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ABSTRACT

In this paper we present a no-reference video quality metric based

on individual measurements of three artifacts: blockiness, blurri-

ness, and noisiness. The set of artifact metrics (physical strength

measurements) was designed to be simple enough to be used in

real-time applications. The metrics are tested using a proposed

procedure that uses synthetic artifacts and subjective data obtained

from previous experiments. The technique has the advantage of

allowing us to test each metric on videos which contain only the

desired artifact signal or a combination of artifact signals. Models

for the overall annoyance based on a combination of the artifact

metrics using both a Minkowski metric and a linear model are de-

veloped. Both models present a very good correlation with the

data and show no statistical difference in their performances.

1. INTRODUCTION

In the past few years, considerable attention has been paid to the

development of better video quality metrics that correlate well with

the human perception of quality [1, 2]. Although many metrics

have been proposed, most of them are very complex and require

the original video for estimating the quality. As a result, their use

in real-time transmission applications is very difficult. Although

human observers can usually assess the quality of a video without

using the reference, designing a no-reference metric is a difficult

task and only a few of such video quality metrics have been pro-

posed in the literature so far [3, 4].

In a previous work, we have found that it is possible to predict

the overall annoyance of an impaired video using a combination

of perceptual strengths of individual artifacts [5]. In this work, our

goal is to investigate if a combination of physical strength mea-

surements of individual artifact signals (artifact metrics) can be

used to estimate the overall annoyance of impaired videos. The

assumption here is that the strength of the artifact signal is cor-

related with the perceptual strength of the artifact. To this end,

we developed a set of no-reference artifact metrics for blockiness,

blurriness, and noisiness that are simple enough to be used in real-

time applications. We, then, obtained models for overall annoy-

ance using the Minkowski metric and the linear model. The pro-

posed models focus on estimating the quality of standard defini-

tion videos compressed using MPEG-2 and its target application

is broadcasting.
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2. ARTIFACT METRICS

The general approach for developing and testing artifact metrics

consists of using video sequences with different levels of artifact

strengths generated by compressing or by transmitting the original

video at different bit-rates or conditions. In this work, we propose

a different approach that provides a robust test and allows a better

comparison among different metrics. To be able to control the

type, proportion, and strength of the artifacts, we tested the artifact

metrics using synthetically generated artifacts and subjective data

gathered from specifically designed psychophysical experiments.

In this work, we used the data gathered from a previous ex-

periment where blocky, blurry, and noisy artifacts were inserted

into specific regions of the videos for a short time interval (de-

fect regions). We asked subjects to detect them and rate their an-

noyance. A total of six originals were used - ‘Bus’, ‘Calendar’,

‘Cheerleader’, ‘Flower’, and ‘Hockey’ [2]. Three defect regions

were used for each original to prevent the test subjects from learn-

ing the locations of the defects. We varied the artifact strength

by scaling the pixel-by-pixel difference between the corrupted and

the original videos [6]. Table 1 shows the total squared error (TSE)

of the test sequences corresponding to the original video ‘Bus’ 1.

In this section we present the blockiness, blurriness, and noisiness

metrics which performed better in our simulation tests.

2.1. Blockiness Metric

The proposed blockiness metric is a modification of the metric pro-

posed by Vlachos [7]. Vlachos’ algorithm estimates the blockiness

signal strength by comparing the cross-correlation of pixels inside

(intra) and outside (inter) the borders of the coding blocking struc-

ture of a frame. In his work, the frame Y (i, j) is partitioned into

bs × bs blocks and simultaneously sampled in vertical and hori-

zontal directions. This sampling structure assumes that all visible

blockiness artifacts have a visible corner. Nevertheless, frequently,

only one of the borders of the blocking structure is visible. To re-

flect this, instead of down-sampling the frame simultaneously, we

splitted the process into two separate parts. This modification im-

proves the performance of the algorithm, with a small increase in

complexity.

