accept the default values 
for the other options. We can change the options in the  PM  structure by calling 
 PAL_AMPM_setupPM  : 

         >      > PM  =  PAL_AMPM_setupPM( ‘ priorAlphaRange ’ , [-2:.1:2], ... 
 ‘ stimRange ’ , [-1:.2:1],  ‘ numtrials ’ , 50);  

 The   program that controls the experiment would contain a loop such as this: 

  while   ~PM.stop  
    %Present trial here at stimulus intensity PM.xCurrent  
    %and collect response (1: correct, 0: incorrect)  
  PM    =  PAL_AMPM_updatePM(PM, response); %update PM structure  
  end    

 Note   that on each trial the stimulus has to be presented at the intensity indicated 
in the entry in the fi eld  PM.xCurrent . However, this fi eld will always contain a 
value that is in the  PM.stimRange  vector which is under our control. Thus, if (for 
whatever reason) we can (or wish to) present stimuli only at intensities  � 2,  � 1, 
 � 0.5, 0, 1/3 and   π  , we need to make that clear to the psi method beforehand. We do 
that by defi ning the vector  PM.stimRange  accordingly: 

  PM    =  PAL_AMPM_setupPM( ‘ stimRange ’ , [-2 -1 -.5 0 1/3 pi]);  
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 The   psi method will now only suggest values that we can actually present. The 
Palamedes fi le  PAL_AMPM_Demo   demonstrates use of the psi method routines. 
While the demonstration program runs, it will display the posterior distribution 
after every trial. You’ll note that as the session proceeds, and more information is 
obtained, the posterior distribution will get narrower and narrower.  

    5.4.4           Some Practical Tips 
 Many   of the practical tips we gave for the running fi t methods apply to the psi 

methods for the same reasons. Here one would also want to allow for lapses to 
occur by setting the lapse rate to a small non-zero value, such as 0.02. One should 
also defi ne the prior distribution across ranges of threshold and slope values which 
are wide enough to accommodate the entire posterior distribution, at least at the 
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   Textbox 5.3.            Options for the Palamedes psi method routines that may be changed 
using the function  PAL_AMPM_setupPM  . Default values are those shown in curly 
brackets   {}  .      

  priorAlphaRange                         vector  {  [ – 2:.05:2]  }  

 Vector   containing values of threshold to be considered in posterior distribution. 

  priorBetaRange                         vector  {  [ – 1:.05:1]  }  

 Vector   containing log transformed values of slope to be considered in posterior 
distribution. 

  stimRange                         vector  {  [ – 1:.1:1]  }  

 stimulus   values to be considered on each trial. 

  prior                          matrix  {uniform across   priorAlphaRange x prior -
BetaRange  }  

Prior distribution. 

  gamma                         scalar in range [0–1]  { 0.5 }  

 Guess   rate to be used in fi ts. 

  lambda                         scalar in range [0–1] {.02 }  

 Lapse   rate to be used in fi ts. 

  PF                         inline function  {  @PAL_Gumbel   }  

 Form   of psychometric function to be assumed by psi method. Refer to Section 4.3.2 
for other possible functions. 

  numTrials                         positive integer  { 50 }  

 Length   of run in terms of number of trials.   
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time when we derive our fi nal parameter estimates, so as not to let our estimates be 
determined in large part by the ranges of values we happened to have included in 
the prior. 

 The   psi method is quite taxing on the RAM memory of your computer. Three 
arrays of size  length(priorAlphaValues) x length(priorBetaValues) 
x length(StimRange)  will be created and reside in your RAM memory. Each entry 
in these arrays will use 8 bytes of RAM. In other words, the amount of RAM memory 
required to store these matrices alone will be:  3 x 8 x length(priorAlphaValues) 
x length(priorBetaValues) x length(StimRange)  bytes. Also, each call to 
 PAL_AMPM_UpdatePM   will involve quite a few calculations. What this means in practi-
cal terms is that you need to fi nd an acceptable balance between the resolution of 
your posterior distribution and possible stimulus values on the one hand, and the 
time you will allow to perform the necessary computations between trials and the 
amount of RAM memory you have available on the other.
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    6.1           INTRODUCTION 

    6.1.1           What is Signal Detection Theory (SDT)? 
 In   performance-based psychophysical tasks there are many situations in which 

proportion correct ( Pc ) is inappropriate, uninformative, or invalid. In this chap-
ter we will examine some of these situations and describe a popular alternative 
measure termed  d  �  ( “ d-prime ” ).  d  �  is a measure derived from a branch of psycho-
physics known as signal detection theory (SDT). In Chapter 4 Section 4.3.1.2, SDT 
was introduced as one of the models of how perceptual decisions were made in a 
forced-choice task. The SDT model attempted to explain the shape of the psycho-
metric function relating  Pc  to stimulus magnitude. It was argued that the presence 
of internal noise, or uncertainty, led to stimuli being represented in the brain not by 
a single point along a sensory continuum, but as a random sample drawn from a 
distribution with a mean and a variance. SDT is therefore a theory of how observers 
make perceptual decisions, given that the stimuli are represented stochastically (or 
probabilistically) inside the brain. The purpose of this chapter is to discuss why  d  �  
is a useful measure of performance, to describe the Palamedes routines that convert 
conventional measures of performance such as  Pc  into  d  � , and to explain the theory 
behind those conversions. 

 SDT   is a large topic and it is impossible to do it justice in a single chapter of an 
introductory book on psychophysics. There are a number of excellent books and arti-
cles on SDT (see Further Reading at the end of the chapter) that cover a wider range 
of material and provide a more in-depth treatment than is possible here. In particu-
lar, Macmillan and Creelman’s (2005) comprehensive treatment of SDT is strongly 
recommended as an accompaniment to this chapter. Although our chapter is mod-
est by comparison to textbooks specializing in SDT, it nevertheless aims to do more 
than just scratch the surface of the topic. The Palamedes SDT routines described 
in Section A of the chapter are generous in terms of the number of psychophysical 
procedures they cover. Section A is intended to familiarize readers with the basic 
concepts involved and the practical tools necessary for converting psychophysical 
measurements into  d  � s, and  vice versa , without the need to understand the underly-
ing theory. The theory is provided in Section B, and we have attempted to make it as 
accessible as possible.  

    6.1.2           A Recap on Some Terminology:  N ,  m  and  M  
 As   elsewhere in this book, we use the term  “ forced-choice ”  for any task in which 

observers are required on each trial to make a forced-choice response, irrespective of 
the number of stimuli or stimulus alternatives presented on the trial. We denote the 
number of stimuli presented during a trial as  N. m  refers to the number of response 
choices available to the observer, and as we saw in Chapter 4 this determines the 
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expected chance performance or guessing rate of the task, calculated as 1/ m . 
Remember that  m  and  N  are not always the same. For example, in a yes/no task  N  
is 1 because only one of two stimulus states is presented per trial, target-present or 
target-absent, but  m  is 2 because there are two choices of response  –   “ yes ”  or  “ no. ”  
In a same-different task  N  can be 2 or 4, depending on whether the Same and Dif-
ferent pairs are presented on separate trials or together in the same trial. When the 
pairs are presented on separate trials the task for the observer is to respond  “ same ”  
or  “ different, ”  whereas when presented together in the same trial the task is to 
respond  “ 1 ”  or  “ 2, ”  depending on which interval contains the Different (or Same) 
pair. However, for both varieties of same-different,  m  is 2. 

 For   the purposes of SDT the third parameter described in Chapter 2,  M , is espe-
cially important.  M  is the  “ number of stimulus alternatives presented per trial. ”  In 
the  N       �      4 same-different task described above,  M  is 2, as two stimulus alternatives 
are presented per trial  –  the Same pair and the Different pair. Although  m  is also 2 
for this task,  m  and  M  are not always the same. For example, with the yes/no task 
 m  is 2 but  M  is 1, since although there are two available response choices, only 
one stimulus alternative is presented on a trial, either  “ target present ”  or  “ target 
absent. ”  As we stated in Chapter 2, forced-choice tasks in this book are prefi xed 
with the value of  M .  Table 6.1    summarizes the relationship between  N ,  m , and  M  for 
the main varieties of task discussed in this chapter. 
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 TABLE 6.1           Relationship between  M ,  N , and  m  for the psychophysical 
tasks discussed in the chapter  

   Task  Acronym prefi xed by 
number of stimulus 
alternatives per trial  M  

 Number of 
stimuli per 
trial  N  

 Number of 
response options 
per trial  m  

   Yes/no  1AFC  1  2 

   Symmetric single-alternative  1AFC  1  2 

   Standard two alternative  2AFC  2  2 

   forced-choice       
   Single alternative same-different  1AFC  2  2 

   Two alternative same-different  2AFC  4  2 

   Two alternative match-to-sample  2AFC  3  2 

   Three alternative oddity  3AFC  3  3 

   Standard  M -alternative forced-choice   M -AFC   M    M  

    M -alternative match-to-sample   M -AFC   M       �      1   M  

    M -alternative oddity   M -AFC   M    M  
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 One   could argue that because this chapter deals exclusively with forced-choice 
tasks, prefi xing every task with the acronym AFC is unnecessary because it is redun-
dant, and that instead AFC should be used sparingly as in standard SDT texts (e.g., 
 Macmillan  &  Creelman, 2005 ). However, in a book dealing with psychophysical pro-
cedures that are not all forced-choice, the acronym helps make explicit those that are. 

 Recall  , also, that for most tasks the stimulus alternatives can be presented in spa-
tial or temporal order, and hence be denoted as AFC or IFC. AFC, however, is the 
generic  acronym, so we have adopted this as the default and used IFC only when 
specifi cally referring to tasks in which the stimulus alternatives are presented in 
temporal order. From the point of view of signal detection theory, however, the two 
acronyms are interchangeable.  

    6.1.3           Why Measure  d  � ? 
 Suppose   we wanted to compare the results of two texture-segregation experi-

ments, one that employed a standard 4AFC task and the other a standard 2AFC 
task. The stimuli employed in texture segregation experiments typically consist of a 
 “ target ”  texture embedded in a  “ background ”  texture. The target and background 
differ in some textural property, such as the average orientation or average size of the 
texture elements. In the popular 4AFC version, the target is embedded in one of four 
quadrants of the background texture, and on each trial the observer selects the quad-
rant containing the target. In the 2AFC version, the embedded target is typically posi-
tioned on one or other side of the fi xation point. In the 4AFC task proportion correct 
( Pc ) would be expected to range from 0.25 – 1, since the guessing rate 1/ m  is 0.25. For 
the 2AFC version  Pc  would be expected to range from 0.5 – 1, since the guessing rate is 
0.5. Yet, presumably, the underlying sensory mechanisms involved in segregating the 
target from the background are the same for both the 2AFC and 4AFC tasks, espe-
cially if the target locations are arranged equidistant from fi xation in order to stimu-
late equivalent visual mechanisms. Thus, any differences in performance between the 
two tasks, which will be most prominent when performance is close-to-chance, are 
unlikely to be due to differences in the observer’s sensitivity to the stimuli, but more 
probably due to differences in the uncertainty of the target location. Put another way, 
with four possible target locations the observer is more likely to make a mistake than 
with two target locations, all else being equal. And the more possible target locations, 
the more mistakes the observer will likely make. One reason for using  d  �  is that it can 
remove, or take into account, the effects of target location uncertainty, providing a 
measure of performance that is procedure-free. In other words, for  M -AFC tasks,  d �   
may equate performance across  M . We stress  “ may ”  because it is ultimately an empir-
ical, not a theoretical, question as to whether  d  �  does equate performance across  M , 
and there are some situations where it has been shown not to do so (e.g.,  Yeshurun, 
Carrasco,  &  Maloney, 2008 ). 
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 Although   the most popular value of  M  in forced-choice tasks is 2 (either 2AFC 
or 2IFC),  M  can be much higher. For example, one of the authors once conducted 
experiments in which observers were required to choose a column of pixels with 
the highest average intensity from 256 columns (see  Kingdom, Moulden,  &  Hall 
(1987)  for details). So  M  for this task was 256! 

 Another   reason for using  d  �  is that in some situations it removes the inherently 
sigmoidal- or bow-shape of the psychometric function when plotted in terms of 
 Pc . Again, however, it is an empirical question as to whether  d  �  does linearize the 
psychometric function, and in theory it will only do so if the relationship between 
sensory magnitude and stimulus magnitude is linear, and the internal noise levels 
remain constant with stimulus magnitude. However, if these constraints are satis-
fi ed  Figure 6.1    illustrates how  d  � s equate performance across  M  and linearize the 
 psychometric function. The fi gure shows hypothetical  Pc s as a function of stimulus 
level for a standard 2AFC, 4AFC, and 8AFC task, where  m  is respectively 2, 4, and 8 
(see above), under the assumption that observer sensitivity for each stimulus mag-
nitude is the same across tasks. Note that as  m  increases the functions extend down-
wards, since chance performance, 1/ m , decreases. When the data are replotted as  d  � s, 
however, the functions straighten and superimpose. 

 The   linearizing effect of  d  �  is particularly useful when one wants to correlate psy-
chophysical performance with some other dimension. For example, suppose one 
wanted to study the effects of age on the ability to discriminate the speed of moving 
vehicles in seniors, using movies of moving vehicles as test stimuli. If insuffi cient 
time was available to test each observer with enough stimuli to derive full psycho-
metric functions relating  Pc  to speed difference, a single  Pc  at a particular speed 
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 FIGURE 6.1          (a) Hypothetical  Pc  (proportion correct) data for an  M       �      2,  M       �      4, and  M       �      8 forced-
choice task. (b) The same data plotted as  d  � s.    
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difference might have to suffi ce. Given the likely range of performance across observ-
ers of the same age and across ages, converting the  Pc s into  d  � s may well linearize the 
data and render the measured (likely negative) correlation between performance and 
age more valid. Moreover, correlation is not the only type of statistical manipulation 
potentially benefi tting from converting  Pc s into  d  � s. Parametric tests such as t-tests 
and Analysis-of-Variance (ANOVA), which are often employed to make inferences 
about group differences, are only valid if the data within each group are normally 
distributed. Converting  Pc s to  d  � s may turn out to satisfy this requirement. 

 A   third, and for many investigators the most important, reason for using  d  � s is 
that certain types of psychophysical task are prone to the effects of observer bias. In 
Chapters 2 and 3 we noted for example, that in the yes/no task observers tend to be 
biased towards responding  “ yes ”  or  “ no, ”  irrespective of their underlying sensitiv-
ity to the target. As we shall see, the greater the bias, the smaller the expected  Pc , 
making  Pc  an invalid measure of sensitivity.  d  �  takes into account the effects of bias, 
thus providing a relatively  “ bias-free ”  measure of performance.   

    6.2           SECTION A: PRACTICE 

    6.2.1           Signal Detection Theory with Palamedes 
 Palamedes   contains a large number of routines for performing signal detection 

computations. To understand the convention for the names of the routines, consider 
the following example:  PAL_SDT_2AFCmatchSample_DiffMod_PCtoDP  . The 
routine is identifi able as part of the SDT package by the prefi x  PAL_SDT  . The term 
 2AFCmatchSample  identifi es the task, i.e., match-to-sample, and the value of  M , 
i.e., 2. The generic acronym AFC is used in all routines. The term  DiffMod  speci-
fi es the particular model for the computation; in this case it means a differencing 
model. By  “ model ”  we mean the particular strategy that the observer is assumed to 
adopt when performing the task. This is only relevant to those tasks for which there 
is more than one possible strategy. Finally  PCtoDP  specifi es the actual computation, 
in this case the conversion of  Pc  to  d  � . This last term is invariably of the form XtoY, 
where X is the principle input argument(s) and Y the principle output argument(s). 
However, the routine may require additional input arguments and may output 
additional arguments. The abbreviations used for the XtoY term are  PC  for  Pc ,  DP  
for  d  � ,  PHF  for proportion hits and proportion false alarms, and  PH  for proportion 
hits. If the required input to a routine is either  PC  or  DP , the data can be entered as 
a scalar, vector or matrix. If the input is  PHF  the data must be an m  �  2 (rows  �  col-
umns) matrix with a minimum of one row; one column is for the proportion of hits 
and the other column for the corresponding proportion of false alarms. 

 There   are two important assumptions underlying all the routines described in this 
chapter. The fi rst concerns the stimuli. We assume that all the stimulus alternatives 
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are presented the same number of times in each experiment. Thus, in a yes/no task 
we assume that there are as many target-present as target-absent trials, and in a same-
different task as many Same pairs as Different pairs. The second assumption is that 
the observer’s internal noise variance is the same across stimulus alternatives. This is 
the  “ default ”  assumption for most SDT tasks. There are procedures for determining 
from data whether this assumption is violated, but they will not be dealt with here 
and the interested reader is referred to  Macmillan and Creelman (2005)  for the neces-
sary details.  

    6.2.2           Converting  Pc  to  d  �  for Unbiased  M -AFC Tasks 
 We   begin with the routine that deals with the standard  M -AFC task, where  M  is 

any value greater than 1. For this class of task the three variables,  N ,  M , and  m , are 
equal. Although tables exist for converting  Pc  to  d  �  for a range of  M  ( Elliot, 1964 ; 
 Macmillan  &  Creelman, 2005 ) the Palamedes routines work for any value of  M  and 
are simple to implement. 

 In   an  M -AFC task, one of the alternatives on each trial contains the target, while 
the remaining  M -1 alternatives contain no target. If the observer selects the alternative 
containing the target their response is scored  “ correct, ”  otherwise it is  “ incorrect, ”  and 
 Pc  is calculated as the proportion of trials in which the observer is scored correct. 

 The   two routines for standard  M -AFC are  PAL_SDT_MAFC_DPtoPC  , which con-
verts  d  �  to  Pc , and  PAL_SDT_MAFC_PCtoDP  , which converts  Pc  to  d  � . The routines 
make an important assumption in addition to those described in the previous sec-
tion. The assumption is that the observer is not biased to respond to any one alter-
native/interval more than any other. If the assumption is not true and the observer 
is biased, then the estimates of  d  �  will not be close to the  “ true ”  values. 

 Each   routine takes two arguments. The fi rst is a scalar, vector or matrix of the meas-
ure to be converted ( d  �  or  Pc ), and the second is the value of  M  where  M       �      1. Typically 
one wants to convert  Pc s into  d  � s, so try fi lling a vector named  PropCorr  with an 
array of  Pc s as follows: 

         >      >  PropCorr      =      [.3:.1:.9];  

 To   convert the array to  d  � s for, say, a 3AFC task, type and execute: 

         >      >  DP      =      PAL_SDT_MAFC_PCtoDP(PropCorr,3)  

 The   array returned is: 

  DP    =   
    -0.1207 0.2288 0.8852 1.6524 2.2302  

 Note   that the fi rst value in the array is negative.  d  �  is zero when performance 
is at chance, which for the standard 3AFC task is 0.33, so any  Pc  below 0.33 will 
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produce a negative  d  � . Try repeating the above with  M       �      4. Note that the fi rst 
value is now positive, since chance level for a 4AFC task is 0.25. If one sets  M  to 2 
(chance      �      0.5) the fi rst  two d  � s are negative. One can see from these examples that 
increasing  M  for a given  Pc  increases  d  � . This is because as  M  increases so too does 
the chance that one of the non-target intervals/locations will contain a signal that is 
by chance greater in magnitude than the interval/location containing the target. In 
other words, for a given  Pc , observer sensitivity is computed to be higher if the task 
has a large compared to a small  M . 

 Try   also converting an array of  d  � s to  Pc s using  PAL_SDT_MAFC_DPtoPC  . Note 
that increasing  M  for a given  d  �  this time decreases  Pc , because the more possible 
target intervals/ locations, the more likely one of them will, by chance, contain a 
signal greater than the interval/location containing the target.  

    6.2.3           Measuring  d  �  for 1AFC Tasks 

    6.2.3.1            d  �  from  pH  and  pF  
 As   discussed in Chapters 2 and 3, 1AFC tasks, especially those that are not sym-

metric such as the yes/no task, are particularly prone to bias. Remember that with 
the yes/no task, the observer is required to indicate on each trial whether the tar-
get stimulus is present or absent. If the observer adopts a loose criterion, this will 
result in a bias towards responding  “ yes, ”  whereas adopting a strict criterion will 
result in a bias towards responding  “ no. ”  Both types of bias may occur irrespec-
tive of how sensitive the observer is to the stimulus. For this reason, signal detec-
tion theory approaches the computation of  d  �  for 1AFC tasks differently from tasks 
that are assumed to be bias-free. Rather than use  Pc , the responses from a 1AFC task 
are divided into two groups: the target- present  trials in which the observer responds 
 “ yes ”  (i.e., correctly) and the target- absent  trials in which the subject responds  “ yes ”  
(i.e., incorrectly). The former responses are commonly termed  “ hits, ”  the latter 
 “ false alarms. ”  The proportion of target-present trials that are hits is given here by 
 pH , and the proportion of target-absent trials that are false alarms,  pF . Note that 
the overall  Pc  is given by [ pH       �      (1      �       pF )]/2, since 1      �       pF  gives the proportion of tar-
get-absent trials in which the observer responds  “ no, ”  i.e., also correctly. The two 
measures  pH  and  pF  can be used not only to calculate  d  � , but also to calculate the 
bias towards responding  “ yes ”  or  “ no. ”  The calculations are explained in Section B. 

 The   Palamedes routine that converts  pH  and  pF  to  d  � , as well as to two measures 
of bias, is  PAL_SDT_1AFC_PHFtoDP  . The input argument can either be a pre-named 
m      �      2 matrix of  pH  and  pF  values, or the raw values themselves. There are four out-
put arguments:  d  � ; two measures of bias termed  C  and ln  β  ; and overall  Pc . 

 Suppose   we want to input just a single pair of raw  pH  and  pF  values. Type and 
execute the following, and remember to place the square brackets around the two 
values so that they are entered as a matrix: 

         >      >  [dp C lnB Pc]      =      PAL_SDT_1AFC_PHFtoDP([0.6 0.1])  
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  The   output should be:  

  dp    =   
  1  .5349  
  C    =   
  0  .5141  
  lnB    =   
  0  .7891  
  Pc    =   
  0  .7500  

 The   criterion  C  can range from negative to positive, with negative values indi-
cating a bias towards  “ yes ”  and positive values a bias towards  “ no. ”  The criterion 
measure ln  β   shows the same pattern as  C . The positive values of  C       �      0.51 and 
ln  β        �      0.78 in the above example are indicative of a relatively strict criterion, that is 
a bias towards responding  “ no. ”  

 To   explore the relationship between  d  � , bias,  pH , and  pF , one can also use the 
reverse routine  PAL_SDT_1AFC_DPtoPHF  . For example, create a vector named 
 dprime  fi lled with a  � 5 array of 2       s, and a vector named  criterion  with values 
 � 1,  � 0.5, 0, 0.5, and 1. Then type and execute: 

         >      >  pHF      =      PAL_SDT_1AFC_DPtoPHF(dprime,criterion)  

  The   output should be:  

  pHF    =   
  0  .9772 0.5000  
  0  .9332 0.3085  
  0  .8413 0.1587  
  0  .6915 0.0668  
  0  .5000 0.0228  

 The   fi rst column gives  pH , the second  pF . Note that as  C  increases (loose to strict cri-
terion) both the number of hits  and  the number of false alarms decreases.  Figure 6.2a    
shows the relationship between  pH  and  pF  as a function of  C  for three values of  d  � . As 
one travels along each of the curves from left to right,  C  is decreasing, resulting in an 
increase in both  pH  and  pF . The relationship between  pH  and  pF  is known as a receiver 
operating characteristic, or ROC. The ROC in  Figure 6.2a  is hypothetical, but ROCs 
can be generated from experiments in which the responses are not binary options such 
as  “ yes ”  or  “ no, ”  but ratings, for example 1 to 5, as to how confi dent one is that the 
target is present. Currently Palamedes does not provide routines for analyzing rating-
scale data, but the method, along with the value of ROCs for testing the equal-variance 
assumption mentioned above, is described in  Macmillan and Creelman (2005) . 

    Figure 6.2 .b shows why  Pc  is not a good measure of performance when there is 
bias. Assuming that the  “ true ”  observer’s sensitivity is given by  d  � , one can see that 
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 Pc  varies considerably with criterion  C . Only if there is no bias ( C       �      0) is  Pc  a valid 
measure of performance. A zero-bias assumption may sometimes be reasonable with 
 “ symmetric ”  1AFC tasks, such as the 1AFC orientation discrimination experiment 
discussed in Chapter 3. However, some researchers argue that even with symmet-
ric 1AFC tasks the data should be analyzed under the presumption that bias might 
occur. If it turns out there is no bias then nothing is lost, but if bias is found to occur 
it is taken into account  –  a win-win situation. 

How, then, do we convert the responses from the orientation discrimination 
experiment into  pH  and  pF ? The answer is to classify the responses in a way analo-
gous to that of the yes/no experiment. For the orientation discrimination experiment 
this means classifying a  “ left-oblique ”  response as a  “ hit ”  when the stimulus is left-
oblique, and as a  “ false alarm ”  when the stimulus is right-oblique.  pH  is then the pro-
portion of  “ left-oblique ”  responses for the left-oblique stimuli, and  pF  the proportion 
of  “ left-oblique ”  responses for the right-oblique stimuli. Note that  pH  and  pF  defi ned 
in this way are suffi cient to describe all the responses in the experiment i.e., including 
the  “ right-oblique ”  responses. The proportion of times the observer responds  “ right-
oblique ”  is 1      �       pH  for the left-oblique stimulus trials and 1      �       pF  for the right-oblique 
stimulus trials. Note also that as with yes/no, overall  Pc  is given by [ pH       �      (1      �       pF )]/2. 
Thus, if the observer in the orientation discrimination experiment is biased towards 
responding  “ left-oblique, ”  both  pH  and  pF , as defi ned above, will tend to be relatively 
high, and by comparing the two in the same way as with the yes/no task the bias can 
be taken into account and a valid measure of sensitivity calculated.  
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 FIGURE 6.2          (a) Hypothetical receiver operating characteristics, or ROCs, for three  d  � s. Note that 
 pH  (proportion of hits) is plotted against  pF  (proportion of false alarms). As the criterion  C  decreases, 
one moves along each curve from left to right. (b) the effect of changing  C  on the overall  Pc  (proportion 
correct) for the same  d  � s as in (a). Note that all three curves peak when  C       �      0.    
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    6.2.3.2           1AFC Demonstration Programs 
 The   program  PAL_SDT_1AFC_PHFtoDP_Demo   illustrates how the routines for 

1AFC tasks can be incorporated into a program that generates a more user-friendly out-
put of  d  �  and criterion measures. When executed, the program prompts you as follows: 

  Enter   a matrix of proportion Hits and False Alarms  

 You   must enter arrays of raw values. An example input matrix of  pH  and  pF  val-
ues would be: 

    [0.6 0.2; 0.7 0.2; 0.8 0.2]  

 The   output should be:

    pH   pF   Dprime    propCorr    Crit C      lnBeta  

    0.6000    0.2000    1.0950    0.7000    0.2941    0.3221  

    0.7000    0.2000    1.3660    0.7500    0.1586    0.2167  

    0.8000    0.2000    1.6832    0.8000    -0.0000    -0.0000  

 The   inverse routine  PAL_SDT_1AFC_DPtoPHF_Demo   operates similarly. You 
are prompted for two vectors of numbers. Try entering the following values, then 
execute: 

  Enter   a vector of Dprime values [1 2 3]  
  Enter   a vector of Criterion C values [0.5 0.5 0.5]  

 The   output should be:

    dprime    critC    pH    pF    pCorr  

    1.0000    0.5000    0.5000    0.1587    0.6707  

    2.0000    0.5000    0.6915    0.0668    0.8123  

    3.0000    0.5000    0.8413    0.0228    0.9093  

    6.2.4           Measuring  d  �  for 2AFC Tasks with Observer Bias 
 Although   the inherent symmetry of 2AFC tasks makes them less susceptible 

to bias than the yes/no task, a bias towards responding to one alternative/inter-
val more than the other may still occur, and if it does occur  Pc  becomes an invalid 
measure of sensitivity. As with symmetric 1AFC tasks, some researchers prefer not 
to hedge their bets with 2AFC and analyze the data on the presumption that bias 
might have occurred. 
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 To   take into account bias in 2AFC tasks, the observer’s responses need to be classi-
fi ed as hits and false alarms, as with the symmetric 1AFC task. Let the response be  “ 1 ”  
or  “ 2 ”  depending on the alternative perceived to contain the target. A  “ 1 ”  response is 
designated as a  “ hit ”  when the target is present in the fi rst alternative/interval, and 
as a  “ false alarm ”  when the target is present in the second alternative/interval. Thus 
 pH  is the proportion of  “ 1 ”  responses for targets presented in the fi rst alternative/
interval and  pF  the proportion of  “ 1 ”  responses for targets presented in the second 
alternative/interval. Note that, as with 1AFC tasks,  pH  and  pF  defi ned in this way 
are suffi cient to describe the full pattern of responses. Thus     1- pH  is the proportion of 
"2" responses for targets presented in the fi rst alternative/interval and 1    �     pF  the pro-
portion of "2" responses for targets presented in the second alternative/interval. Note 
also that, as with 1AFC tasks, overall  Pc  is given by [ pH       �      (1      �       pF )]/2. 

 Palamedes   has two routines for the standard 2AFC task when the input argu-
ments are  pH  and  pF :  PAL_SDT_2AFC_DPtoPHF   and  PAL_SDT_2AFC_PHFtoDP  . 
The input and output arguments correspond to those for the 1AFC routines. 
Remember that one can also use  PAL_SDT_MAFC_PCtoDP   and  PAL_SDT_MAFC_
DPtoPC  for 2AFC tasks (by inputting data in the form of  Pc  and setting the argu-
ment  M  to 2), but only if one is happy to assume that the observer is unbiased. 

 What   is the expected relationship between performance in a 1AFC and 2AFC task? 
One can use  PAL_SDT_1AFC_PHFtoDP   and  PAL_SDT_2AFC_PHFtoDP   to fi nd out. 
Try the following. Input the same pair of  pH  and  pF  values and the same value of 
the criterion to both routines. Take the ratio of the resulting 1AFC to 2AFC  d  � s. The 
result should be  � 2. The  � 2 relationship between  d  � s for 1AFC and 2AFC is often 
emphasized in expositions of SDT, but one must be careful with its interpretation. 
It is tempting to suppose that if one performed a 1AFC task and a 2AFC task using 
the same stimulus magnitudes, the computed  d  � s would likely come out in a ratio of 
 � 2. In fact, the  d  � s would likely be very similar. Remember that  d  �  is a measure of 
sensitivity that is ostensibly independent of the method used to obtain it (although 
be reminded of the cautionary note from  Yeshurun et al., 2008 ). The likely difference 
between the two tasks will be in  Pc , not  d  � . As  Figure 6.3    demonstrates, the same  d  �  
predicts different  Pc s for 1AFC and 2AFC. Put another way, observers will typically 
fi nd a 1AFC task more diffi cult than a 2AFC task for the same stimulus magnitudes. 
This is because there is more information in a 2AFC compared to 1AFC trial.  

    6.2.5           Measuring  d  �  for Same-Different Tasks 
 In   Chapters 2 and 3 we described the class of psychophysical task termed  “ same-

different. ”  One reason for using same-different tasks is that the observer is not 
required to know the basis on which the discriminands differ. There are two main 
varieties of same-different task. In the 1AFC version only one pair, Same  or  Different, 
is presented on a trial, and the observer has to decide  “ same ”  or  “ different. ”  
The pair can be presented either together on the display or in temporal order. 
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In the 2AFC version the Same  and  Different pairs are both presented on a trial (either 
together on the display or in temporal order), and the observer chooses the alterna-
tive/interval containing the Different (or the Same) pair. The 2AFC same-different 
task is probably the more popular of the two versions in vision experiments, 
because it is less prone to bias. 

    6.2.5.1            d  �  for 2AFC Same-Different 
 The   Palamedes routines for the 2AFC same-different task are  PAL_SDT_

2AFCsameDiff_DPtoPC   and  PAL_SDT_2AFCsameDiff_PCtoDP  . Both routines 
assume an unbiased observer that adopts the strategy of selecting the pair with 
the greater (or smaller) absolute perceived difference. The routines implement the 
equations in  Macmillan, Kaplan, and Creelman (1977)  for a  “ 4IAX ”  same-different 
task, where 4IAX denotes that the four stimuli are presented in temporal order, the 
more typical scenario in an auditory experiment. Both of the Palamedes routines 
take a single argument ( d  �  or  Pc ) and output a single argument ( Pc  or  d  � ). The input 
arguments may be scalars, vectors or matrices.  

    6.2.5.2            d  �  for 1AFC Same-Different 
 For   same-different tasks where only one pair, Same or Different, is presented in 

a trial,  Macmillan and Creelman (2005)  argue that observers typically adopt one 
of two strategies: the  “ independent observation ”  or  “ differencing ”  strategy (note 
that Macmillan and Creelman occasionally refer to the 1AFC same-different task as 
2IAX or AX. The fi rst acronym denotes that the two stimuli are presented in differ-
ent temporal intervals). 
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 d  �  of infi nity which cannot be plotted. Instead an example vector input could be  [.5:.025:0.98] .    



