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ABSTRACT 

 
In this paper, we present our approach in the project 
entitled “Visual ARtifacts Interference Understanding and 
Modeling (VARIUM)”, currently being developed at 
University of Brasília (UnB) and Delft University of 
Technology (TUD). In this project, we aim at designing an 
objective metric for overall quality of digital video that 
takes into account specific spatial and temporal artifacts, 
their impact and mutual interactions for a broad range of 
video content. Our approach relies on first understanding 
the impact of various digital artifacts is isolation, and then 
combining them to evaluate their interaction. As a first 
step, we here present some results on studying the 
visibility and annoyance of “packet loss” artifacts in 
isolation of other digital artifacts.  
 

1. INTRODUCTION 
 

In modern digital imaging systems, the quality of the 
visual content can undergo a drastic decrease due to 
impairments introduced during capture, transmission, 
storage, and/or display, as well as by any signal 
processing algorithm that may be applied to the content 
along the way (e.g., compression.). Impairments are 
defined as visible defects (flaws) and can be decomposed 
into a set of perceptual features called artifacts [1, 2, 3]. 
Being able to detect artifacts and improve the quality of 
the visual content prior to its delivery to the user is 
therefore crucial to ensure a good quality of experience. 
At the basis of such a quality control mechanism, is an 
(automated) visual quality assessment system. 

The most accurate way to determine the quality of a 
video is by using psychophysical experiments with human 
subjects [2]. Unfortunately, these are very expensive, 
time-consuming and hard to incorporate into a design 
process or an automatic quality of service control. 
Therefore, there is a great need for objective quality 
metrics, i.e., algorithms that can predict visual quality as 
perceived by human observers. 

Quality metrics that analyze visible differences 
between a test and a reference signal, taking into account 

aspects of the human visual system (HVS), usually have 
the best performance [4-5], but are often computationally 
expensive and therefore hardly applicable in real-time 
contexts. Alternatives to these metrics are artifact metrics, 
which estimate the strength of the most perceptually 
relevant artifacts. Artifact metrics have the advantage of 
being simple and not necessarily requiring the reference 
signal. Also, they can be useful for post-processing 
algorithms, providing information about which artifacts 
need to be mitigated.  

One disadvantage of artifact metrics is that their design 
requires a good understanding of the perceptual 
characteristics of each artifact. A second disadvantage is 
that the artifact metrics need to be combined to an overall 
quality estimate [6]. The latter cannot be done by simply 
linearly combining the estimated strength of each artifact, 
since masking among artifacts or other mutual interaction 
effects may occur. Both disadvantages are hampered by 
technological limitations in digital media at the point of 
delivery, namely the co-occurrence of different artifacts. 
For example, temporal artifacts caused by transmission 
errors can appear in videos already containing blockiness 
and blurriness artifacts, as a consequence of compression.  

To address these disadvantages we propose a two-step 
approach: (1) evaluate the annoyance and visibility of 
digital artifacts in isolation, what can be achieved by 
generating ‘pure’ artifacts from high-quality videos, and 
(2) evaluate masking and interaction effects of these 
(isolated) artifacts when presented in combination to 
better understand how these artifacts combine to produce 
overall annoyance. This approach was already used in [7-8] 
to study the visibility, annoyance, and interaction of 
blockiness, ringing, noisiness, and blurriness and their 
relation with spatial content. In this paper, we extend this 
work to include temporal artifacts.  

The paper is divided as follows. First, we explain our 
approach and the related project activities in more detail. 
Then, we report preliminary results on the visibility and 
annoyance of a typical temporal artifact, “packet loss”, 
and briefly compare our results to studies that have 
evaluated packet loss artifacts in highly compressed 
videos (i.e., containing a mixture of digital artifacts). 



 
2. VARIUM APPROACH 

 
Figure 1 shows an overview of the structure of the project, 
which is divided in work packages (WP). As a starting 
point for designing an objective metric that is robust to the 
co-presence of multiple artifacts, we will perform a series 
of psychophysical tests [3] to collect information on the 
perceptual characteristics of artifacts when presented 
alone or in combination. At the core of the VARIUM 
project (WP1) is therefore a series of subjective 
experiments aimed at gathering information about the 
visibility, annoyance and description (E1), and 
determining their perceptual strengths (E2).  

The visibility of an artifact refers to whether the 
artifact is noticed within the content. It is defined 
according to a visibility threshold, which corresponds to 
the distorting signal strength that allows 50% of the 
observers to notice the artifact. The annoyance of an 
artifact is a measure of the degradation of the visual 
content when the distorting signal strength is above 
threshold. Observers can also be trained to recognize 
specific artifacts when combined (description) and 
estimate their perceptual strength. This way, we can have 
an idea of how the visibility and annoyance are being 
affected by the video content and the presence of other 
artifacts.  