First, we down-sampled the frame only in the vertical direc-

tion, obtaining the vertical sub-sampled image sv:

sv(m, n) = {Y (i, j) : m = i, n = j mod bs} . (1)

where (i, j) are the horizontal and vertical co-ordinates. Then, we

down-sampled the frame in the horizontal direction, obtaining the

horizontal sub-sampled image sh:

sh(m, n) = {Y (i, j) : m = i mod bs, n = j} . (2)

1For lack of space, we will only show the results corresponding to the
test video ‘Bus’. The results obtained for other videos were similar.
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Table 1. Total Square Error values for test sequences containing

blocky, blurry, and noisy artifacts.

defect artifact TSE

region strength blocky blurry noisy

Top 1 109.09 40.18 157.97

Top 2 197.82 243.44 427.99

Top 3 396.44 621.94 1328.56

Top 4 670.46 1370.61 2622.14

Top 5 996.53 2382.24 4186.98

Top 6 1415.09 3626.78 6093.68

Middle 1 423.19 527.46 675.01

Middle 2 801.39 3283.43 1803.30

Middle 3 1563.37 8454.29 5474.06

Middle 4 2558.25 18919.50 10529.10

Middle 5 3771.61 33360.10 16317.20

Middle 6 5227.33 51554.00 22467.90

Bottom 1 436.23 241.95 227.86

Bottom 2 824.24 1499.86 614.08

Bottom 3 1651.10 3875.24 1899.68

Bottom 4 2752.66 8701.84 3726.34

Bottom 5 4092.39 15392.20 5899.88

Bottom 6 5715.65 23852.10 8397.98

The size of the block, bs can be adjusted according to the appli-

cation. In this work, bs = 8 because we are targeting MPEG-2

codecs.

Figures 1 (a) and (b) display the modified sampling structures

for the horizontal (sh) and vertical (sv) directions, respectively, for

a 24 × 24 area of the frame. The dark symbols inside the grid cor-

respond to pixels in the resulting sampled sub-images. Different

symbols correspond to different sub-images. The set of inter-block

pixels in the vertical direction corresponds to the sub-images s7

and s0 (Figure 1(b)), while the set of inter-block pixels in the hor-

izontal direction corresponds to the sub-images s7 and s1 (Figure

1(a)). The set of intra-block pixels corresponds to the sub-images

s0 and s1 for the vertical direction, and s1 and s3 for the horizontal

direction.

The correlation between two given images, sm and sn, is given

by the following expression:

Cm,n(i, j) = F
−1

(
F ∗(sm(i, j)) · F (sn(i, j))

|F ∗(sm(i, j))F (sn(i, j))|

)
, (3)

where F and F−1 denote the forward and inverse two dimensional

discrete Fourier transform, respectively, and * denotes the complex

conjugate. The magnitude of the highest peak was used as a mea-

sure of correlation between sm and sn. Before the maximum was

taken, the array elements were filtered using a Hamming window

to force the elements to a constant value around the borders.

To estimate the blockiness signal strength, we measured the

correlation between the intra- and inter-block sub-images in both

directions. The vertical intra-block correlation is given by:

PVintra = max
i,j

{C7,0(i, j)} , (4)

while the vertical inter-block correlation is given:

PVinter = max
i,j

{C0,1(i, j)} . (5)

The horizontal correlations, PHinter and PHintra, are obtained

in a similar way. The blockiness measure for the frame is given by

the following expression:
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Fig. 1. Frame sampling structure for correlation-based blockiness

metric: (a) horizontal and (b) vertical directions.
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Fig. 2. Blockiness metric results for test sequence ‘Bus’ contain-

ing only blockiness.

blockiness = 2.0 −

[
PVintra

PVinter
+

PHintra

PHinter
,

]
(6)

For frames with no blockiness, the value of PVintra is close to

PVinter and PHintra is close to PHinter . As blockiness is in-

troduced, the values of PVinter and PHinter become smaller and,

consequently, the value of the blockiness metric increases. The

blockiness signal measurement for the set of all frames was ob-

tained by averaging the measures over all frames.