6.   SIGNAL DETECTION MEASURES166

 Suppose   that during a session there are only two stimuli:  S  1  and  S  2 . On each trial 
the observer is presented with one of four possible combinations:  �  S  1  S 1�,  �  S  2  S  2      �     , 
 �  S  1  S  2      �     , or  �  S  2  S  1      �     . Macmillan and Creelman argue that the most likely strategy 
in this scenario is that the observer independently assesses the likelihood that each 
stimulus in a pair is either  S  1  or  S  2 . The decision  “ different ”  is made when the joint 
likelihood of the pair being  S  1  and  S  2  exceeds the observer’s criterion. This is the 
independent observation strategy. 

 The   differencing strategy is less optimal, but under some circumstances the more 
likely to be adopted. As with the strategy assumed for the 2AFC same-different 
task described above, the decision rule is based on the perceived  difference  between 
the two stimuli in each pair. The observer responds  “ different ”  when the absolute 
perceived difference between the two stimuli exceeds the criterion. According to 
Macmillan and Creelman, the differencing strategy is more likely to be adopted 
when many different stimuli are presented during a sesssion, termed a  “ roving ”  
experiment. For example, suppose that one wished to compare the detectability of 
four types of color manipulation applied to images of natural scenes. Let the four 
manipulations be shifts in average color towards either red, green, blue or yel-
low. On each trial observers are presented either with two identical natural-scene 
images (the Same pair) or two images in which the average color of one of the pair 
was shifted towards one of the four (randomly selected) colors (the Different pair). 
It would be diffi cult for observers to independently assess the likelihood that each 
member of a pair had been subject to a particular color shift, because there are four 
possible types of color shift. The more likely strategy in this situation would be that 
observers assess the difference in color between the images in each pair and base 
their decision accordingly. 

    6.2.5.2.1            d  �  for 1AFC Same-Different: Independent Observation Model 
 The   Palamedes routines for the 1AFC same-different task that assumes an 

independent-observation model are  PAL_SDT_1AFCsameDiff_IndMod_PHFtoDP   
and  PAL_SDT_1AFCsameDiff_IndMod_DPtoPHF  . The fi rst routine takes two argu-
ments, a m      �      2 matrix of  pH s and  pF s, and outputs two arguments:  d  �  and criterion  C . 
The second routine performs the reverse operation. For example, try inputting the 
same matrix of  pH s and  pF s as for the basic 1AFC task described earlier, i.e.: 

  PHF        =      [0.6 0.2; 0.7 0.2; 0.8 0.2]  

 then   type and execute: 

         >      > [dp C]      =      PAL_SDT_1AFCsameDiff_IndMod_PHFtoDP(PHF)  

 The   output should be three  d  �  and three criterion  C  values. Compare these with 
those obtained using  PAL_SDT_1AFC_PHFtoDP  . Try also computing  d  � s for a bias-
free version of the same-different task by setting  pF  equal to 1      �       pH . You will see 
that the resulting  d  � s under the independent observation model are the same as 
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those for the 2AFC same-different task ( Pc       �       pH ), which assumes a differencing 
strategy.  

    6.2.5.2.2            d  �  for 1AFC Same-Different Tasks: Differencing Model 
 The   Palamedes routines for the 1AFC same-different task assuming the differ-

encing model are  PAL_SDT_1AFCsameDiff_DiffMod_PHFtoDP   and  PAL_SDT_
1AFCsameDiff_DiffMod_DPtoPHF  . They are implemented in the same way as 
the routines for the independent observer model. However, they return a different 
measure of bias termed  k  ( Macmillan  &  Creelman, 2005 ). Unlike C,  k  is not zero 
when the observer is unbiased. 

 Consider   the following. For a given  pH  and  pF , would you expect  d  �  to be larger 
or smaller for the differencing compared to the independent observer model? Try 
various  pH  and  pF  combinations to test your predictions.    

    6.2.6           Measuring  d  �  for Match-to-Sample Tasks 
 In   a match-to-sample task, the observer is presented with a  “ Sample ”  stimu-

lus followed by two or more  “ Match ”  stimuli, one of which is the same as the 
Sample  –  the one the observer must choose. Match-to-sample procedures are partic-
ularly popular in animal research, research into children’s perception, and studies of 
cognitive vision (see Chapter 3). As with the same-different task, one advantage of 
match-to-sample over standard  M- AFC is that the observer need not know the basis 
on which the discriminands differ. The minimum number of stimuli per repeat trial 
in a match-to-sample task is three (one Sample; two Match), and this is undoubtedly 
the most popular design. With two Match stimuli the task is 2AFC according to our 
naming system.  Macmillan and Creelman (2005)  refer to the task as ABX. 

    6.2.6.1            d  �  for 2AFC Match-to-Sample 
 Macmillan   and Creelman argue that for the ABX task, observers may adopt either 

independent observation or differencing strategies, the latter more likely in  “ roving ”  
experiments where a number of different stimulus pairs are presented during a ses-
sion. The independent observation strategy is analogous to that for the same-different 
task. When adopting the differencing strategy the observer selects the Match that is 
perceived to be  least  different from the Sample. Palamedes provides eight routines 
for the 2AFC match-to-sample task: 

  PAL  _SDT_2AFCmatchSample_DiffMod_PCtoDP  
  PAL  _SDT_2AFCmatchSample_DiffMod_DPtoPC  
  PAL  _SDT_2AFCmatchSample_DiffMod_PHFtoDP  
  PAL  _SDT_2AFCmatchSample_DiffMod_DPtoPHF  
  PAL  _SDT_2AFCmatchSample_IndMod_PCtoDP  
  PAL  _SDT_2AFCmatchSample_IndMod_DPtoPC  
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  PAL  _SDT_2AFCmatchSample_IndMod_PHFtoDP  
  PAL  _SDT_2AFCmatchSample_indMod_DPtoPHF  

 The   routines use the same input and output arguments as the same-different 
routines. Given that observers might be biased towards choosing one Match alter-
native over the other, it is recommended to use the routines that take  pH  and  pF  
rather than  Pc  as arguments, unless there is good reason to assume the observer is 
unbiased.  

    6.2.6.2            d  �  for  M -AFC Match-to-Sample 
 For    M       �      2 match-to-sample tasks, Palamedes has two routines: 

  PAL  _SDT_MAFCmatchSample_DPtoPC   and 
 PAL_SDT_MAFCmatchSample_PCtoDP.   

 Both   routines assume that the observer is unbiased and adopts a differenc-
ing strategy. In keeping with other Palamedes SDT routines, each routine takes 
two input arguments: a scalar, vector or matrix of  Pc s or  d  � s, and a value of  M . 
The output arguments are  d  � s or  Pc s. The reader will fi nd that the  _DPtoPC   rou-
tine is slower to execute than other SDT routines. This is because the calculations 
are implemented by Monte Carlo simulation using a very large number of trials. 
The reverse routine,  _PctoDP  , is even slower as it performs an iterative search 
based on the forward routine. As a result, the routine may take minutes to execute 
depending on the speed of the computer and the number of input  Pc  values.   

    6.2.7           Measuring  d  �  for  M -AFC Oddity Tasks 
 In   an oddity task, often termed an  “ odd-man-out ”  task, the observer is presented 

with an array of stimuli, all but one of which are the same, and chooses the stimulus 
that is different, in other words the  “ oddity. ”  As with the same-different and match-
to-sample tasks, the observer in an oddity task does not need to know the basis on 
which the stimuli differ. Probably the most popular form of oddity task is the one 
using the minimum number of alternatives per trial, which is three, and for this 
reason sometimes termed the  “ triangular ”  method. However, the principle extends 
to any  M . One likely strategy in an oddity task is that observers select the alterna-
tive that is most different from the mean of all the alternatives, another instance 
of a differencing strategy.  Craven (1992)  has provided a table for converting  Pc  
into  d  �  for oddity tasks with various  M , assuming this strategy and an unbiased 
observer. Palamedes provides two routines that perform the same computations as 
those described in  Craven (1992) , but for any  M :  PAL_SDT_MAFCoddity_DPtoPC   
and  PAL_SDT_MAFCoddity_PCtoDP  . As elsewhere, each routine takes two argu-
ments: a scalar, vector or matrix of  Pc s or  d  � s, and the value of  M . The output argu-
ments are  d  � s or  Pc s. As with the  M -AFC match-to-sample routines described in 
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the previous section, the  M -AFC oddity routines are slow to execute as they also 
employ Monte Carlo simulation.  

    6.2.8           Estimating  Pc  max  with Observer Bias 
 As   we have argued above,  Pc  is not a valid measure of performance for any of the 

procedures described if there is a signifi cant amount of observer bias. However, it is 
possible to obtain an estimate of the  Pc  that would be expected if the observer were 
not biased. This is termed  Pc  max  (or  Pc  unb ), because  Pc  reaches a theoretical maximum 
when there is no bias (e.g., see  Figure 6.2b  for the 1AFC task). One can think of  Pc  max  
as an unbiased estimate of  Pc . Estimating  Pc  max  is straightforward with Palamedes, 
provided one has available a measure of the criterion that is zero when the observer 
is unbiased, as with the routines that compute the criterion measure  C . To obtain 
 Pc  max  one inputs  pH  and  pF  into the relevant routine (i.e., one ending in  _PHFtoDP  ) 
to obtain  d  �  and a measure of  C , and then use the reverse routine (the same routine 
ending in  _DPtoPHF  ) to convert back to  pH  and  pF , using as the input argument a 
zero value for  C. Pc  max  is then equal to the output  pH . 

 Take   the following example. Suppose you want to estimate  Pc  max  for a 2AFC 
match-to-sample task assuming a differencing strategy. Let  pH       �      0.8 and  pF       �      0.6. 
One can glean from these values that the observer is biased towards the alternative 
for which a correct response is classifi ed as a  “ hit, ”  since the number of false alarms 
exceeds 1      �      0.8 i.e. 0.2. Recall also that  Pc  is given by [ pH       �      (1      �       pF )]/2, which for this 
example is 0.6. If the values of  pH  and  pF  are input to  PAL_SDT_2AFCmatchSample_
DiffMod_PHFtoDP  , the routine returns a  d  �  of 1.2137 and a criterion  C  of  � 0.5475. If 
one now inputs the same  d  �  to  PAL_SDT_2AFCmatchSample_DiffMod_PHFtoDP  , 
but with  C  set to zero, the outputs are  pH       �      0.6157 and  pF       �      0.3843. Thus,  Pc  max  is 
0.6157.  Pc  max  is only slightly higher than the actual  Pc  because the bias in the example 
is not particularly strong.  

    6.2.9           Comparing  d  � s and  Pc s across Different Tasks 
 Two   scripts are provided by Palamedes that demonstrate the differences between 

the computed  d  � s and  Pc s for a variety of tasks:  PAL_SDT_DPtoPCcomparison_Dem o  
and  PAL_SDT_PCtoDPcomparison_Demo  . The tasks compared are 1AFC, standard 
2AFC, 2AFC same-different, and 2AFC match-to-sample. The standard 2AFC, same-
 different, and match-to-sample tasks assume a differencing strategy, and all tasks assume 
an unbiased observer. Therefore, for the 1AFC tasks, criterion  C  is set to zero to produce 
an optimal  Pc . The scripts prompt you either for  d  � s or  Pc s. Try the fi rst program: 

         >      > PAL_SDT_DPtoPCcomparison_Demo  

 Enter   a vector of  Dprime  values and enter: 

    [0:.5:4]  
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 The   output should look like this: 

    -------------Proportion correct----------- 

    dprime    1AFC    2AFC    2AFCsameDiff    2AFCmatchSamp  

    0    0.5000    0.5000    0.5000    0.5000  

    0.5000    0.5987    0.6382    0.5195    0.5223  

    1.0000    0.6915    0.7602    0.5733    0.5825  

    1.5000    0.7734    0.8556    0.6495    0.6635  

    2.0000    0.8413    0.9214    0.7330    0.7468  

    2.5000    0.8944    0.9615    0.8110    0.8196  

    3.0000    0.9332    0.9831    0.8753    0.8765  

    3.5000    0.9599    0.9933    0.9231    0.9178  

    4.0000    0.9772    0.9977    0.9555    0.9467  

 and   a graph will be plotted as in  Figure 6.3  shown above.   

    6.3           SECTION B: THEORY 

    6.3.1           Relationship Between  Z -scores and Probabilities 
 To   understand the theory behind calculations of  d  �  it is necessary to begin with some 

basics. An important relationship that underpins much of SDT is that between  z -values 
and probabilities.  Figure 6.4    shows a  “ standardized ”  normal probability distribution. 
This is a normal distribution in which the abscissa is given in units of standard devia-
tion, or  z  units. The ordinate in the graph is termed  “ probability density ”  and denoted 
by   φ  . Probability density values are not actual probabilities of  z -values, but their relative 
likelihoods, specifi cally derivatives or  “ rates of change ”  of probabilities. Thus, in order to 
convert  z  units, or rather intervals between  z  units, into probabilities, one has to integrate 
the values under the curve between  z -values. If one integrates the curve between  �  
  
and some value of  z , the result is a value from a distribution termed the cumulative 
normal. Because the total area under the standard normal distribution is by defi nition 
unity, the cumulative normal distribution ranges from 0 – 1. The cumulative normal 
gives the probability that a random variable from a standardized normal distribution is 
less than or equal to  z . 

 The   equation for the standardized normal distribution is: 

  
φ

π
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�1
2 2
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  (6.1)      
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 and   for the cumulative normal: 

  Φ( ) . . ( / )z erf z� �0 5 0 5 2   (6.2)      

 where    erf  stands for the  “ error function ” , which performs the integration. The 
two values of 0.5 in the equation convert the range of the function to 0 – 1. The 
inverse of the cumulative normal, which converts   Φ   to a  z -value is: 

  z erfinv( ( )Φ) Φ� �2 2 1   (6.3)      

 Palamedes   contains two routines,  PAL_ZtoP   and  PAL_PtoZ  , which implement, 
respectively, Equations 6.2 and 6.3. Given that  z -values are symmetric around zero, 
we can state two simple relationships: 

  1 � � �Φ Φ( ) ( )z z   (6.4)      

 and   

  � � �z z( ) ( )Φ Φ1   (6.5)      

 You   can verify these relationships and the values illustrated in the fi gure using 
 PAL_ZtoP   and  PAL_PtoZ  .  
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    6.3.2           Calculation of  d  �  for  M -AFC 
 We   begin by describing the theory behind the computation of  d  �  for a standard 

 M -AFC task, where  M  can be any value greater than 1, and where  M        �       N       �       m . We 
remind the reader that the calculations described in this section are based on two 
assumptions, the fi rst that the observer is unbiased and the second that the inter-
nal responses to all the stimulus alternatives are normally distributed and of equal 
variance. Although readers will mainly use the routine  PAL_SDT_MAFC_PCtoDP  , 
which converts  Pc s to  d  � s, it is best to begin with the theory behind its inverse: 
 PAL_SDT_MAFC_PCtoDP  . 

    Figure 6.5    shows two standardized normal distributions. One represents the 
distribution of sensory magnitudes or internal responses to a  “ blank ”  interval or 
location, i.e., one without a target and denoted by  “ noise alone ”  or  N . The other 
represents the distribution of sensory magnitudes to the interval/location con-
taining the target, typically denoted in the SDT literature as  “ signal-plus-noise ”  or 
 S       �       N . Note, however, that  N  versus  S       �       N  is not the only scenario for which the 
present analysis is applicable. The principle also extends to the situation in which 
one interval/location contains stimulus  S 1   while the remaining intervals/locations 
contain stimulus  S 2  . 

 Representing   the sensory magnitudes of  N  and  S       �       N  as probability distributions 
means that on any trial the actual sensory magnitudes will be random samples from 
those distributions. The relative probabilities of particular samples are given by the 
heights of the distributions at the sample points. 

 The   aim of the observer in the standard forced-choice task is to identify on each 
trial the alternative containing the target. Let us assume that the observer adopts 
what is intuitively the optimum strategy: select the alternative with the biggest signal. 
Try to imagine a strategy that would result in better performance. There isn’t one. The 
rule employed by the observer for selecting the target is usually termed the  “ decision 
rule. ”  The question then becomes: how well will the observer do, as measured by  Pc , 
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 FIGURE 6.5          Calculation of  Pc  from  d  � .  N       �      noise;  S       �       N       �      signal-plus-noise;  t  is a random variable. 
See text for details.    
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when adopting this decision rule? If we make the two assumptions stated above, then 
the computation of  d  �  turns out to be reasonably straightforward. 

 One   can glean from  Figure 6.5  that when there is little overlap between the  N  
and  S       �       N  distributions the observer will perform better than when there is a lot 
of overlap. The reason for this is that, as the  N  and  S       �       N  distributions draw closer 
together, there is an increasing likelihood that a sample drawn randomly from the 
 N  distribution will be greater in magnitude than a sample drawn randomly from 
the  S       �       N  distribution. Each time this happens the observer will make a mistake 
if adopting the  “ select the biggest signal ”  decision rule. If there were no overlap 
at all between the two distributions, the observer would never make an incorrect 
decision using this rule, and if the distributions perfectly overlapped the observer 
would perform at chance. Thus, the degree of overlap between the two distribu-
tions is the critical determinant of performance. And because the overlap is gov-
erned by two factors, fi rst the separation of the two distributions and second their 
spread, or   σ  , one can see that the measure  d  � , which is the separation between the 
distributions expressed in units of   σ  , captures the discriminability of  N  and  S       �       N . 
But how do we calculate the expected  Pc , given  d  �  and  M ? 

 Suppose   that on a given trial the target stimulus has a sensory magnitude given 
by  t  in the fi gure. Remember that  t  is a random sample, meaning that  t  will vary 
between trials, and that the relative probability of a given  t  is given by the height 
of the distribution at  t . The probability that  t  will be greater than a random sam-
ple from just  one  noise ( N ) location is given by the gray area to the left of  t  under 
the noise distribution. This is simply   Φ  ( t ), since we have (arbitrarily) centered the 
noise distribution at zero. However, we do not just wish to know the probability 
that  t  will be greater than a random sample from just one noise location, but from 
 M       �      1 noise locations. In other words, we want to know the probability that  t  will 
be greater than a random sample from noise location 1  and  noise location 2  and  
noise location 3  and  4 and so on, up to  M       �      1. The  “ and ”  term here implies a joint 
probability, and if we assume that the samples from the different noise locations are 
independent, this is obtained simply by multiplying the individual probabilities. 
Since we are muliplying the same thing over again we simply raise the probability 
to the power of  M       �      1, and hence obtain   Φ  ( t )  M    � 1 . However, this still only gives us 
the probability that  one specifi c  random sample from the signal distribution,  t , will 
be greater than all random samples from all  M      �       1 noise locations. To obtain the 
probability that  a random sample t  will be greater than random samples from  M      �       1 
noise locations, which gives us our  Pc , we need to integrate the above result across 
all possible values of  t . We do this by multiplying   Φ  ( t )  M    � 1  by the height, or relative 
likelihood of  t , which is given by   φ  ( t       �       d  � ) (the  S  distribution is offset from zero by 
 d  � ), and integrating over all possible values of  t . Hence we have: 

  
Pc t d t dtM� � � � �

�

φ( ) ( )Φ
∞

∞
1∫   (6.6)      
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   ( Green  &  Swets, 1974 ;  Wickens, 2002 ). The function  PAL_SDT_MAFC_DPtoPC   
implements this equation using the numerical integration function  quadgk  in 
MATLAB ® . 

 How   do we convert a  Pc  into a  d �   for an  M      �       AFC task, which is our primary 
aim? Equation 6.6 is not easily invertible, so  PAL_SDT_MAFC_PCtoDP   performs an 
iterative search using the  fminsearch  function in MATLAB to fi nd that value of  d  �  
which, when converted to  Pc  (using  PAL_SDT_MAFC_DPtoPC  ), gives the input  Pc .  

    6.3.3           Calculation of  d  �  and Measures of Bias for 1AFC Tasks 

    6.3.3.1           Calculation of  d  �  for 1AFC 
 Let   us consider the 1AFC task known as yes/no, a task that is particularly prone 

to bias. Adopting the same scheme for representing the distributions of sensory 
magnitudes as in the previous section for the standard  M -AFC task, the situation 
is illustrated in  Figure 6.6   . This time, the  N  and  S       �       N  distributions are shown 
separately as the stimuli they represent are presented on separate trials. The gray 
areas to the right of the vertical criterion line represent sensory magnitudes that 
the observer deems large enough to warrant a  “ yes ”  response. Sensory magni-
tudes to the left of this line produce a  “ no ”  response. The gray area to the right of 
the criterion in the lower  S       �       N  distribution gives the proportion of target-present 
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 FIGURE 6.6          Distributions of sensory magnitude in response to both noise  N  and signal-plus-noise 
( S       �       N ) in a 1AFC yes/no task. The vertical black line shows the position of the observer’s criterion. 
Sensory magnitudes to the right of this line result in a  “ yes ”  response, while those to the left a  “ no ”  
response.  pH  is the proportion of  “ hits, ”  or correct  “ yes ”  responses, and  pF  the proportion of  “ false 
alarms, ”  i.e., incorrect  “ yes ”  responses.  pH  and  pF  are given by the gray areas to the right of the 
criterion line.    
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trials resulting in a  “ yes ”  response, i.e., the proportion of hits or  pH . The gray area 
to the right of the criterion line in the upper  N  distribution gives the number of 
 “ yes ”  responses in target-absent trials, i.e., the proportion of false alarms or  pF . If 
we denote the position of the criterion line on the abscissa as  c  (see below), then one 
can see that: 

  pF c� �1 Φ( )       

  or pF c� �Φ( )       

 and   

  pH c d� � � �1 Φ( )       

  or pH c d� � � �Φ( )       

 Converting    pF  and  pH  to  z -values one obtains: 

  z pF c( ) � �       

 and   

  z pH c d( ) � � � �       

 Combining   these two equations and solving for  d  �  gives 

  d z pH z pF� � �( ) ( )   (6.7)       

    6.3.3.2           Calculation of Criterion  C  for 1AFC 
 In    Figure 6.6  it can be seen that the criterion is measurable in  z  units, with a high  z -value 

implying a strict criterion (few hits but few false alarms), and a low  z -value implying a 
loose criterion (many hits but many false alarms). However, the actual criterion  z -value 
depends on where the zero  z -value is positioned, so a convention is needed to ensure that   
the criterion measure is comparable across conditions. The convention is to place the zero 
point midway between the  N  and  S       �       N  distributions, as shown in  Figure 6.7   . 

 With    z       �      0 centered midway between the two distributions, the criterion, 
denoted by C, is positioned in the noise distribution at: 

  z pF d( )1 2� � �
       

 and   in the signal-plus-noise distribution at: 

  z pH d( )1 2� � �
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 However  , since  z ( p )      �       z (1      �       p ), the two expressions can be rewritten as 
 �  z  ( pF )      �       d  � /2 and  �  z  ( pH )      �       d  � /2. Thus, the position of  C  can be defi ned in two ways: 

  C z pH d� � � �( ) /2       

 and   

  C z pF d� � � �( ) /2       

 Adding   the two equations together gives: 

  C z pH z pF� � �[ ( ) ( )]/2   (6.8)      

   ( Macmillan  &  Creelman, 2005 ). Thus, criterion  C  can be estimated by convert-
ing  pH  and  pF  into  z -values, and then using Equation 6.8.  C  is calculated this way 
in  PAL_SDT_1AFC_PHFtoDP  .  C  can range from negative to positive, with negative 
values indicating a bias towards  “ yes ”  responses and positive values a bias towards 
 “ no ”  responses.  

    6.3.3.3           Calculation of Criterion ln  β   for 1AFC 
 An   alternative measure of the criterion is the natural logarithm of the ratio of the 

heights of the two distributions at  C  ( Macmillan  &  Creelman, 2005 ). The heights at 
 C  are shown in  Figure 6.7  as   φ  [ z ( pH )] and   φ  [ z ( pF )]. Thus: 

  
ln ln

[ ( )]
[ ( )]

β
φ
φ

�
z pH
z pF

  (6.9)      
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 FIGURE 6.7          Method for calculating criterion  C . Note that  z       �      0 is centred midway between the  N  
and  S       �       N  distributions. See text for further details.    
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 Now     φ  [ z ( pH )] and   φ  [ z ( pF )] are given by: 

  
φ

π
[ ( )] exp

{ ( ) }
z pH

z pH
�

� �1
2 2

2⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥
  (6.10)      

 and   

  
φ

π
[ ( )] exp

{ ( ) }
z pF

z pF
�

� �1
2 2

2⎡

⎣
⎢
⎢
⎢

⎤

⎦
⎥
⎥
⎥
  (6.11)      

 Taking   natural logarithms of the two equations, i.e., ln {   φ  [ z ( pH )] }  and ln {   φ  [ z ( pF )] }  
and then substituting the results into the equation for ln  β  , simple algebra shows 
that: 

  ln [ ( ) ( ) ]/β � �z pF z pH2 2 2   (6.12)      

 This   is how ln  β   is calculated in  PAL_SDT_1AFC_PHFtoDP  . Ln  β   behaves in the 
same way as  C . The reason for this is that ln  β        �       Cd  � . Readers can check this rela-
tionship themselves using the equations above.  

    6.3.3.4           Calculation of Criterion  C  �  for 1AFC 
 A   third measure of the criterion not calculated by Palamedes is  C �  , which is  C  

expressed as a proportion of  d  �  ( Macmillan  &  Creelman, 2005 ): 

  
C C d

z pH z pF
z pH z pF

� � � �
� �

�
/

[ ( ) ( )]
[ ( ) ( )]2

  (6.13)       

    6.3.3.5           Calculation of  Pc max   for 1AFC 
 In   Section A we showed graphically that with a 1AFC task the optimum  Pc , or 

 Pc  max , is obtained when the observer is unbiased, i.e., when  C       �      0. It follows from 
Equation 6.8 that when C      �      0,  z ( pH )      �       �  z ( pF ). Since  d  �       �       z ( pH )      �       z ( pF ) (Equation 
6.7), simple algebra reveals that when  C       �      0,  d  �       �      2 z ( pH ). Converting  z ( pH ) to  Pc  max  
gives: 

  Pc dmax ( / )� �Φ 2   (6.14)      

 The   interested reader may wish to prove that  Pc  reaches a maximum when  C       �      0. 
One can determine if the observer is operating optimally in a 1AFC task by testing 
whether  pH       �      1      �       pF . When performing optimally,  pH  is  Pc  max , and  d  �  can be calculated 
as 2 z ( pH ).   
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    6.3.4           Calculation of  d  �  for Unbiased and Biased 2AFC Tasks 
 In   the fi rst section of Section B we derived the formula for calculating  d  �  from  Pc  

for an unbiased standard  M -AFC task (Equation 6.6). This formula can be used to 
calculate  d  �  for the standard 2AFC task ( M       �      2), assuming that the observer is unbi-
ased. In the following sections we show a simpler method for calculating  d  �  for an 
unbiased 2AFC task, and show how  d  �  and measures of bias can be calculated for 
2AFC tasks in which the observer is biased. 

    6.3.4.1           Alternative Calculation of  d  �  for Unbiased 2AFC 
 With   the standard 2AFC procedure, the  N  and  S       �       N  stimuli are presented 

together in a trial as two alternatives. Remember that the decision rule is to choose 
the alternative in which the internal signal is biggest. If the observer adopts this rule, 
trials in which the  differences  between the  S       �       N  and  N  samples are positive will 
result in a correct decision. Now the distribution of differences between random sam-
ples from two equal-variance normal distributions, one with mean 0 the other with 
mean  d  � , is a normal distribution with a mean of  d  �  and a variance of 2, i.e., a   σ   of 
 � 2. The   σ   of  � 2 follows from the variance sum law. This law states that the variance 
of the sum, or of the difference, between two uncorrelated random variables is the 
sum of the variances of the two variables. Thus, if the two distributions each have a 
  σ   of 1, the   σ   of the difference between the two distributions is  � (1 2       �      1 2 )      �       � 2. The 
( S       �       N )      �       N difference  distribution is illustrated in the lower panel of  Figure 6.8   . Note 
that in this graph the abscissa is in  z  units that have been normalized to the   σ  s of the 
 N  and  S       �       N  distributions, not to the   σ   of their difference. 

 The   proportion correct for 2AFC is thus given by the gray area in the lower panel 
to the right of zero. This is: 

  
Pc

d
�

�
Φ

2

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟⎟   (6.15)      

   ( Wickens, 2002 ;  Macmillan  &  Creelman, 2005 ; McNicol, 2002). Equation 6.15 con-
verts a  z -value of  d  � / � 2 to a   Φ   value. One can implement the equation using  PAL_
ZtoP  using as an input argument a scalar, vector or matrix of  d  � / � 2. However, in 
most instances we want to obtain  d  �  from  Pc , so for this we use the inverse equation: 

  d z Pc� � ( ) 2   (6.16)      

 The   following converts a vector  PropCorr  containing an array of  Pc s into a vec-
tor  DP  containing an array of  d  � s, for an unbiased 2AFC task: 

         >      > DP     =     PAL_PtoZ(PropCorr)*sqrt(2)   



179 

    6.3.4.2           Calculation of  d  �  for Biased 2AFC 
 Let   us consider the situation in which the two alternatives are presented sequen-

tially, i.e., 2IFC.  Figure 6.9    plots the distribution of differences in sensory magni-
tude between those in the fi rst interval (X1) and those in the second interval (X2), 
i.e., the distribution of X1      �      X2. Note that there are now two distributions, one for 
signal present in the fi rst interval and one for signal present in the second interval. 
The two distributions will be separated by 2 d  �  and have   σ  s of  � 2 (see above). If 
the observer is biased towards responding to one interval more than the other, then 
their criterion  C  will be non-zero. The observer’s decision rule is  “ 1 ”  (fi rst interval) 
if X1      �      X2      �      C, and  “ 2 ”  (second interval) if X1      �      X2      �      C. As explained in Section A, 
the key to calculating  d  �  for a biased 2AFC task is to classify the responses in terms 
of hits and false alarms, where a  “ 1 ”  response is scored as a hit when the signal is in 
the fi rst interval and a false alarm when the signal is in the second interval. 

 One   can see from  Figure 6.9  that: 

  z pH d C( ) ( )� � � / 2   (6.17)      

 and   

  z pF d C( ) ( )� � � � / 2   (6.18)      
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 FIGURE 6.8          Graphical illustration of how  d �   can be calculated for an unbiased 2AFC task. Top: 
distributions of noise alone ( N ) and signal-plus-noise ( S       �       N ) separated by  d  � . Bottom: distribution of 
the difference between the two distributions: ( S       �       N )  �   N . Note the different   σ  s for the upper and lower 
distributions. The  z  values along the abscissa are normalized to the   σ   of the two distributions in the top, 
not bottom panel. See text for further details.    
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 Combining   the two equations and solving for  d  �  gives: 

  d z pH z pF� � �[ ]/( ) ( ) 2   (6.19)      

 This   is the equation used to calculate  d  �  in  PAL_SDT_2AFC_PHFtoDP  .  

    6.3.4.3           Calculation of C and ln  β   for Biased 2AFC 
 Combining   Equations 6.17 and 6.18 above and solving for C gives: 

  C z pH z pF� � �[ ]/( ) ( ) 2   (6.20)      

 The   criterion measure ln  β   is defi ned in Equation 6.9, and it is important to note 
that the   φ  s refer to the heights of  z ( pH ) and  z ( pF ) in the standard normal distribu-
tion, i.e., the distributions in the upper panel of  Figure 6.8 , not to the heights of the 
difference distributions in  Figure 6.9 . The calculation of ln  β   for the 2AFC task is 
thus identical to that for the 1AFC task (we would like to thank Mark Georgeson 
for pointing this out), and is hence given by Equation 6.12. Equation 6.20 is used to 
calculate bias for the standard 2AFC task by  PAL_SDT_2AFC_PHFtoDP  .  

    6.3.4.4           Calculation of  Pc max   for 2AFC 
 From   Equation 6.20, if  C       �      0, then  z ( pH )      �       �  z (pF ). Combining this result with 

Equation 6.19 reveals that when  C       �      0,  d  �  � 2      �      2 z ( pH ). Converting  z ( pH)  to  Pc  max  
gives: 

  Pc dmax ( )� �Φ / 2   (6.21)        
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 FIGURE 6.9          Relationship between  d �  ,  C ,  pH , and  pF  in a biased 2AFC task. Each plot gives 
the distribution of differences between the sensory magnitudes in the fi rst (X1) and second (X2) 
alternatives/intervals. If the signal is in the fi rst alternative/interval the distribution is the one shown on 
the right, if in the second interval the distribution shown on the left.    
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    6.3.5           Calculation of  d  �  for Same-Different Tasks 
 For   the calculation of  d  �  for a same-different task we adopt the convention 

of referring to the two relevant distributions as  S  1  and  S  2  (signal 1 and 2), rather 
than  N  and  S       �       N . It would be unusual to employ a same-different task to meas-
ure the detectability of a target when the alternative location/interval was a blank. 
The same-different task is most appropriate to situations in which the observer is 
required to discriminate two suprathreshold stimuli without necessarily having to 
know the basis of the discrimination. 

    6.3.5.1           Calculation of  d  �  for a 2AFC Same-Different 
 The   computation of  d  �  for the same-different task in which both the same  and  dif-

ferent pairs are presented together during a trial is described by  Macmillan, Kaplan, 
and Creelman (1977) . They use the term 4IAX to characterize the task, since they 
consider the scenario in which the four stimuli are presented in temporal order, as 
in an auditory experiment. 