In a second stage, to connect visibility, annoyance, 
description and perceptual strength information to the 
overall appearance of the combined artifacts, we will 
measure overall quality scores of videos impaired with 
different combinations of artifacts at different strengths 
(WP2). An adaptation of Keelan’s quality ruler [2] will be 
used for quantifying overall video quality. While 
performing all the above experiments, we will also 
evaluate the impact of (combined) artifacts on viewing 
behavior and visual attention (WP3). Such information 
has been shown to be highly relevant in visual quality 
assessment [9]. As a consequence, we will record eye-
movements throughout the planned experiments. The 
collected information will eventually form the basis for 
the design of an effective video quality metric that is 
robust to combined artifacts (WP4). 

 
3. VISIBILTY AND ANNOYANCE OF PACKET 
LOSS ARTIFACTS 
 

In video transmission over IP networks, the network 
variability and the lack of service guarantees represent a 
big challenge. Transmission errors may occur due to 
network congestion and path loss. Typical impairments 
caused by these errors are packet loss, jitter, and delays. 
Among these, packet loss is probably the most annoying 

artifact. As the name suggests, packet loss artifacts are 
caused by a complete loss of the packet being transmitted. 
 Typically, for block-based video compression schemes 
(e.g. MPEG-1/2/4, H-261/2/3/4), consecutive macroblocks 
in a frame are transmitted as a slice in a single network 
packet. Therefore, the loss of network packets results in a 
loss of macroblocks. Because the compression process 
removes a lot of spatial and temporal redundancies from 
the original video, and because of the use of motion-
compensated temporal prediction, a single loss of a packet 
can affect many subsequent frames. Therefore, packet loss 
artifacts are visually characterized by the presence of 
rectangular areas distributed over the video frames, whose 
content differs from the surrounding areas.  

The visibility and annoyance of packet-loss artifacts 
depend heavily on how the video stream has been coded, 
how it has been mapped into flows and packetized, and 
what type of error concealment algorithm is being used. In 
the literature, there is a considerable amount of work on 
the visibility of the packet-loss, as summarized by Boulos 
et al. [10]. Some literature also investigated the effect of 
scene characteristics on the visibility of packet loss [11]. 
Some studies have attempted to address the visibility and 
annoyance of packet loss artifact [12, 13]. 

In [12], the authors show that the annoyance of packet 
loss artifacts is correlated with their length (propagation 
throughout frames) and with the severity of the losses 
(PSNR), whereas their visibility seems not to be related to 
the length of the loss itself, but rather to the overall 
degradation of the video. However, these results are based 
on the subjective evaluation of degraded versions of a 
single video content and both visibility and annoyance are 

 
Fig. 1. Schematic representation of the planned work 
and division of the tasks. 



not analyzed in relation to the spatial and temporal 
characteristics of the video. Furthermore, a loss is 
considered visible if it generates a drop in visual quality; 
whereas it might be argued that a loss might be visible and 
yet not generate annoyance (and quality loss as a 
consequence). The study in [13] relates the visibility of 
packet loss artifacts to the percentages of slices lost, the 
type of frames where the loss happened (I, B or P), the 
duration of the loss and the amount of motion in the video. 
Unfortunately, the analysis is not extended to the 
annoyance of visible artifacts.  

In most studies, packet loss artifacts are generated by 
varying parameters of compression algorithms (codec type, 
bitrate, etc.) and digital transmissions (loss rate, channel 
model, etc.). As a consequence, the generated videos 
contain compression artifacts (e.g., blockiness, blurriness, 
and ringing) besides the packet loss artifacts. Therefore, 
these procedures cannot be used in this project to study 
the perceptual characteristics of artifacts. In the following, 
we report the preliminary results of an experiment aimed 
at relating visibility and annoyance of packet loss artifacts 
to the temporal and spatial properties [14] of different 
video contents. 
3.1. Experimental Methodology 
 

We used seven high-definition (1920x720, 50 fps) of  ten 
seconds that corresponded to a diverse content, as 
depicted in Fig. 2.  Figure 3 shows Spatial (SI) and 
Temporal (TI) perceptual information measures 
(computed as per [14]) for all videos. To avoid inserting 
additional artifacts, we compressed the original videos at a 
high bitrate and used the H.264 standard error 
concealment algorithm, generating videos with Peak 
Signal to Noise Ratio (PSNR) well above 70dB. We also 
varied the frame intervals (M) between I-frames with the 
goal of having artifacts with different time duration. We 
used M = 4, 8, and 12 frame intervals, no P frames,  and 8 
slices per frame. Then, we randomly deleted packets from 
the coded video bitstream, varying the percentage of 
deleted packets from 0.5% to 9%. For each original, we 
had 91 test sequences.  