Figure 2 displays the results after applying this metric on test

sequences containing only synthetic blocky artifact signals for the

original ‘Bus’. The x-axis of the graph correspond to the six block-

iness signal strengths shown in the third column of Table 1 and

represented, for simplification, by the integers 1-6, where 1 refers

to the smallest strength and 6 to the largest one. The y-axis cor-

responds to the blockiness signal measurements. The three curves

correspond to the three defect regions of the video (‘top’, ‘middle’,

and ‘bottom’). Similar results have been found for the other origi-

nal videos. As can be seen, the blockiness metric increases as the

blockiness signal strength increases. Simulation results showed

that the metric was robust, had a good performance, and was not

very sensitive to content effect. Overall, the metric performed bet-

ter (the correlation with the subjective data was r = 0.860) than

other metrics which estimate blockiness in the spatial [8] and fre-

quency [4] domain (r ≈ 0.40).

2.2. Blurriness Metric

Most of the existing blurring metrics are based on the idea that blur

makes the edges larger or less sharp [9, 10, 11]. In this work, we

implemented a no-reference blur (blurriness signal) metric which

also makes use of this very simple idea. The algorithm measures

blurriness by measuring the width of the edges in the frame. The

first step consists of finding strong edges using the Canny edge

detector algorithm. The output of the Canny algorithm gives the
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Fig. 3. The width of the edge is used as a measure of the blurriness

signal strength. P1 is the first local extreme and P2 is the second

one.
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Fig. 4. Blurriness metric results for test sequences ‘Bus’ contain-

ing only blurriness for videos.

magnitude of the edge pixels, M(i, j), and their orientation, O(i, j).

We selected only the strong edges of the frame (M(i, j) > 25).

The width of an edge is defined as the distance between the

two local extremes, P1 and P2, on each side of the edge, as shown

in Figure 3. If the edge is horizontal, P1 will be located above the

edge pixel, while P2 will be below it. If the edge is vertical, P1

will be located to the left of the edge pixel, while P2 will be to the

right of it. The width of the edge, width(i, j), at position (i, j)
is given by the difference between the two extremes P1(i, j) and

P2(i, j). The blurriness signal strength measure for a frame was

obtained by averaging widths over all strong edges of this frame.

So, given that a frame Y has L strong edges pixels, the blurriness

signal strength measure for this frame is given by:

blurriness =
1

L

N∑

i=0

M∑

j=0

width(i, j). (7)

The blurriness signal strength measure for the whole video was

obtained by averaging the measurements for all frames.

Figure 4 displays the results of applying this metric on the test

sequence containing only blurriness for the original ‘Bus’. The x-

axis of the graphs corresponds to the six blurriness signal strengths

(see the fourth column of Table 1) and the y-axis corresponds to

blurriness metric. Each curve corresponds to one different region

of the video. As can be seen from this figure, the blurriness met-

ric increases as the artifact signal strength increases. This metric,

although very simple, was very robust and insensitive to contents.

2.3. Noisiness Metric

Most existing noisiness metrics are designed for still images and,

frequently, they require some information about the original [12].
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Fig. 5. Noisiness metric results for test sequence ‘Bus’ containing

only noisiness.

Blindly estimating noise in an image or video is still a difficult

problem. The proposed noisiness metric is based on the work by

Lee [13] that uses the well known fact that the noise variance of

an image can be estimated by the local variance of a flat area. To

reduce the content effect we used a cascade of 1-D filters as a pre-

processing stage [12].

After the preprocessing, we sub-divided the image in 8 × 8
blocks and calculated the local variance of each of the 9 overlap-

ping 3×3 sub-blocks inside each block. An estimation σ̂2
l of the l-

th block noise variance was calculated by averaging the 4 smallest

sub-block variances. Then, we calculated the histogram h(σ̂) of

the block variances. An initial global estimate for the frame noise

variance was obtained by calculating the mean squared value of

the histogram [13]:

s
2
1 =

∑kmax

k=0
k2h(k)

∑kmax

k=0
h(k)

. (8)

Since the pre-processing stage does not do a perfect job in elim-

inating the content effect, Eq. (8) usually overestimates the vari-

ance. This problem was reduced by implementing a fade-out of

the histogram using a simple cutoff function with threshold β1 =
1.5 · s1.