 Let   us begin with the standard assumption that the sensory magnitudes of  S  1  
and  S  2  are normally distributed and separated by  d  � . According to  Macmillan et al. 
(1977) , the most likely strategy employed by observers in this task is to compare the 
absolute difference between the two signals in each of the fi rst and second pairs. 
The observer responds  “ 1 ”  if the difference between the fi rst pair is perceived to be 
greater than the difference between the second pair, and  “ 2 ”  otherwise. Suppose that 
the sensory magnitudes of the four stimuli are represented by the sequence X1, X2, 
X3, and X4. The decision rule is therefore to respond  “ 1 ”  if  | X1      �      X2 |       �       | X3      �      X4 | , 
and  “ 2 ”  if  | X1      �      X2 |       �       | X3      �      X4 | . 

    Figure 6.10   , adapted from  Macmillan et al. (1977) , illustrates the computation 
of  d  �  for the task. The abscissa and ordinate in  Figure 6.9  represent, respectively, 
the decision variables X1      �      X2 and X3      �      X4. The gray areas in the fi gure represent 
the combinations of decision variables that result in a  “ 1 ”  decision, i.e., areas where 
 | X1      �      X2 |       �       | X3      �      X4 | . The gray areas can be subdivided into four regions: upper 
left; lower left; upper right; and lower right. On the right side of the fi gure the gray 
area defi nes the space in which X1      �      X2 is more positive than either X3      �      X4 (upper 
right) or  � (X3      �      X4) (lower right). On the left of the fi gure the gray area defi nes 
the space in which X1      �      X2 is more negative than either X3      �      X4 (lower left) or  –
 (X3      �      X4) (upper left). 

 The   observer will be correct when making a  “ 1 ”  decision if the samples that 
fall within the gray regions are from any of the following sequences:  �  S  1  S  2  S  1  S  1      �     , 
 �  S  1  S  2  S  2  S  2      �     ,  �  S  2  S  1  S  1  S  1  �  or  �  S  2  S  1  S  2  S  2      �     . On the other hand, the observer will 
be incorrect when responding  “ 1 ”  if samples from the remaining sequences fall 
within the gray area, namely      �      S  1  S  1  S  1  S  2       �     ,  �  S  1  S  1  S  2  S  1      �     ,  �  S  2  S  2  S  1  S  2  �  or  �  S  2  S  2  S  2  S  1      �     . 
 Pc  is therefore the probability that samples from the fi rst four sequences will fall 
within either of the two (left or right) gray areas. The four rings in the fi gure denote 
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volumes of the joint likelihood distributions of the various sequences of  S  1  and  S  2 . 
Note that the   σ   of the distributions is  � 2, because they are distributions of the dif-
ference between samples from two normal distributions. 

 Each   volume in the left and right gray areas comprises two probabilities, a  “ small ”  
and a  “ large. ”  The large probability is the probability that samples from the sequences 
specifi ed within each gray area of the fi gure will fall within that area. However, there 
is a small probability that samples from the sequences in the opposite gray area will 
also fall within the area. For example, although most of the samples that fall within 
the gray area on the right of the fi gure will come from sequences  �  S  2  S  1  S  1  S  1  �  and 
 �  S  2  S  1  S  2  S  2      �     , a few will come from  �  S  1 , S  2 , S  1 , S  1  �  and  �  S  1 , S  2 , S  2 , S  2      �     . This is because 
even though most of the difference signals  S  1       �       S  2  are  “ large negative ”  and hence fall 
within the gray area on the left, a few will be  “ large positive ”  and will fall within 
the gray area on the right. Remember that it does not matter whether the difference 
 S  1       �       S  2  is  “ large negative ”  or  “ large positive, ”  as long as its absolute magnitude is 
greater than  S  2       �       S  2  or  S  1       �       S  1  (the possible sequences in the other alternative/inter-
val). Either way the response  “ 1 ”  will be correct. 
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 FIGURE 6.10          Graphical representation of the distributions involved in the 2AFC same-different 
task. X1 . . . X4 represent the internal sensory magnitudes of the four stimuli. Note that the abscissa plots 
X1      �      X2 and the ordinate X3      �      X4. The sequences  �  S  1  S  2  S  1  S  1  �  etc., denote joint sample distributions 
of stimulus sequences. Note that the distance to the center of each distribution from the center of the 
fi gure is  d  � / � 2, but when measured from a point on the diagonal perpendicular to the center of each 
distribution (shown by the thick black lines in the upper left quadrant) the distance is  d  � /2. The fi gure is 
adapted from Figure 6a in  Macmillan et al., (1977) .    
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 The   larger probability within each gray area is given by [  Φ d  � /2] 2  while the 
smaller probability is given by [  Φ  ( �  d  � /2)] 2 . The denominator of 2 in each expres-
sion refl ects the fact that the area described by the gray rectangle has sides that, by 
the Pythagorean Theorem, extend by  d  � /2 to the midpoint of the distribution along 
the side, as illustrated in the upper left quadrant of the fi gure. The squaring of each 
expression refl ects the fact that one is dealing with a bivariate, i.e., joint, distribu-
tion. To obtain  Pc  we simply add together the large and small probabilities: 

  Pc d d� � � � �[ ( )] [ ( )]Φ Φ/ /2 22 2   (6.22)      

 Equation   6.22 is used to calculate  Pc  in  PAL_SDT_2AFCsameDiff_DPtoPC  . 
Following  Macmillan and Creelman (2005) , the equation can be inverted to obtain 
 d  �  from  Pc  using: 

  d z Pc� � � �2 0 5 1 2 1 2[ . { ( ) }]   (6.23)      

 and this    is used to calculate  d  �  in  PAL_SDT_2AFCsameDiff_PCtoDP  .  

    6.3.5.2           Calculation of  d  �  for a 1AFC Same-Different Task: 
Differencing Model 

 In   the differencing model of the 1AFC same-different task it is assumed that the 
observer encodes the perceived difference between the two stimuli in the trial, and 
if the absolute value of the difference exceeds a criterion the observer responds 
 “ different, ”  if not  “ same. ”  Suppose the signal from the fi rst stimulus is X1, and from 
the second stimulus X2. The decision rule is therefore  “ different ”  if  | X1      �      X2 |       �       k , 
where  k       �      the criterion, and "same" otherwise. As with the 2AFC same-different 
task discussed in the previous section, it is useful to consider both the positive and 
negative parts of the difference signal X1      �      X2. The top of  Figure 6.11    shows the 
distributions of sensory magnitudes for the two stimuli  S  1  and  S  2 , centered on 0. 
The middle and bottom panels (adapted from Figure 9.5 in  Macmillan  &  Creelman, 
2005 ) show the relative likelihoods of the various stimulus pairs as a function of the 
decision variable X1      �      X2. The middle panel shows the Same distributions  �  S  1  S  1  �  
and  �  S  2  S  2      �     , and the bottom panel the Different distributions  �  S  1  S  2  �  and  �  S  2  S  1    �      . 

 All   the Different distributions have a   σ   of  � 2, in accordance with the variance 
sum law. To understand how  pH  and  pF  are calculated the criterion has been placed 
to one side of the midpoint. Given the particular value of  d  �  and  k  in the fi gure, 
most of the  �  S  2 , S  1  �  signals fall above the criterion  k  and constitute a  “ large ”  prob-
ability. Although most of the  �  S  1  S  2  �  signals fall to the left of  k , a few will be  “ large 
positive ”  and fall to its right. As with the 2AFC same-different task we have to 
include the small probability in the calculation, because it accords with the adopted 
decision rule. From  Figure 6.11  the proportion of hits,  pH  is given by: 

  pH d k d k� � � � � � �Φ Φ[( )/ ] [( ) ]2 2/   (6.24)      
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 where   the larger of the two terms is given by the gray area to the right of  k  and the 
smaller of the two terms by the hatched area to the right of  k.  The proportion of 
false alarms  pF  is given by the area to the right of the criterion line in the middle 
panel, multiplied by 2 since there are two distributions, i.e.: 

  pF k� �2 2Φ( / )   (6.25)      

 The   routine  PAL_SDT_1AFCsameDiff_DiffMod_DPtoPHF   performs these calcu-
lations. To calculate  d  �  and  k  from  pH  and  pF , as is mostly required, the routine  PAL_
SDT_1AFCsameDiff_DiffMod_PHFtoDP   exploits the fact that  k  can be obtained 
directly from  pF , as from Equation 6.24  k       �       �  z ( pF /2) � 2. The value of  k  is then sub-
stituted into Equation 6.24 and the routine performs an iterative search to fi nd that 
value of  d  �  that results in the input value of  pH . Further details of the 1AFC same-
different differencing model can be found in  Macmillan and Creelman (2005) .  

    6.3.5.3           Calculation of  d  �  for a 1AFC Same-Different Task: 
Independent Observation Model 

 According   to  Macmillan and Creelman (2005) , the observer’s optimum strat-
egy for the same-different task in which only two stimuli are presented per trial 
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model. See text for details.    
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is to respond  “ different ”  when the signals from  S  1  and  S  2  fall on either side of a 
criterion centered midway between the two distributions. They term this model 
the independent observation model. To compute  d  �  for this model, Macmillan and 
Creelman suggest the following method. First, calculate the  Pc  that an observer 
would obtain for this task if they were operating optimally (this is  Pc  max ) using  pH  
and  pF . Second, use  Pc  max  to compute  d  � . Third, use the values of  pH  and  pF  to com-
pute the criterion  C  in the same way as for the standard 1AFC task. 

 As   elsewhere, it is best to begin with the method for calculating  Pc  max  from  d  � , 
rather than the reverse.  Macmillan and Creelman (2005)  provide a three-dimen-
sional representation of the decision space for the independent observation model, 
as the calculations involve joint likelihood distributions. The two-dimensional rep-
resentation provided in  Figure 6.12    should, however, be suffi cient to understand the 
principle behind the calculation. 

 In    Figure 6.12 , the probability that signals from both  S  1  and  S  2  will fall on opposite 
sides of the criterion at zero is the probability that  S  1  falls to the left of the criterion 
multiplied by the probability that  S  2  falls to its right (since we are dealing here with 
the joint probability of an event). In the fi gure, given the value of  d  �       �      2, most of the 
 S  2  signals fall to the right of the criterion and most of the  S  1  signals will fall to the left 
of the criterion, so the product of the two signals will be a  “ large ”  probability given by 
[  Φ  ( d  � /2)] 2 . However, there is a small probability that both a high value of  S  1   and  a low 
value of  S  2  will fall on either side of the criterion. These probabilities are the smaller 
hatched areas in the fi gure. The observer will also be correct in these instances, since 
the decision rule is to respond  “ different ”  when the signals from the two stimuli fall 
on either side of the criterion. The joint probability in this case is given by the product 
of the hatched areas, which is [  Φ  ( �  d  � /2] 2 . Thus, to obtain  Pc  max  we add up the two 
joint probabilities: 

  Pc d dmax [ ( )] [ ( )]� � � � �Φ Φ/ /2 22 2   (6.26)      
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 and   from this equation,  d  �  is given by: 

  d z Pc� � � �2 0 5 1 2 1{ . [ ]}max   (6.27)      

   ( Macmillan  &  Creelman, 2005 ). To calculate  d  �  from  pH  and  pF ,  Pc  max  is fi rst esti-
mated using: 

  Pc z pH z pFmax {[ ( ) ( )]/ }� �Φ 2   (6.28)      

 and   the result substituted into Equation 6.27. This calculation is performed by  PAL_
SDT_1AFCsameDiff_IndMod_PHFtoDP  . The same routine also calculates the 
observer’s criterion using  C       �       � 0.5[ z ( pH )      �      z( pF )]. The reverse calculation ( pH  and 
 pF  from  d  �  and  C  ) is performed by  PAL_SDT_1AFCsameDiff_IndMod_DPtoPHF  .   

    6.3.6           Calculation of  d  �  for Match-to-Sample Tasks 

    6.3.6.1            Calculation of  d  �  for 2AFC Match-to-Sample: Independent 
Observation Model 

 The   computation of  d  �  for the 2AFC match-to-sample task under the independ-
ent observation model parallels that of the 1AFC same-different task. According to 
 Macmillan and Creelman (2005) , who refer to the task as ABX,  Pc  for an unbiased 
observer is given by: 

  Pc d d d d� � � � � � � � � �Φ Φ Φ Φ( ) ( ) ( ) ( )/ / / /2 2 2 2   (6.29)      

 We   refer readers to  Macmillan and Creelman (2005)  for the derivation of this 
equation. The calculation is performed by  PAL_SDT_2AFCmatchSample_
IndMod_DPtoPC  . The inverse routine  PAL_SDT_2AFCmatchSample_IndMod_
DPtoPC  employs an iterative search procedure using Equation 6.29 to obtain 
 d  �  from  Pc . If the raw data are hits and false alarms, defi ned according to the rule 
for a conventional 2AFC task,  PAL_SDT_2AFCmatchSample_IndMod_PHFtoDP   
fi rst calculates  Pc  max  and then  d  �  by iterative search of Equation 6.29.  PAL_SDT_
2AFCmatchSample_IndMod_DPtoPHF   performs the reverse calculations.  

    6.3.6.2           Calculation of  d  �  for 2AFC Match-to-Sample: Differencing Model 
 For   the 2AFC match-to-sample differencing model, the observer is assumed 

to encode the difference in sensory magnitude between the Sample and 
each of the Match stimuli, and choose the Match with the smallest absolute 
Sample-minus-Match difference. According to  Macmillan and Creelman (2005)  
the differencing strategy, as with the same-different task, is the more likely to be 
adopted in a roving experiment where many different stimuli are presented during 
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a session.  Macmillan and Creelman (2005)  have derived the following equation for 
the unbiased observer: 

  Pc d d d d� � � � � � � � � �Φ Φ Φ Φ( ) ( ) ( ) ( )/ / / /2 6 2 6   (6.30)      

 Palamedes   performs the calculation in 
 PAL_SDT_2AFCmatchSample_DiffMod_DPtoPC  . The inverse routine  PAL_

SDT_2AFCmatchSample_DiffMod_PCtoDP   calculates  d  �  by iterative search of 
Equation 6.30. If the data are hits and false alarms,  d  �  and criterion  C  can be obtained 
using  PAL_SDT_2AFCmatchSample_DiffMod_PHFtoDP  , whose inverse is  PAL_
SDT_2AFCmatchSample_DiffMod_DPtoPHF  . The calculations in these routines 
parallel those for the 2AFC match-to-sample independent observation model.  

    6.3.6.3           Calculation of  d  �  for  M -AFC Match-to-Sample 
 For   match-to-sample tasks in which  M       �      2, the Palamedes routines  PAL_SDT_

MAFCmatchSample_DPtoPC   and  PAL_SDT_MAFCmatchS ample_PCtoDP  assume 
an unbiased observer and a differencing strategy. In the fi rst routine,  Pc  is computed 
by Monte Carlo simulation rather than by equation. The simulation works as fol-
lows. Let  S  1  and  S  2  represent the two signal distributions separated by  d  � . Let  S  1  be 
the Sample stimulus. Therefore, the  M  Match stimuli comprise one  S  1  and  M       �      1 
 S  2 s. On each  “ trial ”  of the simulation, two random samples (don’t confuse a random 
 “ sample ”  with the  “ Sample ”  stimulus!) are selected from  S  1  (one for the Sample 
stimulus and one for the Match stimulus), and  M       �      1 random samples are selected 
from  S  2  (the other Match stimuli). The absolute difference between the Sample  S  1  and 
each of the  M  Match stimuli is then calculated. If the absolute difference between the 
Sample  S  1  and the Match  S  1  is smaller than all of the absolute differences between 
the Sample  S  1  and Match  S  2 s, then by the differencing strategy the trial is scored 
 “ correct, ”  otherwise  “ incorrect. ”  The process is then repeated over a large number of 
trials and the overall proportion correct calculated across trials. Note that if the sam-
ple stimulus was designated to be  S  2  the result would be expected to be the same, so 
the choice of  S  1  or  S  2  as the Sample is arbitrary. Because the routine uses Monte Carlo 
simulation, the computed  Pc  will not be identical each time, but should be accurate 
to about two decimal places. The routine is also relatively slow owing to the large 
number of trial simulations involved. The inverse routine that calculates  d  �  from  Pc  
is especially slow since it involves an iterative search of the forward routine.   

    6.3.7           Calculation of  d  �  for  M -AFC Oddity Tasks 
 The   Palamedes routine  PAL_SDT_MAFCoddity_DPtoPC   also assumes an unbi-

ased observer and a differencing strategy. It calculates  Pc  by Monte Carlo simula-
tion following the method described by  Craven (1992) . Let  S  1  and  S  2  represent the 
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two signal distributions separated by  d  � . Assume that  S  1  is the oddity. Therefore, 
there are  M       �      1 non-oddity  S  2 s. On each trial of the simulation, a random sample 
is selected from the  S  1  oddity and each of the  M       �      1 non-oddity  S  2 s. Consider that 
every random sample is a possible oddity. Recall that the decision rule is to select 
the alternative most different from the average of all the alternatives. We therefore 
calculate the absolute difference between each sample and the average of all the 
 M  samples. According to the decision rule, the sample selected to be the oddity is 
the one with the biggest absolute difference. If this sample is from  S  1  then the trial 
is scored  “ correct, ”  else  “ incorrect. ”  The process is repeated over a large number 
of trials and the proportion correct calculated across trial. As with the routines for 
 M -AFC match-to-sample, the computed  Pc  will not be identical each time, but 
should be accurate to about two decimal places. The routines are also relatively 
slow owing to the large number of trial simulations involved.   

    Further Reading 
 The   best starting points for SDT are  McNicol (2004) , Chapters 5 – 8 of  Gescheider 

(1997)  and  Macmillan  &  Creelman (2005) . The most comprehensive treatment of 
SDT that is accessible to the non-expert, is  Macmillan  &  Creelman (2005) . More 
mathematical treatments can be found in  Wickens (2002)  and  Green  &  Swets (1974) . 
Further details of the computation of  d  �  for the same-different tasks can be found in 
 Macmillan et al. (1977) .

        Exercises      

    1.     Consider the  M       �      2 versions of the standard forced-choice, oddity and match-to-sam-
ple tasks. The Palamedes routines for the  M -AFC versions of these tasks assume that 
there are just two stimuli,  S  1  and  S  2 , and that the observer is unbiased and employs 
the following decision rules: for the standard forced-choice task select the alternative 
with the largest stimulus magnitude; for the oddity task select the alternative most 
different from the mean of all the alternatives; for the match-to-sample task select the 
match most similar to the sample. For a given  d  � , which task would you expect to 
produce the biggest and which the smallest  Pc ? Write a script using the Palamedes 
routines to plot  Pc  against  M  for a given  d  �  for each task to test your predictions.  

    2.     The following exercise emerged from discussions with Mark Georgeson.  Table 6.2    
presents the results of an experiment aimed at measuring a psychometric function of 
proportion correct against stimulus magnitude using a standard 2AFC task. The exper-
imenter is interested in the effects of bias on the estimates of the threshold and slope of 
the psychometric function, so the results are presented in terms of proportion hits  pH  
and proportion false alarms  pF , as calculated according to the rules in Section 6.2.4. 
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    Use the appropriate Palamedes routines to calculate  d  � , criterion  C , and 
proportion correct  Pc , for each pair of  pH  and  pF . Then calculate the  Pc  max  for each 
stimulus magnitude that would be expected if the observer was unbiased (see 
Section 6.2.8). Plot psychometric functions of both  Pc  and  Pc  max  against stimu-
lus magnitude (Chapter 4) and obtain estimates of the thresholds and slopes of the 
functions. Are the thresholds and slopes signifi cantly different for the two functions 
(see Chapter 8)?     

 TABLE 6.2          Results of a hypothetical experiment aimed at 
deriving a psychometric function using a standard 2AFC task  

   Stimulus magnitude   pH    pF  

   1  0.61  0.53 

   2  0.69  0.42 

   3  0.79  0.33 

   4  0.88  0.18 

   5  0.97  0.06 

   6  0.99  0.03 
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C H A P T E R

             Scaling Methods  

    7.1       INTRODUCTION 

 Perceptual   scales, sometimes termed  “ psychological scales, ”   “ sensory scales, ”  
or  “ transducer functions, ”  describe the relationship between the perceived and 
physical magnitudes of a stimulus. Example perceptual scales are the relationships 
between perceived contrast and physical contrast, perceived depth and retinal dis-
parity, perceived velocity and physical velocity, and perceived transparency and 
physical transparency. In Chapter 3, Section 3.3.2 summarizes many of the methods 
available for measuring perceptual scales, and we recommend that this section be 
read before the rest of this chapter. 

 Perceptual   scales are in most cases descriptions of stimulus appearance, and are 
thus derived from procedures that have no correct and incorrect answer on each 
trial, in other words Type 2 according to the taxonomy outlined in Chapter 2. For 
certain scaling tasks this might seem counterintuitive. Take the method of paired 
comparisons, in which the observer is required on each trial to decide which of two 
stimuli appears greater in perceived magnitude along the dimension of interest. If 

7.1 Introduction
7.2 Section A: Practice

7.2.1 Maximum Likelihood 
Difference Scaling (MLDS)

7.3 Section B: Theory
7.3.1 How MLDS Works

7.3.2 Perceptual Scales and Internal 
Noise

7.3.3 Partition Scaling
Further Reading
Exercise
References
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the growth of perceived magnitude is a monotonically increasing function of stimu-
lus magnitude, one can legitimately argue that the observer’s judgement is  “ cor-
rect ”  when the chosen stimulus is the one with the higher physical magnitude. The 
argument does not hold, however, for scales which are not monotonic, as for exam-
ple in the color wheel where the colors are arranged around a circle. Moreover, for 
perceptual scaling methods involving comparisons of stimuli from widely different 
parts of the stimulus range, such as the method of triads or method of quadruples, 
it is meaningless to consider the observer’s responses in terms of correct/incorrect 
unless the scale is perfectly linear, which in most cases it is not. That being said, not 
all perceptual scales are derived from appearance-based judgements. Fechnerian or 
Discrimination scales, of which more will be said in Section B, are derived by inte-
grating JNDs (specifi cally increment thresholds) across the stimulus range, and are 
therefore performance-based. 

 To   illustrate the general principle of a perceptual scale consider  Figure 7.1   . In this 
hypothetical example perceived stimulus magnitude, denoted by  ψ , is described by 
a power function whose general form is  aS n  , where  S  is the stimulus level,  a  an arbi-
trary scaling factor, and  n  an exponent. In the fi gure  n       �      0.5. If  n       �      1 the exponent 
determines how bow-shaped, or  “ compressive, ”  the function is, whereas if  n       �      1 
the exponent determines how expansive it is. In the majority of scaling methods, 
observers are required to make judgements about combinations of stimuli selected 
from various parts of the stimulus range. For example, in the method of quadruples, 
observers compare two pairs of stimuli on each trial and decide which pair appears 
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 FIGURE 7.1          Hypothetical perceptual scale. Left: two pairs of stimuli with the same physical 
difference ( c       �       d ) produce different values of perceived difference ( b       �       a ). Right: two pairs of stimuli 
with different physical difference ( d       �       c ) are equally different perceptually ( a       �       b ).    
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more similar (or more different).  Figure 7.1a  illustrates how two pairs of stimuli, 
with magnitudes 1 and 3, and 7 and 9, will differ in their perceived similarity (or dif-
ference) owing to the compressive nature of the scale, with the 7 and 9 pair appear-
ing more similar than the 1 and 3 pair. Conversely,  Figure 7.1b  shows how two pairs 
of stimuli that differ in the physical magnitude of their differences nevertheless can 
appear equally similar in terms of the perceptual magnitude of their differences. 

 In   this chapter we describe in some detail a scaling method termed Maximum 
Likelihood Difference Scaling, or MLDS ( Maloney  &  Yang, 2003 ). MLDS is a relatively 
new method and has some very attractive features. It avails itself to forced-choice scal-
ing methods and exploits state-of-the-art computer optimization algorithms for param-
eter estimation. It also appears to be robust to whether the internal noise of the observer 
associated with each stimulus magnitude is a constant, or grows with stimulus magni-
tude. This last property of MLDS is an important one, but its signifi cance must wait 
until Section B. In promoting MLDS we do not wish to argue that it is the only valid 
perceptual scaling method. The partition scaling methods described in Chapter 3 offer 
some advantages over MLDS, and we shall discuss these again in Section B. 

 MLDS   produces  “ interval ”  perceptual scales. Remember from Chapter 3 that 
with an interval scale it is the differences between scale values rather than the values 
themselves that characterize the underlying perceptual representation. For example, 
stimulus velocities of 2, 4, and 6 degrees might be represented on an interval percep-
tual scale by values 1, 5, and 6. This would capture the observation that the perceived 
difference between 2 and 4 degrees, a difference of 4 units on the perceptual scale, is 
four times greater than the perceived difference between the 4 and 6 degrees, a differ-
ence of 1 unit on the perceptual scale. The same velocities could just as well however 
be represented by scale values of 4, 12, and 14, as these embody the same difference-
relations as 1, 5, and 6. As we noted in Chapter 3, an interval scale can be transformed 
without loss of information by the equation a X       �      b, where  X  is the scale value, and a 
and b are constants. In  Figure 7.1  the perceptual scale ranges from 0 – 1, but could be 
rescaled to range from 0 – 100, or 1 – 10, or any other range for that matter. 

 As   with the other data analysis chapters in this book, the remainder of the chap-
ter is divided into two sections. Section A describes the Palamedes routines used to 
derive perceptual scales using MLDS. Section B describes the theory behind MLDS 
as well as partition scaling methods, and explores their underlying assumptions, 
strengths, and limitations.  

    7.2       SECTION A: PRACTICE 

    7.2.1       Maximum Likelihood Difference Scaling (MLDS) 
 The   Palamedes routines for deriving a perceptual scale use the method devel-

oped by  Maloney and Yang (2003)  termed Maximum Likelihood Difference Scaling, 
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or MLDS. Although  Maloney and Yang (2003)  used MLDS in conjunction with the 
method of quadruples, we have extended it for use with paired comparisons and 
the method of triads. 

 Let   us fi rst remind ourselves of the observer’s task in each of these three methods 
(and see Figure 3.3). With paired comparisons the observer is presented on each trial 
with  two  stimuli, say A and B, drawn from a larger set, and decides which stimulus 
is greater in perceived magnitude or  “ further along ”  the dimension of interest. With 
the method of triads the observer is presented on each trial with  three  stimuli, say A, 
B, and C, and decides whether the perceived difference between A and B is larger (or 
smaller) than the perceived difference between B and C. With the method of quadru-
ples the observer is presented on each trial with  four  stimuli, say A, B, C, and D, and 
decides whether the perceived difference between A and B is greater (or smaller) than 
the perceived difference between C and D. All three methods are thus two- alternative 
forced-choice (2AFC), but remember that because these are  appearance-based tasks 
there is no correct or incorrect answer on any trial. 

 In   order to use MLDS the stimulus space must be sampled in such a way that for 
any particular stimulus combination not every trial produces the same response. In 
other words, for any given stimulus combination, we want the observer to choose 
one of the two alternatives over the other only a  proportion  of times. If the stimulus 
space is sampled in such a way that all responses for a given stimulus combination 
are identical, MLDS will fail and only an ordinal scale can be derived. Since MLDS 
derives perceptual scales from proportions of response judgements, its application to 
paired comparison data has a formal similarity to  Thurstone’s (1927)  classic method 
of deriving perceptual scales from paired comparisons (see also  Gescheider, 1997 ). 

 The   best way to understand how to use the Palamedes MLDS routines is to 
 demonstrate their operation using simulated data sets. The simulated data we 
describe below consists of responses that a hypothetical observer would be expected 
to make  if  their judgements were determined by an underlying perceptual scale of a 
particular specifi ed shape. We can then see how MLDS, which makes no assumptions 
at all about the shape of the underlying perceptual scale, reconstructs the scale from 
the data. So we begin with the Palamedes routines that  generate hypothetical data . 

    7.2.1.1       Generating Stimulus Sets for MLDS 
 The   fi rst step is to generate the stimulus set, and the routine that does this is 

 PAL_MLDS_GenerateStimList  . Note that this routine is useful not only for help-
ing to demonstrate MLDS, but also for generating stimulus lists for use in actual 
scaling experiments. The routine is executed as follows: 

         >      > StimList      =      PAL_MLDS_GenerateStimList(N, NumLevels,… 
MaxDiffBetweenLevels, NumRepeats);  

 The   argument  N  defi nes the number of stimuli per trial, and should be set 
to 2, 3 or 4 depending on whether one wishes to generate pairs, triads or quad-
ruples.  NumLevels  is the number of different stimulus magnitudes, or levels.
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 MaxDiffBetweenLevels  is a very useful parameter that precludes the gen-
eration of stimulus combinations that are  “ too far apart, ”  and that would tend 
to result in identical observer responses across trials. The precise meaning of 
the parameter depends on whether one is dealing with pairs, triads or quad-
ruples. With pairs, setting  MaxDiffBetweenLevels  to 3 precludes stimu-
lus pairs that are different by more than 3 stimulus levels. So, for example, if 
there are 10 stimulus levels, the pairs 6 and 9, 1 and 2, and 8 and 10 will appear 
in the list, but the pairs 2 and 7, 5 and 9, and 3 and 10 will not. With triads, 
 MaxDiffBetweenLevels  sets an upper limit for the difference-between-the-
difference-between stimulus levels. For example if  MaxDiffBetweenLevels  
is again set to 3, the triad 1, 6, and 9 would be allowed since  | 6  �  1 |       �       | 9  �  
6 |       �      3; the triad 2, 7, and 9 would be allowed since  | 7  �  2 |       �       |
 9  �  7 |       �      3; but the triad 2, 8, and 9 would be precluded since  | 8  �  2 |       �       | 
9  �  8 |       �      3. The principle for quadruples is the same as for triads. Finally, the argu-
ment  NumRepeats  sets the number of repeat trials for each pair/triad/quadruple. 
The list of pairs/triads/quadruples generated by the routine is stored in the output 
matrix  StimList . As an example, type and execute the following: 
         >      >  StimList      =      PAL_MLDS_GenerateStimList(3,6,3,1);  

 Now   type and execute: 
         >      >  StimList  

 and   the output should be: 
  StimList    =   
  1   2 3  
  1   2 4  
  1   2 5  
  1   2 6  
  1   3 4  
  1   3 5  
  1   3 6  
  1   4 5  
  1   4 6  
  1   5 6  
  2   3 4  
  2   3 5  
  2   3 6  
  2   4 5  
  2   4 6  
  2   5 6  
  3   4 5  
  3   4 6  
  3   5 6  
  4   5 6  
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 Confi rm   for yourself that the combinations listed are permissible given the value 
you used for  MaxDiffBetweenLevels . It must be remembered that  StimList  
only lists the stimulus combinations that are to be used in the experiment. The  order  
in which they are presented to the observer must of course be randomized, as also 
must be the order of presentation of the stimuli in each combination. 

 How   many pairs/triads/quadruples will be generated? If all possible combi-
nations are allowed (to achieve this one simply sets  MaxDiffBetweenLevels  to 
      >       =   NumLevels-1 ), and each combination is listed in only one order (as in the rou-
tine here), the binomial coeffi cient provides the answer. If the number of stimulus 
levels is  S  and the number of stimuli per combination  N , the total number of unique 
combinations  T  is given by: 

  
T

S
N S N

�
�

!
!( )!

  (7.1)      

   (remember  S !      �       S  �  ( S  �  1)  �  ( S  �  2)  �   …  1). Thus, in the present example where 
 S       �      10 and  N       �      2,  T  is 45. With pairs ( N       �      2) a simpler formula that gives the same 
result is ( S  2       �       S )/2. 

 Try   generating other stimulus sets for  N       �      2, 3, and 4. Check the number of com-
binations generated (use       >      > length(StimList) ) against the number calculated 
using the above equation (don’t forget to take into account  NumRepeats  if set to 
greater than 1). Then try varying  MaxDiffBetweenLevels  and observe the effect 
on the number of stimulus combinations. 

 For   the next step in our hypothetical experiment, we will again use triads as an 
example. Execute  PAL_MLDS_GenerateStimList   with arguments 3, 10, 3, and 
30. Use       >      > StimList  to type out the list of stimulus pairs. Note that each pair is 
repeated 30 times. This should enable a suffi cient number of responses to be simu-
lated for the MLDS fi tting routine.  

    7.2.1.2       Simulating Observer Responses for MLDS 
 Having   generated the stimulus list, the next step is to simulate the hypothetical 

observer’s responses. Let us suppose that the underlying shape of the perceptual 
scale is a Logistic function, which we have seen in Chapter 4 has a sigmoidal shape. 
First we need to set up the hypothetical perceptual scale values that will determine 
the simulated responses. Type the following command: 

         >      > PsiValuesGen      =      PAL_Logistic([5 1 0 0],[1:10]);  

 The   fi rst argument is a vector of four parameters that defi nes the shape of the 
Logistic function (see Chapter 4), and the second argument is a vector defi ning the 
stimulus levels. The output  PsiValuesGen  is a vector containing the hypothetical 
perceptual scale values that correspond to each stimulus level, given the perceptual 
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scale’s logistic shape. Next, we need to defi ne a vector  OutOfNum  that lists, for each 
of the entries in  StimList , how many trials are to be simulated. Since each entry 
in  StimList  corresponds to 1 trial, we fi ll it with 1       s. 