 The experiment tested one subject at a time using a PC 
computer and a Samsung LCD monitor of 23 inches. The 
room where the experiment was performed had 
illumination conditions compliant to ITU-T 
Recommendation BT.500-8 [3]. The subject was seated 
straight ahead of the monitor, centered at or slightly below 
eye height for most subjects. The distance between the 
subject’s eyes and the video monitor was 3 times the 
monitor screen’s height. A chin rest was used to guarantee 
a constant distance between the subject’s eyes and the 
monitor. 
 Fifteen subjects from Delft University of Technology 
participated in the experiment. They were considered 
naïve to most kinds of digital video defects and the 
associated terminology. They were asked to wear glasses 
or contact lenses if they needed them to watch TV. A test 
session was broken into five stages. In the first stage, the 
subject was verbally given instructions. In the second 
stage, we showed examples of original and highly 
impaired videos to establish the range of annoyance used 
in the experiment. In the third stage, the subject carried 
out practice trials to allow the responses to stabilize. The 
fourth stage was the main experiment. At the last stage, 
we asked the subject for qualitative descriptions of the 
impairments.  
 The main experiment was performed with the set of 
test sequences presented in random order.  After each test 
sequence was played the subject was asked “Did you see a 
defect or an impairment?”, prompting for a  ‘yes’ or ‘no’ 
answer (detection task). Then participants were asked to 
perform the annoyance task consisting of giving a 
numerical judgment of how annoying the detected 
impairment was. Any defect as annoying as the worst 
impairment shown in the second stage of the experiment 
should be given ‘100’, half as annoying ‘50’, ten percent 
as annoying ‘10’, etc.  
 

   
‘Park Joy’            ‘Into Trees’           ‘Park Run’      ‘Romeo and Juliet’ 

 
‘Cactus’             ‘Basketball’           ‘Barbecue’ 

Fig. 2. Screenshots of the first frame of the sequences 
included in Experiment 1 (E1).  

  
Fig. 1. Temporal and spatial characteristics of the 
videos included in the experiment 



4. EXPERIMENTAL RESULTS 
 

To estimate the visibility of the packet loss artifact, we 
calculated the probability of detection by dividing the 
number of subjects that detected the artifact by the total 
number of subjects. Figures 4 and 5 show the probability 
of detection for two sample test sequences, i.e., ‘Park Joy’ 
and ‘Park Run’. The x axis in the graphs corresponds to 
the Mean Squared Error (MSE) between the original and 
the impaired video, while the y axis corresponds to the 
Probability of Detection. The different curves in the 
graphs correspond to different values of M (4, 8 or 12).   
  For the videos ‘Into Trees’ and ‘Barbecue’, all values 
of the probability of detection were equal to ‘1’, i.e. every 
subject of the pool was able to detect the artifact in all test 
sequences. These two videos had camera movements and 
large smooth light areas (e.g., sky areas in ‘Into Trees’ and 
concrete areas in ‘Barbecue’ as shown in Fig. 2), what 
might have made the artifacts in these scenes easier to 
detect. The videos ‘Park Joy’ (see Fig. 4), ‘Cactus’, and 
‘Basketball’ had probabilities of detection curves that 
increased very fast with the MSE. This means that 
artifacts in these videos were also relatively easy to detect. 
The videos ‘Romeo and Juliet’ and ‘Park Run’ (see Fig. 5), 
on the other hand, had a less steep slope for the 
probability of detection, and so, in these contents, the 

artifacts were harder to detect. The video ‘Romeo and 
Juliet’ is a relatively dark video with a clear focus of 
attention (i.e., the couple in the middle of the scene). The 
video ‘Park Run’ has a lot of spatial details (i.e., the 
crowd) and temporal activity and not a lot of camera 
movement. Note that the steepness of the slope in the 
probability of detection is not straightforwardly related to 
the video characteristics SI and TI in Figure 3. This result 
is somewhat in contrast with that of [13], where the 
authors found that low-motion content (low TI) was more 
capable to conceal packet losses. 
 To get insight in the results of the annoyance task, the 
Mean Annoyance Value (MAV) was calculated by 
averaging the annoyance score over all observers for each 
test video. Figures 6-8 show the MAV as a function of 
MSE for the videos ‘Joy Park’, ‘Park Run’, and 
‘Barbecue’. Notice that, as expected, the higher the MSE, 
the higher the MAV. Again, the graphs show three curves, 
corresponding to the three different frame intervals (i.e., 
M = 4, 8 1n 12). As expected, the larger the value of M, 
the higher the value of MAV, consistently with what 
found in [12, 13].  For some of the videos (‘Barbecue’, 
and ‘Romeo and Juliet) the MAV curves for M = 8 and 12 
are very similar (see Fig. 8), i.e. subjects did not notice a 
difference in quality between artifacts appearing with 
different time intervals. Notice also that, the video 
‘Barbecue’, which had probability of detection equal to 
‘1’, had annoyance scores higher than the annoyance 
scores given to other videos (i.e., compare Fig. 8 with Figs. 
6 and 7).  

5. CONCLUSIONS 
In this paper, we presented our approach in the project 
entitled VARIUM, which has the goal of understanding 
the characteristics of relevant digital artifacts, their 
interactions, and their relationship with content. In 
particular, in this paper we reported the first results on the 
visibility and annoyance of a typical temporal artifact, 
“packet loss”, and showed its (non-trivial) interactions 
with spatial and temporal characteristics in the video.  
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Fig. 5. MAV for video ‘Joy Park’. 

 
Fig. 6. MAV for video ‘Park Run’. 

 
Fig. 7. MAV for video ‘Barbecue’. 