An improved value of the mean squared s2 was computed it-

eratively using the following expression:

s
2
l+1 =

∑σmax

σ=0
σ2gl(σ)h(σ)∑σmax

σ=0
gl(σ)h(σ)

, (9)

where σmax is the maximum value for σ obtained while calcu-

lating the histogram. The initial value s1 was taken from Eq. (8)

and the mean squared value was refined successively. After three

to five iterations, convergence was achieved. The final estimate

of the frame noise variance and, therefore, of the noisiness signal

strength, is given by s2
lmax

, where lmax indicates the total number

of iterations used. The noisiness signal measure for the set of all

frames was obtained by averaging the measures for each frame.

Figure 5 shows the results of applying this algorithm to the test

sequence with only noisy artifacts for the original ‘Bus’. The x-

axis of the graphs correspond to the six noisiness signal strengths

(see fifth column of Table 1) and the y-axis correspond to noisi-

ness metric. As can be noticed, the noisiness metric increases as

the signal strength of the noisiness increases. Notice that there is a

considerable difference between the three curves corresponding to

different regions of the video. This reflects the fact that the outputs

of noisiness metrics are very influenced by the video content. Nev-

ertheless, the correlation of the noisiness metric with the percep-

tual artifact strengths given by the subjects was good (r = 0.74)

and the metric performed well for our purposes.
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Fig. 6. Observed MAV versus predicted annoyance for the set of

all test sequences for the linear model.

3. OVERALL ANNOYANCE ESTIMATION

If a video is affected by one or more types of artifacts, the total

annoyance can be estimated from the individual artifact perceptual

strengths using a combination rule. In this section, we want to

investigate if the same type of model can be used to estimate over-

all annoyance by using, instead, individual artifact signal physical

strength measurements (artifact metrics). So, after choosing the

best artifact metrics, our goal is to obtain a model for overall an-

noyance using a combination rule of these metrics. We propose a

no-reference annoyance model that uses the blockiness, blurriness,

and noisiness metrics using the weighted Minkowski metric:

Yp = (α · Blockiness
p + β · Blurriness

p + γ · Noisiness
p)1/p

(10)

If p = 1, it becomes a linear model.

Then, we performed a nonlinear least-squares data fitting us-

ing both Minkowski metric and linear model to the mean annoy-

ance values obtained from a second psychophysical experiment [5]

and the output of the artifact metrics. This second psychophysical

experiment independently measured the strength and annoyance of

blocky, blurry, and noisy artifacts when presented alone or in com-

bination. The data set consisted of 120 test sequences - 4 originals

(‘Bus’, ‘Cheerleader’, ‘Football’, and ‘Hockey’) × 30 combina-

tions of blocky, blurry, and noisy artifacts.

Both models produced a good correlation with the data (r =

0.86). Although the linear model is a simpler and more restric-

tive model, we found that there was no significant statistical dif-

ference, in performance, between the linear and the more generic

Minkowski models. Figure 6 shows a plot of the measured versus

predicted annoyance using linear metric. The fit for the Minkowski

metric returned an exponent equal to 0.66 and scaling coefficients

equal to 0.91, 3.40, and 2.51, corresponding to blockiness, blur-

riness, and noisiness, while for the linear model the scaling co-

efficients were equal to 3.41, 7.40, and 5.39, corresponding to

blockiness, blurriness, and noisiness. The annoyance models us-

ing the artifact metrics had similar parameters to the ones found

for the annoyance models obtained using the artifact perceptual

strengths [5]. Further improvements in the models can be obtained

by adding simple human visual systems to the metrics.

4. CONCLUSIONS

The goal of this paper was to test the possibility of predicting the

overall annoyance of videos impaired with combinations of block-

iness, blurriness, and noisiness metrics. With this purpose we de-

signed a set of artifact metrics for blockiness, blurriness, and noisi-

ness. To evaluate the performance of each artifact metric, we tested

its ability to detect and estimate the artifact signal strength for test

sequences containing only the artifact being measured. Finally, we

obtained a model for overall annoyance based on a combination of

the artifact metrics using both a Minkowski metric and a linear

model. Both models presented a very good correlation with the

data and no statistical difference in performance.
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