         >      > OutOfNum      =      ones(1,size(StimList,1));  

 We   can now generate hypothetical responses using  PAL_MLDS_Simulate
Observer . Every response is either  “ 0 ”  or  “ 1, ”  according to the following rules. 
For pairs, the response is  “ 1 ”  if the fi rst member of each pair is perceived (hypo-
thetically) to be of greater magnitude, otherwise the response is  “ 0. ”  For triads and 
quadruples, the response is  “ 1 ”  if the fi rst pair is perceived to be more different 
than the second pair (or the second pair more similar than the fi rst pair), and  “ 0 ”  
otherwise. Execute the routine by typing: 

         >      > Response      =      PAL_MLDS_SimulateObserver(StimList, OutOfNum,… 
PsiValuesGen, 0.3);  

 The   last argument specifi es the hypothetical noise level of the decision process 
and for the present example can be set to 0.3. This is essential. If there were no inter-
nal decision noise, our hypothetical observer’s responses would be  “ 0 ”  on every 
trial and MLDS could not be used. 

 Next   we need to combine responses across repeat trials using the  PAL_MLDS_
GroupTrialsbyX  routine. Type and execute: 

         >      > [StimList NumPos OutOfNum]      =      PAL_MLDS_…
GroupTrialsbyX(StimList, Response, OutOfNum);  

 The   summed responses are contained in the output parameter  NumPos . The out-
put parameter  OutOfNum  gives the number of trials for each stimulus combination. 
You might like to look at the results. To view the summed responses for each pair 
type and execute the following: 

         >      > Results      =      [StimList(:,1),StimList(:,2),…
StimList(:,3),NumPos ’ ,OutOfNum ’ ]  

 If   you had generated pairs you would need to type: 

         >      > Results      =      [StimList(:,1),StimList(:,2), NumPos ’ ,OutOfNum ’ ]  

 and   if quadruples: 

         >      > Results      =      [StimList(:,1),StimList(:,2),…
StimList(:,3),StimList(:,4),NumPos ’ ,OutOfNum ’ ]  

 Don  ’t forget the inverted commas after  NumPos  and  OutOfNum , as these are 
needed to transpose the vectors from rows into columns. Having simulated our 
experiment, we can now proceed to fi tting the data using MLDS.  
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    7.2.1.3       Fitting the Data with MLDS 
 An   important feature of MLDS is that it makes no assumptions as to the shape 

of the underlying perceptual scale. The parameters fi tted by MLDS are not param-
eters of a pre-defi ned function shape, as when fi tting a psychometric function (see 
Chapter 4). Instead, the parameters fi tted by MLDS are the perceptual scale values 
that correspond to each stimulus level, and that collectively defi ne the perceptual 
scale. MLDS essentially fi nds the best weights for the scale values that correspond 
to each stimulus level (except the fi rst and last, which are not free parameters and 
are set to 0 and 1). MLDS also fi ts a value for the decision noise. The decision noise 
is the error associated with each trial decision. 

 As   with most fi tting procedures, one has to make initial guesses for the free 
parameters. Probably the best guess is that the perceptual scale parameters are 
 linearly-spaced, although in many instances a compressive function such as the 
power function we described above will be a better guess. To make a linear scale of 
guesses between 0 and 1 execute the following: 

         >      > PsiValuesGuess      =      [0:1/(NumLevels-1):1];  

 with    NumLevels  set to 10. 
 We   are now ready to run the MLDS fi tting routine  PAL_MLDS_Fit  . It has the form: 

         >      > [PsiValues SDnoise LL exitfl ag output]      =      PAL_MLDS_…
Fit(StimList, NumPos, OutOfNum, PsiValuesGuess, 
SDnoiseGuess);  

 The   last, new, argument is the initial guess for the decision noise standard devia-
tion (SD). You can set this again to 0.3. The function returns a vector  PsiValues  
which contains the list of fi tted parameters. The number of parameters in 
 PsiValues  corresponds to the number of stimulus levels, but remember that the 
fi rst and last of these have already been set to 0 and 1.  SDnoise  is the estimate 
of the decision noise SD.  LL  is the log likelihood (see Section B),  exitfl ag  is 1 if 
the routine converged, 0 if it did not, and  output  is a structure that contains some 
details regarding the iterative search. 

 Finally  , to obtain estimates of the errors associated with each of the estimated 
scale parameters, we perform a bootstrap analysis using  PAL_MLDS_Bootstrap   
by typing and executing: 

         >      > [SE_PsiValues SE_SDnoise]      =      PAL_MLDS_Bootst rap(StimList,Out…
OfNum,PsiValues,SDnoise,400);  

  PsiValues    and  SDnoise  contain the values that resulted from the MLDS fi t. 
The last parameter sets the number of bootstrap iterations. 

 Both    PAL_MLDS_Fit   and  PAL_MLDS_Bootstrap   use an iterative search pro-
cedure and you can deviate from the default search parameters using an  “ options ”  



199 

argument at the end of the input parameter list. Details of how to do this can be 
found at the end of Section 4.3.3.1.2 in Chapter 4. In  PAL_MLDS_Bootstrap   the 
routine might fail to fi t a simulated dataset. If this is the case, the routine will issue 
a warning and the standard errors it returns should not be used. The problem may 
be helped by having the routine try the fi t a few more times, starting with differ-
ent initial guesses for the parameters. You can add an optional argument   ‘ max-
Tries ’   to the function call and the routine will try fi tting any failed fi ts a few times 
using different initial values for the parameters each time. The optional argument 
  ‘ maxTries ’   is used in an entirely analogous fashion as it is in the function  PAL_
PFML_BootstrapParametric   (Section 4.3.3.1.3). Note that fi ts to some simulated 
datasets may never converge. This might happen especially when an experiment 
consists of relatively few trials or when the value of  SDnoise  is high.  

    7.2.1.4       Plotting the Results of MLDS 
 First   plot a green line for the Logistic function used to generate the artifi cial 

data set. 

         >      > StimLevelsGenPlot      =      [1:0.1:9];  
         >      > PsiValuesGenPlot      =      PAL_Logistic([5 1 0…
 0],StimLevelsGenPlot);  
         >      > plot(StimLevelsGenPlot, PAL_Scale0to1(PsiValuesGenPlot),…
  ‘ g- ’ );  
         >      > hold on  

 And   now add in the MLDS-fi tted perceptual scale values and the associated 
standard errors that were derived by bootstrapping: 

         >      > plot(1:NumLevels, PsiValues,  ‘ k-s ’ );  
         >      > for i      =      2:length(SE_PsiValues)-1  
  line  ([i i],[PsiValues(i)-SE_PsiValues(i) PsiValues(i)      +    …
  SE_PsiValues(i)],  ‘ color ’ ,’k ’ );  
  end    

 The   result should look something like  Figure 7.2   . It is very important to remem-
ber that the green line in the fi gure is the function used to  generate  the responses in 
the simulated paired comparison task and is  not  a fi t to the data. The fi ts to the data 
and their bootstrap errors are the open black squares and error bars.  

    7.2.1.5       Running the MLDS Demonstration Program 
 The   various steps above can be run together as a complete sequence using the 

following demonstration routine in Palamedes: 

         >      > PAL_MLDS_Demo  
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 The   script prompts the user for the type of method (pairs, triads or quadruples), 
the number of stimulus levels, the number of repeats of each stimulus combination, 
and the hypothetical observer’s internal noise level. Thus, if these arguments are 
set to 3, 10, 30, and 0.3, the routine will output a graph that should look something 
like  Figure 7.2 . The program outputs the number of trials the experiment simulates, 
which for our example should be 2820. However, this number would be different if 
the  MaxDiffBetweenLevels  parameter, which is set inside the program to 3, is 
changed.    

    7.3       SECTION B: THEORY 

 In   Section B we describe the theory behind MLDS, consider an important issue 
that is pivotal to evaluating the relative merits of different scaling procedures, and 
discuss partition scaling. 

    7.3.1       How MLDS Works 
 Let   us begin with the example of the method of quadruples. Call the set of stimu-

lus magnitudes  S 1  ,  S 2  ,  S 3  ,  S 4  ,  S 5  ,  S 6   …  S N  . Remember that on each trial four different 
stimulus magnitudes are presented to the observer in two pairs, and the observer 
decides which pair is more different (or more similar). MLDS treats the set of values 
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 FIGURE 7.2          Example output of MLDS. The values on the abscissa are stimulus magnitudes and on 
the ordinate perceptual magnitudes. The green line is the function used to  generate  the hypothetical data 
and is  not  a fi t to the data. The square symbols are the MLDS-calculated estimates of the perceptual scale 
values associated with each stimulus level. Error bars are standard errors derived by bootstrapping.    
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  ψ  (2),   ψ  (3)  …   ψ  ( N  �   1) as free parameters that have to be estimated;   ψ  (1) and   ψ  ( N ) are 
fi xed at 0 and 1. Let’s say on trial one, the two pairs of the quadruple are  S 1 S 2   and 
 S 3 S 4  , and the observer responds that pair  S 1 S 2   is the more different. For a given test 
set of   ψ  ( S )s, MLDS calculates the probability that a hypothetical observer character-
ized by these parameters will respond that  S 1 S 2   has the larger perceived difference. 
The result is the likelihood associated with that set of   ψ  ( S ) for this one trial. The 
calculation is then repeated for the next trial, say for  S 1 S 6   and  S 2 S 4  , and so on until 
the likelihoods of all the trials have been calculated. The likelihoods of all the tri-
als are then multiplied to obtain the across-trials likelihood. The entire procedure is 
then repeated for a different test set of   ψ  ( S )s. After searching through the parameter 
space in this way the set that gives the maximum across-trials likelihood is chosen. 

 Let   us work through the fi rst trial example in more detail. We start with initial 
guesses   ψ  (1)      �      0.5,   ψ  (2)      �      0.7,   ψ  (3)      �      0.2, and   ψ  (4)      �      0.3. Let us also assume that the 
internal decision noise   σ  d        �      0.1. Now we calculate the probability that the observer 
will respond  “  S 1 S 2   more different, ”  given  those values. First we compute a value  D  that 
corresponds to the difference-between-the-difference-between scale values. This is: 

  D � � � � � � � � �| (2) (1)| | (4) (3)| |(0.7 0.5)| |(0.3 0.2) 0.1ψ ψ ψ ψ   (7.2)      

 To   convert  D  into a probability, it is fi rst converted to a  z -score by dividing by   σ  d  , 
which for this example results in a value of 1. The area under the normal distribution 
below this value is then calculated, which is 0.8413. This means that the likelihood of 
the response  “  S 1 S 2   more different, ”  given  the above values of   ψ  (1),   ψ  (2),   ψ  (3)  …   ψ  ( N ) 
and  given  a noise   σ  d   of 0.1, is 0.8413. 

 Using   the same set of   ψ  ( S ) values and the same   σ  d  , the algorithm proceeds simi-
larly to calculate the likelihoods for each of the other trials, which will include all 
other quadruples. On those trials in which the response to the  S 1 S 2 S 3 S 4   quadruple 
is  “  S 3 S 4   more different ”  the likelihood will be 1  �  0.8413      �      0.1587 (the two likeli-
hoods must sum to unity). Once the likelihoods have been calculated for all trials, 
we multiply them out to obtain their joint probability, i.e., across-trials likelihood. 
However, as with the calculation of likelihoods in Chapter 4, rather than multiply 
out the individual likelihoods across trials and then compute the logarithm of the 
result, we take the logarithm of each likelihood and sum across trials. Thus: 
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∑   (7.3)      

 where    r k   is the response (0 or 1) and  D k   the value of  D  on the  k th trial,  r  the full set 
of responses across all trials, and  T  the number of trials. The whole procedure is then 
repeated for other parameter sets of   ψ  ( S ) and   σ  d  . We then select the set that gives the 
largest across-trials likelihood. The result is the maximum likelihood estimates of the 
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parameters for   ψ  (1),   ψ  (2)  …   ψ  ( N ). These parameters then defi ne the perceptual scale 
when plotted as a function of stimulus magnitude. 

 The   same procedure applies to the methods of triads and paired comparisons, 
except that  D  for, say, the  S 1 S 2 S 3   triad is given by: 

  D � � � �| (2) (1)| | (3) (2)|ψ ψ ψ ψ   (7.4)      

   (note that   ψ  (2), which corresponds to the stimulus  S 2  , is common to both sides of 
the equation) and for, say, the  S 1 S 2   pair: 

  D � �| (2) (1)|ψ ψ   (7.5)      

 As   elsewhere in Palamedes the search function employed to choose the set of 
  ψ  ( S )s and   σ  d   that produce the greatest log likelihood is the  fminsearch  function in 
MATLAB ® , whose operation is beyond the scope of this book.  

    7.3.2       Perceptual Scales and Internal Noise 
 Intuitively  , one might think that the simplest method for constructing a perceptual 

scale is from JNDs, i.e., increment thresholds. The thought experiment goes something 
like this. Start with a low stimulus level  –  call this the fi rst baseline. Measure the JND 
between this baseline and a higher stimulus level. Now set the second baseline to be 
the fi rst baseline plus the JND, and measure a new JND. Now set the third baseline to 
the second baseline plus the second JND, measure the next JND, and so on. Eventually 
you will end up with a series of baselines separated by JNDs that span the entire stim-
ulus range. If you were to plot a graph of equally-spaced points along the ordinate  –  
these defi ne the set of perceptual levels   ψ  ( S )  –  and their corresponding baselines on 
the abscissa (equivalent to integrating the JNDs) you will have a perceptual scale. 
This type of scale is termed a Discrimination scale ( Gescheider, 1997 ), and the method 
for deriving it Discrimination or Fechnerian scaling (or Fechnerian integration). 
Fechner was the fi rst to suggest that if increment thresholds obeyed Weber’s Law 
(which states that increment thresholds are proportional to stimulus magnitude), the 
underlying psychophysical scale could be approximated by a logarithmic transform 
( Fechner, 1860/1966 ;  Gescheider, 1997 ). 

 One   obvious problem with constructing a scale of   ψ  ( S ) by integrating JNDs is that 
the errors associated with each JND will tend to accumulate as one progresses to higher 
and higher stimulus levels, causing the perceptual scale values to stray increasingly 
from their  “ true ”  values. However, one can get round this problem by fi tting a smooth 
function to a plot of JNDs against stimulus baselines, and deriving the perceptual scale 
via mathematical integration of the fi tted function (e.g.,  Kingdom  &  Moulden, 1991 ). 

 There   is, however, a potentially deeper problem with constructing perceptual 
scales from JNDs. The problem is that JNDs are not only determined by the  “ shape ”  



203 

of the perceptual scale, but also by the amount of  “ observer (or internal) noise ”  
associated with each stimulus magnitude. 

 To   understand why consider  Figure 7.3   . In  Figure 7.3a  the perceptual scale 
is again a power function   ψ  ( S )      �       aS n  , where  a  is a (arbitrary) scaling factor and  n  
an exponent less than 1 that determines the degree to which the function is bow-
shaped; in the graph  n  is again 0.5. The internal noise is shown as a Gaussian dis-
tribution centered on each point on the ordinate, and as can be seen, the standard 
deviation, spread or dispersion of the distribution   σ   is the same at all points. If 
  σ   does not vary with stimulus magnitude it is often termed  “ additive. ”  Formally, 
the addition of noise to   ψ  ( S ) can be expressed by the following equation: 

  ψ σ( ) ( )S aS Nn� �   (7.6)      

 where    N (  σ  ) is normally distributed noise around a mean of zero and standard 
deviation   σ  . If the noise is additive, then   σ   is a constant. 

 If   one assumes that each JND, measured according to some criterion level of 
performance (for example 0.75 proportion correct detections), is determined by 
the signal-to-noise ratio   Δ  ψ / σ  , where   Δ  ψ   is the corresponding average difference 
in internal response, then the resulting JNDs on the abscissa are  a  and  b . Because 
the function is bow-shaped (or compressive), the JNDs will increase with stimulus 
magnitude as shown. Note that for illustrative purposes the JNDs are much larger 
than would be expected if one assumes that the abscissa spans the full range of the 
stimulus dimension. 
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 FIGURE 7.3          The impact of both the shape of the perceptual scale and the level of internal noise on 
JNDs. Note that the JNDs  a  and  b  are much larger than would normally be found for an abscissa that 
spans the full range of the stimulus dimension, for example for contrasts ranging from 0 – 1. See text for 
details.    
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 Now   consider  Figure 7.3b . Here the perceptual scale is linear, not bow-shaped, 
and the internal noise   σ  s are  proportional to stimulus magnitude , which is termed 
 “ multiplicative ”  noise. With multiplicative noise,   σ   in Equation 7.6 is not a constant, 
but is instead proportional to stimulus magnitude, i.e., proportional to  bS n  , where  b  
scales the growth of the noise with stimulus magnitude. With multiplicative noise 
  Δ  ψ   must increase with stimulus magnitude in order to maintain the criterion ratio 
of   Δ  ψ   to   σ  . However, because the function is linear, not bow-shaped, the resulting 
JNDs are the same as in the fi gure on the left. In other words a compressive per-
ceptual scale combined with additive noise can produce the same pattern of JNDs 
as a linear perceptual scale combined with multiplicative noise. It follows that it 
is impossible to derive the shape of the underlying perceptual scale from JNDs 
 unless  one knows how internal noise changes (or not) with stimulus magnitude. Put 
another way, if one were to assume that internal noise was additive, while in fact it 
was multiplicative, the perceptual scale estimated by Discrimination scaling would 
be invalid. Of course, internal noise is not necessarily one or the other of additive or 
multiplicative; it may be a combination of the two or even be non-monotonic. But 
the same problem applies also to these other cases. 

 There   is an important caveat to this argument. If the purpose of a Discrimination 
scale is simply to defi ne a function that predicts the pattern of JNDs, then it is by 
defi nition valid irrespective of whether the internal noise is additive or multiplica-
tive. However, to repeat, if one wants to represent the true shape of the underlying 
perceptual scale, a Discrimination scale is only valid if internal noise is additive. 

 Is   MLDS robust to whether internal noise is additive or multiplicative? 
Remember that the fi tting procedure in MLDS not only fi ts   ψ  ( S ) values, but also a   σ   
for the noise associated with the decision process, i.e., an error term associated with 
making judgements about each pair, triad or quadruple. In reality this error term 
will likely be the sum of a number of different internal noise components. First, 
there is the internal noise associated with each point on the perceptual scale   ψ  ( S ); 
this is the   σ   on the ordinate of  Figure 7.3 . Second, there is the internal noise associ-
ated with judging the  difference  between stimulus levels, in other words the noise 
associated with   Δ  ψ  ( S ). With paired comparisons   Δ  ψ  ( S ) is also the decision variable, 
whereas with triads and quadruples it is an intermediate stage of processing. Given 
that perceptual distance judgements tend to be Weber-like, this second noise term 
is likely to be proportional to   Δ  ψ  ( S ), i.e., multiplicative. A third internal noise com-
ponent is associated with judging the  “ difference-between-the-difference-between ”  
stimulus levels, in other words the noise associated with   Δ  Δ  ψ  ( S ).   Δ  Δ  ψ  ( S ) is the 
decision variable for triads and quadruples, and again will likely be multiplicative. 

 The   extent to which MLDS is vulnerable to incorrect assumptions about these 
three noise components is best answered by simulation. Our own simulations 
reveal that with triads and quadruples MLDS is robust to whether the internal noise 
levels associated with   ψ  ( S ) and/or   Δ  ψ  ( S ) is additive or multiplicative, provided 
the internal noise levels are not implausibly large. For the internal noise associated 
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with the decision variable   Δ  Δ  ψ  ( S ),  Maloney and Yang (2003)  have shown that with 
quadruples, MLDS is similarly robust to whether the noise is additive or multiplica-
tive. Therefore, with triads and quadruples, MLDS appears to be robust to whether 
all three noise components are additive or multiplicative. That is, the assumption 
implicit in MLDS that all the noise components are additive does not result in a 
mis-estimation of the shape of the perceptual scale if any or all of the noise com-
ponents are in fact multiplicative. On the other hand, with paired comparisons our 
simulations show that MLDS is not robust to whether the noise added to each   ψ  ( S ) 
is additive or multiplicative. Therefore, we recommend that paired comparisons 
should only be used with MLDS if one can safely assume that the internal noise 
associated with each   ψ  ( S ) is additive, not multiplicative. 

 In   the next section we will argue that the partition scaling methods described in 
Chapter 3 are also robust to whether the noise associated with either   ψ  ( S ) or   Δ  ψ  ( S ) 
is additive or multiplicative.  

    7.3.3       Partition Scaling 
 In   Chapter 3 we described various methods for partition scaling. All involved 

observers adjusting the magnitude of a stimulus until it was perceptually midway 
between two  “ anchor ”  stimuli. Here we argue that, in principle, partition scaling 
methods are also robust to whether the internal noise associated with each   ψ  ( S ) is 
additive or multiplicative. 

 Consider    Figure 7.4   . In the fi gure, perceptual magnitude   ψ  , not stimulus magni-
tude, is shown on the abscissa. In this hypothetical example the internal noise lev-
els are multiplicative, i.e., they increase with stimulus magnitude, as can be seen 
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 FIGURE 7.4          Effect of internal noise in a partition scaling experiment. Perceived stimulus magnitude 
  ψ   is shown on the  abscissa . The green curves describe the distributions of   ψ   in response to the two 
anchors  L  (lower) and  U  (upper), as well as the distribution of   ψ   for the partition settings.  d  is the 
distance between the means of the anchor distributions.    
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by the different   σ  s for the two anchor   ψ  s. On a given trial the observer’s setting 
will be a point midway between two random samples   ψ  ( L ) and   ψ  ( U ), plus an error 
  ψ  ( � ). This error is a combination of the internal noise associated with the partition 
stimulus plus a computational noise component that will likely be proportional to 
the perceived distance between the anchors. Thus, the distribution of   ψ  ( P ) will be 
determined by the   σ  s of the two anchor distributions, and a   σ   associated with the 
partition setting. Let the distance between the means of the two anchor distribu-
tions be  d . If we set the mean value of the lower anchor distribution to be zero, the 
setting on a given trial will be: 

  
ψ

ψ ψ
ψ ε( )

[ ( ) ( )]
( )P

L U
�

�
�

2
  (7.7)      

 One   can see intuitively from Equation 7.7 that if   ψ  ( L ),   ψ  ( U ), and   ψ  ( � ) are random 
variables from three normal distributions, the mean of   ψ  ( P ) will be  d /2, irrespective 
of the variance of each distribution. This follows the rule that the mean difference 
between two normal distributions is equal to the difference between their means, 
irrespective of their variances. For readers interested in a more formal proof of the 
idea, one needs to integrate Equation 7.7. If we denote the ordinate of a normal dis-
tribution by  φ , then the distributions of   ψ  ( L ),   ψ  ( U ), and   ψ  ( � ) are given by: 
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 where     σ  L  ,   σ  U  , and   σ  �   are the standard deviations of the lower anchor, upper 
anchor, and partition setting distributions. To make the following equation less 
cumbersome, if we denote   ψ  ( L ) as  l ,   ψ  ( U ) as  u ,   ψ  ( P ) as  p , and   ψ  ( � ) as  � , then the 
expected value  E ( p ) is: 
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 In   other words, the expected partition setting is independent of the   σ  s associated 
with   ψ  ( L ),   ψ  ( U ), and   ψ  ( P ). This will only be true, however, if the noise is symmetric, e.g., 
normally distributed, but this would seem to be a reasonable assumption in most cases. 

 In   short, partition scaling should produce an interval perceptual scale that is robust 
to whether the internal noise levels are additive or multiplicative. By robust we do 
not mean unaffected. The reliability of each partition setting will be dependent on the 
amount of internal noise at the perceptual level of the partition stimulus, as well as 
the computational noise associated with making the partition judgement. However, 
we argue that with partition scaling the derived shape of the perceptual scale should 
not be  systematically  shifted from its  “ true ”  shape if internal noise is multiplicative. 

 To   summarize: we argue that MLDS with the methods of triads or quadruples, 
and partition scaling methods, should result in unbiased estimates of the under-
lying perceptual scale. However, Discrimination scaling and MLDS using paired 
comparisons will only result in valid perceptual scales if one can safely assume that 
internal noise is additive. 

 Are   there any advantages to partition scaling over MLDS? MLDS requires a large 
number of trials, especially if it uses a large number of stimulus levels, which would 
be necessary if the total number of discriminable steps across the stimulus range was 
large, as for example with contrast (e.g.,  Kingdom and Whittle (1996)  estimated that 
for periodic patterns the number of discriminable steps across the full contrast range 
was roughly between about 40 and 90, depending on the observer and the particular 
stimulus). Under these circumstances partition scaling methods might prove to be 
more effi cient.   

    Further Reading 
 An   excellent and user-friendly discussion of psychological scaling procedures 

can be found in Chapters 9 and 10 of  Gescheider (1997) . A more detailed discussion 
can be found in the classic text on scaling by  Torgerson (1958) . MLDS is described 
in  Maloney  &  Yang (2003) . An excellent discussion on Thurstonian scaling methods 
can be found in McNicol (2004). Multi-dimensional scaling techniques are described 
in  Borg  &  Groenen (2005) .  

    Exercise     

 EXERCISE 207

       1.     Use Palamedes to explore the relative merits of using pairs, triads and quadruples to 
establish a perceptual scale. Simulate experiments with pairs, triads and quadruples 
using the same-shaped scale for generating the hypothetical observer responses, 
the same number of stimulus levels, the same number of trials and the same lev-
els of observer decision noise. Then fi t the results using MLDS. Is there a difference 
between pairs, triads and quadruples in how close the MLDS-fi tted scale values are 
to the generator scale? Is there a difference in the size of the bootstrap errors?   
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C H A P T E R

                         Model Comparisons  

    8.1           INTRODUCTION 

 As   in any fi eld of behavioral science, statistical tests are often required to make 
inferences about data. Ideally, psychophysical data would  “ speak for itself, ”  but in 
reality differences between psychophysical measurements obtained under different 
conditions are often subtle, and the consensus (particularly strong among reviewers 
of research articles) is that one needs criteria to judge whether the differences are 
 “ real ”  or not. 

 The   theory of statistical testing and its application to psychophysical data is an exten-
sive and complex topic. This chapter is not intended either as a general introduction to 
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it, or as a summary of the gamut of statistical tests available for analyzing psychophysi-
cal data. That would require a book (actually several books) in itself. Rather, we explain 
the logic behind the likelihood ratio test which is a statistical test which has a very gen-
eral application, but we use examples taken from a particular context, namely that of 
testing models regarding psychometric functions. We also discuss the Palamedes tool-
box routines that implement the tests. Finally, we present some alternative approaches 
to model selection. Much of what follows is concerned with psychometric functions, 
so the reader is encouraged to read at least Section A of Chapter 4 before tackling the 
present chapter. 

 Let  ’s say you are interested in determining whether some variable X affects 
the performance of some task. An example would be whether adaptation, such 
as from prolonged viewing of a stimulus, affects the visual system’s sensitivity to 
another stimulus. The presence or absence of adaptation would be manipulated by 
the researcher and is considered to be the independent variable, and you would be 
interested in its effects on performance in a detection task, which is considered the 
dependent variable. We use adaptation/no-adaption as an example of an independent 
variable, but many others could be used, e.g., the stimuli could be fast-moving 
versus slow-moving, red-colored versus green-colored, large versus small, etc. In 
order to determine whether an effect of adaptation exists, you measure an observ-
er’s performance twice using a 2AFC paradigm, once without adaptation and once 
with adaptation. You use the method of constant stimuli with 5 stimulus contrasts 
and 100 trials at each stimulus contrast in both conditions. The results shown in 
 Table 8.1    are obtained. These are hypothetical data and we have chosen to use 
whole numbers for the log contrast values. These numbers would be unrealistic in 
a real experiment, but will be convenient in this and other examples. 

 Using   the procedures discussed in Chapter 4 and implemented in the Palamedes 
function  PAL_PFML_Fit  , the conditions can be fi tted individually with Logistic 
functions using a maximum likelihood criterion. The guessing rate parameter 
is fi xed at 0.5, the lapse rate parameter is fi xed at 0, but the threshold and slope 
parameters are free to vary.  Figure 8.1    displays the two fi tted functions as well as 

 TABLE 8.1          Number of correct responses out of 100 trials (or 200 when combined) 
in a hypothetical experiment investigating whether adaptation to a stimulus affects the 

sensitivity to another stimulus  

     Log contrast 

      � 2   � 1    0    1   2 

   No adaptation  61  70  81  92  97 

   Adaptation  59  59  67  86  91 

   Combined  120  129  148  178  188 
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the  “ raw ”  proportions correct for both of the conditions. It appears that the thresh-
old estimates are quite different between the conditions. This is obvious from  Figure 
8.1  in that the fi tted function for the  “ no adaptation ”  condition lies some way to the 
left of that for the adaptation condition. Specifi cally, the value for the threshold esti-
mate in condition 1 is  � 0.5946, and in condition 2 it is 0.3563. The estimates for the 
slope parameters, on the other hand, are very close: 1.0158 and 0.9947 for conditions 
1 and 2, respectively. Indeed, in  Figure 8.1  the two functions appear approximately 
equally steep. 

 It   is tempting to conclude from these results that adaptation indeed affects per-
formance. After all, the two fi tted functions are not identical, especially with respect 
to the value of the threshold parameter. The problem with that logic, however, is 
that this may simply be due to  “ sampling error. ”  In Chapter 4 we discussed how 
the parameter estimates derived from experimental data are exactly that: estimates. 
They will not be equal in value to the  “ true ”  parameter values, but rather will vary 
between repeated experiments due to sampling error, even if the experiments are 
conducted identically. In other words, the fi nding that the parameter estimates in 
the above experiment are not identical across conditions is not a surprise at all, and 
does not, in and of itself, mean that the underlying, true parameters have differ-
ent values. This chapter will discuss procedures that are used to answer questions 
about the true underlying parameter values when all we have are their estimates 
obtained from the limited set of data from an experiment. Such procedures are com-
monly referred to as inferential statistics, since they deal with making inferences 
about parameter values from experimental data. Note that many research questions 
do not concern the exact value of a threshold or slope parameter  per se , but rather 
ask whether parameter values differ as a function of some independent variable. In 
our example above, we are not interested in the absolute level of performance with 
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or without adaptation  per se ; rather, we are interested in whether this performance 
differs between the adaptation conditions.  

    8.2           SECTION A: STATISTICAL INFERENCE 

    8.2.1           Standard Error Eyeballing 
 In   Chapter 4 we discussed the standard error of a parameter estimate. The proper 

interpretation of a standard error is somewhat complicated, and is discussed in Chapter 
4. For our current purposes we may loosely think of a standard error as the expected dif-
ference between the true parameter value and our estimate, based on the results of our 
experiment. The standard errors for the parameter estimates in the above experiment 
were estimated using the Palamedes function  PAL_PFML_BootstrapParametric   
(Chapter 4).  Table 8.2    lists the four parameter estimates (a threshold and slope estimate 
for each of the two conditions) with their standard errors. 

    Figure 8.2    shows the threshold parameter estimates (left panel) and the slope 
parameter estimates (right panel) for the two conditions in the above experiment. 

 TABLE 8.2          Parameter estimates along with their standard errors (SE) based on the raw data shown 
in  Table 8.1  and  Figure 8.1   

     Threshold  SE  Slope  SE 

   No adaptation   � 0.5946  0.2174  1.0158  0.1814 

   Adaptation  0.3563  0.2207  0.9947  0.2167 
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 FIGURE 8.2          Graphical representation of the threshold and slope estimates and standard errors 
shown in  Table 8.2 . Standard error bars represent parameter estimate  � /     �     1 standard error.    
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The vertical lines shown with each of the estimated parameters are standard error 
bars. Standard error bars extend from one standard error below the parameter esti-
mate to one standard error above the parameter estimate. For example, the stand-
ard error bar of the threshold in condition 1 covers the interval  � 0.8120 ( � 0.5946  �  
0.2174) to  � 0.3772 ( � 0.5946      �      0.2174). 

 The   standard errors tell us something about the reliability of the parameter esti-
mate. As a rule of thumb, we can be fairly confi dent that the value of the under-
lying true parameter will be within the range delineated by the standard error 
bars. Assuming the sampling distribution of parameter estimates is approximately 
normal in shape (a reasonable assumption in most practical situations) the stand-
ard error bars delineate the 68% confi dence interval of the parameter estimate. 
Confi dence intervals are discussed in some detail in Chapter 4. Briefl y, the idea 
behind a confi dence interval is that it makes the notion that the parameter esti-
mate is indeed only an estimate explicit. It also expresses the degree of uncertainty 
regarding the value of the parameter in a manner which has some intuitive appeal. 
We say that we can be 68% confi dent that the true threshold in the no adaptation 
condition has a value between one standard error below its estimate and one stand-
ard error above it. Note that this does not mean that the probability that the value 
of the underlying parameter has a value within this range is 68%. The distinction 
between  “ probability ”  and  “ confi dence ”  is explained in Chapter 4. 

 Given   a graph which displays parameter estimates with their standard error bars, 
we can eyeball whether it is reasonable to attribute an observed difference between 
parameter estimates to sampling error alone. Remember that to say that the dif-
ference between parameter estimates is due to sampling error alone is to say that 
the parameter estimates were derived from identical true underlying parameters. 
Consider the left panel in  Figure 8.2 , which shows the threshold estimates in the 
two experimental conditions with their standard error bars. Given the  “ confi dence ”  
interpretation of standard error bars outlined above, we can be 68% confi dent that 
the true threshold in the no adaptation condition has a value within the range delin-
eated by its standard error bar. Similarly, we can be 68% confi dent that the true 
threshold in the adaptation condition has a value within the range delineated by its 
standard bar. Combining these two pieces of information, it seems reasonable also 
to be confi dent that the underlying parameter values in the conditions are not equal 
to each other, and thus that adaptation affects performance. 

 A   very general rule-of-thumb to adopt is to check whether the standard error 
bars show any overlap between conditions. If there is no overlap, as is the case for 
the threshold estimates in the left panel of  Figure 8.2 , it is usually considered rea-
sonable to conclude that the underlying true parameters are not identical. In this 
example it would lead us to conclude that adaptation does increase the detection 
threshold. Consider now the right hand panel of  Figure 8.2 , which shows the esti-
mates of the slope parameters with their standard errors for the two conditions. 
The slope estimates differ somewhat between the conditions, but the standard error 
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bars show a great deal of overlap. This would lead us to conclude that the observed 
difference in slope estimates might very well be due to sampling error, and gives us 
little reason to suspect that the underlying true parameters are different between 
conditions. 

 Note   that whereas it is considered acceptable to conclude that parameter values 
are  “ different ”  (as we did here with regard to the threshold parameters) we can never 
conclude that parameter values are  “ identical. ”  For example, we cannot conclude 
that the true slope parameters are identical here; it is very possible that the slope 
parameter in the no adaptation condition has a true value near 1.05 and that in the 
adaptation condition a true value near 0.95. Note how we worded our conclusions 
regarding the slope parameters above. We never concluded that the slope parameters 
were the same, instead we concluded that the observed difference in their estimates 
could very well have arisen by sampling error alone. We also stated that we were 
given little reason to suspect that the true slope parameters were different. In other 
words, with respect to the slope parameters, we simply do not know whether the dif-
ference between estimates is due to sampling error, or to a difference in the underly-
ing parameter values, or a combination of the two. 

 Many   researchers will report the parameter estimates with their standard errors 
either in a table (as in our  Table 8.2 ) or in a graph (as in our  Figure 8.2 ) without 
any further statistical analysis. The reader is left to his or her own devices to draw 
conclusions as to whether an effect of some experimental manipulation is  “ real ”  
(i.e., due to differences in the underlying true parameter values) or whether it could 
have resulted from sampling error alone. In many cases, it is quite clear whether 
one can reasonably conclude that parameters differ between conditions or whether 
such a conclusion is unwarranted. For example, given the results in  Figure 8.2 , few 
will argue with the conclusion that the difference in threshold estimates is probably 
real, whereas the difference in slope estimates could easily be attributed to sam-
pling error alone. In other situations, it can be quite an art to eyeball whether an 
effect is  “ real ”  or might be due to sampling error. 

 Under   some circumstances it might be useful to display not the standard errors of 
a parameter estimate in a fi gure, but rather some multiple of the standard error. One 
that is often encountered is 1.96 (or simply 2) standard error bars. In other words, 
the error bars extend from 1.96 standard errors below the parameter estimate to 
1.96 standard errors above the parameter estimate. If we assume that the sampling 
distribution of the parameter estimate is normal in shape, such error bars deline-
ate the 95% confi dence interval. Within the classical hypothesis testing framework, 
convention allows us to conclude that the true parameter value is not equal to any 
particular value outside of the 95% confi dence interval. So, one might prefer  “ 1.96 
standard error bars ”  in case one wants to show that the parameter value is different 
from some particular fi xed value, for example the value zero in case the parameter 
represents a difference between conditions. Figure captions should always be clear 
as to what the error bars exactly represent.  
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    8.2.2           Model Comparisons 
 This   section describes the underlying logic behind the likelihood ratio test. This 

is a more formal procedure for determining whether differences between the fi t-
ted psychometric functions (PF) in different conditions are substantial enough to 
allow us to conclude that the parameters of the underlying true PFs are different. 
The problem is the same as before: even if the experimental manipulation between 
conditions in actuality has no effect we still expect differences in the results between 
the two conditions due to random factors. So the mere existence of differences in the 
results between conditions does not necessarily mean that the true underlying PFs 
are different. The logic underlying the traditional (or  “ frequentist ”  or  “ Fisherian ” ) 
solution to this problem is the same for any statistical test you come across that 
results in a  “  p -value. ”  This  p -value is the ultimate result of any frequentist statisti-
cal test. It serves as the criterion for our decision as to whether we can reasonably 
conclude that an experimental manipulation affects performance. Using the example 
experiment described above, this section will go through one of several comparisons 
we might make in order to explain the concept of the  p -value, and will then extend 
the logic to some other comparisons we could perform. 

    8.2.2.1           The Underlying Logic 
 We   need to decide whether the observed differences among the PFs in the two 

conditions are real or whether they may be accounted for by sampling error alone. 
The specifi c research question is again whether adaptation affects performance on 
our task. Another way of looking at the question is that we aim to decide between 
two candidate models. One model states that adaptation does not affect perform-
ance. According to this model any observed differences in the results between the 
experimental conditions do not refl ect a difference between the true underlying PFs, 
but are rather due to sampling error. In other words, performance in both conditions 
is governed by identical underlying PFs. Let us call this model the 1 PF model. The 
second model states that adaptation does affect performance. Thus, differences in the 
results between conditions refl ect differences between conditions in the performance 
of the underlying sensory mechanism. There are thus two different underlying true 
PFs, one for each condition. Let us call this model the 2 PF model. 

 A   different way to think about the two models is that they differ in the assump-
tions they make. Let us list these assumptions explicitly. The 2 PF model assumes 
that the probability of a correct response is constant for a given stimulus level in 
a given condition. What this means is that the model assumes that, as the experi-
ment progresses, the participant does not improve or get worse (due to learning 
or fatigue, perhaps). We have called this assumption the  “ assumption of stability ”  
in Chapter 4. It also means that the model assumes independence between trials: 
whether the observer gets the response on a trial correct does not affect the proba-
bility that he or she will get the response on the next trial (or any other trial) correct. 
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We have called this the  “ assumption of independence ”  in Chapter 4. The assump-
tions of stability and independence allow us to treat all 100 trials in a particular con-
dition and at a particular contrast identically (and combine them as we did in  Table 
8.1  and  Figure 8.1 ). The 2 PF model also assumes that the probability of a correct 
response in the no adaptation condition varies as a function of stimulus intensity in 
the form of a psychometric function with a particular shape (we assumed a Logistic 
function on log-transformed stimulus intensities). The model assumes that, in the 
adaptation condition also, probability correct varies with log-transformed stimulus 
levels according to a Logistic function. The Logistic functions in the two conditions 
do not necessarily have equal thresholds or slopes according to the 2 PF model. Let 
us further have the model assume that in both conditions the lapse rate equals 0 
and the guess rate equals 0.5 (see Chapter 4). 

 The   1 PF model makes all the assumptions that the 2 PF model makes, but makes 
some additional assumptions and therefore is a bit more restrictive. The additional 
assumptions are that the true underlying thresholds of the PFs in both conditions 
are identical, and that the slopes are also identical. This is a crucial characteristic of 
model comparisons: one of the candidate models needs to make the same assump-
tions as the other model and at least one additional assumption. The statistical 
model comparison is used to decide whether the extra assumptions that the more 
restrictive model makes are reasonable. Note that when we use the term  “ assump-
tion ”  we mean a restrictive condition. One could argue that the 2 PF model makes 
an assumption that the 1 PF model does not, namely that the PFs are not identi-
cal between conditions. However, if we reserve the term assumption for restrictive 
conditions only it is the 1 PF model which makes the additional assumption. Here, 
we refer to the more restrictive model as the  “ lesser ”  model and the less restrictive 
model as the  “ fuller ”  model. 

 In   order to perform the statistical comparison, we start by fi tting the data from 
both conditions twice: once under the assumptions of one of the models, and once 
under the assumptions of the other model. Let us fi rst consider the 1 PF model, 
which claims that adaptation does not affect performance. Under the assumptions 
of this model, true performance is equal between conditions. In order to estimate 
the parameters of this single underlying function we should combine the trials 
across the conditions and fi t a single PF to the results.  Table 8.1  shows the number 
of correct responses combined across conditions. Of course, the number correct is 
now out of 200 trials per stimulus level. We can use  PAL_PFML_Fit   to fi t a PF to 
these data using a maximum likelihood criterion. We use a Logistic function and 
assume a value of 0.5 for the guess rate and a value of 0 for the lapse rate. The 
resulting best-fi tting function is shown by the broken line in  Figure 8.1 . It has a 
threshold estimate equal to  � 0.1251 and a slope estimate equal to 0.9544. 

 The   2 PF model claims that adaptation does affect performance; thus, under the 
assumptions of this model the underlying PFs for the two conditions will be dif-
ferent and we should fi t each condition individually. We have already fi tted this 
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model above (Section 8.1) and the fi tted functions are shown in  Figure 8.1  by the 
green lines. 

 Now  , which is the better model? Remember that we used the  “ likelihood ”  
(Chapter 4) as the metric in which to defi ne  “ best-fi tting. ”  It might seem that all 
we need to do is determine which of the two models has the higher likelihood, and 
conclude it is that model which is the better one. That is a nice idea, but it will not 
work. To appreciate why, consider the following. Under the 2 PF model we fi t the 
conditions separately, each with its own PF. The 2 PF model will fi t identical PFs in 
the two conditions in the (extremely unlikely) case in which the proportions correct 
in condition 1 are identical to those in condition 2. In this case (and this case only), 
the fi t of the 2 PF model would be identical to that of the 1 PF model, as would 
the likelihoods associated with the models. In case any difference in the pattern of 
results exists between the two conditions,  be it due to a real effect or sampling error , the 
2 PF model has the opportunity to fi t different PFs in the two conditions in order 
to increase the likelihood. The 1 PF model, on the other hand, does not. It is con-
strained to fi t a single PF to the two conditions. Thus, the 2 PF model can mimic the 
1 PF model if the results in the conditions are identical, but improve its fi t when the 
conditions are different. Another way of thinking about this is that the 1 PF model 
is a special case of the 2 PF model; namely the case in which the 2 PFs of the 2 PF 
model happen to be identical. As a result, the likelihood under the 2 PF model  will 
always be greater than or equal to  the likelihood of the 1 PF model. 

    Table 8.3    shows the parameter estimates and likelihoods for both models for this 
example. The likelihood under the 1 PF model is 1.0763  �  10  � 215 , while under the 
2 PF model it is 5.1609  �  10  � 213 . In other words, the likelihood under the single PF 
model is only a fraction, equal to 1.0763  �  10  � 215 /5.1609  �  10  � 213       �      0.0021, of the 
likelihood under the two PF model. This ratio is known as the  “ likelihood ratio, ”  
and is a measure of the relative fi t of the two models. In cases where the results in 
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 TABLE 8.3          Model fi ts to experimental data and to data from the fi rst simulation. 
 LR  is the likelihood ratio  

       α   no adaptation     β   no adaptation     α   adaptation     β   adaptation   Likelihood   LR  

   Experimental data: 

   1 PF:   � 0.1251  0.9544   � 0.1251  0.9544  1.0763      �      10  � 215   0.0021 

   2 PF:   � 0.5946  1.0158  0.3563  0.9947  5.1609      �      10  � 213    

   Simulation 1: 

   1 PF:   � 0.2441  0.9224   � 0.2441  0.9224  2.0468      �      10  � 211   0.6326 

   2 PF:   � 0.2082  1.0454   � 0.2768  0.8224  3.2355      �      10  � 211    
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the two conditions are exactly identical, the two model fi ts will also be identical, 
and the likelihood ratio would equal 1. In cases where the results differ between 
conditions, the 2 PF model will result in a higher likelihood compared to the 1 PF 
model and the likelihood ratio will be less than 1. The smaller the likelihood ratio, 
the worse is the fi t of the 1 PF model relative to that of the 2 PF model. 

 The   1 PF model would have you believe that the relatively small value of the 
likelihood ratio in our experimental data can be explained entirely by sampling 
error. That is, according to this model the underlying true PFs in the two condi-
tions are identical and the differences in actual observed performance between con-
ditions are due to random factors only. The question is whether that is a reasonable 
explanation of the low value of the likelihood ratio. In other words, is it possible 
for an observer whose true PFs are identical between conditions to generate data 
resulting in such a low value of the likelihood ratio? One way to answer this ques-
tion is simply to try it out. We simulate an observer who responds according to the 
1 PF model and run this hypothetical observer many times through the same exper-
iment that our human observer participated in. For every repetition we calculate 
the likelihood ratio based on the simulated results, and we see whether any of them 
are as small as that obtained from our human observer. 

 Specifi cally  , in this situation, we test a simulated observer in an experiment that 
uses the same stimulus intensities as the experiment that our human observer par-
ticipated in. The responses are generated in accordance with the 1 PF model which 
describes the performance of our human observer best (i.e., under both conditions 
the responses are generated by the PF shown by the broken line in  Figure 8.1 ).  Table 
8.4    shows the results of the fi rst such simulated experiment. 

 These   simulated results are plotted in  Figure 8.3    together with the best-fi tting PFs 
under the 2 PF model (green lines) and the best-fi tting PF under the 1 PF model (bro-
ken line).  Table 8.3  shows the parameter estimates, likelihoods, and the likelihood 
ratio alongside the same information for the experimental data for both models. It 
is important to stress that these simulated data were generated by a hypothetical 
observer whose responses were known to be governed by the 1 PF model. Quite 
clearly, the results are much more similar between the two conditions compared to 

 TABLE 8.4          Results generated by a simulated observer acting according to the 1 PF model 
which fi ts the data shown in  Table 8.1  best and is displayed by the broken line in  Figure 8.1   

     Log contrast 

      � 2   � 1  0  1  2 

   Condition 1  61  63  77  89  96 

   Condition 2  59  71  75  87  94 
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those produced by our human observer. The separate PFs of the 2 PF model hardly 
differ from each other or from the single PF of the 1 PF model. Not surprisingly 
then, the likelihood ratio for the simulated data is 0.6326, much closer to 1 com-
pared to the likelihood ratio we obtained from the data of our human observer. 
Of course, a single simulated data set resulting in a much higher likelihood ratio 
than our human data does not allow us to conclude much. However, we repeated 
the simulation a total of 10,000 times.  Figure 8.4    shows the results of the fi rst 11 
of these 10,000 simulations and the best-fi tting PFs to the individual conditions. The 
results and fi ts to the experimental data are also shown again. Each of the graphs 
also shows the corresponding likelihood ratio ( LR ). 

 Note   from  Figure 8.4  that the likelihood ratio varies systematically with the simi-
larity between the fi tted PFs in the two conditions. For example, in simulation 9 the 
two PFs are nearly identical and the value of the likelihood ratio is very near in value 
to 1. On the other hand, in simulation 3 the PFs appear quite different and the likeli-
hood ratio is only 0.0039. However, none of the 11 simulated likelihood ratios shown 
in  Figure 8.4  are as small as that of our experimental data. As a matter of fact, of 
the 10,000 simulations only 24 resulted in a smaller likelihood ratio than that based 
on our experimental data. Apparently it is very unlikely (24 out of 10,000 gives p  �  
0.0024) that an observer who acts according to the 1 PF model would produce a like-
lihood ratio as small or smaller than that produced by our human observer. It seems 
reasonable to conclude, then, that our human observer did  not  act according to the 
1 PF model. The simulations indicate that we simply would not expect such a small 
likelihood ratio had the observer acted in accordance with the 1 PF model. 

 The    p -value of 0.0024 we derived above is analogous to a  p -value obtained from any 
classical, frequentist Null Hypothesis test that the reader might be more familiar with 
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 FIGURE 8.3          Data and fi ts of simulated experiment in which responses were generated according to 
the 1 PF model which fi ts the results of the human observer best. (i.e., the broken line in  Figure 8.1 ).    
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(be it a  z -test, regression, ANOVA, or whatever). Any of these tests can be phrased in 
terms of a comparison between two models. One of the two models is always a more 
restrictive,  “ special case ”  version of the other. The  p -value which results from such a 
test and is reported in journal articles always means the same thing. Roughly speak-
ing, it is the probability of obtaining the observed data if the more restrictive model 
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 FIGURE 8.4          Experimental results as well as the results of the fi rst 11 simulated experiments. 
The simulated observer acted according to the 1 PF model. Also shown are the likelihood ratios ( LR ) 
associated with each graph.    
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were true. If this probability is small (no greater than 5% by broad convention), we 
may conclude that the assumptions which the more restrictive model makes (but the 
alternative model does not) are incorrect. 

 We   apply the same logic on a regular basis in our daily lives. Compare our logic 
to these two examples:  “ If he had remembered that today is our anniversary he 
would probably have said something by now. Since he has not said something by 
now, he has probably forgotten that today is our anniversary; ”  or  “ If it was my dog 
Brutus that roughed up your cat Fifi , Brutus would have probably had his face all 
scratched up. Since Brutus does not have his face all scratched up, it probably was 
not Brutus that roughed up Fifi . ”  In our logic:  “ If the simpler model were true, the 
likelihood ratio probably would not have been as small as it was. Since it  did  come 
out as small as it was, the simpler model is probably not true. ”  Note that, despite its 
tremendous intuitive appeal, the logic is in fact fl awed, as a Bayesian thinker would 
be quick to point out. That is, we are making a statement about the probability that 
a model is true given our experimental results, but we do so based on the probabil-
ity of obtaining our experimental results given that the model is true (See Chapter 4, 
Section 4.3.3.2.1, for a more elaborate version of the Bayesian argument). 

 The   function  PAL_PFLR_ModelComparison   in the Palamedes toolbox is used 
to perform the above model comparison. We use the above example to demonstrate 
the use of the function. We specify the stimulus intensities in a matrix which has as 
many rows as there are experimental conditions, and as many columns as there are 
stimulus intensities in each condition. For our example we would specify: 

         >      > StimLevels      =      [-2:1:2; -2:1:2];  

 A   second matrix specifi es the number of trials used at each of the stimulus levels 
in each condition: 

         >      > OutOfNum      =      [100 100 100 100 100; 100 100 100 100 100];  

 A   third matrix specifi es the number of correct responses for each stimulus level 
and condition: 

         >      > NumPos      =      [61 70 81 92 97; 59 59 67 86 91];  

 We   need to specify the form of the psychometric function we wish to use as a 
MATLAB® inline function: 

         >      > PF      =      @PAL_Logistic;  

 We   also create a matrix that contains values for the parameter values. For both 
conditions we provide the initial guesses for the free parameters and specifi c values 
to use for the fi xed parameters. Unless we specify otherwise, the fi tting of PFs in the 
function will use fi xed values for the guess rates and lapse rates, while the thresh-
old and slope parameters will be free parameters. 

         >      > params      =      [0 1 .5 0; 0 1 .5 0];  
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 Finally  , we create a variable which specifi es the number of simulations we wish 
to perform to derive our statistical  p -value. 

         >      > B      =      10000;  

 We   are now ready to call our function: 

         >      > [TLR pTLR paramsL paramsF TLRSim converged]      =   ...   
PAL_PFLR_ModelComparison (StimLevels, NumPos, ...
OutOfNum, params, B, PF);  

  pTLR    will contain the proportion of simulated likelihood ratios that were smaller 
than the likelihood ratio obtained from the human data. 

         >      > pTLR  
  pTLR    =   
  0  .0024  

 Thus  , in only 24 of our 10,000 simulated experiments was the likelihood ratio 
smaller than that obtained from our human observer. Note that the exact value for 
 pTLR  might vary a bit when we run the function again, due to the stochastic nature of 
the simulations.  TLR  is the  “ transformed likelihood ratio ”  which is a transformation 
of the likelihood ratio based on the experimental data. We will have more to say about 
the transformed likelihood ratio in Section B of this chapter.  paramsL  and  paramsF  
are the parameter estimates under the 1 PF and the 2 PF model, respectively. The L in 
 paramsL  stands for the lesser model, since the 1 PF model is more restrictive com-
pared to the 2 PF model. Similarly, the F in  paramsF  stands for the fuller model. 

         >      > paramsL  
  paramsL    =   
    -0.1251       0.9544       0.5000       0  
    -0.1251       0.9544       0.5000       0  

 Note   that the estimates are identical for the two conditions, which was an assump-
tion made by the 1 PF model. Note also that these estimates are identical to those 
derived above by combining the results across conditions and fi tting a single PF to 
the combined results. 

         >      > paramsF  
  paramsF    =   
    -0.5946       1.0158       0.5000       0  
   0  .3563       0.9947       0.5000       0  

 Note   that these results are identical to those derived above by fi tting the conditions 
separately ( Table 8.2 ). Small differences might arise because of the limited precision in 
the search procedure that fi nds the maximum likelihood. In the program  PAL_PFLR_
Demo  we demonstrate how to change the settings of the search algorithm in order to 
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improve the precision.  TLRSim  is a vector of length  B  which contains the values of the 
transformed likelihood ratios resulting from each of the simulated experiments.  con-
verged  is a vector of length  B  whose entries contain a 1 for each simulated experi-
ment that was fi t successfully and a 0 for each simulation that was not successfully 
fi t. In case not all fi ts converged successfully, you can use the optional arguments 
 maxTries  and  rangeTries  in a manner analogous to their use in the functions 
 PAL_PFML_BootstrapParametric   and  PAL_PFML_BootstrapNonParametric   
(Section 4.3.3.1.3). In this particular example, a small percentage of fi ts will fail on the 
fi rst try and the  maxTries  and  rangeTries  options will remedy this.  PAL_PFLR_
Demo  demonstrates how to use the optional arguments.   

    8.2.3           Other Model Comparisons 
 Note   that the 1 PF and the 2 PF models in Section 8.2.1 differ with respect to the 

assumptions they make about the thresholds, as well as the slopes in the two con-
ditions. We ended up deciding that the 2 PF model fi t the data signifi cantly better 
than the 1 PF model. What we do not know is whether this is because the thresholds 
or the slopes or perhaps both differ between conditions. The 2 PF model would 
also have a much better fi t if, for example, only the thresholds were very different 
between conditions but the slopes were very similar. This, in fact, seems to be the 
case in the example above based on the eyeball method described in Section 8.2.1 
applied to  Figure 8.2 . However, we may perform model comparisons that target 
more specifi c research questions. 

 Specifi cally  , we can perform  any  comparison in which one of the models is a special 
case of the other model. In the comparison of the 1 PF and the 2 PF model we argued 
that the 2 PF model can always match the likelihood of the 1 PF model. It would only 
do so in case the results were exactly identical between the two conditions. In that 
case, the 2 PF would fi t identical PFs to the conditions, and the likelihood under the 1 
PF and 2 PF models would be identical. In case any differences exist between condi-
tions, the 1 PF model is constrained to fi t a single PF to both conditions, but the 2 PF 
model can accommodate the differences between conditions by fi tting different PFs 
to the conditions. When a model is a special case of a second model, we say that it is 
 “ nested ”  under the second model. The likelihood ratio test is appropriate only when 
one of the models to be compared is nested under the alternative model. 

 We   will now discuss two more model comparisons. Both tackle more specifi c 
research questions compared to the above 1 PF versus 2 PF comparison. Both model 
comparisons compare a lesser and a fuller model where the lesser model is nested 
under the fuller model. The fi rst model comparison tests whether the threshold 
parameters differ between conditions, the second model comparison tests whether 
the slope parameters differ between conditions. Keep in mind that there are many 
more model comparisons that we could perform. As long as one of the models is 
nested under the other, we can use the likelihood ratio test to compare them. 
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    8.2.3.1           Effect on Threshold 
 Perhaps   you are not interested in whether adaptation has an effect on the slopes 

of the PF, but are only interested in the effect on the thresholds. In this case you 
could compare a model which assumes that thresholds and slopes differ between 
conditions (this is the 2 PF model from above) to a lesser model which is identi-
cal except that it constrains only the thresholds to be identical. Note that the lesser 
model is once again a special-case version of the fuller model. That is, under the 2 
PF model it is possible to fi t PFs with equal thresholds to the two conditions. Thus, 
the fuller 2 PF model can do everything the lesser model can do and more. 

 In   order to perform this model comparison in Palamedes, we need to change the 
default settings of  PAL_PFLR_ModelComparison  . Under the default settings,  PAL_
PFLR_ModelComparison   performs the test above which compares the 2 PF model 
to the 1 PF model. The current comparison is identical to the 2 PF versus 1 PF model 
test of Section 8.2.1, except that now in the lesser model only the thresholds should 
be constrained to be identical between conditions, but the slopes should be allowed 
to vary between the conditions. We can make such changes by providing  PAL_PFLR_
ModelComparison  with optional arguments. These optional arguments come in 
pairs. The fi rst argument in the pair indicates which setting we wish to change, and the 
second indicates the new value of the setting. The options are shown in  Textbox 8.1   . 

   Textbox 8.1             Defi ning models in  PAL_PFLR_ModelComparison          

 To   each of  lesserThresholds, lesserSlopes, lesserGuessRates, 
lesserLapseRates, fullerThresholds, fullerSlopes, fullerGuess
Rates, fullerLapseRates  the following values may be assigned: 

     ‘ fi xed ’  constrains parameter estimates in all conditions to be equal to the value 
specifi ed in  params  argument. 

     ‘ constrained ’   constrains parameter estimates in all conditions to be identical 
in value but this common value is a free parameter. 

     ‘ unconstrained ’   allows each parameter estimate to take on any value. 
 In addition to the above three options, user may also pass a numeric array which 

allows for the specifi cation of custom models (refer to Section B of this chapter). 
 The   prefi xes   ‘ lesser ’   and   ‘ fuller ’   indicate to which of the two to-be-

 compared models the settings should be applied. 
 Default   settings:              lesserThresholds:             constrained  
               lesserSlopes:           constrained  
               lesserGuesRates:           fi xed  
               lesserLapseRates:           fi xed  
               fullerThresholds:           unconstrained  
               fullerSlopes:           unconstrained  
               fullerGuesRates:           fi xed  
               fullerLapseRates:           fi xed    
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 Our   fuller model (the 2 PF model of Section 8.2.3) corresponds to the default set-
tings. Our lesser model, however, differs from the default lesser model in that in 
the default lesser model the slopes are constrained to be equal. Thus, for our lesser 
model we need to free the slope estimates such that they can take on different val-
ues in the two conditions. We set up our variables as before, but now we call the 
function as follows: 

         >      > [TLR pTLR paramsL paramsF TLRSim converged]      =   ... 
  PAL_PFLR_ModelComparison (StimLevels, NumPos, ... 
OutOfNum, params, B, PF,  ‘ lesserSlopes ’ , ‘unconstrained ’ );  

 When   we inspect the parameter estimates under the lesser model, we note that 
the threshold estimates are identical in value under this model but the slope esti-
mates are not, as we specifi ed: 

         >      > paramsL  
  paramsL    =   
    -0.1906       1.1560       0.5000       0  
    -0.1906       0.7824       0.5000       0  

 The   value of  pTLR  is once again very small: 

         >      > pTLR  
  pTLR        =      0.0015  

 Thus  , we conclude that the difference in threshold estimates between the con-
ditions refl ects a real difference in the underlying threshold parameters, and that 
adaptation does appear to affect the threshold.  

    8.2.3.2           Effect on Slope 
 Similarly  , we can test whether the slopes differ signifi cantly. Our fuller model 

should once again be the 2 PF model which allows thresholds and slopes to differ 
between conditions. Now, our lesser model should constrain the slopes, but allow 
the thresholds to vary between conditions. We call the function as follows: 

         >      > [TLR pTLR paramsL paramsF TLRSim converged]      =    ... 
 PAL_PFLR_ModelComparison (StimLevels, NumPos, ... 
OutOfNum, params, B, PF,  ‘ lesserThresholds ’ ,‘unconstrained ’ );  

 When   we inspect the parameter estimates of the lesser model we note that the 
slope estimates are indeed equal in value between the two conditions, but the 
thresholds are not. 

         >      > paramsL  
  paramsL    =   
    -0.6001       1.0071       0.5000       0  
   0  .3605       1.0071       0.5000       0  
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  As   expected, pTLR now has a much larger value:  
         >      > pTLR  
  pTLR        =      0.9337  

 Thus  , a likelihood ratio as small as that of our human observer could eas-
ily have arisen by sampling error alone in case the lesser model was true; i.e., we 
have no reason to suspect that the slopes of the underlying true PFs differ between 
conditions. 

 So   far, it appears based on the model comparisons that the assumption that the 
slopes are equal between conditions is reasonable. The assumption that the thresh-
olds are equal, however, does not appear to be reasonable. Going back to our origi-
nal research question, then, we may reasonably conclude that adaptation affects the 
threshold, but not slope, of the psychometric function.   

    8.2.4           Goodness-of-Fit 
 In   the adaptation experiment example, it appears that the slopes may be equal 

between conditions, but that the thresholds are not. However, remember that both 
models in each of the comparisons made additional assumptions. The assump-
tions made by all of the models above is that the probability of a correct response 
is constant for a particular stimulus level in a particular condition (assumptions of 
stability and independence), and that this probability is a function of log stimulus 
intensity by way of the Logistic function with guess rate equal to 0.5 and lapse rate 
equal to 0. It is very important to note that the procedure we followed to make our 
conclusions regarding the equality of the threshold and slope parameters is valid 
only insofar as these assumptions are valid. The assumptions of stability and inde-
pendence are rarely made explicit in research articles, and their validity is rarely 
tested. The other assumptions are often explicitly verifi ed by way of a specifi c 
model comparison, which is commonly referred to as a  “ goodness-of-fi t test. ”  

 Although   no different from any of the tests we performed above in any funda-
mental sense, such a model comparison is referred to as a goodness-of-fi t test for 
reasons we hope to make evident below. A goodness-of-fi t test is performed in 
order to test whether a particular model provides an adequate fi t to some data. We 
briefl y mentioned goodness-of-fi t tests in Chapter 4 and we are now ready to dis-
cuss them in more detail. The general logic behind a goodness-of-fi t test is the same 
as described above. A goodness-of-fi t test also compares two models. Here again, 
one of the models is nested under the other model. 

 By   way of example, let us determine the goodness-of-fi t of the model which, so 
far, appears to do a good job of fi tting the data obtained in our two-condition exper-
iment above. This is the model which assumes that the slopes are identical between 
conditions, but the thresholds are not. For the sake of brevity we will refer to this 
model as the  “ target model. ”  
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 The   target model assumes stability, independence, Logistic functions with guess 
rate equal to 0.5 and lapse rate equal to 0, and equal slopes between conditions. A 
goodness-of-fi t test is used to test the validity of all these assumptions of the tar-
get model simultaneously, except for the assumptions of stability and independ-
ence. It does so by comparing the target model against a model which makes  only  
the assumptions of stability and independence. The model which assumes only sta-
bility and independence is termed the  “ saturated model. ”  In the saturated model, 
the parameters corresponding to the probabilities of a correct response are not 
constrained at all. That is, for each stimulus intensity in each of the conditions, the 
estimate of the probability of a correct response is free to take on any value entirely 
independent of the probabilities of correct responses at other stimulus intensities or 
conditions. Thus, the saturated model requires the estimation of the probability of a 
correct response for each particular stimulus intensity in each condition. Note that 
the target model is nested under the saturated model. That is, under the saturated 
model the probabilities of a correct response are free to take on any value, including 
those that would collectively conform exactly to the target model. As such, the target 
model could not possibly produce a better fi t (as measured by the likelihood) com-
pared to the saturated model, and thus we can perform the likelihood ratio test. 

 Now   that we have identifi ed our two models and made sure that one is nested under 
the other, we proceed exactly as we did in the tests we performed above. We simulate 
the experiment many times using a hypothetical observer which we programmed to 
respond in accordance with the more restrictive, or lesser, target model. We fi t the data 
of each simulated experiment twice: once under the assumptions of the target model; 
and once under the assumptions of the saturated model. Under the saturated model, 
the fi tting consists of fi nding the probability of a correct response for each condition and 
stimulus intensity which maximizes the likelihood. These will simply be the observed 
proportions of correct responses. For each simulated experiment we calculate the likeli-
hood ratio based on these fi ts. If the likelihood ratio computed from our experimental 
data seems to be similar to those obtained from the simulated experiments, it seems 
reasonable to conclude that our human observer acted like the target model (i.e., the 
target model fi ts the data well). If the likelihood ratio obtained from our experimen-
tal data is much lower than those typically obtained from the simulated observer, we 
decide that at least one of the assumptions made by the target model, but not by the 
saturated model, is invalid (i.e., the target model does not fi t the data well). 

 The   Palamedes function that performs a goodness-of-fi t test when we have 
more than one condition is  PAL_PFML_GoodnessOfFitMultiple  . We defi ne 
 StimLevels, NumPos, OutOfNum ,  B , and  PF  as above. We also need to specify 
the parameter values to be used while generating responses during the simulations. 
We use the best-fi tting parameter estimates obtained from our experimental data 
and derived under the assumptions of the target model. 

         >      > params      =      [-0.6001 1.0071 0.5 0; 0.3605 1.0071 0.5 0];  
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 We   are now ready to call the function. In the function call we specify our target 
model. That is, we specify whether the thresholds, slopes, guess rates, and lapse 
rates in the target model are constrained to be identical between conditions, are free 
to differ between conditions, or have a fi xed value. 

         >      > [TLR pTLR TLRSim converged]      =    ... 
 PAL_PFML_GoodnessOfFitMultiple(S timLevels, NumPos, ... 
OutOfNum, params, B, PF,  ‘ Thresholds ’ ,  ‘ unconstrained ’ , ... 
 ‘ Slopes ’ ,  ‘ constrained ’ ,  ‘ GuessRates ’ ,  ‘ fi xed ’ , ...
 ‘ LapseRates ’ ,  ‘ fi xed ’ );  

 After   the routine completes, we can inspect the statistical  p -value: 

         >      > pTLR  
  pTLR    =   
  0  .9167  

 Thus  , the target model provides an excellent fi t to the experimental data (after 
all, our experimental data produced a higher likelihood ratio than 92% of the data 
sets that were actually produced according to the target model). 

 Note   that when we defi ned the target model we did not specify it to have the 
particular parameter values that we estimated from our data. That is, for each of 
the simulations the parameter estimates of the lesser model were determined from 
the simulated data themselves. This is crucial, because if we were to force the lesser 
model for all the simulated datasets to have the specifi c parameter estimates that 
we derived from our data, our resulting  p -value would be hard to interpret. The 
problem is that the model we specify should be a model of the actual underlying 
process. However, the parameter estimates that we derive from our data are only 
estimates. Their exact values are tailored to the particular set of responses we col-
lected from our observer. If we were to test our observer again, these estimates 
would have different values. Thus, to include the specifi c values of parameter esti-
mates in the defi nition of the model we wish to test is inappropriate. A general rule-
of-thumb to follow is that the target model you wish to test should be specifi ed 
before the experimental data are collected. Of course, before the data are collected 
there is no way to predict what the best-fi tting estimates to the data will turn out to 
be. Thus, we do not specify their exact values in our target model. 

 The   transformed likelihood ratio derived in the context of a goodness-of-fi t test 
is known as  “ Deviance. ”  It is important to keep in mind, however, that despite this 
difference in terminology a goodness-of-fi t test is not in any fundamental sense dif-
ferent from any other likelihood ratio test. A goodness-of-fi t test is simply a test in 
which the fuller model is the saturated model, which is assumption-free except for 
the assumptions of stability and independence.  
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    8.2.5           More Than Two Conditions 
 The   functions  PAL_PFLR_ModelComparison   and  PAL_PFML_GoodnessOf

FitMultiple  may be used to compare models involving any number of condi-
tions. As long as one of the models is nested under the other, the models can be 
compared using the likelihood ratio test. Imagine you wish to expand on the above 
experiment by testing how thresholds vary with the duration of adaptation. You 
use four different durations of adaptation period: 0, 4, 8, and 12 seconds. Thus, you 
now have four conditions. As before, in each condition you use stimulus contrasts 
 � 2,  � 1, 0, 1, and 2 (in logarithmic units). You use 150 trials at each stimulus inten-
sity in each condition for a total of 3,000 trials (4 adaptation durations  �  5 stimulus 
contrasts  �  150 trials).  Table 8.5    shows the number of correct responses for the dif-
ferent conditions. 

 One   might start off by fi tting a PF to each condition separately. Let us say that 
we are confi dent that fi xing the PFs guess rate at 0.5 is appropriate. However, we 
are aware that observers on occasion will lapse. As discussed in Chapter 4 (Section 
4.3.3.1.2) lapses may have a large effect on threshold and slope estimates if it is 
assumed that the lapse rate equals 0. Thus, we wish to make the lapse rate a free 
parameter. We are interested in the effect on threshold, so threshold is made a free 
parameter. We also wish to estimate the slope of each PF.  Table 8.5  lists the param-
eter estimates derived by fi tting the conditions individually with a Logistic function 
using a maximum likelihood criterion with threshold, slope, and lapse rate being free 
parameters.  Figure 8.5    plots the observed proportions correct and the fi tted PFs. 

 We   note a few problems. One is that one of the lapse rate estimates is negative, 
and we know that the true lapse rate cannot be negative, so this is clearly not a very 
good estimate. We may of course constrain the lapse rate to be non-negative (see 
Chapter 4). The low slope estimate in that same condition is also a bad estimate 

 8.2. SECTION A: STATISTICAL INFERENCE 229

 TABLE 8.5          Number of correct responses (of 150 trials) as a function of log contrast and 
adaptation duration. Also shown are parameter estimates (  α  : threshold,   β  : slope,   λ  : lapse rate) 

for individually fi tted conditions  

     Log contrast  Parameter estimates 

      � 2   � 1  0  1  2    α      β      λ   

   Adaptation duration                 
   0 seconds  84  92  128  137  143   � 0.57  1.89  0.050 

   4 seconds  67  85  103  131  139  0.12  1.98  0.063 

   8 seconds  73  85  92  125  143  0.61  1.68  0.002 

   12 seconds  82  86  97  122  141  0.93  1.02   � 0.089 
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(directly related to the mis-estimate of the lapse rate). A second problem we face is 
that we cannot estimate standard errors by the bootstrap method because not all fi ts 
to simulated data sets will converge. The fundamental problem with our current 
strategy is that we are attempting to derive too many parameter estimates from too 
few observations. We need to decrease the number of free parameters or, alterna-
tively, increase the number of observations (manyfold). 

 Let   us try to reduce the number of free parameters. For example, the lapse rate 
may be assumed to be identical between conditions. Lapses occur when the proba-
bility of a correct response is independent of stimulus intensity (Section 4.3.1.1), for 
example when the stimulus presentation is missed altogether due to a sneeze and 
the observer is left to guess. There is little reason to suspect that lapse rates would 
vary with condition. Thus, we will constrain the lapse rate to be identical between 
conditions and effectively estimate a single lapse rate across all conditions. This 
has the obvious advantage that this single lapse rate will be based on four times 
the number of trials that a lapse rate fi tted to an individual condition would be. We 
will also assume that the slope parameters are equal between conditions. Thus, we 
will constrain the slope parameter to be equal between conditions and estimate a 
single, shared, slope parameter. It is of course debatable whether it is reasonable to 
assume that slopes are equal between conditions, and we should consider whether 
this assumption seems reasonable on a case-by-case basis. Either way, we can test 
whether these kinds of assumptions are reasonable by performing a goodness-of-fi t 
test (which we will do later). 

 We   have now reduced the number of free parameters from 12 (4 thresholds, 4 
slopes, 4 lapse rates) to 6 (4 thresholds, 1 slope, 1 lapse rate). The Palamedes function 
 PAL_PFML_FitMultiple   can be used to fi t a model such as we have just defi ned 
to a multi-condition experiment. We need to specify a matrix containing the stimulus 
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 FIGURE 8.5          Proportion correct as a function of log contrast for each of four adaptation durations.    
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intensities, number of trials, and number of correct responses as we did above 
(Section 8.2.2.1) except, of course, that we now have four rather than two conditions. 

         >      > StimLevels      =      [-2:1:2; -2:1:2; -2:1:2; -2:1:2];  
         >      > OutOfNum      =      [150 150 150 150 150; 150 150 150 150 150; ... 
150 150 150 150 150; 150 150 150 150 150];  
         >      > NumPos      =      [84 92 128 137 143; 67 85 103 131 139; 73 85 ... 
92 125 143; 82 86 97 122 141];  

 We   also need to specify the form of PF we wish to use. As always, we defi ne it as 
an inline function: 

         >      > PF      =      @PAL_Logistic;  

 We   need to specify our initial guesses for the free parameters and specify the val-
ues to be used for the fi xed parameters. We defi ne a matrix with as many rows as 
there are conditions in the experiment. Each row contains values for the threshold, 
slope, guess rate, and lapse rate, respectively. 

         >      > params      =      [-.6 1.8 .5 .02; .1 1.8 .5 .02; .6 1.8 .5 .02; ... 
.9 1.8 .5 .02];  

 Our   guesses for parameter values here are guided by the fi ts shown in  Table 8.5 . 
We can now call our function. Within the function call, we will specify the model 
that we wish to apply by way of optional arguments. These arguments come in 
pairs (as above, Section 8.2.3) with the fi rst argument of the pair indicating which of 
the parameters we wish to specify (  ‘ Thresholds ’ ,  ‘ Slopes ’ ,  ‘ Guessrates ’ , 
 ‘ Lapserates ’  ) and the second indicating our assumption (  ‘ fi xed ’ ,  ‘ con-
strained ’ ,  ‘ unconstrained ’  ). Specifying   ‘ fi xed ’   will fi x the parameter value 
to whatever value we provided in  params ,   ‘ constrained ’   will fi t a value, but it 
will fi t the same value to all conditions, and   ‘ unconstrained ’   will fi t a different 
value to each condition. Thus, our function call is as follows: 

         >      > [paramsFitted LL exitfl ag output]      =    ...
 PAL_PFML_FitMultiple(StimLevels, NumPos, ... 
OutOfNum, params, PF,  ‘ Thresholds ’ ,  ‘ unconstrained ’ , ... 
 ‘ Slopes ’ ,  ‘ constrained ’ ,  ‘ GuessRates ’ ,  ‘ fi xed ’ , ... 
 ‘ LapseRates ’ ,  ‘ constrained ’ );  

  paramsFitted    will contain the estimated (or fi xed) parameter values,  LL  is 
the log likelihood associated with the model fi t,  exitfl ag  is set to 1 in case the fi t 
was successful or to 0 if not, and  output  contains some information on the itera-
tive search procedure (see description of  PAL_PFML_Fit   in Section 4.3.3.1.2). Let’s 
inspect the parameter estimates: 

         >      > paramsFitted  
  paramsFitted    =   
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    -0.5315       1.7412       0.5000       0.0400  
   0  .2144       1.7412       0.5000       0.0400  
   0  .4484       1.7412       0.5000       0.0400  
   0  .4587       1.7412       0.5000       0.0400  

 We   note that, as specifi ed, the thresholds have been allowed to take on different 
values between conditions, but the slopes as well as the lapse rates are identical 
between conditions, and the guess rates are fi xed at 0.5. 

 Palamedes   also contains functions which will perform a bootstrap analysis (Section 
4.3.3.1.3) to fi nd standard errors of the parameter estimates in a multi-condition fi t. 
 PAL_PFML_BootstrapParametricMultiple   performs a parametric bootstrap and 
 PAL_PFML_BootstrapNonParametricMultiple   performs a non-parametric boot-
strap. The use of both functions is demonstrated in  PAL_PFLR_FourGroup_Demo.m  , 
and we will demonstrate here only the use of  PAL_PFML_BootstrapParametri
cMultiple . We defi ne  StimLevels ,  OutOfNum  and  PF  as above. We also need to 
specify the number of simulations on which we wish to base the standard errors: 

         >      > B      =      400;  

 By   running  PAL_PFML_FitMultiple   the best-fi tting parameter estimates were 
assigned to  paramsFitted , which we need to pass to the function. In the function 
call, we specify the model that is being considered as we did above. 

         >      > [SD paramsSim LLSim converged]      =    ... 
 PAL_PFML_BootstrapParametricMultiple(StimLevels, ...  
  OutOfNum  , paramsFitted, B, PF,  ‘ Thresholds ’ , ... 
 ‘ unconstrained ’ ,  ‘ Slopes ’ ,  ‘ constrained ’ ,  ‘ GuessRates ’ , ... 
 ‘ fi xed ’ ,  ‘ LapseRates ’ ,  ‘ constrained ’ ,  ‘ lapseLimits’,[0 1]);  

 Note that we have constrained the lapse rate to be fi tted to have a positive value 
(Chapter 4). After   the routine completes, we can inspect the standard errors: 

         >      >  SD  
  SD    =   
  0  .1476       0.2602       0       0.0166  
  0  .1531       0.2602       0       0.0166  
  0  .1566       0.2602       0       0.0166  
  0  .1528       0.2602       0       0.0166  

 The    SD  matrix is organized in an identical manner to the  paramsFitted  matrix. 
That is, each row corresponds to a condition, and each row lists the standard error on 
the threshold, slope, guess rate, and lapse rate, respectively. We note that the stand-
ard errors for slopes and lapse rates are identical between the four conditions. This 
is because in each simulation the slopes were constrained to be identical, as were the 
lapse rates. The standard errors for the thresholds, on the other hand, differ between 
conditions.  Figure 8.6    plots the threshold estimates with their standard errors. 
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 When   we apply the eyeball method of Section 8.2.1 to  Figure 8.6 , it seems quite 
clear that we may reasonably conclude that the true thresholds are not equal across 
all four conditions. In particular, the threshold in condition 1 is very low compared 
to the others and, taking into consideration the standard errors, this appears to be a 
real effect (i.e., unlikely to occur by sampling error only). 

 Let   us confi rm this conclusion by performing a statistical model comparison. In 
order to do so, we need to defi ne the appropriate lesser and fuller models. The fuller 
model is the model we have just fi tted. Besides making the assumptions of stability 
and independence, it assumes that the underlying PFs are Logistic functions, that the 
slopes as well as the lapse rates are identical between conditions, and that the guess 
rate equals 0.5 for all four conditions. The lesser model is identical except that it makes 
the additional assumption that the thresholds are identical between conditions. Note 
that the lesser model is nested under the fuller model, which is a necessary condition 
for us to perform our model comparison by way of the likelihood ratio test. 

 Before   we call  PAL_PFLR_ModelComparison  , we set up our arguments. 

         >      > StimLevels      =      [-2:1:2; -2:1:2; -2:1:2; -2:1:2];  
         >      > OutOfNum      =      [150 150 150 150 150; 150 150 150 150 150; ... 
150 150 150 150 150; 150 150 150 150 150];  
         >      > NumPos      =      [84 92 128 137 143; 67 85 103 131 139; 73 85 ...
92 125 143; 82 86 97 122 141];  
         >      > PF      =      @PAL_Logistic;  
         >      > params      =      paramsFitted; %assumes paramsFitted is still 
%in memory. Could also have used guesses: PAL_PFLR_
%ModelComparison performs fi t.  
         >      > B      =      4000;  
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 FIGURE 8.6          Plot of threshold estimates and standard errors as a function of adaptation duration 
(based on the hypothetical data shown in  Table 8.5 ).    
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 We   are now ready to call  PAL_PFLR_ModelComparison  : 

         >      > [TLR pTLR paramsL paramsF TLRSim converged]      =    ... 
 PAL_PFLR_ModelComparison (StimLevels, NumPos, ... 
OutOfNum, paramsFitted, B, PF,  ‘ lesserlapse ’ , ‘constrained ’ , ... 
 ‘ fullerlapse ’ , ‘constrained ’ ,  ‘ fullerslope ’ , ... 
‘constrained ’ ,  ‘ lapseLimits ’ ,[0 1])  

 Remember   that we only need to specify the model specifi cations which deviate 
from the default values listed in  Textbox 8.1 . The function will take a little while to 
complete (it simulates 12 million trials and performs 8,002 model fi ts). After it com-
pletes we inspect  pTLR . 

         >      > pTLR  
  pTLR        =      0  

 In   words, none of the 4,000 experiments that were simulated in accordance with 
the lesser model (in which thresholds are equal) resulted in a likelihood ratio as 
low as that resulting from our experimental data (i.e.,  p        �      1/4,000). Remember that 
the likelihood ratio is a measure of the fi t of the lesser model relative to that of the 
fuller model. Thus, we conclude that our experimental data were not generated by 
an observer acting according to the lesser model. That is, adaptation duration does 
appear to affect threshold. 

 On   occasion, some of the fi ts to simulated datasets might not converge. Such sit-
uations might be remedied by having the routine try the fi ts repeatedly using ini-
tial parameter values that are randomly drawn from a range we can specify using 
the optional arguments  maxTries  and  rangeTries  in the same manner as we 
did in the function  PAL_PFML_BootstrapParametric   (Section 4.3.3.1.3). Note, 
however, that here also some datasets might not be fi ttable at all, because no local 
maximum exists in the likelihood function. The fi le  PAL_PFLR_FourGroupDemo   
demonstrates the use of  maxTries  and  rangeTries . 

 Note   that the model comparison does not invalidate any of the assumptions that 
are made by both models: stability, independence, the true functions that describe 
probability of a correct response as a function of log contrast are Logistic functions, 
the slopes and the lapse rates of the true PFs are identical between conditions, 
and the guess rate equals 0.5. We can test all but the assumptions of stability and 
independence by performing a goodness-of-fi t test. All arguments that need to be 
defi ned for  PAL_PFML_GoodnessOfFitMultiple   have been defi ned previously. 

         >      > [TLR pTLR TLRSim converged]      =    ...  
PAL_PFML_GoodnessOfFitMultiple(StimLevels, NumPos, ... 
OutOfNum, paramsFitted, B, PF,  ‘ Thresholds ’ , ... 
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 ‘ unconstrained ’ ,  ‘ Slopes ’ ,  ‘ constrained ’ ,  ‘ GuessRates ’ ,... 
 ‘ fi xed ’ ,  ‘ LapseRates ’ ,  ‘ constrained ’ ,  ‘ lapseLimits ’ , [0 1]);  

 Once   again, we may need the optional  maxTries  and  rangeTries  to make 
the fi ts to all simulated datasets converge. After the function completes we 
inspect  pTLR : 

         >      > pTLR  
  pTLR        =      0.7218  

 In   words, the data from our human observer produced a fi t which was bet-
ter than 72% of the data sets that were simulated in accordance with our model. 
Thus, we may conclude that all assumptions that our model makes, but the satu-
rated model does not, seem reasonable. In other words, the model provides a good 
description of the behavior of our human observer. Once again, it is important to 
realize that our conclusions are only valid insofar as the assumptions that  both  mod-
els make (i.e., those of stability and independence) are valid. 

 Overall  , then, our conclusion is that thresholds are affected by adaptation dura-
tion. Note that we may conclude only that not all underlying thresholds are equal 
(which is the assumption that the lesser model made but the fuller model did not). 
We may not conclude that they are all different. The situation is analogous to that 
which results when we reject the Null Hypothesis in an Analysis of Variance 
(ANOVA), with which the reader might be more familiar. For example, we cannot 
conclude that the threshold in condition 3 differs from that in condition 4. Of course, 
we could perform what is often termed a  “ pairwise comparison. ”  This could simply 
be a model comparison between condition 3 and 4 disregarding the other conditions 
(i.e., as in the two-group comparison in Section 8.2.2). There are six such pairwise 
comparisons that could be performed in this four-condition experiment. A disadvan-
tage of performing pairwise comparisons in such a manner is that we lose the distinct 
benefi t of being able to use all data in the experiment to estimate a single lapse rate or 
slope. Of course, we would still be able to estimate a single slope or lapse rate across 
the two conditions under consideration, but we will again be pushing the number of 
parameters we are attempting to estimate from a relatively small amount of data. 

 Palamedes   offers the possibility of answering more specifi c questions about, for 
example, the thresholds such as the question posed above (i.e.,  “ do we have reason to 
believe that the true threshold in condition 3 might differ from that in condition 4? ” ), 
without losing the advantage of basing our lapse parameter estimate on all data col-
lected in the experiment. Another research question that one might wish to consider 
is whether the decelerating nature of the thresholds as a function of adaptation dura-
tion is  “ real ”  or whether a linear trend suffi ces to describe the thresholds. Answering 
these more specifi c question requires a bit of technical detail and we will take up the 
issue and attempt to answer the above two questions in Section B of this chapter.   
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    8.3           SECTION B: THEORY AND DETAILS 

    8.3.1           The Likelihood Ratio Test 
 All   of the model comparisons in Section A were performed using what is known 

as the likelihood ratio test. The likelihood ratio test is a very fl exible test. As long as 
one of the models is nested under the other and we can estimate model parameters 
by applying the maximum likelihood criterion, we can use the likelihood ratio test. 
In order to understand the details behind the likelihood ratio test, we will start off 
by considering a very simple example, that of coin fl ipping. We will then extend the 
logic to more complex situations.  

    8.3.2           Simple Example: Fairness of Coin 
 Let  ’s say that we have a particular coin that we suspect is biased. Here, we con-

sider a coin to be biased when the probability that it will land heads on any given 
fl ip does not equal 0.5. We perform a rather small-scale experiment which consists 
of fl ipping the coin ten times. The results of the ten fl ips are respectively (H: heads; 
T: tails): 

 HHTHTTHHTH   
 Thus  , we obtained six heads out of ten fl ips. Do we have any reason to believe 

that the coin is not fair? In Chapter 4 (Section 4.3.3.1.1) we performed the same 
experiment (with the same outcome) in order to illustrate use of the likelihood 
function in parameter estimation. Equation 4.9 in Chapter 4 introduced the likeli-
hood function: 
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∏   (4.9)      

 where    a  is a potential value for our parameter of interest,  p ( y k    |   a ) is the probabil-
ity of observing outcome  y  on trial k  assuming  value  a  for our parameter, and  N  is 
our total number of trials (here,  N       �      10). 

 Note   again that the likelihood function is a function of  a . In Chapter 4 we defi ned 
the maximum likelihood estimate of   α   (the parameter corresponding to the prob-
ability that the coin will land heads on any fl ip) to be that value of  a  for which 
 L ( a   |   y ) attains its maximum value. For the results of the current experiment, the max-
imum likelihood occurs at  a       �      0.6 and this is the maximum likelihood estimate of   α  . 

 Currently  , we are trying to decide whether the outcome of our experiment gives 
us any reason to believe that our coin is unfair. To put this a bit differently, we are 
trying to decide between two different models of the world. In one model the coin is 
fair, in the other it is not. The fi rst model is more restrictive compared to the second 
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because it assumes a particular value of   α   (0.5), whereas the second model allows   α   
to assume any value. For this reason we refer to the models here as the lesser and 
fuller model, respectively. The likelihood ratio is the ratio of the likelihood under 
the lesser model to that of the likelihood under the fuller model, using the maxi-
mum likelihood estimate for the free parameter in the fuller model. Thus, the likeli-
hood ratio is: 
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 The   interpretation of this value is that the probability that a fair coin would pro-
duce the exact outcome of the experiment as we observed it is a fraction, equal to 
0.8176, of the probability that a coin characterized by   α        �      0.6 would produce the 
same result. Because the lesser model is a more restrictive variant of the fuller 
model, the likelihood ratio must have a value in the interval between 0 and 1, inclu-
sive. In our example, it would equal 1 in case we had fl ipped an equal number of 
heads and tails, an outcome which would have given us no reason whatsoever to 
suspect our coin was unfair. The likelihood ratio equals 0 only when the outcome 
of the experiment is impossible under the lesser model, but not the fuller model. 
Under our lesser model, no outcome would have been impossible. Only under two 
possible lesser models (  α        �      0 and   α        �      1) would the outcome of the experiment be 
an impossibility. 

 Note   that the likelihood ratio will get smaller as the proportion of fl ips which 
land heads in an experiment deviates more from the expected value under the lesser 
model. Specifi cally,  Table 8.6    lists the six possible values of the likelihood ratio that 
may result from an experiment such as this, the outcomes that would result in these 
likelihoods, and the probabilities with which the six likelihood ratios would be 
obtained if one used a fair coin. Also listed for each possible outcome is the asso-
ciated cumulative probability, i.e., the probability that a fair coin would produce a 
likelihood ratio equal to or smaller than that listed. For reasons to be discussed later, 
we often do not report the likelihood ratio, but rather a monotonic transformation 
of the likelihood ratio, which we refer to here as  TLR  (transformed likelihood ratio, 
 TLR       �       � 2log e (  Λ  )). Note that the likelihood ratio and  TLR  are functions of the results 
of our experiment and can thus be termed statistics. A distribution of the values of 
a statistic that might result from an experiment, together with the probabilities of 
obtaining these values and assuming a particular state of the world (here: the coin is 
fair or   α        �      0.5) is termed a  “ sampling distribution ”  of that statistic. 

 As   you can see from the cumulative sampling distribution of the likelihood ratio 
(p(  Λ        �        Λ  i    |   α        �      0.5)) in  Table 8.6  (and likely suspected by using common sense) 
obtaining a likelihood ratio as low as 0.8176 is not an unexpected outcome if the 
coin is fair. You would expect the likelihood ratio to be that low or lower on about 
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three of every four (0.7540) similar experiments performed with a fair coin. As such, 
the outcome of our experiment gives us no reason to suspect that our coin is unfair. 
Had nine of the ten fl ips in our experiment come up heads, our likelihood ratio 
would have been 0.0252. Obtaining a likelihood as low as 0.0252 in the experiment 
is an unlikely thing to happen (p      �      0.0215) when one fl ips a fair coin. Thus, when 
a coin does produce nine heads out of ten fl ips, it appears reasonable to doubt the 
fairness of the coin. 

 By   convention, the outcome of the experiment needs to have a probability of less 
than 5% of occurring in case the lesser model is true before we may conclude that 
the lesser model is false. Note that we need to consider not the probability of the 
 exact  outcome. Rather, we should consider the probability of an outcome which is 
at least as different from that expected under the lesser model as the outcome that 
is actually obtained. One way in which to look at this is that we need to establish 
these probabilities regarding the outcome of an experiment before the experiment 
actually takes place. After the experiment has taken place there is no uncertainty 
regarding its outcome, and calculating the probability of the observed outcome is 
an absurdity. Before the experiment takes place we do not suspect that the coin will 
fl ip exactly nine (or any other specifi c number), rather we suspect it is unfair and 
thus expect it will fl ip a number of heads which is different from fi ve. 

 As   a bit of an aside, people nevertheless have a strong tendency to  “ guesstimate ”  
the probability of seemingly improbable events that have already occurred. In case 
this number comes out low, they tend to rule out the possibility of the event being 
random and prefer other (usually incredulous) explanations. This reasoning has 
immense intuitive appeal, but is nevertheless invalid. Consider the following story, 
which is somewhat true (the details have been forgotten and made up here). One 
of us once witnessed a presentation by a researcher who studied twins. He related 
to his audience a case of two identical twins who were separated shortly after 

 TABLE 8.6          Sampling distribution and cumulative sampling distribution of the likelihood 
ratio (  Λ  i  ,  i  enumerates possible outcomes of experiment) and transformed likelihood ratio ( TLR ) 

for an experiment consisting of ten fl ips and assuming   α    �  0.5  

   Number heads    Λ  i     TLR  [ � 2log e (  Λ  i  )]   p (  Λ        �        Λ  i  |   α        �      0.5)   p (  Λ        �        Λ  i  |  α        �      0.5) 

   0 or 10  0.0010  13.8629  0.0020  0.0020 

   1 or 9  0.0252  7.3613  0.0195  0.0215 

   2 or 8  0.1455  3.8549  0.0879  0.1094 

   3 or 7  0.4392  1.6457  0.2344  0.3438 

   4 or 6  0.8176  0.4027  0.4102  0.7540 

   5  1  0  0.2461  1 
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birth and grew up far apart and unaware of each other’s existence. The researcher 
tracked down both twins and found that both twins were chiefs of their respective 
county’s fi re departments and both twins drove a 1987 blue Ford pick-up truck. 
The researcher mentioned that he had performed a quick casual estimate of the 
probability that two randomly selected individuals would both be chiefs of their 
respective county’s fi re departments and would both drive a 1987 blue Ford pick-
up truck. That number was obviously extremely low. The audience was to infer, we 
presume, that one’s choice of occupation, as well as the color, year, and make of the 
car one drives are genetically determined. 

 Had   the researcher predicted beforehand that both twins would be fi re department 
chiefs and would both drive a 1987 blue Ford pick-up truck you should be impressed. 
However, you should also consider that to be a rather odd prediction to make. A more 
sensible, but still quite odd, prediction would have been that both twins would have 
the same occupation (whatever it may turn out to be) and would drive similar vehi-
cles. For the sake of argument, let’s say the researcher had made this latter prediction 
before tracking down his separated twins. Being a much less specifi c prediction, the 
probability of it occurring by chance alone is much greater than that of a prediction 
which specifi es particular occupations and particular vehicles. However, we imagine 
it would still be low enough to reject chance as an explanation if the prediction was 
correct (at least by the rules of classical hypothesis testing). 

 Unfortunately  , on tracking down the twins he fi nds that one is an accountant who 
drives an older model red Geo Metro and the other is a physical therapist driving 
a brand new blue Nissan Pathfi nder. However, as it turns out, both are passionate 
about building World War II model airplanes, and both own a German shepherd 
named Einstein. Seemingly impressive as that fi nding would be ( “ what are the 
odds! ”  right?), it is indeed only seemingly so. Apparently, we would have been 
impressed with the twins having any two things in common. To cover his bases then, 
the researcher should predict that his next pair of twins has  any  two things in com-
mon. He could then guesstimate the probability that two people have at least two 
things in common by pure chance alone and hope this guesstimate turns out low. He 
would then track down his next pair of long-separated twins and hope they have at 
least two things in common. If all that comes about, by the conventions of classical 
hypothesis testing, he could claim that chance can be ruled out as an explanation. 
The problem, of course, is that the probability that two random people will have at 
least two things in common is not low at all. We think it is quite likely, actually.  

    8.3.3           Composite Hypotheses 
 The   lesser model in the above coin example states that the coin is fair, i.e., 

  α        �      0.5. As such, the statistical properties of the coin according to the lesser model 
are completely specifi ed. This allowed us to create the sampling distribution of the 
likelihood ratio in  Table 8.6 . This distribution lists all likelihood ratios that could be 
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obtained in the experiment, and for each lists the probability with which it will be 
obtained in case the lesser model is true. All we needed to do to obtain this distribu-
tion was to go through all possible outcomes of the experiment, for each determine 
the likelihood ratio which would result from this outcome, and for each determine 
the probability with which it would result. The resulting sampling distribution is 
known as an  “ exact sampling distribution ”  (a test which uses an exact sampling 
distribution is known as an  “ exact test ” ). A lesser model which specifi es the proper-
ties of the system completely is said to represent a  “ simple hypothesis. ”  

 Compare   this to the example with which we started off this chapter (Section 
8.2.2.1). There we wished to test whether adaptation affected sensitivity to some 
stimulus. The lesser model stated that adaptation does not affect sensitivity, and thus 
that behavior in both conditions is determined by a single underlying PF. However, 
it did not specify this PF completely. It did make some assumptions about the PF, 
namely that the shape is that of a Logistic function, that the guess rate is equal to 
0.5, and that the lapse rate is equal to 0. However, it did not specify the value of the 
threshold parameter or the value of the slope parameter. A model which does not 
specify the properties of the system completely is said to represent a  “ composite 
hypothesis. ”  In such a case, we cannot create an exact sampling distribution. In order 
to do so, we would have to go through all possible outcomes of the experiment (e.g., 
one possible outcome would be that all responses are incorrect, another would be 
that the response on trial 1 is correct but the responses on all other trials are incor-
rect, etc.). For each of these outcomes we would calculate the likelihood ratio which 
would result. Finally, we would have to calculate for each of these possible outcomes 
the probability with which the outcome would be obtained. It is the latter two that 
cannot be determined when the lesser model represents a composite hypothesis. 

 However  , in case the parameter space of the lesser model is a subset of the param-
eter space of the fuller model,  TLR  is asymptotically distributed as the  χ  2  distribution 
which has degrees of freedom equal to the difference in the number of free param-
eters in the models. A bit more formally, let  ̂θF     be the maximum likelihood estimates 
of the parameter set  θ F   of the fuller model given observations  y . Similarly, let  θ̂L     be 
the maximum likelihood estimates of the parameter set  θ L   of the lesser model given  y . 
Furthermore, let  θ θL F⊂    , such that the above condition is met. The likelihood ratio is: 

  
Λ �

L( )

L( )

ˆ |
ˆ |

θ
θ

L

F

y

y
  (8.1)      

 The   transformed likelihood ratio ( TLR ) is given as: 

  TLR e� � �2 log ( )Λ   (8.2)      

 In   case the lesser model is correct,  TLR  will be asymptotically distributed as  χ  2  with 
degrees of freedom equal to the difference in number of free parameters in  θ F   and  θ L  . 
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 To   be asymptotically distributed as  χ  2  means that, with increasing numbers of 
observations, the sampling distribution of  TLR  will tend more and more towards 
the theoretical and continuous  χ  2  distribution. Unfortunately, the number of obser-
vations that are necessary to obtain an acceptable approximation to the sampling 
distribution depends heavily on the particular circumstances. In many realistic set-
tings the  χ  2  approximation is quite poor (e.g., Wichmann  &  Hill, 2001). 

 An   alternative is to create an empirical sampling distribution. In order to do this, 
we simulate the experiment many times, generating the responses in accordance 
with the lesser model. Of course, in order to perform the simulations we need a fully 
specifi ed lesser model which includes values for the threshold and slope parame-
ters. However, as discussed, in our example of Section 8.2.2.1, the lesser model is not 
fully specifi ed. In order to be able to generate a sampling distribution, we use the 
maximum likelihood estimates for the free parameters (threshold and slope) that we 
obtained from our human observer to specify the behavior of the simulated observer 
completely. From each of the simulated experiments a transformed likelihood ratio 
( TLR ) value is calculated in the same manner as we did for our human observer. The 
resulting distribution of  TLR  values will serve as our empirical sampling distribu-
tion. A distribution consisting of 10,000 simulated  TLR  values for the model com-
parison in Section 8.2.2.1 is shown in  Figure 8.7    in the form of a histogram. Note that 
large  TLR  values indicate a poor fi t of the lesser model compared to the fuller model. 
This is opposite to  LR  values where small  LR  values are indicative of a poor fi t of the 
lesser, relative to the fuller, model. The  TLR  value obtained from our experimental 
data was 12.35 (indicated by the green triangle in the fi gure). Only 24 of the 10,000 
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 FIGURE 8.7          Empirical sampling distribution of  TLR  values for the model comparison discussed in 
Section 8.2.2.1, as well as the (appropriately scaled) theoretical  χ  2  distribution with 2 degrees of freedom.    
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simulated  TLR  values were as large as that obtained from our experimental data. 
Thus, the human observer who generated the experimental data produced a  TLR  
value which is quite unlikely to be obtained from an observer acting according to 
the lesser model. It seems reasonable to conclude, then, that our observer did not act 
according to the lesser model. 

 Note   that the fuller model has four parameters (2 thresholds and 2 slopes) and 
the lesser has two parameters (1 threshold and 1 slope). Thus, the difference in the 
number of free parameters equals two. Also shown in  Figure 8.7  is the (appropri-
ately scaled)  χ  2  distribution with 2 degrees of freedom. For this particular compari-
son, the  χ  2 (2) distribution is quite similar to our empirical sampling distribution. 
It may also be noted that p( χ  2 (2)      �      12.35)      �      0.0021, which is quite close to that 
derived from our empirical distribution (0.0024). 

 The   value of  pTLR  which is returned by  PAL_PFLR_ModelComparison   is derived 
by generating an empirical sampling distribution and comparing the  TLR  of the 
human observer against it. The function also returns the  TLR  itself, such that the user 
may compare it against the  χ  2  distribution with the appropriate degrees of freedom.  

    8.3.4           Specifying Models Using Contrasts 
 Linear   contrasts may be used to reparameterize model parameters. This allows 

for a convenient and fl exible manner in which to specify models. As an example, 
let us consider a two-condition experiment. We wish to test whether the thresh-
olds differ between conditions. We need to defi ne two models. In the fuller model 
thresholds are allowed to vary between conditions, in the lesser model they are con-
strained to be equal. We may use contrast matrices to transform the two thresholds 
into two different parameters: 
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 In   words,   θ   1  corresponds to the sum of the thresholds, whereas   θ   2  corresponds 
to their difference. In the fuller model, both   θ   1  and   θ   2  are free to vary, allowing both 
thresholds to take on any value. In the lesser model we make   θ   1  a free parameter again, 
but we fi x   θ   2  at 0. This will constrain the two thresholds to equal each other but, as a 
pair, to take on any value. In other words, the model comparison can also be thought of 
to test whether   θ   2  differs signifi cantly from 0. In the Palamedes routines which require 
models to be specifi ed (i.e.,  PAL_PFML_FitMultiple , PAL_PFML_Bootstrap
ParametricMultiple, PAL_PFML_BootstrapNonParametri cMultiple,  
PAL_PFML_GoodnessOfFit   and  PAL_PFLR_ModelComparison  ), models may be 
specifi ed by contrast matrices. For example, in a two-condition experiment, the call 

         >      > params      =      PAL_PFML_FitMultiple(StimLevels, NumPos, ... 
OutOfNum, params, PF,  ‘ Thresholds ’ ,  ‘ unconstrained ’ );  
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 is   equivalent to: 

         >      > params      =      PAL_PFML_FitMultiple(StimLevels, NumPos, ... 
OutOfNum, params, PF,  ‘ Thresholds ’ , [1 1; 1 -1]);  

 In   order to fi x a theta parameter to zero, we simply leave out the corresponding 
row of the contrast matrix. Thus, in order to constrain the thresholds to be equal 
between conditions we could make either of these equivalent calls: 

         >      > params      =      PAL_PFML_FitMultiple(StimLevels, NumPos, ... 
OutOfNum, params, PF,  ‘ Thresholds ’ ,  ‘ constrained ’ );  
         >      > params      =      PAL_PFML_FitMultiple(StimLevels, NumPos, ... 
OutOfNum, params, PF,  ‘ Thresholds ’ , [1 1]);  

    8.3.4.1           Example: Trend Analysis 
 The   use of contrast matrices to specify models provides for much fl exibility with 

respect to the specifi c research questions that can be addressed. For example, let 
us revisit the four-condition experiment in Section 8.2.5, the results of which are 
shown in  Figure 8.5 . Earlier, we performed a model comparison and concluded that 
the assumption that the true thresholds were identical between the four conditions 
was untenable. This was, of course, not particularly surprising. The eyeball method 
leaves little doubt as to the statistical reliability of the difference between the thresh-
old in the fi rst condition and any of the other three thresholds. However, we may 
wish to answer more specifi c questions. For example, whereas it is quite clear that 
thresholds generally increase with adaptation duration, there also appears to be a 
decelerating trend. That is, the increase of threshold values appears to level off as 
adaptation duration increases. The question arises whether this effect is  “ real, ”  or 
might be attributed entirely to sampling error. 

 The   model comparison to be performed would involve a lesser model which 
does not allow thresholds to deviate from a straight line (i.e., constrains the rela-
tionship between threshold value and adaptation duration to be linear). This lesser 
model would be compared against a fuller model which does allow thresholds to 
deviate from a straight line. Readers that are well-versed in ANOVA or the general 
linear model will have realized by now that polynomial contrasts will allow us to 
formulate our models. Let us explain the logic by way of the current example. The 
Palamedes function  PAL_Contrasts   can be used to generate a set of polynomial 
contrasts. In order to do so we type: 

         >      > Contrasts      =      PAL_Contrasts(4,  ‘ polynomial ’ );  

 The   fi rst argument ( “  4  ” ) specifi es the number of conditions in the experiment, 
the second argument (  ‘ polynomial ’  ) specifi es that we wish to generate polyno-
mial contrasts. 
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         >      > Contrasts  
  Contrasts    =   
   1  .0000       1.0000       1.0000       1.0000  
    -1.5000       -0.5000       0.5000       1.5000  
   1  .0000       -1.0000       -1.0000       1.0000  
    -0.3000       0.9000       -0.9000       0.3000  

 Hence  , the   θ   and   α   parameters are related thus: 
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 Consider    Figure 8.8   . In panel A, all four theta parameters are fi xed at 0. This 
will, in turn, fi x all thresholds at 0. If we allow   θ   1  to vary (but keep the other thetas 
fi xed at 0), the thresholds are allowed to differ from 0, but are not allowed to differ 
from each other. Graphically, this would mean that all thresholds are constrained to 
fall on a single horizontal line (panel B). If we also allow   θ   2  to vary, the thresholds 
are still constrained to fall on a straight line, but this line is now allowed to have a 
slope unequal to 0 (i.e., it is a fi rst-order polynomial). In panel D,   θ   3  is free to vary, 
and threshold estimates are now allowed to follow any second-order polynomial. 
Finally, in panel E all four   θ   parameters are free to vary, allowing each threshold to 
take on any value independent of the others. 

 The   likelihood ratio test may be used to compare any of the models in  Figure 8.8  
to any other model in the fi gure. For any model, the parameter space is a subset 
of the parameter space of any model which is to its right. For example, the model 
comparison we performed in Section A of this chapter compared model B to model 
E. Based on that comparison we concluded that model B was untenable. However, 
the question we are currently attempting to answer requires a different compari-
son. The question is whether the decelerating trend in the thresholds apparent in 
the data is real or may have arisen due to sampling error alone. In order to answer 
this question we should compare model C, which assumes thresholds follow a fi rst-
order polynomial, to model D, which allows thresholds to follow a second-order 
polynomial which accommodates the deceleration seen in the data. 

 In   order to perform this comparison in Palamedes we use contrast matrices to 
defi ne the models. In the function  PAL_PFLR_ModelComparison   we pass the 
appropriate contrast matrices instead of the options   ‘ unconstrained ’ ,  ‘ fi xed ’  , 
etc. Even though it is not necessary in order to perform the model comparison, let 
us fi rst fi t the two models using  PAL_PFML_FitMultiple  . First we set up the 
necessary arrays. 
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 FIGURE 8.8          The results of the four-condition experiment of Section 8.2.5 (green) along with best-fi tting models of varying restrictiveness 
(open circles).    
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         >      > StimLevels      =      [-2:1:2; -2:1:2; -2:1:2; -2:1:2];  
         >      > OutOfNum      =      [150 150 150 150 150; 150 150 150 150 150; ... 
150 150 150 150 150; 150 150 150 150 150];  
         >      > NumPos      =      [84 92 128 137 143; 67 85 103 131 139; 73 85 ... 
92 125 143; 82 86 97 122 141];  
         >      > PF      =      @PAL_Logistic;  
         >      > params      =      [-.6 1.8 .5 .02; .1 1.8 .5 .02; .6 1.8 .5 .02; ... 
.9 1.8 .5 .02];       %guesses  

 For   each of the two models, we need to create a contrast matrix which defi nes it. 
Let us start with model C. 

         >      > Contrasts      =      PAL_Contrasts(4,  ‘ polynomial ’ );  

 The   full contrast matrix corresponds to model E of course, and would be equiva-
lent to allowing thresholds to take on any value independently of the other thresh-
olds. In order to constrain the parameters as in model C, we need to limit the 
contrast matrix to the fi rst two rows, which allow the mean threshold to differ from 
0, and the thresholds to increase in a linear fashion with condition, respectively. 

         >      > ContrastsModelC      =      Contrasts(1:2,:);  

 Note   that: 
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 We   are now ready to call  PAL_PFML_FitMultiple  : 

         >      > paramsC      =      PAL_PFML_FitMultiple(StimLevels, NumPos, ... 
OutOfNum, params, PF,  ‘ Thresholds ’ , ContrastsModelC, ... 
 ‘ Slopes ’ ,  ‘ constrained ’ ,  ‘ GuessRates ’ ,  ‘ fi xed ’ ,  ‘ LapseRates ’ , ...
 ‘ constrained ’ );  

 When   we inspect  paramsC , we note that the thresholds indeed increase linearly 
with condition: 

         >      > paramsC  
  paramsC    =   
    -0.3283       1.7138       0.5000       0.0397  
    -0.0071       1.7138       0.5000       0.0397  
   0  .3140       1.7138       0.5000       0.0397  
   0  .6351       1.7138       0.5000       0.0397  
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 In   order to defi ne model D, we set up  ContrastsModelD  to contain the fi rst 
three rows of the full contrast matrix: 

         >      > ContrastsModelD      =      Contrasts(1:3,:);  

 And   call  PAL_PFML_FitMultiple   using  ContrastsModelD  instead of 
 ContrastsModelC . 

         >      > paramsD      =      PAL_PFML_FitMultiple(StimLevels, NumPos, ... 
OutOfNum, params, PF,  ‘ Thresholds ’ , ContrastsModelD, ... 
 ‘ Slopes ’ ,  ‘ constrained ’ ,  ‘ GuessRates ’ ,  ‘ fi xed ’ , ... 
 ‘ LapseRates ’ ,  ‘ constrained ’ );  

 Let   us now perform the hypothesis test. Remember that we only need to specify 
the deviations from the default settings which are listed in  Textbox 8.1 . 

         >      > B      =      4000;  
         >      > [TLR pTLR paramsC paramsD TLRSim converged]      =    ... 
 PAL_PFLR_ModelComparison(StimLevels, NumPos, OutOfNum, ... 
paramsD, B, PF,  ‘ lesserthreshold ’ , ContrastsModelC, ... 
 ‘ fullerthreshold ’ , ContrastsModelD,  ‘ lesserlapse ’ , ... 
‘constrained ’ ,  ‘ fullerlapse ’ , ‘constrained ’ , ... 
 ‘ fullerslope ’ , ‘constrained ’ );  

   (We may again need to use the optional arguments  lapseLimits ,  maxTries  
and  rangeTries  in order to avoid failed model fi ts.) On completion of the proce-
dure, we may inspect  pTLR : 

         >      > pTLR  
  pTLR    =   
  0  .0065  

 Thus  , the results obtained from our human observer are not likely to arise from 
an observer who acts strictly according to model C, and we conclude that the 
observed decelerating trend in thresholds is real. We leave it up to the reader to 
confi rm that adding the fourth row in the contrast matrix (allowing all thresholds 
to take on any value independent of each other) does not lead to a fi t which is sig-
nifi cantly better than that of model D. 

 It   appears that model D suffi ces to model the data. However, remember that the 
comparison between model C and model D does not in any way validate the assump-
tions that both models make. These are the assumptions of stability, independence 
of observations, the assumption that the form of the PF is a logistic function, that the 
slopes are equal between conditions, that the guessing rate equals 0.5, etc. We can check 
all but the assumptions of stability and independence by comparing model D against 
the saturated model, which makes only the assumptions of stability and independence. 
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         >      > [TLR pTLR TLRSim converged]      =    ...
 PAL_PFML_GoodnessOfFitMultiple(StimLevels, NumPos, ... 
OutOfNum, paramsD, B, PF,  ‘ Thresholds ’ , ContrastsModelD, ... 
 ‘ Slopes ’ ,  ‘ constrained ’ ,  ‘ GuessRates ’ ,  ‘ fi xed ’ , ... 
 ‘ LapseRates ’ ,  ‘ constrained ’ );  

 Upon   completion, we inspect  pTLR : 

         >      > pTLR  
  pTLR    =   
  0  .7670  

 Thus  , model D provides an excellent fi t to the data.  

    8.3.4.2           Example: Pairwise Comparisons 
 Imagine   that, for whatever reason, it is of interest to determine whether the differ-

ence between the thresholds in condition 3 and 4 is real or could be explained by sam-
pling error alone. None of the comparisons performed above answers this question. 
Using the eyeball method with reference to  Figure 8.6 , few would suspect that this dif-
ference is real. However, for the sake of demonstration let us perform the comparison 
formally. Our fuller model should allow all thresholds (including those in conditions 
3 and 4) to take on any value independent of each other, the lesser should be identi-
cal except that thresholds 3 and 4 should be constrained to equal each other. So-called 
Helmert contrasts allow us to defi ne these models. The function  PAL_Contrasts   
can be used to produce a set of Helmert contrasts for any number of conditions. 

         >      > Contrasts      =      PAL_Contrasts(4,  ‘ Helmert ’ )  
  Contrasts    =   
  1  .0000       1.0000       1.0000       1.0000  
  0  .7500       -0.2500       -0.2500       -0.2500  
  0         0.6667       -0.3333       -0.3333  
  0         -0.0000       0.5000       -0.5000  

 The   fi rst row allows the average threshold to deviate from 0. The second row 
allows threshold 1 to differ from the average of thresholds 2, 3, and 4. The third 
row allows threshold 2 to differ from the average of thresholds 3 and 4. Finally, 
the fourth row allows threshold 3 to differ from threshold 4. In conjunction, these 
contrasts allow all thresholds to take on any value, and if we use the full matrix to 
defi ne the model, we will get an identical fi t compared to using, for example, a full 
polynomial set of contrasts, or by setting the  Thresholds  option in  PAL_PFML_
FitMultiple  to  unconstrained . Let us now defi ne the lesser model. It is the 
fourth row in the contrast matrix which allows thresholds 3 and 4 to differ, and this 
is the row we need to omit to defi ne our lesser model. 

         >      > params      =      repmat([0 2 .5 .02],[4 1]); %guesses  
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         >      > params      =      PAL_PFML_FitMultiple(StimLevels, NumPos, ... 
OutOfNum, params, PF,  ‘ Thresholds ’ , Contrasts(1:3,:), ...
 ‘ Slopes ’ ,  ‘ constrained ’ ,  ‘ GuessRates ’ ,  ‘ fi xed ’ , ...
 ‘ LapseRates ’ ,  ‘ constrained ’ )  
  params    =   
    -0.5317       1.7412       0.5000       0.0401  
   0  .2142       1.7412       0.5000       0.0401  
   0  .4531       1.7412       0.5000       0.0401  
   0  .4531       1.7412       0.5000       0.0401  

 Note   that the estimates of thresholds in conditions 3 and 4 are indeed equal 
under this model. The model comparison is performed as follows: 

         >      > [TLR pTLR paramsL paramsF TLRSim converged]      =    ... 
 PAL_PFLR_ModelComparison (StimLevels, NumPos, OutOfNum, ... 
params, B, PF,  ‘ lesserthreshold ’ , Contrasts(1:3,:), ... 
 ‘ fullerthreshold ’ , Contrasts,  ‘ lesserlapse ’ , ‘constrained ’ , ... 
 ‘ fullerlapse ’ , ‘constrained ’ ,  ‘ fullerslope ’ , ‘constrained ’ );  

 Inspection   of  pTLR  confi rms our conclusion derived by the eyeball method, 
which is that we have very little reason to suspect that the underlying thresholds 
differ between conditions 3 and 4. 

         >      > pTLR  
  pTLR    =   
  0  .9530  

 Different   research questions require different model comparisons. Contrasts 
may be used to defi ne a variety of models. Trend analysis and pairwise compari-
sons are just two examples. For example, contrasts may also be used to test for the 
marginal effects of two or more variables, as well as their interaction in a factorial 
design (e.g.,  Prins, 2008 ). The use of contrasts to defi ne models is routine in the con-
text of the General Linear Model and an excellent introduction is given in  Judd, 
McClelland, and Ryan (2008) .   

    8.3.5           A Note on Failed Fits 
 On   occasion, not all fi ts to simulated experiments converge on a solution. All 

Palamedes functions that perform simulations will issue a warning when this 
occurs. The vector  converged  returned by these functions will contain 0 for each 
simulation for which the fi t failed and 1 for fi ts that were successful. We have noted 
above that the optional arguments  maxTries  and  rangeTries  may be used to 
avoid fi t failures. However, this may not always make the problem go away com-
pletely. Some simulated datasets may never be fi t successfully. 
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 We   encountered the problem in Chapter 4 (Section 4.3.3.1.3) and will briefl y reiter-
ate what we discussed there. The tempting solutions (ignoring the failed fi ts and cal-
culating the standard error or  p -value across the successful fi ts only, or replacing the 
simulations which could not be fi t with new simulations, or retrying the entire set 
of B simulations until we have a set of B simulations which were all successfully fi t) 
are all inappropriate, since our standard errors or  p -values would be based on a non-
random sample of possible simulations. Instead, we should try to make all fi ts suc-
cessful. Generally, convergence of fi ts will improve with a decrease in the number of 
free parameters in the model(s) and with an increase in the number of observations. 

 If   all but a very small percentage of simulations converged successfully, we 
might ignore the failed fi ts in the calculation of standard errors or  p -values  as long 
as we report to our audience that our numbers are based on an incomplete set of simula-
tions . Our audience should then make up their own mind as to the value they wish 
to place on our results. When we are running simulations in order to estimate a  p -
value, we could count any unsuccessful fi ts as evidence contradicting the argument 
we wish to make. For example, assume you wish to show that adaptation affects 
a detection threshold. You specify a lesser model which constrains the thresholds 
to be equal in the adaptation and no-adaptation conditions, and a fuller model 
which allows thresholds to differ between the conditions. You then run  PAL_PFLR_
ModelComparison  to derive a  p -value using  B       �      4,000. Imagine that 103 of the 
simulated  TLR s were larger than the  TLR  obtained from the experimental data, 
3,882 were smaller, and the remaining 15 simulations failed to result in a succesful 
fi t. Since you are trying to show that the lesser model is inappropriate you wish to 
obtain a small  p -value. You could make the argument that even if these 15 failed fi ts 
would all lead to  TLR s greater than that obtained from the experimental data your 
 p -value would still be small enough ([103      �      15]/4,000      �      0.0295) to reject the lesser 
model. Once again, you would have to report that not all fi ts to the simulated data 
succeeded and you would have to report how you derived your  p -value. Finally, if 
our purpose is to derive a  p -value from a  TLR , we might compare our  TLR  against 
the theoretical  χ  2  distribution with the appropriate number of degrees of freedom. 
This does not require any simulations, of course.   

    8.4           SOME ALTERNATIVE MODEL COMPARISON 
METHODS 

    8.4.1           Information Criteria: AIC and BIC 
 The   likelihood ratio test described above can only be used to compare two mod-

els in case one of the models is nested under the other. Some research questions 
require us to make a decision between two or more models which are not nested. In 
such cases, the likelihood ratio test cannot be used. Moreover, the likelihood ratio 
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test is a  “ frequentist ”  or  “ Null Hypothesis ”  test, the fundamental logic of which is 
awkward at best, and for that reason rightfully disputed. The issues involved are 
many and we do not discuss them here (however, we have discussed what is argua-
bly the most serious logical problem with Null Hypothesis tests in Section 4.3.3.2.1). 
A very readable introduction to some of the problems associated with the logic of 
Null Hypothesis testing is given in  Cohen (1994) . 

 This   section will briefl y discuss some methods that can be used to select between 
any two models for which a likelihood can be calculated, whether they are nested 
or not. Remember that using the likelihood as a metric in which to compare the 
goodness-of-fi t of models directly is inappropriate. The reason is that this would 
unjustly favor models that have many parameters. For example, adding parame-
ters to a model would  always  be preferred if we judge the fi t of the model by likeli-
hood only, because adding parameters can only increase the likelihood. However, 
by the scientifi c principle of parsimony simpler models should be preferred over 
more complex models. In model selection, then, the question is whether an increase 
in likelihood which results from the inclusion of additional parameters is worth 
it.  Akaike’s (1974)  AIC ( A n  I nformation  C riterion) is a measure of the relative 
goodness-of-fi t of a model. AIC rewards increases in the likelihood, but simultane-
ously penalizes models for complexity (as measured by the number of free param-
eters included in the model). The  AIC i   of any model  M i   is given as: 

  AIC LL M Ki i i� � �2 2( )ˆ | ;θ y   (8.3)      

 where    LL Mi( | )ˆ ;θ y     is the log likelihood for model  M  i  using maximum likelihood 
estimates for its parameters    θ̂   , based on the observed data  y , and  K i   is the number of 
free parameters in model  M i  . The reader should not get the impression that the par-
ticular formulation of the  AIC , particularly the factor 2 with which  K  is multiplied, 
is arbitrary. The derivation of equation for  AIC  is fi rmly grounded in information 
theory, but is well beyond the scope of this text. 

 Note   that increases in log likelihood and decreases in the complexity of the 
model (both of which are to be favored) lead to smaller values of  AIC i  . Thus, mod-
els with smaller associated  AIC  values are preferred over models with higher  AIC  
values. Note that only the relative value of the  AIC  is informative as  AIC  is greatly 
dependent on the particulars of the experiment, most notably the number of trials. 
For this reason we should not compare  AIC  values between models unless the  AIC  
values are based on the same set of observations,  y . 

 Let   us revisit our trend analysis of Section 8.3.4.1. There we wished to determine 
whether the bend in the line describing thresholds as a function of adaptation dura-
tion was real or not. In order to do so, we compared model D to model C (model fi ts 
are shown in  Figure 8.8 ). Model D allows thresholds to follow a second-order poly-
nomial, while model C constrains them to vary according to a fi rst-order polynomial. 
We performed a likelihood ratio test and concluded that the observed bend in the 
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line would probably not have occurred in case the true trend followed a fi rst-order 
polynomial. Thus, model D was preferred over model C. Let us now compare mod-
els C and D using Akaike’s information criterion. The log likelihood associated with 
model C is  � 1.5542  �  10 3 , that of model D is  � 1.5506  �  10 3  (these log likelihoods 
may be obtained from  PAL_PFML_MultipleFit  ). Model C has four free parame-
ters (a common slope, a common lapse rate, and two additional parameters to code 
the fi rst-order polynomial), while Model D has fi ve (a common slope, a common 
lapse rate, and three additional parameters to code the second-order polynomial). 

 Thus  : 

  AICC � � � � � � � � �2 1 5542 10 2 4 3 1164 103 3. .       

 and   

  AICD � � � � � � � � �2 1 5506 10 2 5 3 1112 103 3. .       

 Model   D has a lower  AIC , and is thus preferred by this criterion. Since the  AIC  is 
a relative measure of fi t and its absolute value is of no consequence for model selec-
tion, it is common practice to report the differences in  AIC  between models, rather 
than their absolute values.  Table 8.7    lists, in order of fi t (best to worst), the differ-
ences between the  AIC  values of all fi ve models shown in  Figure 8.8  and that of the 
best-fi tting model (model D). 

 Also   shown in  Table 8.7  are differences between  BIC  values of the models.  BIC  
stands for Bayesian Information Criterion and is given as: 

  BIC LL M n Ki i e i� � �2 ( ) ( )ˆ | ; logθ y   (8.4)      

 where   the shared terms are as in  AIC , and  n  is the number of observations on 
which the likelihood is based. In other words, the penalization for the inclusion of 
additional parameters increases with the sample size. We note that penalization of 
additional parameters is greater in  BIC  compared to  AIC  (except for the most modest 

 TABLE 8.7            Δ   AIC  and  Δ  BIC  values for the fi ve models shown in  Figure 8.8   

   Model   Δ AIC    Δ  BIC 

   D        0  0.7050 

   E  3.4455  10.1568 

   C  5.3014         0 

   B  26.9578  15.6500 

   A  29.0635  11.7494 
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of sample sizes: log e ( n )  � 2). Note that the ranking of models under the  BIC  crite-
rion differs from that under the  AIC  criterion. The best model under the  BIC  criterion 
is model C, although model D (the best model under the  AIC  criterion) is a close 
second.  

    8.4.2           Bayes Factor and Posterior Odds 
 Model   comparisons may also be performed using the Bayes Factor. The Bayes 

Factor gives researchers the opportunity of incorporating their prior beliefs regard-
ing parameter values in the form of prior distributions across the parameter space. 
The Bayes factor is given as: 
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 where    L ( θ i    |  y ;  M i  ) is the likelihood function of parameter (or parameter set)   θ  i   
of model  M i  , having observed responses  y , and  p (  θ  i  ) is the prior distribution on 
parameter space   θ  i  . The quantity  �   L ( θ i    |  y ;  M i  )  p (  θ  i  ) d θ  i   is termed the marginal likeli-
hood for model  M i  . In other words, the Bayes Factor is somewhat similar to the like-
lihood ratio, except that it uses the mean of the likelihood function (rather than its 
mode as the likelihood ratio does), and it weighs the likelihood function by a prior 
distribution before determining its mean. A  BF        �      1 favors  M  1 , a  BF        �      1 favors  M  2 . 
The computation of the marginal likelihood is generally non-trivial and must, in 
most practical applications, occur by numerical integration. 

 Researchers   also have the opportunity to incorporate prior beliefs regarding the 
relative likelihoods of the two models by applying Bayes Theorem (Section 4.3.3.2.1) 
to obtain the  “ posterior odds. ”  Prior beliefs regarding the relative likelihoods of  M  1  
and  M  2  are expressed as  “ prior odds, ”  which are given as: 
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  (8.6)      

 Note   that  p ( M  1 ) and  p ( M  2 ) need not sum to 1. The posterior odds may be 
obtained by applying Bayes Theorem: 
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  (8.7)      

 Note   that in case the prior probability of model  M  1  equals that of  M  2 , the pos-
terior odds simply equal the  BF . Usage of Bayes Factor or posterior odds does not 
require that models  M  1  and  M  2  are nested.   

 8.4. SOME ALTERNATIVE MODEL COMPARISON METHODS 253



8.   MODEL COMPARISONS254

    Further Reading 
    Hays (1994)  is a classic text on frequentist statistical methods. The model  comparison 

approach emphasized in this chapter is developed much more  thoroughly (but in 
the context of least squares error criterion methods) by Judd, McCelland, and Ryan 
(2008). An introduction to Bayesian statistics may be found in  Jaynes (2003) .  Burnham 
and Anderson (2002)  provide a thorough introduction to the information-theoretic 
approach to model selection which underlies  AIC  and  BIC .  

    Exercises 

       1.     A researcher conducts an experiment with two conditions. He then uses  PAL_PFLR_
ModelComparison  to test whether the PFs differ between the two conditions. He 
assumes that a Logistic function describes the underlying mechanism well and also 
assumes that the lapse rate equals 0.  PAL_PFLR_ModelComparison   returns a  p -
value of 0.5604. 
    a.     Does this mean he can conclude that the Logistic function describes the data 

well?  
    b.     Does this mean that the lapse rate does not differ signifi cantly from 0?  
    c.     What may the researcher conclude?     

    2.     This question refers to the example data given in Section 8.2.2.1 
    a.     In the text (Section 8.2.3.1) it was tested whether adaptation affected the detec-

tion threshold. Repeat this test but now assume that the slopes are identical 
between conditions. Compare the results to that given in the text.  

    b.     In the text (Section 8.2.3.1) it was tested whether adaptation affected the slope 
parameter of the PF describing detection performance. Repeat this test but now 
assume that the thresholds are identical between conditions. Compare the results 
to that given in the text.  

    c.     How would you go about determining whether the assumption that the thresh-
olds were equal between conditions is a valid assumption?     

    3.     This question refers to the example data given in Section 8.2.5. 
    a.     Use contrasts to test whether the threshold at adaptation duration of 0 seconds 

differs signifi cantly from that at 4 seconds.  
    b.     Use contrasts to test whether it is reasonable to believe that the differences 

that exist among the threshold estimates at adaptation durations 4, 8, and 12 sec-
onds occurred by sampling error alone. Do this using a single model comparison 
only.     

    4.     Below is a table which lists the assumptions four models make regarding the two 
PFs and their parameters in the two different conditions in an experiment.   



255 

  

    References  
        Akaik ,    H.             ( 1974 )       .   A new look at the statistical model identifi cation                      .      IEEE Transactions on Automatic Control       , 

 19         ,  716  –       723               .     
        Burnham ,    K.   P.  ,  &    Anderson ,    D.   R.             ( 2002 )    .      Model Selection and Multimodal Inference.       A Practical Information-

Theoretical Approach                ( 2nd ed. )       .  New York, NY      :  Springer            .     
        Cohen ,    J.             ( 1994 )       .   The earth is round (p  � 0.05)                      .      American Psychologist       ,  49         ,  997  –       1003               .     
        Hays ,    W.   L.             ( 1994 )    .      Statistics,        Belmont, CA      :  Wadsworth Group/Thomson Learning            .     
        Jaynes ,    E.   T.             ( 2003 )    .        Probability Theory. The Logic of Science.                    New York, NY      :  Cambridge University Press            .     
        Judd ,    C.   M.  ,   McClelland ,    G.   H.  ,  &    Ryan ,    C.   S.             ( 2008 )    .        Data Analysis. A Model Comparison Approach                  .  New 

York, NY      :  Routledge            .     
        Prins ,    N.             ( 2008 )       .   Correspondence matching in long-range apparent motion precedes featural analysis                      . 

     Perception       ,  37         ,  1022  –       1036               .           

 REREFENCES 255

     Model A  Model B  Model C  Model D  Model E 

   PF  Logistic  Logistic  Logistic  Gumbel  Gumbel 

   Thresholds  unequal  unequal  equal  equal  unequal 

   Slopes  unequal  equal  equal  equal  equal 

   Guess rate  0.5  0.5  0.5  0.5  0.5 

   Lapse rate  0  equal  0  equal  unequal 

            a.     Which pairs of models may be compared using the likelihood ratio test?  
    b.     How many free parameters does each of the models have?  
    c.     For each of these comparisons, what may be concluded if a signifi cant difference 

(i.e., p  � 0.05) is obtained?  

    d.     Which models may be compared against the saturated model?       
    5.     Verify the   Δ BIC  values given in  Table 8.7 .   
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    Quick Reference Guide 

   Absolute threshold  . Traditional term for the magnitude of a stimulus that is just discrimina-
ble from its null, as exemplifi ed by a contrast detection threshold.  
  ABX  . Term used in signal detection theory for a match-to-sample task with two match alter-
natives, i.e., the observer selects a previously viewed sample stimulus (X) from two alterna-
tive match stimuli (A,B). In this book the task is termed 2AFC match-to-sample.  
  Adjustment.    See  Method of adjustment.  
  Accuracy  . Denotes how close a sensory measurement is to its corresponding physi-
cal measurement. A typical measure of accuracy is the reciprocal of the difference 
between the perceived and physical measurements. Example: the perceived midpoint be-
tween two dots is accurate if it is close to the physical midpoint.  
  Acuity.    See  Visual acuity.  
  Adaptive procedure  . Also termed a staircase procedure. An effi cient method for estimating 
the parameters of a PF in which the stimulus magnitude on each trial is based on the observ-
er’s responses on previous trials, such that the amount of information gained from the trial 
is optimized.  
  Additive noise.   Internal noise that is constant with stimulus magnitude.  
  Akaike’s Information Criterion (AIC)  . Measure of goodness-of-fi t that may be used to com-
pare the fi ts of two or more models to a single data set.  

                   AIC LL M Ki i i� � �2 2(  | ; ) ,θ� y      

          where  LL Mi( | ; )θ� y     is the log likelihood for model  M i   using maximum likelihood estimates 
for its parameters   θ  , based on the observed data  y , and  K i   is the number of free parameters in 
model  M  i . Smaller AIC values indicate better fi t.  
  Asymmetric brightness matching  . Procedure in which the observer matches the bright-
nesses of two stimuli set in different contexts in order to obtain their point-of-subjective-
equality, or PSE.  
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  Arcdeg  . Abbreviation for arc degrees. Measure of visual angle. An arc degree is 1/360th of a 
full circle, or  π /180 radians.  
  Arcmin.   Abbreviation for arc minutes. Measure of visual angle. An arc minute is 1/60th of 
an arc degree, 1/21600th of a full circle, or  π /10800 radians.  
  Arcsec  . Abbreviation for arc seconds. Measure of visual angle. An arc second is 1/3600th of 
an arc degree, 1/60th of an arc minute, 1/1296000th of a full circle, or  π /648000 radians.  
  Bayes Factor.   Expresses the relative evidence for two models provided by some data.  
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          where L(  θ   i  |  y ;  M i  ) is the likelihood function of parameter (or parameter set)   θ  i   of model  M i  , 
having observed responses  y , and  p (  θ  i  ) is the prior distribution on parameter space   θ  i  . BF  � 1 
favors model 1, BF  � 1 favors model 2.  
  Bayesian information criterion.   Measure of goodness-of-fi t that may be used to compare the 
fi ts of two or more models to a single data set.  

                   BIC LL M n Ki i e i� � �2 ( | ; ) ( ) ,ˆ logθ y      

              where  LL Mi( | ; )θ� y     is the log likelihood for model  M i   using maximum likelihood estimates for 
its parameters   θ  , based on the observed data  y ,  n  is the number of observations on which the 
likelihood is based and  K i   is the number of free parameters in model  M i  . Smaller BIC values 
indicate better fi t.  
  Bayes ’  Theorem  . A general statement of Bayes ’  Theorem is  
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        where  p ( H ) is the prior probability of hypothesis  H ,  p ( D   |   H ) is the probability of obtaining 
data  D  assuming hypothesis  H  (i.e., the likelihood), and  p ( H   |   D ) is the posterior probability 
of hypothesis  H . Bayes ’  Theorem allows us to adjust our prior beliefs regarding  H  based on 
our empirical results  D .  
  Best PEST.   Adaptive method for estimating a threshold. On each trial a maximum likeli-
hood estimate is made of the threshold using the responses from previous trials and assuming 
a particular shape of psychometric function. The stimulus magnitude on the subsequent trial 
is then set to the threshold estimate.  
  Bias (of estimate)  . The difference between a parameter’s true value and the expected value 
of its estimate.  
  Bias (of observer).   Observer bias has two related meanings. (1) In performance tasks the 
tendency to make more of one type of response than another. For example in a two-interval 
forced-choice (2IFC) task the observer might be biased towards responding  “ fi rst interval ”  
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even if the target was equally likely to occur in both intervals. (2) In appearance tasks 
observer bias can refer to the difference between the point of subjective equality and the 
point of physical equality. For example in a vernier alignment task the point of subjective 
alignment might be biased away from the point of physical alignment.  
  Binocular rivalry  . The phenomenon in which stimuli presented to the two eyes alternate in 
perceptual dominance.  
  Binomial coeffi cient  . Formula for calculating the total number  T  of unique combinations of 
 N  different events, with  k  different events per combination.  
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              Note that  N !      �       N       �      (N  �  1)      �      (N  �  2)      �       …  1 and that 0! equals 1 by defi nition. For 
example if you have  N       �      5 stimulus magnitudes, with  k       �      3 different stimulus magnitudes 
presented per trial, there are a total of  T       �      10 unique combinations of stimulus magnitudes.  
  Bisection task.   Task to measure the perceptual midpoint between two stimuli that lie at dif-
ferent points along a stimulus dimension. Examples: to measure the perceived midpoint of a 
line, or the midpoint in perceived contrast between two different contrasts.  
  Bisection scaling.    See  Partition scaling.  
  Brightness.   The perceptual correlate of luminance, or light intensity.  
  Bootstrap method.   Method used to estimate a parameter’s sampling distribution through 
repeatedly simulating an experiment using known or assumed parameter values. The em-
pirical sampling distribution is then used to determine the standard error of estimate of the 
parameter.  
  Cancellation procedure.    See  Nulling procedure.  
  Chromaticity.   Specifi cation of the color of an object regardless of its luminance, referring to 
both the colorfulness (or saturation) and hue.  
  Constant noise.    See  Additive noise.  
  Contrast.   A measure of the relative luminance between two stimuli. Measures of contrast 
include Weber contrast, Michelson contrast, and RMS (root mean square) contrast. The con-
trast of an object with its surround is invariant to changes in the intensity of illumination.  
  Contrast threshold  . The amount of luminance contrast required to reach a particular 
criterion detection performance.  
  Contrast sensitivity  . The reciprocal of contrast threshold.  
  Class A observation  . Term coined by Brindley (1970) for the psychophysical observation in 
which two physically different stimuli are perceptually indiscriminable.  
  Class B observation.   Term coined by Brindley (1970) for the psychophysical observation in 
which two physically different stimuli remain perceptually discriminable even when matched 
along one or more stimulus dimensions.  
  Criterion.   Usually denotes the bias of an observer towards making one type of response over 
another in a psychophysical task.  
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  Criterion C.   Measure of bias in a forced-choice experiment derived by signal detection 
analysis. For one-alternative-forced-choice (1AFC) tasks  C  is defi ned as:  

                   C z pH z pF� � �[ ( ) ( )]/2      

              where  z ( pH ) and  z ( pF ) are the  z -values calculated for the proportion of hits and false alarms 
respectively.  
  Criterion C �   . Measure of bias in a forced-choice experiment derived by signal detection 
analysis:  
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              where  z ( pH ) and  z ( pF ) are  z -values for the proportion of hits and false alarms respectively.  
  Criterion ln β   . Measure of bias in a forced-choice experiment derived by signal detection 
analysis, defi ned as:  
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        where   φ  [ z ( pH )] and   φ  [ z ( pF )] are the ordinate values of a standardized normal distribution 
corresponding to the  z -values for the proportions of hits and false alarms respectively.  
  Criterion-free  . A psychophysical task or procedure in which observers are unlikely to be biased 
towards making one type of response over another, or a psychophysical measurement that is 
provided by an unbiased observer or computed in such a way as to take into account bias.  
  Criterion-dependent.   A psychophysical task or procedure in which observers are likely to be 
biased towards making one type of response over another, or a psychophysical measurement 
provided by a biased observer.  
  Cross-modal matching  . Method for measuring the apparent magnitude of a stimulus by 
matching it to the magnitude of a stimulus in another sensory modality. For example, the 
perceived slant of a visual texture might be measured by hand-adjusting the slant of an object 
with a planar surface.  
  Cumulative normal function      .            
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  The cumulative normal function is the integral of the normal distribution, where   α   deter-
mines the location (threshold) and   β   determines the slope of the function.  
  Detection.   Usually refers to tasks/procedures/experiments that measure the magnitude of a 
stimulus that can be discriminated reliably from its null. Examples: measurement of a con-
trast detection threshold in which the null stimulus is a blank fi eld; detection of curvature in 
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which the null stimulus is a straight line. The term is also used to denote the measurement 
itself, e.g., a detection threshold.  
  Deviance  . Term that is used for the transformed likelihood ratio ( TLR ) when the fuller mod-
el is the saturated model. Deviance is used to test the goodness-of-fi t of the lesser model.  
  Difference threshold  . Traditional term for the magnitude of a stimulus difference that is just 
detectable when both stimuli are above detection threshold.  
  Differencing strategy  . Strategy of basing forced-choice decisions on the perceived differ-
ences between stimuli. Differencing strategies have been suggested to mediate perceptual 
decisions in the standard 2AFC, same-different, oddity, and match-to-sample tasks.  
  Discrimination  . Most commonly refers to tasks/procedures/experiments that determine the just 
noticeable difference (JND) in stimulus magnitude between two stimuli with non-zero magni-
tude. Also used to denote the type of measurement itself, e.g., a discrimination threshold.  
  Discrimination scale  . A perceptual scale derived by integrating JNDs. Also termed a Fech-
nerian scale.  
  Discriminand.   One of the stimuli in a discrimination experiment.  
   d  �  (d-prime).   Measurement of observer sensitivity or stimulus discriminability derived from 
signal detection theory. If the stimuli are assumed to be represented internally as random 
variables drawn from normal distributions with given means and variances,  d  �  is a measure 
of the distance between the means of the distributions normalized to their standard 
deviation.  
  Equisection scaling   . See  Partition scaling.  
  Exposure duration (of stimulus)   . See  Stimulus exposure duration.  
  Fechnerian integration.   The method of deriving a perceptual scale by adding up or integrat-
ing discrimination thresholds (or JNDs).  
  Fechnerian scaling   . See  Discrimination scale.  
  False alarm  . Responding that a stimulus is present when it is not.  
  Fixed parameter  . A model parameter that is not allowed to vary during model fi tting.  
  Forced-choice  . Term used here to refer to any task/procedure/experiment in which the 
observer is required on each trial to make a response from a predefi ned set of choices. In the 
signal detection literature the term tends to be used more restrictively to refer to tasks in 
which the observer selects a target from two or more stimulus alternatives.  
  Free parameter  . A model parameter that is varied during model fi tting in order to optimize 
the fi t of the model.  
  Geometric mean.   The antilog of the mean of the logarithm of a set of numbers. If the numbers 
are  X  1 ,  X  2   …   X n  , the geometric mean computed using logarithms to the base 10 is given by:  
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  Geometric series.   A series of numbers in which adjacent pairs have identical ratios.  
  Goodness-of-fi t test.   A statistical model comparison between two models in which the fuller 
is the saturated model. The saturated model makes the assumptions of stability and inde-
pendence only. As such a goodness-of-fi t test tests all the assumptions of a model, except for 
the assumptions of stability and independence, simultaneously.  
  Grating induction  . The illusory brightness modulation observed in a uniform stripe running 
at right-angles to the bars of a real luminance grating.  
  Guess rate  . Corresponds to chance level performance: the expected proportion correct 
for a hypothetical observer who guesses on each trial. Note that the term is based on 
assumptions of the discredited high-threshold theory (under the framework of SDT an 
observer never truly guesses). Guess rate is the parameter of a PF that corresponds to the 
lower asymptote of a psychometric function ( γ ).  
  Gumbel function.                  

                   
F xG

x( ; , )  exp ( )α β β α� � � �1 10( )      
              where   α   determines the location (threshold) and   β   determines the slope of the function. The 
Gumbel function is the analog of the Weibull function when a log transform on  x  is used and, for 
that reason, is sometimes referred to as the log-Weibull function or simply, but confusingly, as the 
Weibull function.  
  High-threshold Theory  . A theory of detection which states that detection occurs only when 
the sensory evidence exceeds an internal criterion or threshold. The threshold is set such 
that it will not be exceeded in the absence of a stimulus (i.e., by noise alone). While these 
central tenets of high-threshold threshold theory have been discredited, many of the terms 
used in psychophysics (e.g.,  ‘ threshold ’ ,  ‘ guess rate ’ ) are remnants of high-threshold theory.  
  Hit.   Responding that a stimulus is present when it is present.  
  Hyperbolic secant function             .
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              where   α   determines the location (threshold) and   β   determines the slope of the function.  
  Identifi cation  . Sometimes used as an alternative term to  “ discrimination, ”  especially when 
the observer has not only to detect a stimulus, but also has to identify some additional stimu-
lus property, such as whether the stimulus is red or green, moving leftwards or rightwards, 
behind or in front. Sometimes also used instead of the term  “ recognition. ”   
  Independence, assumption of.   In the context of model fi tting, this assumption states that 
the probability of observing a particular response ( “ yes, ”   “ fi rst interval, ”  etc.) on any given 
trial is not affected by observations made on other trials.  
  Independent observation strategy.   Observer strategy of basing a forced-choice decision 
on the independent assessment of the likelihood that each observation is from a particular 
stimulus. Independent observation strategies have been suggested to underlie same-different, 
oddity and match-to-sample tasks.  
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  Internal noise  . The random fl uctuation in the observer’s internal representation of a stimulus
magnitude.  
  Interval scale  . A perceptual scale in which the differences in scale values are proportional 
to perceived differences in stimulus magnitude. An interval scale can be rescaled by  aX       �       b  
without loss of information where  a  and  b  are arbitrary constants.  
  Inter-stimulus-interval (ISI)  . The temporal interval between the offset of one stimulus and 
the onset of another.  
  Inter-trial-interval (ITI)  . The temporal interval between the end of one trial and the begin-
ning of the next trial.  
  Just noticeable difference (JND)  . The smallest difference in stimulus magnitude that is just 
discriminable.  
  Lapse rate  . The probability of an incorrect response that is independent of the stimulus. Laps-
es are most evidenced by incorrect responses to stimulus magnitudes that are considerably above 
threshold. Lapse rate is the parameter of a PF (  λ  ) that determines the upper asymptote (1  �    λ  ).  
  Lightness  . The perceptual correlate of the refl ectance, or the perceived  “ shade-of-gray ”  of 
an object.  
  Likelihood  . The probability with which a hypothetical observer characterized by assumed 
model parameters would reproduce exactly the responses of a human observer. The likeli-
hood is a function of parameter values, not responses. The likelihood serves as the metric in 
which  “ best-fi tting ”  is defi ned in maximum likelihood estimation.  
  Logarithmic spacing.   Spacing of numbers according to a geometric series, i.e., in which the 
ratios of adjacent pairs of numbers are the same. The  i th value of a set of  n  logarithmically 
spaced values starting with  a  and ending with  b  is:  

                   x i a i b a n( )  ( ) ( / )/( )
�

� � �10 1 1log log[ ]
     

              Logarithmically spaced values can be computed in MATLAB ®  using:  

        >  > X  =logspace(log10(a),log10(b),n)   

  Log likelihood.   Logarithmic transform (base e) of the likelihood ( see  Likelihood).  
  Logistic function.                  
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              where   α   determines the location (threshold) and   β   determines the slope of the function.  
  Luminance  . Measure of light intensity. Common measures are candelas per square metre 
(cd/m 2 ) or foot-lamberts (fl  or ft-L).  
  Magnitude estimation  . Method for deriving a perceptual scale in which observers provide a 
numerical estimate of the perceived magnitudes of each stimulus magnitude.  
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  Match-to-sample.   Forced-choice procedure in which the observer views a  “ sample ”  stimulus 
and then selects the sample from a number of alternative  “ match ”  stimuli. The minimum 
number of stimuli is 3: one sample, two match.  
  Matrix  . A two-dimensional array of numbers.  
  Maximum-likelihood estimation  . Estimation procedure in which the best-fi tting model is 
defi ned to be that which maximizes the likelihood function.  
  Maximum Likelihood Difference Scaling (MLDS)  . Method for deriving an interval per-
ceptual scale from judgements about perceived stimulus differences, in which the perceptual 
values corresponding to each stimulus magnitude are estimated using a maximum likelihood 
criterion.  
  Metamers  . Stimuli that are physically different yet perceptually indiscriminable.  
  Method of adjustment.   Method in which observers freely adjust the magnitude of a stimulus 
in order to reach a criterion, for example a threshold or PSE.  
  Method of constants.   Method in which the magnitude of the stimulus presented on each 
trial is selected from a predefi ned set.  
  Method of limits.   Method in which observers are presented with a series of stimuli of either 
increasing (ascending method of limits) or decreasing (descending method of limits) mag-
nitude, and report when the stimulus appears to change state, e.g., from visible to invisible 
or  vice versa . A threshold is considered to be the stimulus magnitude at which the change of 
state occurs. Typically, the ascending and descending methods are used alternately and the 
thresholds from each are averaged, minimizing errors due to habituation and expectation.  
  Method of paired comparisons.   Method for deriving a perceptual scale involving stimulus 
pairs. On each trial two stimuli are selected from a range of stimuli and the observer decides 
which has the higher perceived magnitude. The set of pair responses are used to derive esti-
mates of the perceptual values corresponding to each stimulus magnitude.  
  Method of quadruples.   Method for deriving an interval perceptual scale involving four 
stimuli per trial. The stimuli are presented in two pairs and the observer decides which pair is 
more perceptually similar (or more perceptually different). The set of quadruple responses are 
used to derive estimates of the perceptual values corresponding to each stimulus magnitude.  
  Method of triads.   Method for deriving an interval perceptual scale involving three stimuli per 
trial. One of the stimuli is allocated as the target and the observer decides which of the two re-
maining stimuli is most perceptually similar (or different) to the target. The set of triad responses 
are used to derive estimates of the perceptual values corresponding to each stimulus magnitude.  
  Michelson contrast.   Defi ned as ( )/( )max min max minL L L L� �      where  L  max  and  L  min  are the max-
imum and minimum luminances. Michelson contrast is the favored metric of contrast for 
periodic stimuli such as sinusoidal gratings, but is also applicable to any stimulus defi ned by 
two luminance levels.  
  Monochromatic.   Light composed of a single or very narrow band of wavelengths.  
  Muller – Lyer illusion  . The illusory difference in length between a line with acute-angle fi ns 
at both ends and a line with obtuse-angle fi ns at both ends.  
  Multi-partition scaling  . Also termed the  “ simultaneous solution, ”  the partition scaling 
method in which the observer adjusts the magnitudes of a range of stimuli until they appear 
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at equal perceptual intervals. The fi rst and last stimulus magnitudes in the range are usually 
non-adjustable anchor points.  
  Multiplicative noise  . Internal noise that is proportional to stimulus magnitude.  
  Nanometer  . Unit of light wavelength   λ  , usually abbreviated to nm (10  � 9  meter).  
  Noise distribution.   Distribution of the relative probabilities of noise samples of different 
magnitude.  
  Normal distribution.                
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              where   μ   is the mean of the distribution and   σ   the standard deviation.  
  Nulling procedure  . The procedure whereby a stimulus whose percept has been altered along 
some stimulus dimension is returned to its original perceptual state via a change to some 
other stimulus dimension.  
  Odd-man-out task   . See  Oddity task.  
  Oddity task  . Forced-choice task in which the observer is presented with a number of stimuli, 
all but one of which are the same, and chooses the stimulus that is different. The minimum 
number of stimuli is 3.  
  One up/two down  . Adaptive (or staircase) method that targets 70.71% correct. Stimulus 
magnitude is increased after each incorrect response and decreased after two consecutive 
correct responses.  
  One up/three down.   Adaptive (or staircase) method that targets 79.4% correct. Stimulus 
magnitude is increased after each incorrect response and decreased after three consecutive 
correct responses.  
  Ordinal scale  . Perceptual scale in which stimuli are rank-ordered according to perceived 
magnitude.  
  Paired comparisons   . See  Method of paired comparisons.  
  Partition scaling.   Method for deriving a perceptual scale that involves observers adjusting a 
stimulus to be perceptually midway between two fi xed, or anchor, stimuli.  
  Pedestal  . The baseline stimulus to which an increment or a decrement in stimulus magni-
tude is added.  
  Perceptual scale  . The function describing the relationship between the perceived and physical 
magnitudes of a stimulus dimension. Examples are perceived contrast as a function of contrast, 
perceived velocity as a function of velocity, perceived depth as a function of retinal disparity.  
  Point of subjective equality (PSE)  . The physical magnitude of a stimulus at which it appears 
perceptually equal in magnitude to that of another stimulus. An example is a stimulus with, 
say, a contrast of 0.5 that appears to have the same contrast as a larger stimulus with, say, a 
contrast of 0.4.  
  Point of subjective alignment  . The relative positions of two lines at which they appear aligned.  
  Posterior probability  . Refl ects a researcher’s beliefs regarding the truth of a hypothesis tak-
ing into account prior beliefs as well as empirical data.  See also  Bayes ’  Theorem.  
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  Posterior odds  . Refl ects a researcher’s beliefs regarding the relative probabilities of two alter-
native models of some data taking into account prior beliefs as well as empirical data.  

                   posterior odds
p M
p M

BF
p M
p M

 
( | )
( | )

( )
( )

,� �1

2

1

2

y
y      

          where BF is the Bayes Factor and  p M p M( )/ ( )1 2( )     is the prior odds.  
  Power function.    F ( x ; a , n )      �       ax n  .  
  Precision.   The inverse of the variability of a psychophysical measurement. The measure of 
variability may be the spread of the psychometric function or the standard deviation of a set 
of measurements.  
  Prior probability.   Refl ects a researcher’s beliefs regarding the truth of a hypothesis prior to 
the collection of empirical data.  See also  Bayes ’  Theorem.  
  Prior odds.   Refl ects a researcher’s beliefs regarding the relative probabilities of two alterna-
tive models of some data.  

                   
prior odds
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              where  p ( M i  ) refl ects the researcher’s prior belief in model  M i   in terms of a probability.  
  Probability density function.   Function describing the relative probabilities of events. The 
function must be integrated to derive actual probabilities.  
  Progressive solution (in partition scaling).   Partition scaling method in which the observer 
divides the perceptual distance between two anchor points into two subjectively equal parts 
by adjusting a third stimulus to be perceptually midway between the anchors, then divides 
the two subjectively equal parts into four using two new adjustable stimuli, then into eight, 
etc., until the required number of partitions has been reached.  
  Proportion correct.   The proportion of trials in which the observer makes a correct response.  
  Proportion false alarms  . The proportion of target-absent trials in which the observer re-
sponds that the target is present.  
  Proportion hits  . The proportion of target-present trials in which the observer responds that 
the target is present.  
  Psi method.   Adaptive method which optimizes the effi ciency of estimation of the thresh-
old, as well as the slope parameter of a PF. On each trial the stimulus magnitude is chosen 
that will lead to the lowest expected entropy across the posterior distribution defi ned across 
threshold and slope parameters.  
  Psychometric function  . A function that describes the relationship between probabilities of 
observer responses and stimulus magnitude. The general form of the psychometric function is:  
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                   ψ γ λ γ γ λ β( ; , , , ) ( ) ( ; , )x F xα β α� � � �1      

        where  F ( x ;   α  ,   β  ) is the function with parameter   α   determining the  x  value at which the 
function reaches some criterion value (e.g., 0.5) and   β   determines the slope of the function. 
Parameters   γ   and   λ   are the guess and lapse rates, respectively. Commonly used functions are 
the Logistic, Cumulative Normal, Weibull, Gumbel, and Hyperbolic Secant.  
  Pulsed-pedestal  . Procedure in which a pedestal stimulus and its increment (or decrement) 
are presented in synchrony.  
  Quadruples   . See  Method of quadruples.  
  QUEST  . Adaptive method which can be considered a Bayesian version of the best PEST 
( see  best PEST). After each response, the posterior distribution across possible threshold 
parameter values is determined from the prior distribution, which refl ects the experimenter’s 
assumptions about the threshold, and the likelihood function based on all preceding trials. 
The threshold estimate with the highest posterior probability serves as the stimulus magni-
tude for the subsequent trial.  
  Rayleigh match  . A traditional tool for studying color vision and diagnosing color defi ciency. 
Defi ned as the relative intensities of a mixture of red (say 679       nm) and green (say 545       nm) 
light required to match a monochromatic yellow (590       nm) light.  
  Ratio scale  . A perceptual scale in which the ratio of scale values corresponds to the ratios 
of perceived magnitudes of the corresponding stimuli. A ratio scale can be rescaled by  aX  
without loss of information where  a  is an arbitrary constant.  
  Recognition  . Refers to experiments/tasks in which the observer names a stimulus from mem-
ory or selects a stimulus previously shown from a set of choices. Most often used to character-
ize experiments involving complex stimuli such as faces, animals, household objects, etc.  
  Refl ectance  . The proportion of incident light refl ected by an object.  
  Reliability.   The reproducibility of a psychophysical measurement.  
  Response bias   . See  Bias (of observer)  
  Retinal disparity  . The horizontal or vertical difference between the angle subtended by an 
object to each eye with respect to fi xation.  
  Receiver Operating Characteristic  . The function that describes the change in performance 
with the observer’s criterion, in terms of the relation between the proportion of hits and 
proportion of false alarms.  

  RMS (Root Mean Square) Contrast  . Defi ned as  RMS
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the number of pixels in the image,  x i   is the luminance value of pixel  i ,  x     is the mean lumi-
nance, and  SD x   is the standard deviation of luminance values  x . Contrast measure of choice 
for complex images.  
  Same-different task  . Task in which the observer decides whether a pair of stimuli are the 
same or are different. In the 1AFC version, one of the pairs (Same or Different) is pre-
sented on a trial and the observer responds  “ same ”  or  “ different ” . In the 2AFC version, 
both pairs (Same and Different) are presented on a trial, and the observer responds  “ fi rst ”  or 
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 “ second ”  depending on the alternative/interval perceived to contain the Same (or the Dif-
ferent) pair.  
  Sampling distribution  . Probability density function of a statistic (e.g., parameter estimate), 
may be approximated by repeated estimation based on samples from an assumed popula-
tion.  
  Sampling error  . The difference between a parameter estimate and the parameter’s true value.  
  Saturated model  . A model that makes no assumptions other than the assumptions of sta-
bility and independence. As such, a saturated model contains a parameter for each unique 
stimulus condition. A model comparison that compares a more restricted model to the 
saturated model is known as a goodness-of-fi t test.  
  Scalar  . A single number, e.g., 8, 1.5, 1.4e-5.  
  Sensory scale.    See  Perceptual scale.  
  Signal distribution  . Distribution of the relative probabilities of signal samples of various 
magnitude.  
  Signal Detection Theory.   A theory of how observers make perceptual decisions based on the 
premise that the internal representation of a stimulus magnitude is a sampling distribution 
with a mean and a variance.  
  Sine-wave pattern.   A pattern in which the stimulus dimension is modulated in space or time 
according to a sinusoidal function:  

                   F x m a f m a fx( ; , , , )  ( )ρ π ρ� � �sin 2      

              where  m  is the mean stimulus magnitude,  a  the amplitude of modulation,  f  the frequency of 
modulation (in cycles per unit space or time), and   ρ   the phase of modulation (in radians; one 
full cycle equals 2  π   radians). The inclusion of 2  π   in the equation means that a full cycle of 
modulation will be completed in the interval 0  �   x   �  1.  
  Simultaneous brightness contrast  . The phenomenon in which the brightness of a stimulus 
depends reciprocally on the luminance of its surround.  
  Simultaneous solution (in partition scaling).    See  Multi-partition scaling.  
  Slope (of psychometric function)  . Rate of change of response as a function of stimulus mag-
nitude. One of the four parameters that characterize a PF (  β  ). Note, however, that whereas   β   
is often referred to as the slope of the PF, it generally will not correspond in value to the slope 
of the function as defi ned in calculus (i.e., the fi rst derivative of the function).  
  Spatial frequency (SF).   The number of cycles of modulation of a stimulus dimension per 
unit visual angle. Typically measured as cycles per degree (cpd).  
  Spread (of psychometric function)  . Also known as support of psychometric function. Stim-
ulus range within which a PF goes from   γ        �        δ   to 1  �    λ         �         δ  , where   γ   is the lower and 1  �  
  λ   the upper asymptote of the PF.   δ   is an arbitrary constant (0  �    δ    �  [1  �    λ         �         γ  ]/2). Thus, 
if we let   σ   symbolize spread:  

                   σ ψ γ γ λ ψ γ δ α β γ λ� � � � �� �1 11( ; , , , ) ( ; , , , )λ α β      

              where   ψ    � 1  ( y ;  α  ,  β  ,  γ  ,  λ  ) is the inverse of the psychometric function   ψ   ( x ;  α  ,  β  ,  γ  ,  λ  )  
  Stability, assumption of  . The assumption that the performance of an observer (for example, 
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the probability of a correct response as a function of stimulus intensity  x ) does not change 
during the course of the experiment.  
  Staircase methods.    See  Adaptive methods.  
  Standard deviation  . A measure of the variability among scores. For any set of numbers  xi , the 
standard deviation is given as:  

                   
σ �

�
�

( )
,

x x

n

i
i i

n
2∑

     

        where  x     is the mean of  x , and  n  is the number of scores. If the numbers  x i   are a random sam-
ple drawn from a population, the following expression is that of an unbiased estimate of the 
standard deviation of the population from which the  x s were drawn.  
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  Standard error  . The standard deviation of a parameter’s sampling distribution. Used to 
quantify the reliability of a parameter estimate.  
  Standardized normal distribution. The normal distribution with mean equal to 0 and stand-
ard deviation equal to 1.                  
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  Steady-pedestal.   Procedure in which the pedestal stimulus is presented alone before the ad-
dition of the increment or decrement.  
  Stimulus exposure duration.   The length of time a stimulus is exposed during a trial.  
  Stimulus-onset-asynchrony (SOA)  . The temporal interval between the onset of two stimuli.  
  Stereopsis  . The means by which the relative depth of an object is determined by virtue of 
the fact that the two eyes view the object from a slightly different angle.  
  Support (of psychometric function).    See  Spread of psychometric function.  
  Symmetric (form of 1AFC).   Type of single-alternative forced-choice task/procedure in 
which the two discriminands can be considered to be mirror opposites, for example grating 
patches that are left- and right-oblique.  
  Temporal frequency (TF)  . The number of cycles of modulation of a stimulus dimension per 
unit time. Typically measured as cycles per second (cps).  
  Termination criterion  . In adaptive methods, the rule that is used to terminate a staircase. For 
example, a staircase may be terminated after a set number of trials or a set number of reversals.  
  Thurstonian scaling  . Method for deriving an interval perceptual scale using the method of 
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paired comparisons, in which the scale is derived from the proportions of times that each 
stimulus magnitude is perceived to be greater than each of the other stimulus magnitudes.  
  Threshold  . In general refers to the difference in magnitude between two stimuli or stimulus 
states that enables them to be just discriminable. Examples are a contrast detection thresh-
old, a contrast discrimination threshold, or the threshold for binocular rivalry.  
  Threshold-versus-contrast (TvC)  . The function relating the threshold for detecting an 
increment (or decrement) in contrast as a function of the pedestal (or baseline) contrast.  
  Threshold-versus-intensity (TvI)  . The function relating the threshold for detecting an
increment (or decrement) in intensity (or luminance) as a function of the pedestal (or base-
line) intensity.  
  Two-alternative forced-choice (2AFC)  . Here defi ned as any procedure in which the 
observer selects a stimulus from two alternatives. Examples are selecting the left oblique grat-
ing from a left- and a right- oblique grating pair, or choosing from two alternatives a stimulus 
previously shown.  
  Transducer function   . See  Perceptual scale.  
  Transformed Likelihood Ratio (TLR).   Statistic used to determine whether two models 
differ signifi cantly. When one of the two models is nested under the other,  TLR  is asymp-
totically distributed as   χ   2  with degrees of freedom equal to the difference in the number of 
free parameters between the two models. When the fuller model is the saturated model, the 
transformed likelihood ratio is known as deviance.  
  Triads   . See  Method of triads.  
  Triangular method  . Alternative name for a 3AFC oddity task.  
  Two-interval forced-choice (2IFC)  . Procedure in which the observer selects a stimulus from 
two stimuli presented in a temporal sequence.  
  Type 1 experiment  . A psychophysical experiment/procedure/task in which there is a correct 
and an incorrect response on each trial.  
  Type 2 experiment  . A psychophysical experiment/procedure/task in which there is no cor-
rect and incorrect response on each trial.  
  Vector  . An m  �  1 or 1  �  n array of numbers.  
  Vernier acuity.   The smallest misalignment of two stimuli that can be reliably detected.  
  Vernier alignment  . Experiment/task aimed at measuring the threshold (or precision) for 
detecting that two stimuli are misaligned, and/or measuring the physical separation at which 
the two stimuli are perceived to be aligned, i.e. the bias.  
  Visual acuity  . Measure of the acuteness or clearness of vision. Traditionally measured using 
an eye chart.  
  Visual angle  . The angle subtended by a stimulus to the eye. Usually measured in arc degrees, 
arc minutes or arc seconds.  
  Weber contrast  . Defi ned as  ΔL Lb/( )    where  Δ  L  is the difference between the luminance of 
the stimulus and its background, and  L b   is the luminance of the background. Weber contrast 
is normally employed to measure the contrast of a uniform patch on a background, and is not 
normally used for periodic stimuli or noise patterns.  
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  Weber’s Law  . Law that states that the just discriminable difference in stimulus magnitude is 
proportional to stimulus magnitude.  
  Weibull function      .         
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  where   α   determines the location (threshold) and   β   determines the slope of the function.  
  Yes/No.   Experiment/task in which a single stimulus is presented on each trial and the 
observer is required to indicate whether or not it contains the target.  
  z-score  . A score that corresponds to the number of standard deviations a score is above 
(if positive) or below (if negative) the mean. The  z -scores corresponding to any distribution 
of scores will have a mean equal to 0 and a standard deviation equal to 1. The  z -scores cor-
responding to any normally distributed variable will be distributed as the standard normal 
distribution.             
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   List of Acronyms     

 AFC .     Alternative  -forced-choice  
 AIC .     Akaike  ’s information criterion  
 APE .     Adaptive   probit estimation  
 BIC .     Bayesian   information criterion  
 CPD .     Cycles   per degree  
 CPS .     Cycles   per second  
 CRT .     Cathode   ray tube  
 IFC .     Interval  -forced-choice  
 ISI .     Inter  -stimulus-interval  
 ITI .     Inter  -trial-interval  
 JND .     Just  -noticeable-difference  
 LL .     Log   likelihood  
 LR .     Likelihood   ratio  
 M-AFC .     M  -alternative-forced-choice  
 MDS .     Multi  -dimensional scaling  
 ML .     Maximum   likelihood  
 MLDS .     Maximum   likelihood difference scaling  
 1AFC .     One  -alternative-forced-choice  
 1IFC .     One  -interval-forced-choice  
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